Сопротивление теплопроводности материалов: Сопротивление теплопередаче строительных материалов

Содержание

Сопротивление теплопередаче строительных материалов

Строительство зданий требует соблюдения большого количества нюансов, факторов, способных повлиять на качество постройки. Существуют стандарты, нормы, от которых отходить не рекомендуется. До начала строительства необходимо создать план, произвести расчеты. Коэффициент сопротивления теплопередаче показывает, насколько быстро материалы пропустят холод с улицы в жилье.

Правильно рассчитать теплопередачу приведенного материала так же важно, как и другие данные. От полученных результатов зависит то, насколько жилище будет теплым, какие в нем показатели экономии тепла. Можно примерно рассчитать расход на энергию, затрачиваемую на отопление дома. Кроме того, будет ясна прочность, надежность сооружения.

Стенам и иным частям дома свойственно при больших морозах промерзание. Если не учитывать правила теплопередачи, дом может промерзнуть насквозь. Заморозка-размораживание приводит к скорейшему износу частей жилища, они ветшают, после чего здание может стать аварийным.

Высокое сопротивление теплопроводности наружных стен и дверей помогает справиться с проникновением холода.

Показатели теплопроводности

Любой элемент в природе имеет различную степень проводимости. Тепло проходит сквозь него в зависимости от скорости движения частиц, которые способны передать температурные колебания. Чем частицы ближе находятся одна к другой, тем теплообмен будет проходить быстрее. Получается, что чем более плотный материал, тем быстрее он будет нагреваться или остывать. Плотность является основным фактором теплопередачи, показывая ее интенсивность. Таблица с данными для камня

Выражается данный показатель коэффициентом теплопроводности. Обозначение буквенное производится символом «λ». Единица измерения Вт/(м*Со). Чем больше численные данные этого коэффициента, тем лучше материал проводит тепло. Существует величина, обратная проводимости тепла, которая называется тепловое термическое сопротивление. Единица измерения: м

2*Со/Вт. Буквенное обозначение «R».

Данные по регионам

Нормируемое сопротивление можно посмотреть в справочниках. Важно придерживаться норм, чтобы не пришлось дополнительно утеплять дом, так как холод легко проникает сквозь стены. Правильному теплообмену, такому, какой бы подходил для данного региона, должно предшествовать утепление стен и верное использование материалов.

Значения по регионам

Как применяются показатели в строительстве

Для каждого материала, используемого в строительстве, важно определить степень проводимости тепла. Теплоизоляционные свойства влияют на скорость промерзания стен, насколько материал подвержен воздействию холода. Показатель сопротивления при теплопередаче для любого современного материала уже вписан в справочники.

Современные технологии предполагают использование нескольких слоев для стен, дверей, поэтому показатели тепловой проводимости в них могут объединяться. Для показа общей степени проводимости принята величина «приведенное сопротивление теплопередаче». Таблица с данными для стеклопакетов

Рассчитать ее можно точно так же, как и предыдущие данные. Но учитывать следует несколько показателей теплопроводности. Второй вариант произведения расчетов теплоотдачи – использование однородного аналога многослойной стенки. Он должен пропускать такое же количество тепла за равный промежуток времени. Разница в температурах для внутренней части помещения и внешней должна быть одинаковой.

Расчет приведенного сопротивления производится не на квадратный метр, а на целую комнату или весь дом. Показатель помогает обобщить данные о проводимости тепла всего жилища, а точнее материалов, из которых оно изготовлено. Сопротивление для пола также необходимо учитывать.

Термическое сопротивление

Любая стена, дверь, окно служит для ограждения от внешних природных воздействий. Они способны в разной степени защитить жилище от холодов, так как коэффициент проводимости у них отличается. Для каждого ограждения коэффициент рассчитываться должен по-разному. Точно так же ведется расчет для внутренних перегородок, стен, дверей, неотапливаемых частей дома.

Если в здании имеются части, которые не протапливаются, необходимо утеплять стены между ними и другими помещениями так же качественно, как и внешние. Воздух – плохой переносчик тепла, потому что там частицы находятся на значительном отдалении друг от друга. Выходит, что если изолировать некоторые воздушные массы герметично, получится неплохая изоляция от холода. Для уточнения данных производится расчет приведенного сопротивления. Данные показывают, насколько хорошо утеплено жилище, нет ли необходимости в дополнительном утеплении. Современные материалы

В старых домах делали всегда по две рамы, чтобы между ними находилось некоторое количество воздушных масс. Теперь по такому же принципу делаются стеклопакеты, но воздух между стеклами откачивается полностью, чтобы частиц, проводящих тепло, вообще не было. Термическое сопротивление в них значительно превышает показатели старых окон. Входные двери делаются по такому же принципу. Стараются сделать небольшой коридор, предбанник, который сохранит тепло в доме.

Если в жилище установить дополнительные резиновые уплотнители в несколько слоев, это позволит повысить теплоизоляционные свойства. Современные входные двери создаются многослойными, там помещается несколько разных слоев утеплительного материала. Конструкция становится практически герметичной, дополнительное утепление часто не требуется. Сопротивление теплопередаче стен обычно не такое хорошее, потому используются дополнительные материалы для утепления.

Как рассчитывается тепловое сопротивление

Данные после расчета теплового сопротивления помогут показать, насколько хорошо утеплен дом, какое количество тепла теряется в процессе. Таким образом, можно точно подобрать оборудование для утепления, правильно рассчитать мощность. Для примера будет произведен расчет одной из стен и дверей каркасного дома с керамическим кирпичом, что поможет понять, насколько хороши данные материалы для строительства и утепления. Утепление изнутри

Класс сопротивления для каждого материала разный. С обратной стороны он утеплен экструдированным пенополистиролом, толщина которого составляет 100 мм. Стены по толщине будут в два кирпича, что равняется 500 мм. Формула для вычисления сопротивления:

R = d/λ, где d – толщина компонентов стены, λ – коэффициент теплопроводности.

По справочнику необходимо посмотреть данные λ. Это число 0,56 для кирпича и 0,036 – для полистирола.

R = 0,5 / 0,56 = 0,89 – для кирпича.

R = 0,1 / 0,036 = 2,8 – для полистирола.

Общий показатель будет суммой этих величин. R = 0,89 + 2,8 = 3,59. Данная формула с приведенными данными имеет численное значение. Его можно сравнить с показаниями с улицы, верными в вашем регионе, и понять, правильно ли применены утеплители. Можно определить класс по приведенному выше сопротивлению.

Теплые конструкции

Для увеличения теплового термического сопротивления следует использовать современные материалы, в которых показатели проводимости тепла максимально низкие. Количество таких материалов сейчас увеличивается. Популярными стали:

  1. Деревянные конструкции. Считаются экологически чистым материалом, потому многие предпочитают вести строительство, используя именно этот компонент. Использоваться может любой вид окультуренной древесины: сруб, бревно, брус. Чаще применяют сосну, ель или кедр, показатели проводимости которых по сравнению с другими материалами достаточно низкие. Необходимо произвести защиту от атмосферных воздействий, вредителей. Материал покрывается дополнительным слоем, защищающим от негативных факторов.
  2. Керамические блоки.
Пример защиты от внешнего воздуха
  1. Сэндвич-панели. В последнее время этот материал становится все более популярным. Основные преимущества: дешевизна, высокие показатели сопротивляемости холоду. В материале имеется множество воздушных ячеек, иногда делают «пенную» структуру. Например, некоторые типы панелей имеют вертикальные воздушные каналы, которые неплохо защищают от холода. Другие компоненты делаются пористыми, чтобы большое количество заключенного воздуха помогло справиться с поступающим холодом.
  2. Керамзитобетонные материалы. Их использование также позволит надежно защитить жилище от холода.
  3. Пеноблоки. Конструкция делается пористой, но достигается это не простым вклиниванием воздушных прослоек, а путем произведения химической реакции. Иногда в цемент добавляется пористый материал, который поверху покрывается застывшим раствором.

Важные моменты для применения утеплительных материалов

При проектировании жилища необходимо учитывать погодные условия местности. Если данные не учтены, термическое сопротивление теплопередаче может быть недостаточным, что позволит холоду проникать сквозь стены. Обычно, если такое происходит, используются утеплители. Иногда утепление производится внутри дома, но обычно оно проводится по наружным стенам. Утепляются несущие элементы и части, расположенные в непосредственном контакте с улицей. Утепление жилища

Показатели современных теплоизоляционных материалов очень высокие, потому их не нужно использовать в большом количестве. Обычно для утепления хватает толщины до 10 мм. Не стоит забывать о паропроницаемости стен, дверей и утеплительных компонентов. Правила строительства требуют, чтобы этот показатель повышался из внутренних частей к внешним. Потому утеплять газобетонные или пенобетонные стены можно только минеральной ватой, показатели которой верны для приведенных требований. Внутреннее утепление

 

Кроме потерь тепла через стены дома оно может уходить через кровлю. Поэтому важно утеплять не только наружные элементы, но и уложить материал над потолком, чтобы жилье было надежно утеплено. Если нет возможности применять необходимый материал, можно сконструировать зазор для вентиляции. В любом случае не стоит забывать, что теплосопротивление для материалов является одной из важнейших величин. Обязательно учитывайте его при возведении нового дома.

 

 

Сопротивление теплопередаче ограждающих конструкций. Расчет, таблица сопротивления теплопередаче :: BusinessMan.ru

При строительстве частных и многоквартирных домов приходится учитывать множество факторов и соблюдать большое количество норм и стандартов. К тому же перед строительством создается план дома, проводятся расчеты по нагрузке на несущие конструкции (фундамент, стены, перекрытия), коммуникациям и теплосопротивлению. Расчет сопротивления теплопередаче не менее важен, чем остальные. От него не только зависит, насколько будет дом теплым, и, как следствие, экономия на энергоносителях, но и прочность, надежность конструкции. Ведь стены и другие элементы ее могут промерзать. Циклы заморозки и разморозки разрушают строительный материал и приводят к обветшалости и аварийности зданий.

Теплопроводность

Любой материал способен проводить тепло. Этот процесс осуществляется за счет движения частиц, которые и передают изменение температуры. Чем они ближе друг к другу, тем процесс теплообмена происходит быстрее. Таким образом, более плотные материалы и вещества гораздо быстрее охлаждаются или нагреваются. Именно от плотности прежде всего зависит интенсивность теплопередачи. Она численно выражается через коэффициент теплопроводности. Он обозначается символом λ и измеряется в Вт/(м*°C). Чем выше этот коэффициент, тем выше теплопроводность материала. Обратной величиной для коэффициента теплопроводности является тепловое сопротивление. Оно измеряется в (м2*°C)/Вт и обозначается буквой R.

Применение понятий в строительстве

Для того чтобы определить теплоизоляционные свойства того или иного строительного материала, используют коэффициент сопротивления теплопередаче. Его значение для различных материалов дается практически во всех строительных справочниках.

Так как большинство современных зданий имеет многослойную структуру стен, состоящую из нескольких слоев различных материалов (внешняя штукатурка, утеплитель, стена, внутренняя штукатурка), то вводится такое понятие, как приведенное сопротивление теплопередаче. Оно рассчитывается так же, но в расчетах берется однородный аналог многослойной стены, пропускающий то же количество тепла за определенное время и при одинаковой разности температур внутри помещения и снаружи.

Приведенное сопротивление рассчитывается не на 1 м кв., а на всю конструкцию или какую-то ее часть. Оно обобщает показатель теплопроводности всех материалов стены.

Тепловое сопротивление конструкций

Все внешние стены, двери, окна, крыша являются ограждающей конструкцией. И так как они защищают дом от холода по-разному (имеют различный коэффициент теплопроводности), то для них индивидуально рассчитывается сопротивление теплопередаче ограждающей конструкции. К таким конструкциям можно отнести и внутренние стены, перегородки и перекрытия, если в помещениях имеется разность температур. Здесь имеются в виду помещения, в которых разность температур значительная. К ним можно отнести следующие неотапливаемые части дома:

  • Гараж (если он непосредственно примыкает к дому).
  • Прихожая.
  • Веранда.
  • Кладовая.
  • Чердак.
  • Подвал.

В случае если эти помещения не отапливаются, то стену между ними и жилыми помещениями необходимо также утеплять, как и наружные стены.

Тепловое сопротивление окон

В воздухе частицы, которые участвуют в теплообмене, находятся на значительном расстоянии друг от друга, а следовательно, изолированный в герметичном пространстве воздух является лучшим утеплителем. Поэтому все деревянные окна раньше делались с двумя рядами створок. Благодаря воздушной прослойке между рамами сопротивление теплопередаче окон повышается. Этот же принцип применяется для входных дверей в частном доме. Для создания подобной воздушной прослойки ставят две двери на некотором расстоянии друг от друга или делают предбанник.

Такой принцип остался и в современных пластиковых окнах. Единственное отличие – высокое сопротивление теплопередачи стеклопакетов достигается не за счет воздушной прослойки, а за счет герметичных стеклянных камер, из которых откачан воздух. В таких камерах воздух разряжен и практически нет частиц, а значит, и передавать температуру нечему. Поэтому теплоизоляционные свойства современных стеклопакетов намного выше, чем у старых деревянных окон. Тепловое сопротивление такого стеклопакета – 0,4 (м2*°C)/Вт.

Современные входные двери для частных домов имеют многослойную структуру с одним или несколькими слоями утеплителей. К тому же дополнительное теплосопротивление дает установка резиновых или силиконовых уплотнителей. Благодаря этому дверь становится практически герметичной и установка второй не требуется.

Расчет теплового сопротивления

Расчет сопротивления теплопередаче позволяет оценить потери тепла в Вт и рассчитать необходимое дополнительное утепление и потери тепла. Благодаря этому можно грамотно подобрать необходимую мощность отопительного оборудования и избежать лишних трат на более мощное оборудование или энергоносители.

Для наглядности рассчитаем тепловое сопротивление стены дома из красного керамического кирпича. Снаружи стены будут утеплены экструдированным пенополистиролом толщиной 10 см. Толщина стен будет два кирпича – 50 см.

Сопротивление теплопередаче вычисляется по формуле R = d/λ, где d – это толщина материала, а λ – коэффициент теплопроводности материала. Из строительного справочника известно, что для керамического кирпича λ = 0,56 Вт/(м*°C), а для экструдированного пенополистирола λ = 0,036 Вт/(м*°C). Таким образом, R (кирпичной кладки) = 0,5 / 0,56 = 0,89 (м2*°C)/Вт, а R (экструдированного пенополистирола) = 0,1 / 0,036= 2,8 (м2*°C)/Вт. Для того чтобы узнать общее теплосопротивление стены, нужно сложить эти два значения: R = 3,59 (м2*°C)/Вт.

Таблица теплового сопротивления строительных материалов

Всю необходимую информацию для индивидуальных расчетов конкретных построек дает представленная ниже таблица сопротивления теплопередаче. Образец расчетов, приведенный выше, в совокупности с данными таблицы может также использоваться и для оценки потери тепловой энергии. Для этого используют формулу Q = S * T / R, где S – площадь ограждающей конструкции, а T – разность температур на улице и в помещении. В таблице приведены данные для стены толщиной 1 метр.

Материал R, (м2 * °C)/Вт
Железобетон 0,58
Керамзитобетонные блоки 1,5-5,9
Керамический кирпич 1,8
Силикатный кирпич 1,4
Газобетонные блоки 3,4-12,29
Сосна 5,6
Минеральная вата 14,3-20,8
Пенополистирол 20-32,3
Экструдированный пенополистирол 27,8
Пенополиуретан 24,4-50

Теплые конструкции, методы, материалы

Для того чтобы повысить сопротивление теплопередаче всей конструкции частного дома, как правило, используют строительные материалы с низким показателем коэффициента теплопроводности. Благодаря внедрению новых технологий в строительстве таких материалов становится все больше. Среди них можно выделить наиболее популярные:

  • Дерево.
  • Сэндвич-панели.
  • Керамический блок.
  • Керамзитобетонный блок.
  • Газобетонный блок.
  • Пеноблок.
  • Полистиролбетонный блок и др.

Дерево является весьма теплым, экологически чистым материалом. Поэтому многие при строительстве частного дома останавливают выбор именно на нем. Это может быть как сруб, так и оцилиндрованное бревно или прямоугольный брус. В качестве материала в основном используется сосна, ель или кедр. Тем не менее это довольно капризный материал и требует дополнительных мер защиты от атмосферных воздействий и насекомых.

Сэндвич-панели – это довольно новый продукт на отечественном рынке строительных материалов. Тем не менее его популярность в частном строительстве очень возросла в последнее время. Ведь его основными плюсами является сравнительно невысокая стоимость и хорошее сопротивление теплопередаче. Это достигается за счет его строения. С наружных сторон находится жесткий листовой материал (ОСП-плиты, фанера, металлический профиль), а внутри – вспененный утеплитель или минеральная вата.

Строительные блоки

Высокое сопротивление теплопередаче всех строительных блоков достигается за счет наличия в их структуре воздушных камер или вспененной структуры. Так, например, некоторые керамические и другие виды блоков имеют специальные отверстия, которые при кладке стены идут параллельно ей. Таким образом, создаются закрытые камеры с воздухом, что является довольно эффективной мерой препятствия теплопередачи.

В других строительных блоках высокое сопротивление теплопередачи заключается в пористой структуре. Это может достигаться различными методами. В пенобетонных газобетонных блоках пористая структура образуется благодаря химической реакции. Другой способ – это добавление в цементную смесь пористого материала. Он применяется при изготовлении полистиролбетонных и керамзитобетонных блоков.

Нюансы применения утеплителей

Если сопротивление теплопередачи стены недостаточно для данного региона, то в качестве дополнительной меры могут применяться утеплители. Утепление стен, как правило, производится снаружи, но при необходимости может применяться и по внутренней части несущих стен.

На сегодняшний день существует множество различных утеплителей, среди которых наибольшей популярностью пользуются:

  • Минеральная вата.
  • Пенополиуретан.
  • Пенополистирол.
  • Экструдированный пенополистирол.
  • Пеностекло и др.

Все они имеют очень низкий коэффициент теплопроводности, поэтому для утепления большинства стен толщины в 5-10 мм, как правило, достаточно. Но при этом следует учесть такой фактор, как паропроницаемость утеплителя и материала стен. По правилам, этот показатель должен возрастать наружу. Поэтому утепление стен из газобетона или пенобетона возможно только с помощью минеральной ваты. Остальные утеплители могут применяться для таких стен, если делается специальный вентиляционный зазор между стеной и утеплителем.

Заключение

Теплосопротивление материалов – это важный фактор, который следует учитывать при строительстве. Но, как правило, чем стеновой материал теплее, тем меньше плотность и прочность на сжатие. Это следует учитывать при планировке дома.

Термическое или тепловое сопротивление материалов.

Что такое термическое или тепловое сопротивление материалов?

Вот как это объясняет « Википедия»:  «Термическое сопротивление — тепловое сопротивление, способность конструкции (его поверхности или какого-либо слоя) препятствовать распространению теплового движения молекул.»

 Коэффициент теплового сопротивления отражает свойства любого материала и выражается как толщина слоя материала, делённая на теплопроводность. (м²*°С)/Вт

Проще говоря: Тепловое сопротивление – величина обратная теплопроводности. (Хорошо проводит тепло – значит, слабо теплу сопротивляется. Следовательно, обладает высокой теплопроводностью  и низким теплосопротивлением).

 

Можно не без основания утверждать, что термическое или тепловое сопротивление — один из важнейших теплотехнических показателей строительных материалов. Ведь от этого показателя напрямую зависит, сколько Вы будете платить за отопление своего жилья. Прошли те времена, когда газ и электричество стоили копейки. Поэтому, прежде чем принять решение, из каких материалов будет построен Ваш дом, обдумайте информацию из этой статьи.
Вы хотите построить дом, и думаете о том, как экономить в будущем на отоплении и кондиционировании Вашего жилья? Тогда Вам нужно стремиться к показателям энергосбережения близким к пассивному дому. Что это такое? Основоположник концепции пассивного дома (Passive House) — является немецкий д-р Вольфганг Файст, который впоследствии стал основателем «Института пассивного дома» (Passive House Institute) в городе Дармштадт (Германия) Больше информации о этой концепции Вы можете получить на нашем сайте по ссылке: «Пассивный дом (Passivhaus)-технология строительства из Германии. Часть 1.» или из небольшого видео интервью д-р Вольфганга Файста:

Если Вы хотите получить больше информации о том, что такое пассивный дом, обратите внимание на статью на нашем сайте: «Что значит — пассивный энергосберегающий дом? Какие факторы влияют на энергоэффективность Вашего дома?» или на видеоролик с нашего канала:
Пришло время задуматься о том, из какого строительного материала будет построен дом. Если для Вас эта актуальная тема, полезную информацию для себя Вы найдете на нашем сайте по ссылке:«Из чего лучше строить дом в Украине.» И это неудивительно, энергоресурсы дорожают с каждым годом, поэтому все думают о том, как сэкономить на отоплении и кондиционирование дома. Если Вы готовы применять продвинутые современные технологии строительства, предлагаем Вам рассмотреть канадскую технологию SIP панельного строительства, которая широко распространена во всем мире, и сегодня широко применяется и в нашей стране. Больше информации о канадской технологии, ее плюсы и минусы, Вы можете получить в рубрике: «О технологии энергосберегающего строительства»

Также, Вы можете посмотреть небольшой фильм с одного из наших объектов, чтобы увидеть процесс строительства дома по канадской технологии из сип панелей:

Прежде всего, хотелось бы заметить, что мы не ставим цель вести научные дебаты о  таком понятии, как термическое сопротивлении. Цель этой статьи лишь в том, чтобы показать неоспоримые преимущества сип панели в сравнении с традиционными строительными материалами в плане сохранении тепла.

ВОПРОС: Чем SIP-170 панели, изготовленные «Строй Дом UA», лучше традиционных строительных материалов?                                                                                                                                                                             ОТВЕТ: В первую очередь, высоким показателем коэффициента теплового сопротивления!                                                                  Сравнительный анализ значений сопротивления теплопередачи SIP панелей и различных строительных материалов. При норме для 1 температурной зоне (Харьковская обл.) R min. 3,3 м2*К/Вт (Согласно ДБН В.2.6-31:2016) Больше информации о стоимости отопления дома из сип панелей, Вы можете узнать из отзыва владельца такого дома, перейдя по ссылке: «Сип панельный дом и газ.»

Материал Коэффициент теплопроводности

 

Вт/(м·K)

Толщина слоя мм. Теплосопротивление

 

(м²*°С)/Вт

   
1 SIP 220   220 5,57
2 SIP 170   170 4,22
3 Кирпич, силикатный 0,81 250 0,3
4 Кирпич красный глин. 0,56 250 0,45
5 Кирпич керамич. пуст. 0,52 250 0,48
6 Газобетон D500 0,29 300 2,1
7 Железобетон 1,69 300 0,18
8 Керамзитобетон 0,66 300 0,45

ВЫВОД: Из этой таблицы видно очевидное, тепловое сопротивление SIP-170 панели превышает показатель распространенных строительных материалов от 3 до 20 раз. Так что выбор за Вами 🙂                                                            Чтобы наглядно продемонстрировать разницу в энергоэффективности кирпича и сип панели, приводим фото наших телевизионных исследований нашего СИП панельного дома, и объекта, куда нас пригласили провести исследование тепловизором на предмет утечек тепла.     Вывод: Дом из сип панелей с фасадной термопанелью 116 мм,  в 9 раз теплее, чем кирпичный, с толщиной стены в 2 кирпича 500 мм. При этом толщина кирпичного дома  в два раза больше.          

Вот как это выглядит на практике. Стена толщиной 17 см. (СИП панель 170) имеет такой же показатель коэффициента теплового сопротивления, как, к примеру, кирпичная стена 2500 мм. Вывод делайте сами! Больше информации о свойствах СИП панелей Вы сможете найти по ссылке: «Сип панели»

То есть, при строительстве лучше использовать материалы с низкой теплопроводностью (высоким теплосопротивлением) для лучшего сохранения тепла. Если Вам интересно, Вы можете увидеть строительство некоторых объектов из сип панелей в рубрике «Галерея», перейдя по ссылке: Галерея

 

                   
С уважением, «Строй Дом UA»

Теплопроводность. Коэффициент теплопроводности материала. Термическое сопротивление.

4. Теплоотдача у поверхности ограждения. Закон Ньютона. Коэффициент теплоотдачи.

Теплоотдача – теплообмен между поверхностью твердого тела и подвижной средой.

5. Сопротивление теплопередаче ограждающих конструкций. Требуемое сопротивление теплопередаче. Рекомендации по выбору ограждающих конструкций с заданными теплозащитными свойствами.

6. Распределение температур в ограждающих конструкциях. Определение температур по толщине стены графическим способом.

 

7. Сопротивление теплопередаче светопрозрачных ограждающих конструкций. нормирование площади остекления. Выбор окон с высокими теплозащитными свойствами.

f – это выраженное в процентах отношение площадей окон к суммарной площади наружных стен, включающей светопроемы, все продольные и торцевые стены.

· Если коэффициент остекленности фасада f не превышает 18% – для жилых зданий и 25% – для общественных зданий, то конструкция окон выбирается следующим образом:

o рассчитывается требуемое сопротивление (Rreq = a · D + b , a и b – коэффициенты для соответствующих групп зданий и вида ограждающих конструкций. D – градусо-сутки D = (tint – tht)· zht; tint – расчетная средняя температура внутреннего воздуха здания, tht , zht – средняя температура наружного воздуха и продолжительность в сутках отопительного периода)

o выбирается светопрозрачная конструкция из условия: R0 ≥ Rreq.

 

· Если коэффициент остекленности фасада f более 18% – для жилых зданий и более 25% – для общественных зданий, то следует выбрать окна с приведенным сопротивлением теплопередаче R0 :

не менее 0,51, если D <=3500, °С×сут;

не менее 0,56, если 3500 <D <=5200, °С×сут;

не менее 0,65, если 5200 < D <=7000, °С×сут.

Конструкцию окна выбираем.

8. Санитарно- гигиеническое требование к ограждающим конструкциям.

В холодный период года температура внутренней поверхности ограждения tsi несколько ниже, чем температура воздуха помещения tint. Воздух, соприкасаясь с холодной поверхностью, также будет охлаждаться. Если температура поверхности достаточно низкая, водяной пар, содержащийся в воздухе, будет конденсироваться на ней в виде мелких капель. Конденсация влаги из воздуха будет происходить, если температура внутренней поверхности ограждения окажется ниже точки росы внутреннего воздуха. Образовавшийся конденсат приводит к отсыреванию поверхности, появлению на ней плесени и т.д., что вредно сказывается на здоровье людей. Поэтому практически для всех помещений устанавливается санитарно-гигиеническое требование, согласно которому должно быть исключено выпадение конденсата на всех участках внутренней поверхности наружных ограждений (кроме окон). Следовательно, должно выполняться условие

tsi > td ,

где td – точка росы внутреннего воздуха. (- Это температура, при которой данное парциальное давление водяного пара eint будет = давлению насыщенного водяного пара).

9. Характеристики влажностного состояния воздуха.


10. Конденсация влаги на внутренней поверхности ограждения. Меры по ее предотвращению.

11. процесс паропроницания и его характеристики.

Паропроницание – процесс диффузии водяного пара через ограждающую конструкцию, обусловленный разностью парциальных давлений по обе стороны конструкции.

12. Нарушение влажностного режима ограждающей конструкции. Пароизоляция.

13. Ветровой режим, его характеристики. Учет ветрового режима при проектировании зданий.

Для создания аэрации будущей застройки учитывают данные о ветровом режиме местности. Комфортный аэрационный режим обеспечивает проветривание территорий, необходимое для удаления загрязнителей из ее воздушного пространства. Регулирование аэрационного режима осуществляют путем создания специальными приемами застройки ветрового затенения территории или, наоборот, ее проветривания.

Например, применяют ветрозащитные протяжные прямолинейные или многогранные здания, расположенные фасадами перпендикулярно или под небольшим углом к ветрам, господствующим в зимний период. Зимой сочетание низких температур даже с ветром, характеризующимся комфортной скоростью, отрицательно сказывается на самочувствии человека. Ветрозащитные здания используют как экраны или формируют из них аэродинамические комплексы, внутри которых, в зоне ветровой тени, располагают здания обычного типа. Длина ветровой тени здания зависит от его длины, высоты, положения по отношению к направлению ветра, а также орографии участка застройки. Применяют ветрозащитные пояса зеленых насаждений.

В условиях малых скоростей ветра используют здания типа башен, а многосекционные здания располагают под углом 45° к направлению благоприятного ветра, так как при такой постановке здания резко снижаются размеры ветровой тени. При направлении ветра вдоль фасадов зданий исходная скорость ветра практически не снижается, а около наветренных торцов образуются зоны повышенных скоростей ветра. Специальными приемами застройки можно эффективно регулировать аэрационные режимы.

4. Теплоотдача у поверхности ограждения. Закон Ньютона. Коэффициент теплоотдачи.

Теплоотдача – теплообмен между поверхностью твердого тела и подвижной средой.

5. Сопротивление теплопередаче ограждающих конструкций. Требуемое сопротивление теплопередаче. Рекомендации по выбору ограждающих конструкций с заданными теплозащитными свойствами.

6. Распределение температур в ограждающих конструкциях. Определение температур по толщине стены графическим способом.

 

7. Сопротивление теплопередаче светопрозрачных ограждающих конструкций. нормирование площади остекления. Выбор окон с высокими теплозащитными свойствами.

f – это выраженное в процентах отношение площадей окон к суммарной площади наружных стен, включающей светопроемы, все продольные и торцевые стены.

· Если коэффициент остекленности фасада f не превышает 18% – для жилых зданий и 25% – для общественных зданий, то конструкция окон выбирается следующим образом:

o рассчитывается требуемое сопротивление (Rreq = a · D + b , a и b – коэффициенты для соответствующих групп зданий и вида ограждающих конструкций. D – градусо-сутки D = (tint – tht)· zht; tint – расчетная средняя температура внутреннего воздуха здания, tht , zht – средняя температура наружного воздуха и продолжительность в сутках отопительного периода)

o выбирается светопрозрачная конструкция из условия: R0 ≥ Rreq.

 

· Если коэффициент остекленности фасада f более 18% – для жилых зданий и более 25% – для общественных зданий, то следует выбрать окна с приведенным сопротивлением теплопередаче R0 :

не менее 0,51, если D <=3500, °С×сут;

не менее 0,56, если 3500 <D <=5200, °С×сут;

не менее 0,65, если 5200 < D <=7000, °С×сут.

Конструкцию окна выбираем.

8. Санитарно- гигиеническое требование к ограждающим конструкциям.

В холодный период года температура внутренней поверхности ограждения tsi несколько ниже, чем температура воздуха помещения tint. Воздух, соприкасаясь с холодной поверхностью, также будет охлаждаться. Если температура поверхности достаточно низкая, водяной пар, содержащийся в воздухе, будет конденсироваться на ней в виде мелких капель. Конденсация влаги из воздуха будет происходить, если температура внутренней поверхности ограждения окажется ниже точки росы внутреннего воздуха. Образовавшийся конденсат приводит к отсыреванию поверхности, появлению на ней плесени и т.д., что вредно сказывается на здоровье людей. Поэтому практически для всех помещений устанавливается санитарно-гигиеническое требование, согласно которому должно быть исключено выпадение конденсата на всех участках внутренней поверхности наружных ограждений (кроме окон). Следовательно, должно выполняться условие

tsi > td ,

где td – точка росы внутреннего воздуха. (- Это температура, при которой данное парциальное давление водяного пара eint будет = давлению насыщенного водяного пара).

9. Характеристики влажностного состояния воздуха.


10. Конденсация влаги на внутренней поверхности ограждения. Меры по ее предотвращению.

11. процесс паропроницания и его характеристики.

Паропроницание – процесс диффузии водяного пара через ограждающую конструкцию, обусловленный разностью парциальных давлений по обе стороны конструкции.

12. Нарушение влажностного режима ограждающей конструкции. Пароизоляция.

13. Ветровой режим, его характеристики. Учет ветрового режима при проектировании зданий.

Для создания аэрации будущей застройки учитывают данные о ветровом режиме местности. Комфортный аэрационный режим обеспечивает проветривание территорий, необходимое для удаления загрязнителей из ее воздушного пространства. Регулирование аэрационного режима осуществляют путем создания специальными приемами застройки ветрового затенения территории или, наоборот, ее проветривания.

Например, применяют ветрозащитные протяжные прямолинейные или многогранные здания, расположенные фасадами перпендикулярно или под небольшим углом к ветрам, господствующим в зимний период. Зимой сочетание низких температур даже с ветром, характеризующимся комфортной скоростью, отрицательно сказывается на самочувствии человека. Ветрозащитные здания используют как экраны или формируют из них аэродинамические комплексы, внутри которых, в зоне ветровой тени, располагают здания обычного типа. Длина ветровой тени здания зависит от его длины, высоты, положения по отношению к направлению ветра, а также орографии участка застройки. Применяют ветрозащитные пояса зеленых насаждений.

В условиях малых скоростей ветра используют здания типа башен, а многосекционные здания располагают под углом 45° к направлению благоприятного ветра, так как при такой постановке здания резко снижаются размеры ветровой тени. При направлении ветра вдоль фасадов зданий исходная скорость ветра практически не снижается, а около наветренных торцов образуются зоны повышенных скоростей ветра. Специальными приемами застройки можно эффективно регулировать аэрационные режимы.

ТЕПЛОИЗОЛЯЦИЯ. Термическое сопротивление и коэффициенты диффузионного сопротивления строительных материалов. | Архитектура и Проектирование

Коэффициент теплопроводности λ ккал/ (м • ч °С) Нумерация Материал Объёмная масса, кг/ м3 Термическое сопротивление,м2 • ч • град/ (см •ккал) Ориентировочные значения диффузионного сопротивления μ
1 2 3 4 5 6
1.       ЕСТЕСТВЕННЫЕ КАМНИ И ГРУНТ
1.1. Естественные камни, растительный грунт
3 1.11 Плотные естественные камни (мрамор, гранит и т.д.)   0,003 пароизоляция
2 1.12 Пористые естественные камни(песчаник, ракушечник, конгломерат и др.)   0,005 10
1,2 1.13 Песок и гравийный песок естественной влажности 1800 0,0083 2
1,8 1.14 Связной грунт естественной влажности 1700 0,0056 2
1.2. Суглинок
0,8 1.21 Плотный суглинок и блоки из него 2100 0,0125 10
0,6 1.22 Солома с глиной 1700 0,0166 4
0,4 1.23 Лёгкий суглинок 1200 0,025 4
0,4 1.24 Жердь, обмотанная соломой с глиняной обмазкой 1600 0,025 4
1.3. Сухие заполнители перекрытий и других конструкций
0,5 1.31 Песок 1300 0,02 2
0,7 1.32 Гравий, мелкий щебень 1500 0,014 2
0,16 1.33 Пемзовый гравий 900 0,0625 2
0,16 1.34 Каменноугольный шлак 700 0,0625 2
0,12 1.35 Доменный шлак 1000 0,0835 2
0,35 1.36 Кирпичный бой   0,0286 2
2.       РАСТВОРЫ И БЕТОНЫ
2.1. Штукатурка (внутренняя и наружная), бесшовные полы, растворные швы
  2.11 Известковый раствор, раствор на гидравлической извести 1700    
0,75 Известково-цементный раствор 1900 0,0133 10
1,2 2.12 Цементный раствор 2100 0,0084 15
  2.13 Гипсовый раствор, чистый гипс, известково-гипсовый раствор 1200    
0,6 Ангидритовый раствор 1700 0,0166 6
2.2 Тяжёлые и лёгкие бетоны (в бесшовных конструкциях и большеразмерных плитах)
   2.21 Бетон на гравии и мелком щебне с плотной структурой         
1,3 Бетоны марок В ≤ 120 2200 0,0077 20
1,75 Бетоны марок В ≤ 160 2400 0,0057 35*
0,65 2.22 Бетон на кирпичном щебне с плотной структурой 1600 0,0153 9
0,8 1800 0,0125 12
0,9 2.23 Железобетон на кирпичном щебне 2000 0,0111 18
0,55 2.24 Бетон с пористым заполнителем 1500 0,0182 3
0,7   Бетон с непористым заполнителем, например, гравием 1700 0,0143 4
0,95 1900 0,0105 6
0,4 2.25 Бетон на кирпичном щебне 1200 0,025 3
0,5   Бетон на доменном шлаке 1400 0,02 4
0,65   Бетон на пористом шлаке 1600 0,0154 6
0,25 2.26 Пемзобетон, керамзитобетон и бетон на вспененном или гранулированном доменном шлаке 800 0,04 2,5
0,3 1000 0,033 6
0,4 1200 0,025 10
0,12 2.27 Газо- и пенобетон с паропрогревом, лёгкий известковый бетон 400 0,0835 2,5
0,16 500 0,0625 3
0,2 600 0,05 3,5
0,25 800 0,04 6,5
0,3 1000 0,033 10
0,35 2.28 Деревобетон 80 0,0286 3
0,45 1000 0,0222 3,5
2.3. Бетонные и гипсовые плиты
0,3 2.31 Асбестоцементные плиты прессованные и непресованные 1800 0,033 34
0,3 2.32 Стеновые блоки из лёгкого бетона (DIN 18162) 2200 0,033 34
0,25 2.321 Сборные плиты из естественной пемзы 800 0,04 2,2
0,3 2.322 Панели из керамзито- и пенобетона 1000 0,033 5
0,4 2.323 Шлакабетонные блоки 1200 0,025 10
0,5 2.324 Панели из бетона на спекшейся пемзе, кирпичном щебне, туфе, легкобетонные панели на смешанном заполнителе 1400 0,02 10
2.33. Гипсовые панели (DIN 18163)
0,25 2.331 Пористый гипс 600 0,04 2
0,28 700 0,036 2
0,35 2.332 Гипс с наполнителем, пустотами или порами 900 0,029 3,5
0,40,5 2,333 Гипс (гипсовые панели) 1000 0,025 6
1200 0,2 6
0,5 2.334 Гипс со смешанным заполнителем 1200 0,2 6
0,18 2.34 Гипсовые плиты с двусторонней картонной обшивкой толщиной до 15 мм   0,056 6
2.4. Кладка из бетонных камней (включая растворные швы)
  2.41 Силикатный кирпич (DIN106, ч.1)      
0,9 2.411 Твёрдый силикатный кирпич > 1800 0,011 30
0,9 2.412 Полнотелый силикатный кирпич > 1800 0,011 30
0,85 1800 0,0118 30
0,6 2.413 Дырчатый силикатный кирпич 1200 0,0209 5
0,48 1440 0,0167 7
0,48 2.414 Пустотелые силикатные блоки 1000 0,0232 3,5
0,43 1200 0,0209 5
0,6 2.42 Керамзитовые блоки (DIN 398)      
0,75 2.421 Керамзитовые блоки марок HS100 и HS150 1800 0,0167 10
0,35 2.422 Керамзитовые блоки марки HHS 1800 0,0133 15
0,4 2.43 Легкобетонные полнотелые блоки (DIN 18152) 1000 0,025 3,5
0,45 1200 0,0222 5
0,55 1400 0,0182 6,5
0,68 1600 0,0147 9
  2.44 Легкобетонные пустотелые блоки (DIN 18151)      
0,38 2.441 Двухкамерные блоки 1000* 0,0263 2
0,42 1200* 0,0238 2,5
0,48 1400* 0,0209 3,5
0,42 2.442 Трёхкамерные блоки 1400* 0,0238 3,5
0,48 1800* 0,0209 4,5
0,3 2.45 Газо- и пенобетонные блоки (DIN 4165) и лёгкие известково-бетонные блоки с паропрогревом 600 0,0333 3,5
0,35 800 0,025 10
0,4 1000 0,025 10
0,38 2.46 То же, с твердением на воздухе 800 0,0263 6
0,48 1000 0,0209 10
0,6 1200 0,0167 16
0,38 2.47 Блоки из деревобетона 800 0,0263 3
0,48 1000 0,0208 3,5
3.       КИРПИЧ И ПЛИТКА
3.1.Кладка из кирпича (DIN 105), включая растворные швы
0,9 3.11 Клинкер для надземных сооружений ≥ 1900 0,011 20
0,68 3.12 Клинкер с вертикальными пустотами   0,0147 20
0,4 3.13 Полнотелый кирпич, облицовочный кирпич 1000 0,025 3,5
0,45 1200 0,022 4,5
0,52 1400 0,0192 6
0,68 1800 0,0147 10
0,4 3.14 Дырчатый кирпич, дырчатый облицовочный кирпич 1000 0,025 3,5
0,45 1200 0,022 4,5
0,52 1400 0,0192 6
0,9 3.2 Керамическая плитка 2000 0,011 200
4.       СТЕКЛО
0,7 4,1 Листовое стекло (оконное, среднее значение)   0,0142
5.       МЕТАЛЛЫ
50 5.1 Чугун и сталь   0,0002
330 5.2 Медь   0,00003
55 5.3 Бронза, медное литьё   0,00018
175 5.4 Аллюминий   9000000
6.       ДРЕВЕСИНА, ВЫСУШЕННАЯ НА ВОЗДУХЕ (DIN 4074)
0,18 6.1 Дуб 800 0,056 100
0,15 6.2 Бук 800 0,067 80
0,12 6.3 Ель, сосна, пихта 600 0,083 110
0,12 6.4 Клееная фанера 600 0,083 100
7.       ИСКУССТВЕННЫЕ МАТЕРИАЛЫ И ПОКРЫТИЯ
0,16 7.1 Линолеум 1200 0,062 пароизоляция
7.2 Ксилолитовые и аналогичные покрытия (DIN 272)      
0,4 7.21 Подготовка и нижний слой двухслойных полов 1800 0,025 пароизоляция
0,6 7.22 Промышленные полы и ходовой слой 2200 0,016 пароизоляция
8.       БИТУМНЫЕ МАТЕРИАЛЫ
0,6 8.1 Асфальт 2100 0,017 пароизоляция
0,15 8.2 Битумы 1050 0,067 пароизоляция
0,16 8.3 Кровельный картон 1100 0,063 пароизоляция
9.       ТЕПЛОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ
0,035** 9.1 Минеральные волокнистые теплоизоляционные материалы (стекло-, каменно-, шлаковолокнистые, DIN 18165) 30 – 200 0,286** 1,4
0,04** 9.2 Растительные волокнистые теплоизоляционные материалы (из морской травы, кокосовые, древесные, торфоволокнистые, DIN 18165) 30 – 200 0,25** 2
0,06 9.3 Строительная шлаковата без наполнителя   0,167 1,4
0,12 9.4 Лёгкие плиты из древесной шерсти (DIN 1101) толщиной 15 мм 570 0,083 11
0,08   То же, толщиной 25 и 35 мм 460/ 415 0,125 6,5
0,07   То же, толщиной 50 мм и более 390/ 360 0,14 4
0,04 9.5 Древесно-волокнистые плиты 200 0,20,2 3
0,05 300   3
0,035 9.6 Пробковые плиты 120 0,286 30
0,038 160 0,63 30
0,04 200 0,25 30
0,055 9.7 Паркет из пробковых плит 450 0,182  
0,04 9.8 Плиты из волокнистого картона с пропиткой битумом 55 0,25 пароизоляция
0,035  9.9 Вспененная синтетическая смола в виде брусков и хлопьев    0,286    
0,035* Стиропол типа 1 13 и более 0,286** 25
0,035 Стиропол типа 2 16 и более 0,286 33
0,035 Стипорол типа 3 20 и более 0,286 42
Стипорол типа 4 25 и более 0,286 50
Коэффициент теплопроводности λ ккал/ (м • ч °С) Нумерация Материал Объёмная масса, кг/ м3 Термическое сопротивление,м2 • ч • град/ (см •ккал) Ориентировочные значения диффузионного сопротивления μ

Сопротивление теплопроводности материалов

Главная » Блог » Сопротивление теплопроводности материалов

Сопротивление теплопередаче строительных материалов

Строительство зданий требует соблюдения большого количества нюансов, факторов, способных повлиять на качество постройки. Существуют стандарты, нормы, от которых отходить не рекомендуется. До начала строительства необходимо создать план, произвести расчеты. Коэффициент сопротивления теплопередаче показывает, насколько быстро материалы пропустят холод с улицы в жилье.

Правильно рассчитать теплопередачу приведенного материала так же важно, как и другие данные. От полученных результатов зависит то, насколько жилище будет теплым, какие в нем показатели экономии тепла. Можно примерно рассчитать расход на энергию, затрачиваемую на отопление дома. Кроме того, будет ясна прочность, надежность сооружения.

Стенам и иным частям дома свойственно при больших морозах промерзание. Если не учитывать правила теплопередачи, дом может промерзнуть насквозь. Заморозка-размораживание приводит к скорейшему износу частей жилища, они ветшают, после чего здание может стать аварийным. Высокое сопротивление теплопроводности наружных стен и дверей помогает справиться с проникновением холода.

Показатели теплопроводности

Любой элемент в природе имеет различную степень проводимости. Тепло проходит сквозь него в зависимости от скорости движения частиц, которые способны передать температурные колебания. Чем частицы ближе находятся одна к другой, тем теплообмен будет проходить быстрее. Получается, что чем более плотный материал, тем быстрее он будет нагреваться или остывать. Плотность является основным фактором теплопередачи, показывая ее интенсивность.Таблица с данными для камня

Выражается данный показатель коэффициентом теплопроводности. Обозначение буквенное производится символом «λ». Единица измерения Вт/(м*Со). Чем больше численные данные этого коэффициента, тем лучше материал проводит тепло. Существует величина, обратная проводимости тепла, которая называется тепловое термическое сопротивление. Единица измерения: м2*Со/Вт. Буквенное обозначение «R».

Данные по регионам

Нормируемое сопротивление можно посмотреть в справочниках. Важно придерживаться норм, чтобы не пришлось дополнительно утеплять дом, так как холод легко проникает сквозь стены. Правильному теплообмену, такому, какой бы подходил для данного региона, должно предшествовать утепление стен и верное использование материалов.

Значения по регионам

Как применяются показатели в строительстве

Для каждого материала, используемого в строительстве, важно определить степень проводимости тепла. Теплоизоляционные свойства влияют на скорость промерзания стен, насколько материал подвержен воздействию холода. Показатель сопротивления при теплопередаче для любого современного материала уже вписан в справочники.

Современные технологии предполагают использование нескольких слоев для стен, дверей, поэтому показатели тепловой проводимости в них могут объединяться. Для показа общей степени проводимости принята величина «приведенное сопротивление теплопередаче».Таблица с данными для стеклопакетов

Рассчитать ее можно точно так же, как и предыдущие данные. Но учитывать следует несколько показателей теплопроводности. Второй вариант произведения расчетов теплоотдачи – использование однородного аналога многослойной стенки. Он должен пропускать такое же количество тепла за равный промежуток времени. Разница в температурах для внутренней части помещения и внешней должна быть одинаковой.

Расчет приведенного сопротивления производится не на квадратный метр, а на целую комнату или весь дом. Показатель помогает обобщить данные о проводимости тепла всего жилища, а точнее материалов, из которых оно изготовлено. Сопротивление для пола также необходимо учитывать.

Термическое сопротивление

Любая стена, дверь, окно служит для ограждения от внешних природных воздействий. Они способны в разной степени защитить жилище от холодов, так как коэффициент проводимости у них отличается. Для каждого ограждения коэффициент рассчитываться должен по-разному. Точно так же ведется расчет для внутренних перегородок, стен, дверей, неотапливаемых частей дома.

Если в здании имеются части, которые не протапливаются, необходимо утеплять стены между ними и другими помещениями так же качественно, как и внешние. Воздух – плохой переносчик тепла, потому что там частицы находятся на значительном отдалении друг от друга. Выходит, что если изолировать некоторые воздушные массы герметично, получится неплохая изоляция от холода. Для уточнения данных производится расчет приведенного сопротивления. Данные показывают, насколько хорошо утеплено жилище, нет ли необходимости в дополнительном утеплении.Современные материалы

В старых домах делали всегда по две рамы, чтобы между ними находилось некоторое количество воздушных масс. Теперь по такому же принципу делаются стеклопакеты, но воздух между стеклами откачивается полностью, чтобы частиц, проводящих тепло, вообще не было. Термическое сопротивление в них значительно превышает показатели старых окон. Входные двери делаются по такому же принципу. Стараются сделать небольшой коридор, предбанник, который сохранит тепло в доме.

Если в жилище установить дополнительные резиновые уплотнители в несколько слоев, это позволит повысить теплоизоляционные свойства. Современные входные двери создаются многослойными, там помещается несколько разных слоев утеплительного материала. Конструкция становится практически герметичной, дополнительное утепление часто не требуется. Сопротивление теплопередаче стен обычно не такое хорошее, потому используются дополнительные материалы для утепления.

Как рассчитывается тепловое сопротивление

Данные после расчета теплового сопротивления помогут показать, насколько хорошо утеплен дом, какое количество тепла теряется в процессе. Таким образом, можно точно подобрать оборудование для утепления, правильно рассчитать мощность. Для примера будет произведен расчет одной из стен и дверей каркасного дома с керамическим кирпичом, что поможет понять, насколько хороши данные материалы для строительства и утепления.Утепление изнутри

Класс сопротивления для каждого материала разный. С обратной стороны он утеплен экструдированным пенополистиролом, толщина которого составляет 100 мм. Стены по толщине будут в два кирпича, что равняется 500 мм. Формула для вычисления сопротивления:

R = d/λ, где d – толщина компонентов стены, λ – коэффициент теплопроводности.

По справочнику необходимо посмотреть данные λ. Это число 0,56 для кирпича и 0,036 – для полистирола.

R = 0,5 / 0,56 = 0,89 – для кирпича.

R = 0,1 / 0,036 = 2,8 – для полистирола.

Общий показатель будет суммой этих величин. R = 0,89 + 2,8 = 3,59. Данная формула с приведенными данными имеет численное значение. Его можно сравнить с показаниями с улицы, верными в вашем регионе, и понять, правильно ли применены утеплители. Можно определить класс по приведенному выше сопротивлению.

Теплые конструкции

Для увеличения теплового термического сопротивления следует использовать современные материалы, в которых показатели проводимости тепла максимально низкие. Количество таких материалов сейчас увеличивается. Популярными стали:

  1. Деревянные конструкции. Считаются экологически чистым материалом, потому многие предпочитают вести строительство, используя именно этот компонент. Использоваться может любой вид окультуренной древесины: сруб, бревно, брус. Чаще применяют сосну, ель или кедр, показатели проводимости которых по сравнению с другими материалами достаточно низкие. Необходимо произвести защиту от атмосферных воздействий, вредителей. Материал покрывается дополнительным слоем, защищающим от негативных факторов.
  2. Керамические блоки.
Пример защиты от внешнего воздуха
  1. Сэндвич-панели. В последнее время этот материал становится все более популярным. Основные преимущества: дешевизна, высокие показатели сопротивляемости холоду. В материале имеется множество воздушных ячеек, иногда делают «пенную» структуру. Например, некоторые типы панелей имеют вертикальные воздушные каналы, которые неплохо защищают от холода. Другие компоненты делаются пористыми, чтобы большое количество заключенного воздуха помогло справиться с поступающим холодом.
  2. Керамзитобетонные материалы. Их использование также позволит надежно защитить жилище от холода.
  3. Пеноблоки. Конструкция делается пористой, но достигается это не простым вклиниванием воздушных прослоек, а путем произведения химической реакции. Иногда в цемент добавляется пористый материал, который поверху покрывается застывшим раствором.

Важные моменты для применения утеплительных материалов

При проектировании жилища необходимо учитывать погодные условия местности. Если данные не учтены, термическое сопротивление теплопередаче может быть недостаточным, что позволит холоду проникать сквозь стены. Обычно, если такое происходит, используются утеплители. Иногда утепление производится внутри дома, но обычно оно проводится по наружным стенам. Утепляются несущие элементы и части, расположенные в непосредственном контакте с улицей.Утепление жилища

Показатели современных теплоизоляционных материалов очень высокие, потому их не нужно использовать в большом количестве. Обычно для утепления хватает толщины до 10 мм. Не стоит забывать о паропроницаемости стен, дверей и утеплительных компонентов. Правила строительства требуют, чтобы этот показатель повышался из внутренних частей к внешним. Потому утеплять газобетонные или пенобетонные стены можно только минеральной ватой, показатели которой верны для приведенных требований.Внутреннее утепление

Кроме потерь тепла через стены дома оно может уходить через кровлю. Поэтому важно утеплять не только наружные элементы, но и уложить материал над потолком, чтобы жилье было надежно утеплено. Если нет возможности применять необходимый материал, можно сконструировать зазор для вентиляции. В любом случае не стоит забывать, что теплосопротивление для материалов является одной из важнейших величин. Обязательно учитывайте его при возведении нового дома.

Сопротивление теплопередаче ограждающих конструкций. Расчет, таблица сопротивления теплопередаче :

При строительстве частных и многоквартирных домов приходится учитывать множество факторов и соблюдать большое количество норм и стандартов. К тому же перед строительством создается план дома, проводятся расчеты по нагрузке на несущие конструкции (фундамент, стены, перекрытия), коммуникациям и теплосопротивлению. Расчет сопротивления теплопередаче не менее важен, чем остальные. От него не только зависит, насколько будет дом теплым, и, как следствие, экономия на энергоносителях, но и прочность, надежность конструкции. Ведь стены и другие элементы ее могут промерзать. Циклы заморозки и разморозки разрушают строительный материал и приводят к обветшалости и аварийности зданий.

Теплопроводность

Любой материал способен проводить тепло. Этот процесс осуществляется за счет движения частиц, которые и передают изменение температуры. Чем они ближе друг к другу, тем процесс теплообмена происходит быстрее. Таким образом, более плотные материалы и вещества гораздо быстрее охлаждаются или нагреваются. Именно от плотности прежде всего зависит интенсивность теплопередачи. Она численно выражается через коэффициент теплопроводности. Он обозначается символом λ и измеряется в Вт/(м*°C). Чем выше этот коэффициент, тем выше теплопроводность материала. Обратной величиной для коэффициента теплопроводности является тепловое сопротивление. Оно измеряется в (м2*°C)/Вт и обозначается буквой R.

Применение понятий в строительстве

Для того чтобы определить теплоизоляционные свойства того или иного строительного материала, используют коэффициент сопротивления теплопередаче. Его значение для различных материалов дается практически во всех строительных справочниках.

Так как большинство современных зданий имеет многослойную структуру стен, состоящую из нескольких слоев различных материалов (внешняя штукатурка, утеплитель, стена, внутренняя штукатурка), то вводится такое понятие, как приведенное сопротивление теплопередаче. Оно рассчитывается так же, но в расчетах берется однородный аналог многослойной стены, пропускающий то же количество тепла за определенное время и при одинаковой разности температур внутри помещения и снаружи.

Приведенное сопротивление рассчитывается не на 1 м кв., а на всю конструкцию или какую-то ее часть. Оно обобщает показатель теплопроводности всех материалов стены.

Тепловое сопротивление конструкций

Все внешние стены, двери, окна, крыша являются ограждающей конструкцией. И так как они защищают дом от холода по-разному (имеют различный коэффициент теплопроводности), то для них индивидуально рассчитывается сопротивление теплопередаче ограждающей конструкции. К таким конструкциям можно отнести и внутренние стены, перегородки и перекрытия, если в помещениях имеется разность температур. Здесь имеются в виду помещения, в которых разность температур значительная. К ним можно отнести следующие неотапливаемые части дома:

  • Гараж (если он непосредственно примыкает к дому).
  • Прихожая.
  • Веранда.
  • Кладовая.
  • Чердак.
  • Подвал.

В случае если эти помещения не отапливаются, то стену между ними и жилыми помещениями необходимо также утеплять, как и наружные стены.

Тепловое сопротивление окон

В воздухе частицы, которые участвуют в теплообмене, находятся на значительном расстоянии друг от друга, а следовательно, изолированный в герметичном пространстве воздух является лучшим утеплителем. Поэтому все деревянные окна раньше делались с двумя рядами створок. Благодаря воздушной прослойке между рамами сопротивление теплопередаче окон повышается. Этот же принцип применяется для входных дверей в частном доме. Для создания подобной воздушной прослойки ставят две двери на некотором расстоянии друг от друга или делают предбанник.

Такой принцип остался и в современных пластиковых окнах. Единственное отличие – высокое сопротивление теплопередачи стеклопакетов достигается не за счет воздушной прослойки, а за счет герметичных стеклянных камер, из которых откачан воздух. В таких камерах воздух разряжен и практически нет частиц, а значит, и передавать температуру нечему. Поэтому теплоизоляционные свойства современных стеклопакетов намного выше, чем у старых деревянных окон. Тепловое сопротивление такого стеклопакета – 0,4 (м2*°C)/Вт.

Современные входные двери для частных домов имеют многослойную структуру с одним или несколькими слоями утеплителей. К тому же дополнительное теплосопротивление дает установка резиновых или силиконовых уплотнителей. Благодаря этому дверь становится практически герметичной и установка второй не требуется.

Расчет теплового сопротивления

Расчет сопротивления теплопередаче позволяет оценить потери тепла в Вт и рассчитать необходимое дополнительное утепление и потери тепла. Благодаря этому можно грамотно подобрать необходимую мощность отопительного оборудования и избежать лишних трат на более мощное оборудование или энергоносители.

Для наглядности рассчитаем тепловое сопротивление стены дома из красного керамического кирпича. Снаружи стены будут утеплены экструдированным пенополистиролом толщиной 10 см. Толщина стен будет два кирпича – 50 см.

Сопротивление теплопередаче вычисляется по формуле R = d/λ, где d – это толщина материала, а λ – коэффициент теплопроводности материала. Из строительного справочника известно, что для керамического кирпича λ = 0,56 Вт/(м*°C), а для экструдированного пенополистирола λ = 0,036 Вт/(м*°C). Таким образом, R (кирпичной кладки) = 0,5 / 0,56 = 0,89 (м2*°C)/Вт, а R (экструдированного пенополистирола) = 0,1 / 0,036= 2,8 (м2*°C)/Вт. Для того чтобы узнать общее теплосопротивление стены, нужно сложить эти два значения: R = 3,59 (м2*°C)/Вт.

Таблица теплового сопротивления строительных материалов

Всю необходимую информацию для индивидуальных расчетов конкретных построек дает представленная ниже таблица сопротивления теплопередаче. Образец расчетов, приведенный выше, в совокупности с данными таблицы может также использоваться и для оценки потери тепловой энергии. Для этого используют формулу Q = S * T / R, где S – площадь ограждающей конструкции, а T – разность температур на улице и в помещении. В таблице приведены данные для стены толщиной 1 метр.

Материал R, (м2 * °C)/Вт
Железобетон 0,58
Керамзитобетонные блоки 1,5-5,9
Керамический кирпич 1,8
Силикатный кирпич 1,4
Газобетонные блоки 3,4-12,29
Сосна 5,6
Минеральная вата 14,3-20,8
Пенополистирол 20-32,3
Экструдированный пенополистирол 27,8
Пенополиуретан 24,4-50

Теплые конструкции, методы, материалы

Для того чтобы повысить сопротивление теплопередаче всей конструкции частного дома, как правило, используют строительные материалы с низким показателем коэффициента теплопроводности. Благодаря внедрению новых технологий в строительстве таких материалов становится все больше. Среди них можно выделить наиболее популярные:

  • Дерево.
  • Сэндвич-панели.
  • Керамический блок.
  • Керамзитобетонный блок.
  • Газобетонный блок.
  • Пеноблок.
  • Полистиролбетонный блок и др.

Дерево является весьма теплым, экологически чистым материалом. Поэтому многие при строительстве частного дома останавливают выбор именно на нем. Это может быть как сруб, так и оцилиндрованное бревно или прямоугольный брус. В качестве материала в основном используется сосна, ель или кедр. Тем не менее это довольно капризный материал и требует дополнительных мер защиты от атмосферных воздействий и насекомых.

Сэндвич-панели – это довольно новый продукт на отечественном рынке строительных материалов. Тем не менее его популярность в частном строительстве очень возросла в последнее время. Ведь его основными плюсами является сравнительно невысокая стоимость и хорошее сопротивление теплопередаче. Это достигается за счет его строения. С наружных сторон находится жесткий листовой материал (ОСП-плиты, фанера, металлический профиль), а внутри – вспененный утеплитель или минеральная вата.

Строительные блоки

Высокое сопротивление теплопередаче всех строительных блоков достигается за счет наличия в их структуре воздушных камер или вспененной структуры. Так, например, некоторые керамические и другие виды блоков имеют специальные отверстия, которые при кладке стены идут параллельно ей. Таким образом, создаются закрытые камеры с воздухом, что является довольно эффективной мерой препятствия теплопередачи.

В других строительных блоках высокое сопротивление теплопередачи заключается в пористой структуре. Это может достигаться различными методами. В пенобетонных газобетонных блоках пористая структура образуется благодаря химической реакции. Другой способ – это добавление в цементную смесь пористого материала. Он применяется при изготовлении полистиролбетонных и керамзитобетонных блоков.

Нюансы применения утеплителей

Если сопротивление теплопередачи стены недостаточно для данного региона, то в качестве дополнительной меры могут применяться утеплители. Утепление стен, как правило, производится снаружи, но при необходимости может применяться и по внутренней части несущих стен.

На сегодняшний день существует множество различных утеплителей, среди которых наибольшей популярностью пользуются:

  • Минеральная вата.
  • Пенополиуретан.
  • Пенополистирол.
  • Экструдированный пенополистирол.
  • Пеностекло и др.

Все они имеют очень низкий коэффициент теплопроводности, поэтому для утепления большинства стен толщины в 5-10 мм, как правило, достаточно. Но при этом следует учесть такой фактор, как паропроницаемость утеплителя и материала стен. По правилам, этот показатель должен возрастать наружу. Поэтому утепление стен из газобетона или пенобетона возможно только с помощью минеральной ваты. Остальные утеплители могут применяться для таких стен, если делается специальный вентиляционный зазор между стеной и утеплителем.

Заключение

Теплосопротивление материалов – это важный фактор, который следует учитывать при строительстве. Но, как правило, чем стеновой материал теплее, тем меньше плотность и прочность на сжатие. Это следует учитывать при планировке дома.

1.2 Теплопроводность строительных материалов

Характеризуется коэффициентом теплопроводности λ, Вт/м· оС, выражающим количество тепла, проходящего через 1 м2 ограждения при его толщине 1 метр и при разности температур на внутренней и наружной поверхности ограждения 1 оС.

На коэффициент теплопроводности материала влияют следующие свойства материала.

Плотность (пористость): чем больше в материале замкнутых пор, тем меньше коэффициент теплопроводности, поскольку любого плотного материала не менее чем в 100 раз превышает воздуха.

  • Химико-минералогический состав. Любой строительный материал имеет в своем составе кристаллические и аморфные вещества в различных соотношениях. Чем выше процент кристаллических веществ, тем больше коэффициент теплопроводности.

  • Собственная температура материала. Чем она выше, тем большей теплопроводностью обладает конструкция.

  • Влажность материала. При увлажнении конструкции в поры, заполненные воздухом, попадает вода, коэффициент теплопроводности которой выше, чем у воздуха, приблизительно в 20 раз. Поэтому теплопроводность материала резко возрастает, возникает опасность промерзания ограждающей конструкции. При промерзании конструкции вода, находящаяся в порах, превращается в лёд, коэффициент теплопроводности которого выше, чем у воды, еще в 4 раза. Поэтому так важно не допускать переувлажнения ограждающих конструкций.

Наибольшим коэффициентом теплопроводности обладают металлы: сталь – 50 Вт/м·оС, алюминий – 190 Вт/м·оС, медь – 330 Вт/м·оС. Наименьший коэффициент теплопроводности у эффективных утеплителей, пенополистирола и пенополиуретана: 0,03-0,04 Вт/м·оС.

1.3 Термическое сопротивление (сопротивление теплопередаче)

R, м2·оС /Вт, – важнейшее теплотехническое свойство ограждения. Оно характеризуется разностью температур внутренней и наружной поверхности ограждения, через 1 м2 которого проходит 1 ватт тепловой энергии (1 килокалория в час).

, (2)

где δ – толщина ограждения, м;

λ – коэффициент теплопроводности, Вт/м·оС.

Чем больше термическое сопротивление ограждающей конструкции, тем лучше её теплозащитные свойства. Из формулы (2) видно, что для увеличения термического сопротивления R необходимо либо увеличить толщину ограждения δ, либо уменьшить коэффициент теплопроводности λ, то есть использовать более эффективные материалы. Последнее более выгодно из экономических соображений.

2. Теплопередача в однородном ограждении при установившемся потоке тепла

Представим себе условную ограждающую конструкцию, состоящую из однородного материала, через которую в холодное время года проходит постоянный тепловой поток. В этом случае график распределения температуры внутри ограждения выглядит следующим образом (рис. 1).

Рис. 1. Распределение температур в однородной ограждающей конструкции при постоянном тепловом потоке

При передаче тепла через ограждающую конструкцию происходит падение температуры от tв до tн. При этом общий температурный перепад tв- tн состоит из суммы трех температурных перепадов:

  1. температурный перепад tв-τв возникает из-за того, что температура внутренней поверхности ограждения τв всегда на несколько градусов ниже, чем температура воздуха в помещении tв;

  2. τв-τн – температурный перепад в пределах толщины ограждающей конструкции;

  3. τн-tн – температурный перепад, возникающий вследствие того, что температура наружной поверхности ограждения τн несколько выше температуры наружного воздуха tн.

Каждый из этих температурных перепадов вызван конкретным сопротивлением переносу тепла:

  1. перепад tв-τв – сопротивлением тепловосприятию внутренней поверхности ограждения Rв;

  2. перепад τв-τн – термическим сопротивлением конструкции Rк;

  3. перепад τн-tн – сопротивлением теплоотдаче наружной поверхности ограждения Rн.

Сопротивления тепловосприятию и теплоотдаче иногда называют сопротивлениями теплообмену; они имеют такую же размерность, как и термическое сопротивление, т. е. м2· оС/Вт.

Общее (приведенное) термическое сопротивление однослойной ограждающей конструкции Ro, м2· оС/Вт, равно сумме всех отдельных сопротивлений, т. е.

, (3)

где αв – коэффициент теплоотдачи внутренней поверхности ограждающих конструкций, Вт/(м2·оС), определяемый по табл. 4* [1], см. также табл. 5 настоящего пособия;

αн – коэффициент теплоотдачи наружной поверхности ограждающих конструкций, Вт/(м2·оС), определяемый по табл. 6* [1], см. также табл. 6 настоящего пособия;

Rк – термическое сопротивление однослойной конструкции, определяемое по формуле (2).

Коэффициент сопротивления теплопередаче: как рассчитать?

Коэффициент сопротивления теплопередаче — это специальный расчёт оптимального показателя теплопередачи стеклопакетов. Поскольку площадь стеклопакета составляет значительную часть пластикового окна, оконная конструкция должна обладать максимальными тепло- и звукоизоляционными свойствами. Для этого просчитывается коэффициент сопротивления теплопередаче.

Оглавление:

  • Коэффициент сопротивления теплопередаче
  • Коэффициент сопротивления: показатели
  • Теплоизоляция — это коэффициент сопротивления теплопередаче
  • Коэффициент сопротивления теплопередаче: советы по выбору стеклопакета
  • Расчёт и таблица коэффициента теплопроводности
  • Конструкции, методы и материалы при расчёте теплового сопротивления
  • Применение утеплителя: нюансы коэффициента теплового сопротивления

Коэффициент сопротивления теплопередаче

Коэффициент сопротивления теплопередаче — это степень сопротивления изделия переноса тёплого воздуха. Благодаря этому расчёту можно узнать, какое количество тепла уйдёт из помещения с учётом разницы температуры в один градус.

Коэффициент сопротивления теплопередаче — это важный расчёт при установке окна. Чтобы обеспечить в любое время года оптимальные климатические условия, нужно поставить на окна качественные стеклопакеты. Таким образом, у вас получится сэкономить на потреблении электроэнергии, кондиционирование и отопление.

Понятие теплопередачи — это отдача тепла с одной стороны на другую. Таким образом, температурный показатель у одной стороны выше, чем у другой. Сам процесс проходит между конструкцией. Поэтому при выборе подходящих стеклопакетов учитывается коэффициент сопротивления теплопередач.

Коэффициент тепловой передачи определяется количеством тепла — Вт. Он проходит через стороны помещения — м2. При этом определяется между ними разница на один градус — Ro. В Российской федерации действует только такое обозначение, которое помогает правильно оценить теплозащитные свойства строительных конструкций.

Коэффициент сопротивления — это величина, которая оценивает качество теплозащитных функций окна. Таким образом, чем меньше проходит потерь тепла, тем выше будет показатель сопротивления теплопередаче.

Коэффициент сопротивления: показатели

Формула стеклопакета обозначает определённый набор символов, который являет собой основные характеристики состава стеклопакета. Таким образом, формула определяет значение толщины и ширины промежутков между стёклами.

  1. Звукоизоляция, обозначающаяся как Дб, является основным параметром стеклопакета. Она необходима для снижения уровня постороннего шума, доносящегося с улицы.
  2. Толщина стеклопакета, обозначается как мм — показатель толщины стёкол и воздушных камер между ними.
Теплоизоляция — это коэффициент сопротивления теплопередаче

Чтобы повысить теплоизоляцию стеклопакета, можно рассматривать несколько способов:

  1. увеличение толщины стеклопакета, что изменит расстояние между сторонами;
  2. увеличение количества камер при установке двухкамерных стеклопакетов.

Стоит отметить, что однокамерные стеклопакеты на рынке представлены в двух вариантах показателя толщины стёкол — 24 и 32 мм. Но несмотря на разницу более чем в 10 мм они имеют одинаковые теплоизоляционные характеристики. Происходит это из-за конвекции между стёклами, поэтому расстояние между сторонами не может изменить коэффициент сопротивления.

Коэффициент сопротивления теплопередаче: советы по выбору стеклопакета

Основным параметром выбора стеклопакета является коэффициент тепловой передачи. Не рекомендуется в жилых помещениях ставить стеклопакет с сопротивлением менее 0,45. Этот показатель является строительной нормой, и при соблюдении всех правил стеклопакеты не могут быть изготовлены менее этого значения.

  1. Чтобы установить окна в квартире либо в загородном доме, рекомендуется ставить двухкамерный пакет. Однокамерное окно обладает низким показателем теплоизоляции, поэтому зачастую не отвечает требуемым строительным нормам.
  2. Важно отметить, что подбирая для себя наилучший вариант стеклопакета, нужно учитывать толщину и материал оконного профиля. Характеристики профильной системы имеют огромное значение для расчёта коэффициента сопротивления теплопередачи.
  3. Установка стеклопакета также имеет огромное значение. Двухкамерный пакет не может быть уставлен с толщиной менее 40 мм. Обратите внимание на энергосберегающие модели, они имеют особой покрытие, которое способно увеличивать коэффициент теплопередачи при помощи отражения света обратно.

Для производства стеклопакетов с энергосберегающей системой применяется два вида стёкол — твёрдое и мягкое низкоэмиссионое покрытие. Мягкое стекло не настолько качественное и прочное, как твёрдое. Поэтому оно получило большую востребованность у потребителя.

Для увеличения коэффициента передачи тепла сопротивления стеклопакетов пространство между стёклами заполняются специальным газом — аргоном. При этом коэффициент сопротивления взрастает на десять процента. Идеальным решением для квартиры станут двухкамерные и однокамерные энергосберегающие конструкции. Они имеют высокий уровень теплоизоляции.

Многие производители рекомендуют применять инновационные технологии, которые обеспечивают низкую тепловую проводимость. Инновационные методы позволяют улучшить теплоизоляционные характеристики однокамерных, и двухкамерных конструкций. Таким образом, становится возможным уменьшить образование конденсата за счёт повышения температурного режима.

Дополнительный параметр — шумоизоляция, её можно внедрить при помощи следующих способов:

  1. применения стёкол большей толщины;
  2. применять комбинацию стёкол различной толщины, что позволяет избежать звукового резонанса.

Снижение внешних шумов становится возможным только на несколько Дб. Таким образом, значительно не может быть понижен уровень восприятия человеком звуков. Воздействие акустического давления частоты и интенсивности звуковых колебаний напрямую влияют на человеческий орган и находится в зависимости от него.

Звукоизоляция представляет собой параметр стеклопакета, который может определить уровень снижения посторонних шумов, которые будут доноситься с улицы. Таким образом, при разнице звукоизоляции в 32 Дб, который оценивается в городе, как 70 Дб, ослабляется до 38 Дб. Улучшить показатели звукоизоляции возможно, подобрав асимметричные различной толщине воздушные камеры с разнообразной толщиной стёкол.

Расчёт и таблица коэффициента теплопроводности

Теплопроводность показывает, насколько эффективными изоляционными свойствами будет обладать стеклопакет. При этом малое значение отображается как «к» — небольшая теплопередача в соответствии с незначительной потерей тепла через конструкцию. В то же время теплоизоляционные свойства являются высокими. При этом коэффициент теплопроводности выражается количеством тепла в Вт, который проходит через 1 м2, которая ограждает его конструкции с разницей в температуре в обоих средах на один градус. Измеряется показатель как Вт/м2.

Высокий показатель теплопроводности может быть у металлов, что отображается как низкая температура. В этом случае изделие не имеет воздушных камер, которые обладают низкой теплопроводностью. Для строительных конструкций такой вариант можно считать оптимальным и востребованным. Независимо от материала окна, производитель обязан отображать на своей продукции коэффициент теплопередачи специальной маркировкой.

Конструкции, методы и материалы при расчёте теплового сопротивления

Чтобы повысить сопротивление теплопередаче, понадобится использовать наружные материалы с низким показателем коэффициента теплопроводности. Новые технологии строительства и материалы позволяют достичь оптимальных результатов. Среди популярных и востребованных наружных материалов стоит отметить: керамзитный блок, дерево, пеноблок, сэндвич-панели, а также керамический блок.

  1. Дерево является тёплым экологичным материалом. Многие предпочитают использовать его для строительства частных домов. Это может быть сруб, оцилиндрованное бревно либо прямоугольный брус. Довольно часто применяется сосна, ель. При этом капризный материал требует дополнительных мер защиты от атмосферного воздействия и насекомых.
  2. Сэндвич-панель — это новый продукт на отечественном рынке материалов. Его популярность в частном строительстве возрастает в последнее время. К преимуществам стоит отнести невысокую стоимость. А также хорошее сопротивление теплопередачи. Такой параметр достигается за счёт строения. С наружных сторон находится листовой материал. Это может быть плита, фанера либо металлический профиль. Внутри системы находится утеплитель из пены либо минеральная вата.
  3. Строительный блок имеет высокий коэффициент сопротивления теплопередаче, в отличие от кирпича. Он может быть достигнут из-за наличия в его структуре воздушных камер или вспененной структуры материала. Таким образом, некоторые керамические блоки имеют специальные отверстия. Они могут быть выложены параллельно кладке стены. Получаемые на выходе камеры с воздухом являются препятствием для теплопередачи. В других строительных блоках существует высокий коэффициент сопротивления теплопередачи, который может выражаться в пористой структуре. При этом он может быть достигнут различными способами. Первым способом является химическая реакция. Второй способ — это смешивание цементной смеси с пористым материалом. Такие варианты применимы для полистиролбетонных и керамзитобетонных блоков.
Применение утеплителя: нюансы коэффициента теплового сопротивления

Если имеется недостаточное сопротивление теплопередачи, это может зависеть от материала стены, к примеру, если речь идёт о кирпиче. Тогда необходимые меры могут быть применимы в качестве утеплителя. Утепление проводится только снаружи кирпича, но при необходимости может быть применимо по внутренней части для несущих стен. На сегодня существует множество утеплителей, которые повышают коэффициент сопротивления теплопередачи. К таким материалам стоит отнести пеностекло, экструдированный пенополистирол, минеральная вата, пенополиуретан и другие материалы.

Все они имеют определённые коэффициенты теплопроводности для утепления большинства стен при толщине в десять миллиметров, что является достаточным показателем. При этом нужно учитывать паропроницаемость утеплителя и материала. Остальные утеплители могут применяться для различных стен, для которых оставляется специальный зазор между стеной и утеплителем.

Надёжные компании-производители на своей продукции ставят коэффициент сопротивления теплопередачи стеклопакета на любых технологических операциях, особенно в процессе изготовления продукции. Прилагаемая таблица расчётов поможет определить коэффициент любого процесса, включая нанесение специальных покрытий и заполнение междустекольного пространства.

Этот показатель характеризуется не только конкретной функцией теплозащиты, но и качеством всего процесса производства и готового продукта. Таким образом, рекомендуется держать под контролем этот показатель и регулярно мерить разнообразные этапы изготовления готового образца продукции.

Важное место в строительстве занимает тепловое сопротивление материала. Чем стена теплее, тем будет меньший показатель плотности и прочности его. При планировке дома, заказывая услугу утепления стен, а также при покупке стеклопакетов важно учитывать коэффициент сопротивления теплопередачи. На этикетке у производителя можно найти таблицу с этим показателем, на маркировке и паспорте этого продукта. Стоит помнить, что для обеспечения нормальной теплопередачи в квартире коэффициент сопротивления должен быть не менее 0,45. Все меньшие значения не будут считаться эффективными.

Теплоизоляция: основные характеристики

Теплоизоляционными называют строительные материалы и изделия, предназначенные для тепловой изоляции конструкций зданий и сооружений, а также различных технических применений. Основной особенностью теплоизоляционных материалов является их высокая пористость и, следовательно, малая средняя плотность и низкая теплопроводность. Применение теплоизоляционных материалов в строительстве позволяет снизить вес конструкций, уменьшить потребление конструкционных строительных материалов (бетон, кирпич, древесина и др.). Теплоизоляционные материалы существенно улучшают комфорт в жилых помещениях. Важнейшей целью теплоизоляции строительных конструкций является сокращение расхода энергии на отопление здания. Основной путь снижения энергозатрат на отопление зданий лежит в повышении термического сопротивления ограждающих конструкций с помощью теплоизоляционных материалов (ТИМ).
С 2000 года нормативные требования по расчётному сопротивлению теплопередачи ограждающих конструкций в России увеличены в среднем в 3,5 раза и практически сравнялись с аналогичными нормативами в Финляндии, Швеции, Норвегии, Северной Канаде, других северных странах. Соответственно выросло значение (ТИМ).

Основные технические характеристики

Свойства теплоизоляционных материалов применительно к строительству характеризуются следующими основными параметрами. Важнейшей технической характеристикой ТИМ является теплопроводность – способность материала передавать теплоту сквозь свою толщу, так как именно от нее напрямую зависит термическое сопротивление ограждающей конструкции. Количественно определяется коэффициентом теплопроводности λ, выражающим количество тепла, проходящее через образец материала толщиной 1 м и площадью 1 м2 при разности температур на противолежащих поверхностях 1°С за 1 ч. Коэффициент теплопроводности в справочной и нормативной документации имеет размерность Вт/(м·°С). На величину теплопроводности теплоизоляционных материалов оказывают влияние плотность материала, вид, размеры и расположение пор (пустот) и т.д. Сильное влияние на теплопроводность оказывает также температура материала и, особенно, его влажность. Методики измерения теплопроводности в различных странах значительно отличаются друг от друга, поэтому при сравнении теплопроводностей различных материалов необходимо указывать, при каких условиях проводились измерения.
Плотность – отношение массы сухого материала к его объему, определенному при заданной нагрузке (кг/м3).
Прочность на сжатие – это величина нагрузки (КПа), вызывающей изменение толщины изделия на 10%.
Сжимаемость – способность материала изменять толщину под действием заданного давления. Сжимаемость характеризуется относительной деформацией материала под действием нагрузки 2 КПа.
Водопоглощение – способность материала впитывать и удерживать в порах (пустотах) влагу при непосредственном контакте с водой. Водопоглощение теплоизоляционных материалов характеризуется количеством воды, которое впитывает сухой материал при выдерживании в воде, отнесенным к массе или объему сухого материала. Для снижения водопоглощения ведущие производители теплоизоляционных материалов вводят в них гидрофобизирующие добавки.
Сорбционная влажность – равновесная гигроскопическая влажность материала при определенных условиях в течение заданного времени. С повышением влажности теплоизоляционных материалов повышается их теплопроводность.
Морозостойкость – способность материала в насыщенном влагой состоянии выдерживать многократное попеременное замораживание и оттаивание без признаков разрушения. От этого показателя существенно зависит долговечность всей конструкции, однако, данные по морозостойкости не приводятся в ГОСТ или ТУ.
Паропроницаемость – способность материала обеспечивать диффузионный перенос водяного пара. Диффузия пара характеризуется сопротивлением паропроницаемости (кг/м2·ч· Па). Паропроницаемость ТИМ во многом определяет влагоперенос через ограждающую конструкцию в целом. В свою очередь последний является одним из наиболее существенных факторов, влияющих на термическое сопротивление ограждающей конструкции. Во избежание накопления влаги в многослойной ограждающей конструкции и связанного с этим падения термического сопротивления паропроницаемость слоёв должна расти в направлении от тёплой стороны ограждения к холодной.
Воздухопроницаемость. Теплоизолирующие свойства тем выше, чем ниже воздухопроницаемость ТИМ. Мягкие изоляционные материалы настолько хорошо пропускают воздух, что движение воздуха приходится предотвращать путем применения специальной ветрозащиты. Жесткие изделия, в свою очередь, обладают хорошей воздухонепроницаемостью и не нуждаются в каких-либо специальных мерах. Они сами могут применяться в качестве ветрозащиты. При устройстве теплоизоляции наружных стен и других вертикальных конструкций, подвергающихся напору ветра, следует помнить, что при скорости ветра 1 м/с и выше целесообразно оценить необходимость ветрозащиты.
Огнестойкость – способность материала выдерживать воздействие высоких температур без воспламенения, нарушения структуры, прочности и других его свойств. По группе горючести теплоизоляционные материалы подразделяют на горючие и негорючие. Это является одним из важнейших критериев выбора теплоизоляционного материала.

Общие принципы устройства теплоизоляции

1. Теплоизоляция строительных конструкций должна быть запроектирована так, чтобы выполнять возложенные на нее функции в течение всего жизненного цикла конструкции.

2. В проекте должны быть описаны способы укладки и защиты теплоизоляционных материалов для обеспечения заданной теплопроводности. Изоляционный материал должен заполнять весь предусмотренный проектом объем и выдерживать нагрузки, возникающие как при укладке, так и в процессе эксплуатации. При необходимости проект должен содержать описание способов заполнения стыковочных швов.

3. Слой теплоизоляционного материала с подветренной стороны здания необходимо защищать от ветра. Ветрозащитный слой должен покрывать весь изоляционный материал и быть настолько плотным, чтобы препятствовать проникновению в строительные конструкции или сквозь них воздушных потоков, существенно снижающих изоляционные свойства материала. Особое внимание следует обратить на места соединения наружных стен и стен фундамента, наружных стен и чердачных перекрытий, на углы наружных стен и коробки проемов.

4. Если в многослойной ограждающей конструкции паропроницаемость слоёв уменьшается по мере движения от тёплой стороны к холодной, существует опасность накопления внутри конструкции конденсирующейся влаги. Для минимизации этого эффекта на теплой стороне ограждения устраивают специальный пароизоляцонный барьер, паропроницаемость которого не менее чем в несколько раз выше, чем у наружных слоёв. Швы и соединения пароизоляционного барьера должны быть загерметизированы.

5. Ограждающая конструкция должна быть спроектирована так, чтобы создать как можно более благоприятные условия для свободного выхода за её пределы паров неизбежно проникающей в неё влаги. При необходимости защиты теплоизоляционных материалов от ветра или атмосферной влаги целесообразно использовать специальные “дышащие” мембраны, прозрачные для выхода водяных паров.

6. Исследования показали, что многие негативные явления, возникающие в многослойных ограждающих конструкциях (плесень, гниль, формальдегид, радон и др.), как правило, связаны с сыростью. Залог надёжной работы ограждающей конструкции – учёт на стадии проектировании всего комплекса вопросов тепломассопереноса. В проекте должны быть описаны способы укладки и защиты теплоизоляционных материалов для обеспечения заданной теплопроводности. Изоляционный материал должен заполнять весь предусмотренный проектом объем и выдерживать нагрузки, возникающие как при укладке, так и в процессе эксплуатации. При необходимости проект должен содержать описание способов заполнения стыковочных швов.

Эксперименты по теплопроводности – сопротивление: материалы

Безопасность: Примите все необходимые меры предосторожности

Аннотация

Теплопроводность

является важным свойством материала в промышленности и повседневных ситуациях, например, когда нужно знать, какую посуду выбрать, или какую одежду надевать, чтобы выйти из дома. Это свойство описывается в ваттах на метр Кельвина и в установившемся режиме может быть рассчитано путем измерения теплового сопротивления. Как теплопроводность, так и тепловое сопротивление будут влиять на количество тепла, проходящего через систему.В этом эксперименте будет использоваться простая установка для наблюдения за изменением теплового потока.

Введение

Цель этого эксперимента — продемонстрировать влияние различной теплопроводности на тепловой поток через данный материал. В конечном итоге это обеспечит лучшее понимание как теплопроводности, так и теплового сопротивления

.

Исходная информация и уравнения

Справочная информация

Теплопроводность — это мера способности материалов передавать тепло через себя и является одной из трех переменных теплового сопротивления.Тепловое сопротивление аналогично электрическому сопротивлению в том смысле, что оно обратно пропорционально потоку тепла. В лабораторных условиях тепловое сопротивление рассчитывается при определенных обстоятельствах, что позволяет затем получить теплопроводность на основе полученных результатов.

Уравнение теплового потока Q = ΔT / RΘ

  • Q = тепловой поток в ваттах
  • ΔT = разница температур в градусах Цельсия
  • RΘ = тепловое сопротивление (л/к ⋅ А)
  • l = длина материала в метрах
  • k = константа теплопроводности в Вт/м-K
  • A = площадь поверхности в квадратных метрах

В этом эксперименте выделенная жирным шрифтом константа будет варьироваться в разных образцах.

Этот эксперимент был разработан для сравнения теплопроводности, поэтому площадь поверхности, длина и разность температур должны оставаться одинаковыми в каждом тесте. Однако для этого эксперимента можно использовать неметаллы, что может привести к длительному времени тестирования или потенциальному незавершению. Поэтому рекомендуется использовать металлы. Список распространенных металлов можно найти в разделе сравнения.

Материалы

Материал Цена Место покупки
Проводка (тот же диаметр, 1.1 м)
• Медь
• Алюминий
• Сталь
От 5 до 10$ за штуку, всего 15-30$. Амазонка
Свечи x15 1$ Амазонка
Инфракрасный термометр 23$ Амазонка
Стакан x2 (50 мл) 3$ Инструменты индиго
Линейка 2$ Амазонка
Горячая плита 15$ Амазонка
Секундомер 4$ Амазонка
Итого 63-78$  

Процедура

    1. Возьмите два стакана (одинакового или разного размера), наполните один водой и поставьте на плиту.
    2. Поместите другую мензурку на объект такого же размера, как и на плитке, чтобы края обоих мензурок находились на одной высоте (или используйте более высокую мензурку)
    3. Согните все провода под углом 90° с обоих концов, образуя плечи длиной 50 мм, и убедитесь, что 1 м провода остается прямым
    4. Убедитесь, что изогнутый конец провода погружен в воду
    5. Поместите все три выбранных провода на края обоих стаканов, чтобы соединить оба стакана

  1. Используйте маркер, чтобы отметить каждый провод через каждые 200 мм или, если используете свечи, расплавьте дно каждой свечи, используя какой-либо источник тепла, и поместите свечи с интервалом 200 мм вдоль провода
  2. Нагревайте воду на нагревательной плите в течение 15 минут, затем измеряйте температуру через каждые 200 мм

*при необходимости можно использовать более короткие провода для ускорения эксперимента, просто выполните измерение на каждой 1/5 длины провода*

Наблюдение

Есть два способа визуализировать распространение тепла по проводам.Первоначально можно наблюдать степень расплавления свечей на каждом интервале 200 мм. Провод с наибольшей теплопроводностью будет иметь наибольшую тяжесть расплавленной свечи, тогда как; провод с наименьшей теплопроводностью будет иметь самую слабую остроту расплавленных свечей вблизи источника тепла. Можно также использовать инфракрасный термометр для измерения каждого 200-миллиметрового интервала вдоль провода и отображать записанные данные в зависимости от расстояния до кипящей воды. Участок с наибольшей разницей между 0 мм и 1000 мм, скорее всего, будет худшим проводником тепла.Полученный график должен выглядеть примерно так, как показано ниже.

Сравнение

Ниже приведен список металлов вместе с их значением теплопроводности. Чем выше показатель теплопроводности, тем лучше будет теплопроводность материала.

Материал Значение теплопроводности (Вт/м⋅K)
Медь 397,48
Алюминий 225,94
Вольфрам 196.65
Цинк 111,8
Бронза 104,6
Никель 87,86

*Для других значений теплопроводности посетите: https://thermtest.com/materials-database

Заключение

Металлы передают тепло за счет накопленной энергии в свободных электронах атомов металла, эти электроны будут сталкиваться друг с другом, передавая свою кинетическую энергию. Это бильярдное взаимодействие будет распространяться по всему металлу до тех пор, пока энергия не будет распределена равномерно.Медь обычно считается лучшим теплопроводником по соотношению теплопроводности к цене. Единственный металл, превосходящий медь, — это серебро с теплопроводностью 429,77 Вт/м·К. Имея это в виду, неудивительно, если окажется, что медная проволока имеет самую высокую температуру на всех 200-миллиметровых интервалах и самую высокую степень плавления свечей. Во второй части этой серии экспериментов будут рассмотрены изменения теплопроводности в зависимости от длины данного материала.

Для получения дополнительной информации посетите:
https://thermtest.com/what-is-thermal-conductivity
https://thermtest.com/thermal-resources/energy2d-heat-transfer-simulations/
https://en.wikipedia.org/wiki/Thermal_conductivity

Термическое сопротивление – Термическое Удельное сопротивление | Определение

Термическое сопротивление — это тепловое свойство и измерение разности температур, благодаря которому объект или материал сопротивляется тепловому потоку. Термическое сопротивление проводимости в плоской стене определяется как:

В технике часто используется еще одно очень важное понятие.Поскольку существует аналогия между диффузией тепла и электрическим зарядом , инженеры часто используют тепловое сопротивление (т. е. тепловое сопротивление против теплопроводности) для расчета теплопередачи через материалы. Тепловое сопротивление является обратной величиной теплопроводности. Точно так же, как электрическое сопротивление связано с проводимостью электричества, тепловое сопротивление может быть связано с проводимостью тепла.

Рассмотрим плоскую стенку толщиной L и средней теплопроводностью k.Две поверхности стены поддерживаются при постоянных температурах T 1 и T 2 . Для одномерной установившейся теплопроводности через стенку имеем T(x). Тогда Закон Фурье теплопроводности для стены можно выразить следующим образом:

Определение теплового сопротивления

Термическое сопротивление — это тепловое свойство и измерение разности температур, с помощью которого объект или материал сопротивляется тепловому потоку. Термическое сопротивление проводимости в плоской стене определяется как:

Поскольку понятие теплового сопротивления может использоваться в различных областях техники, мы определяем:

  • Абсолютное тепловое сопротивление , R t , который имеет единицы измерения [К/Вт].Абсолютное термическое сопротивление – это свойство конкретного компонента, имеющего определенную геометрию (толщина – L, площадь – A и форма). Например, характеристика определенного теплообменника. Для определения теплопередачи необходима только разница температур.
  • Удельное тепловое сопротивление или удельное тепловое сопротивление, R λ , измеряется [(К·м)/Вт]. Удельная теплоемкость является константой материала, а толщина материала и разность температур необходимы для определения теплопередачи.
  • Значение R . Значение R (коэффициент теплоизоляции) является мерой теплового сопротивления. Чем выше значение R, тем выше эффективность изоляции. Теплоизоляция имеет единицы [(м 2 .K)/Вт] в единицах СИ или [(ft 2 ·°F·ч)/БТЕ] в имперских единицах. Это тепловое сопротивление единицы площади материала. Значение R зависит от типа изоляции, ее толщины и плотности. Для определения теплопередачи необходимы площадь и разность температур.

Аналогия с электрическим сопротивлением

Приведенное выше уравнение для теплового потока аналогично соотношению для потока электрического тока I , выраженное как:

где R e A — электрическое сопротивление, а V 1 — V 2 — разность потенциалов на сопротивлении (σ e — электропроводность). Аналогия между обоими уравнениями очевидна. Скорость теплопередачи через слой соответствует электрическому току, тепловое сопротивление соответствует электрическому сопротивлению, а разность температур соответствует разности напряжений на слое.Разность температур представляет собой потенциальную или движущую функцию для теплового потока, в результате чего уравнение Фурье записывается в форме, аналогичной закону Ома теории электрических цепей.

Представления цепей представляют собой полезный инструмент для концептуализации и количественной оценки проблем теплопередачи. Эта аналогия может также использоваться для термического сопротивления поверхности против тепловой конвекции. Обратите внимание, что когда коэффициент конвекционной теплопередачи очень велик (h → бесконечность), сопротивление конвекции становится равным нулю, а температура поверхности приближается к объемной температуре.Эта ситуация практически реализуется на поверхностях, где происходит интенсивное кипение и конденсация.

Теплопередача через композитную стенку может быть рассчитана на основе этих сопротивлений. Скорость устойчивого теплообмена между двумя поверхностями равна разности температур, деленной на общее тепловое сопротивление между этими двумя поверхностями.

Эквивалентная тепловая схема для плоской стенки с условиями конвекционной поверхности показана на рисунке.

Тепловое контактное сопротивление – тепловая контактная проводимость

В теплотехнике тепловая контактная проводимость [Вт/м 2 .K] или тепловое контактное сопротивление [м 2 .K/Вт] представляет тепло проводимость между двумя твердыми телами. Когда компоненты скреплены болтами или каким-либо иным образом спрессованы вместе, также необходимо знать тепловые характеристики таких соединений. Падение температуры на границе раздела материалов может быть значительным в этих композитных системах.Это падение температуры характеризуется коэффициентом теплопроводности контакта , h c , который указывает на теплопроводность или способность проводить тепло между двумя контактирующими телами. В то время как существуют обширные базы данных по термическим свойствам сыпучих материалов, аналогичных баз данных для прессованных контактов нет.

Обратное значение этого свойства называется тепловым контактным сопротивлением .

Сопротивление контакта сильно зависит от шероховатости поверхности , а давление, удерживающее две поверхности вместе, также влияет на сопротивление контакта.Термическое контактное сопротивление уменьшается с уменьшением шероховатости поверхности и увеличением межфазного давления. Это связано с тем, что контактная поверхность между телами увеличивается по мере роста контактного давления. Когда две такие поверхности прижаты друг к другу, выступы образуют хороший материальный контакт, а впадины образуют пустоты, заполненные воздухом . Эти пустоты, заполненные воздухом, действуют как изоляция из-за низкой теплопроводности воздуха. Ограниченное количество и размер пятен контакта приводят к тому, что фактическая площадь контакта значительно меньше кажущейся площади контакта.В случае металлического композиционного материала, помещенного в вакуум, теплопроводность через пятна контакта является основным способом передачи тепла. Контактное сопротивление обычно больше, чем когда композитный материал находится в присутствии воздуха или другой жидкости. Кроме того, тепловое контактное сопротивление является значительным и может преобладать для хороших проводников тепла, таких как металлы, но им можно пренебречь для плохих проводников тепла, таких как изоляторы.

Например:

  • Тепловая контактная проводимость для алюминиевых пластин с шероховатостью поверхности 10 мкм, помещенных в воздух с давлением на границе раздела 1 атм, составляет h c = 3640 Вт/м 2
  • Теплопроводность контакта для алюминиевых пластин с шероховатостью поверхности 10 мкм, помещенных в гелий с граничным давлением 1 атм, составляет h c = 9520 Вт/м 2 .K
  • Термоконтакт проводимость для пластин из нержавеющей стали с шероховатостью поверхности 2,5 мкм, помещенных в воздух при давлении на границе раздела 1 МПа, составляет около h c = 3000 Вт/м 2 .K

Тепловое контактное сопротивление может можно минимизировать путем нанесения теплопроводной жидкости, называемой термопастой , такой как смазка для ЦП , на поверхности, прежде чем они будут прижаты друг к другу.Основная роль термопасты заключается в устранении воздушных зазоров или пространств (которые действуют как теплоизолятор) в области интерфейса, чтобы максимизировать теплопередачу. Теплопроводность промежуточного материала и его давление являются двумя свойствами, определяющими его влияние на контактную проводимость.

Специальный справочник: Мадхусудана, Чакраварти В., Тепловая контактная проводимость. Springer International Publishing, 2014. ISBN: 978-3-319-01276-6.

 

Ссылки:

Теплопередача:
  1. Основы тепломассообмена, 7-е издание.Теодор Л. Бергман, Эдриенн С. Лавин, Фрэнк П. Инкропера. John Wiley & Sons, Incorporated, 2011. ISBN: 9781118137253.
  2. Тепломассообмен. Юнус А. Ценгель. McGraw-Hill Education, 2011. ISBN: 9780071077866.
  3. Основы тепломассообмена. CP Котандараман. New Age International, 2006 г., ISBN: 9788122417722.
  4. Министерство энергетики США, термодинамика, теплопередача и поток жидкости. Справочник по основам Министерства энергетики США, том 2 из 3. Май 2016 г.

Ядерная и реакторная физика:

  1. J.Р. Ламарш, Введение в теорию ядерных реакторов, 2-е изд., Аддисон-Уэсли, Рединг, Массачусетс (1983).
  2. Дж. Р. Ламарш, А. Дж. Баратта, Введение в ядерную технику, 3-е изд., Prentice-Hall, 2001, ISBN: 0-201-82498-1.
  3. WM Stacey, Физика ядерных реакторов, John Wiley & Sons, 2001, ISBN: 0-471-39127-1.
  4. Гласстоун, Сезонске. Разработка ядерных реакторов: разработка реакторных систем, Springer; 4-е издание, 1994 г., ISBN: 978-0412985317
  5. WSC. Уильямс.Ядерная физика и физика элементарных частиц. Кларендон Пресс; 1 издание, 1991 г., ISBN: 978-0198520467
  6. Г.Р.Кипин. Физика ядерной кинетики. Паб Эддисон-Уэсли. Ко; 1-е издание, 1965 г.
  7. Роберт Рид Берн, Введение в работу ядерных реакторов, 1988 г.
  8. Министерство энергетики, ядерной физики и теории реакторов США. Справочник по основам Министерства энергетики, том 1 и 2. Январь 1993 г.
  9. Пол Ройсс, Нейтронная физика. EDP ​​Sciences, 2008. ISBN: 978-2759800414.

Advanced Reactor Physics:

  1. K.О. Отт, В. А. Безелла, Введение в статистику ядерных реакторов, Американское ядерное общество, исправленное издание (1989 г.), 1989 г., ISBN: 0-894-48033-2.
  2. К. О. Отт, Р. Дж. Нойхольд, Введение в динамику ядерных реакторов, Американское ядерное общество, 1985, ISBN: 0-894-48029-4.
  3. Д. Л. Хетрик, Динамика ядерных реакторов, Американское ядерное общество, 1993, ISBN: 0-894-48453-2.
  4. Э. Э. Льюис, В. Ф. Миллер, Вычислительные методы переноса нейтронов, Американское ядерное общество, 1993, ISBN: 0-894-48452-4.

См. выше:

Теплопроводность

Произошла ошибка при настройке пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка браузера на прием файлов cookie

Существует множество причин, по которым файл cookie не может быть установлен правильно. Ниже приведены наиболее распространенные причины:

  • В вашем браузере отключены файлы cookie.Вам необходимо сбросить настройки браузера, чтобы принять файлы cookie, или спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файл cookie.
  • Ваш браузер не поддерживает файлы cookie. Попробуйте другой браузер, если вы подозреваете это.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie.Чтобы это исправить, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Предоставить доступ без файлов cookie потребует от сайта создания нового сеанса для каждой посещаемой вами страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в файле cookie; никакая другая информация не фиксируется.

Как правило, в файле cookie может храниться только та информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, если вы не решите ввести его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступ к остальной части вашего компьютера, и только сайт, создавший файл cookie, может его прочитать.

Влияние теплопроводных материалов на морозостойкость бетона

Для решения проблемы гололеда проводится множество исследований. Ключевым в последние дни является повышение теплопроводности бетона. В этом исследовании для улучшения теплопроводности карбид кремния использовался для замены 50% и 100% мелкого заполнителя. Кроме того, стальное волокно не только улучшает механические свойства, но и может улучшить теплопроводность материала.Следовательно, в этом исследовании использовалась стальная фибра арочного типа до объемной доли до 1%. Кроме того, графит использовался в количестве 5% от объемной доли для повышения теплопроводности. Однако термическое повреждение может произойти из-за разницы в теплопроводности между материалами. Поэтому в первую очередь необходимо проверить термостойкость. Целевым применением бетона в данном исследовании было его использование в качестве дорожного покрытия. Для оценки термической стойкости проводили замораживание-оттаивание и быстрое циклическое термическое воздействие.Теплопроводность образцов увеличивалась с увеличением количества теплопроводных материалов. Уже сообщалось, что графит оказывает негативное влияние на механические свойства, и результаты показали, что это действительно так. Однако стальная фибра компенсировала негативное влияние графита, а карбид кремния обеспечивал эффект наполнителя. Графит также оказал негативное влияние на морозостойкость и быстрое циклическое термическое воздействие, но стальная фибра компенсировала снижение термической стойкости.Карбид кремния также помог улучшить термическую стойкость так же, как и стальное волокно. В целом, стальная фибра улучшила все свойства тестов. Использование 100% карбида кремния считалось приемлемым диапазоном, но 50% карбида кремния было лучшим. Графит ухудшил все свойства, кроме теплопроводности. Поэтому содержание графита или использование других проводящих материалов следует тщательно учитывать в дальнейших исследованиях.

Ключевые слова: заморозить-оттаять; графит; Карбид кремния; стальное волокно; теплопроводный материал.

Теплопроводность и сопротивление – Ceis

Низкая теплопроводность является одной из основных характеристик теплоизоляционных материалов. Процедура испытаний для определения теплопроводности и сопротивления строительных материалов в основном изложена в UNE-EN 12667:2002 . Этот стандарт применим ко всем продуктам с ожидаемым термическим сопротивлением, равным или превышающим 0,5 м2·K/Вт. Чтобы рассматривать материал как теплоизолятор , его минимальная теплопроводность должна быть равна или ниже 0.06 Вт/(м·К). Этот метод действителен для определения теплопроводности для всего диапазона толщин, который мы находим в отношении теплоизоляции .

Стандарт испытаний включает два возможных метода: метод защищенной горячей плиты и метод измерителя теплового потока. Оба они одинаково действительны, главное отличие состоит в том, что первый является абсолютным методом, а второй — относительным, т. е. он основан на предварительной калибровке оборудования, выполненной с использованием материала, имеющего известный и сертифицированный теплопроводность .

В настоящее время более широко применяемым методом является метод измерения расхода тепла, в основном из-за того, что измерения выполняются оперативно. Этот метод предлагает 3 возможных варианта по оснащению: симметричное с одним образцом, симметричное с двумя образцами и асимметричное с одним образцом, а также двойное оборудование с возможностью для всех этих вариантов иметь как вертикальную, так и горизонтальную компоновку. В этой статье речь пойдет о симметричном счетчике теплового потока с одним образцом и горизонтальной компоновкой.На следующем рисунке представлена ​​схема этого типа оборудования:

Оборудование имеет две пластины, подвижную и неподвижную, которые во время проведения испытания должны полностью соприкасаться с основными сторонами испытуемого материала. С этой целью можно ввести толщину пробирки (мягкие продукты) или подвижную пластину можно перемещать до тех пор, пока она не окажет определенное давление на материал (жесткие продукты). В центральной части каждой пластины, в зоне измерения, находится встроенный расходомер тепла, который имеет тысячи маленьких термопар.Средний сигнал каждого измерителя теплового потока пропорционален тепловому потоку через пробирку, и этот сигнал используется для определения теплопроводности образца.

Сам по себе тест представляет собой очень простой физический эксперимент и включает в себя применение температурного градиента, программирование пластин на разные температуры, чтобы через образец создавался тепловой поток. Разность температур рассчитывается как разница между средними температурами в центре каждой пластины.

Чтобы иметь возможность точно определить теплопроводность материала, мы должны находиться в устойчивом состоянии, т. е. должен выполняться ряд критериев баланса, подобных следующим:

  • Температурный критерий: пластины должны иметь стабильную температуру.
  • Критерий выходного сигнала счетчиков тепла: сигнал счетчиков тепла не должен изменяться.
  • Критерий негибкости: Средний сигнал счетчиков тепловых потоков для различных групп измерений, проводимых оборудованием, не должен изменяться монотонно, т.е.т. е. разница между двумя последовательными группами должна изменить знак или быть равной нулю.

Таким образом, можно определить теплопроводность в стационарном состоянии материала, используя следующее уравнение:

где:

dQ — тепловой поток, полученный из калибровочных констант измерителей теплового потока и из выдаваемого ими электрического сигнала (в Вт/м 2 )

ΔT – разница температур между двумя сторонами образца (в K)

λ – теплопроводность образца (Вт/м·К))

e – толщина образца (в метрах)

R – тепловое сопротивление образца (в м 2 ·К/Вт)

Термическое сопротивление

Термическое сопротивление

Тепловой поток через строительную конструкцию зависит от разницы температур на ней, проводимости используемых материалов и толщины материалов.Конечно, разница температур является внешним фактором. Толщина и проводимость являются свойствами материала. Большая толщина означает меньший тепловой поток и, следовательно, более низкую проводимость. В совокупности эти параметры формируют термическое сопротивление конструкции. Термическое сопротивление пропорционально толщине слоя конструкции и обратно пропорционально его проводимости. Строительный слой с высоким термическим сопротивлением (например, минеральная вата) является хорошим изолятором; один с низким термическим сопротивлением (т.грамм. бетон) является плохим изолятором.

Сопротивление против удельного сопротивления

Удельное сопротивление является свойством материала и относится к способности этого материала сопротивляться потоку тепла. С другой стороны, сопротивление является свойством объекта и зависит как от удельного сопротивления материала, так и от его общей толщины внутри этого конкретного объекта.
Поскольку удельное сопротивление является обратной величиной проводимости, а значения проводимости для большинства строительных материалов гораздо легче получить, чем удельное сопротивление, можно рассчитать сопротивление материала, используя проводимость, следующим образом:

R = л/к

Где: R = тепловое сопротивление на единицу площади куска материала (м²K/Вт),
l = представляет толщину материала (м), и
k = представляет проводимость материала (Вт/мК).

Общее тепловое сопротивление

Строительная конструкция обычно состоит из ряда различных материалов, которые могут считаться действующими:
Последовательно
Когда материалы размещаются последовательно, их тепловое сопротивление добавляется, так что одна и та же площадь будет проводить меньше энергии при заданной разнице температур . Примером этого является пустотелая кирпичная стена, с двумя слоями кирпича, воздушным зазором и гипсокартоном 12 мм – все последовательно.
Параллельно
Когда материалы размещаются параллельно, их коэффициенты теплопроводности складываются, и общий поток энергии увеличивается для заданной разницы температур.Примером этого может быть полая кирпичная стена с вставленным в нее окном.

Общее сопротивление элемента включает все сопротивления отдельных материалов, из которых он состоит, а также внутреннее и внешнее сопротивление воздушной пленки. Его единицы обратны проводимости.

то есть: м²K/Вт.

Сопротивление воздушной пленке

Сопротивление воздушной пленки возникает из-за конвекционных потоков на поверхности материала. Когда поверхность нагревается или остывает, это влияет на температуру непосредственно прилегающего воздуха.Затем он начинает расти или падать в зависимости от того, жарче или холоднее. Это имеет тот же эффект, что и увеличение сопротивления материала потоку тепла.

Композитные строительные материалы

Для составного строительного элемента, состоящего из нескольких слоев различных материалов, его общее сопротивление определяется как:

Rt = Rso + ∑Rn + Rsi

где сопротивление n-го слоя:

Rn = ln/kn

Rt = общее общее сопротивление элемента (м²K/Вт),

Rn = сопротивление n-го материала внутри составного элемента (м²K/Вт ),
(м²K/Вт)

Rso и Rsi — внешнее и внутреннее поверхностное сопротивление соответственно (м²K/Вт)

ln = толщина n-го материала в композитном элементе (м), и n-го материала в композитном элементе (Вт/м·К).

К счастью, о различных материалах известно достаточно, чтобы можно было рассчитать общий тепловой характер для наиболее распространенных строительных систем с фиксированными размерами, чтобы можно было получить общее сопротивление (или проводимость). Цифры могут быть получены для окон с одинарным и двойным остеклением, полов из бетонных плит, подвесных деревянных полов, стен и так далее. Эти характеристики обычно записываются либо как значение R (для изоляции), либо как значение U для других элементов.

Значение R

Сопротивление обычно указывается как значение «R», которое представляет собой сопротивление одного квадратного метра материала при разнице температур в один градус.Таким образом, значение R типичной летучей мыши из стекловолокна может быть указано как R = 2,4, что означает, что оно измеряется в м²K/Ватт. Это означает, что если площадь изоляции в квадратных метрах умножить на разницу температур в градусах Кельвина и разделить на 2,4, то получится тепловой поток в ваттах.

Например, 100 квадратных метров изоляции R = 2,4, подверженные разнице в 20 градусов К, пропускают около 833 Вт.

На самом деле, можно было бы ожидать, что потери тепла будут небольшими из-за этого, потому что существует дополнительное сопротивление при передаче энергии от внутреннего воздуха к поверхности стены и от внешней поверхности стены к наружному воздуху.Кроме того, теплообмен на внешней поверхности может меняться в зависимости от скорости ветра.

термостойкость

Материалы для термоинтерфейса | Охлаждение электроники

Сборщику электроники не потребуется много времени, чтобы понять, что материал теплового интерфейса (TIM) необходим, когда две или более твердых поверхностей находятся на пути тепла. Стандартные обработанные поверхности шероховатые и волнистые, что приводит к относительно небольшому количеству точек фактического контакта между поверхностями. Изолирующие воздушные зазоры, создаваемые многочисленными пустотами «соприкасающихся» твердых поверхностей, являются просто слишком большим тепловым барьером даже для приложений со скромной мощностью.Первая тактика преодоления этого барьера заключается в заполнении пустот и удалении воздуха путем введения в тепловой тракт третьего материала, который является текучим и смачивает поверхности. Для более требовательных тепловых приложений второй тактикой является использование композитного ТИМ, содержащего наполнители, которые улучшают процесс проводимости третьего материала. Йованович и др. [1] подсчитали, что простая замена воздуха смазкой может снизить тепловое сопротивление примерно в пять раз (в зависимости от поверхности и контактного давления).Как показано на рис. 1, материал теплового интерфейса существенно меняет путь прохождения тепла между твердыми телами с шероховатой поверхностью с теплопроводности через точечные контакты и воздух на теплопроводность полностью через твердые тела.

Рисунок 1а. Проводимость через точечные контакты и воздух между твердыми поверхностями.


Рисунок 1b. Проведение через ТИМ, заполняющее пробелы.

Важным свойством любого ТИМ является его теплопроводность, k ТИМ .Ненаполненные полимеры имеют теплопроводность около 0,1 Вт/м·К. Все современные ТИМ представляют собой композиты, содержащие наполнители в виде частиц, которые повышают теплопроводность до диапазона 7 Вт/м·К. Неорганические наполнители в виде частиц включают оксид алюминия, оксид магния, нитрид алюминия, нитрид бора и алмазный порошок. Также используются металлические наполнители, особенно серебро. К сожалению, одной только высокой теплопроводности недостаточно для обеспечения оптимальной работы системы, как мы покажем позже. В описаниях конкретных классов материалов мы будем характеризовать тепловое сопротивление (приведенное к единице площади на один квадратный сантиметр), выраженное в единицах К·см 2 /Вт, полученное из одномерного расчета теплового потока.Таким образом, мы можем учесть толщину межфазной поверхности. Конкретное значение в любом конкретном приложении сильно зависит от контактных поверхностей и приложенного давления. Тем не менее, указанные диапазоны являются репрезентативными для каждого класса материалов. (Примечание: многие поставщики сообщают значения сопротивления в смешанных единицах измерения K�in 2 /Вт. Их необходимо умножить на 6,45, чтобы они соответствовали единицам, указанным в этом документе.)

В дополнение к тепловым характеристикам TIM также выбираются по нескольким другим важным критериям.Простота использования при сборке и доработке важна для высокопроизводительных приложений, как и долговременная стабильность (надежность). Поток производственного процесса часто диктует выбор материала. Например, во многих случаях TIM крепится к радиатору в одном месте, а окончательная сборка модуля происходит в другом. Эластомерные прокладки были разработаны в качестве альтернативы ранним решениям для смазки, в основном из-за производственных преимуществ, которые они предлагали. Материалы с фазовым переходом появились как технология, которая объединила преимущества тепловых характеристик смазки и простоту сборки твердой прокладки.В процессе выбора TIM часто упускают из виду клеи и припои. Оба обладают уникальным преимуществом надежного механического соединения, устраняя необходимость в зажимном оборудовании, которое требуется для смазок, прокладок и материалов с фазовым переходом.

Смазки

Смазки (также известные как термопасты) представляют собой силиконовые или углеводородные масла, содержащие различные наполнители. Исторически сложилось так, что они являются самым старым классом материалов, поскольку они легко решают основную задачу устранения микроскопических воздушных карманов.Как группу их часто характеризуют как «грязные» и трудно наносимые из-за их высокой вязкости. Более серьезной проблемой при нанесении является воспроизводимость доставки правильного количества для достижения полного покрытия с достаточно тонким зазором. Компоненты требуют механического зажима, а давление около 300 кПа обычно обеспечивает оптимальные тепловые характеристики.

Традиционные смазки обычно имеют поверхностное сопротивление около 1 кОм см 2 /Вт, в то время как новейшие продукты находятся в диапазоне 0.2 к�см 2 /Вт диапазон. Поскольку они нагреваются во время использования, вязкость падает, и они имеют тенденцию к дальнейшему смачиванию контактных поверхностей, что повышает производительность за счет снижения межфазного сопротивления. Неблагоприятным последствием в приложениях, которые включаются и выключаются, является явление, известное как «откачка», при котором смазка с низкой вязкостью вытесняется из интерфейса, потенциально загрязняя соседние компоненты. В экстремальных условиях интерфейс может пересохнуть.

Из-за своей долгой истории и широкого применения в потребительских товарах консистентные смазки часто считаются пиком на рынке.Наоборот, новые составы разрабатываются для удовлетворения конкретных потребностей микропроцессорной упаковки. Один поставщик микропроцессоров рекомендует только два материала термоинтерфейса для сопряжения своего последнего продукта с радиатором, и оба являются недавно разработанными смазками [2].

Эластомерные прокладки

Эластомерные прокладки являются логическим продолжением пластичных смазок: полимеризованные силиконовые каучуки в виде удобных в обращении твердых веществ. При типичной толщине 0,25 мм большинство колодок имеют основу из тканого стекловолокна для улучшения управляемости и содержат неорганические наполнители, как и смазки.Они поставляются в виде вырубных заготовок точной формы, необходимой для применения (например, все стандартные корпуса транзисторов TO). Поэтому сборка этих продуктов очень проста. Компромисс заключается в том, что для достижения адекватного интерфейса необходимы высокие давления (~ 700 кПа). Кроме того, с диапазоном тепловых характеристик 1–3 К·см 90 281 2 90 282 /Вт применение ограничено теми, где требуются умеренные тепловые требования.

Термоленты

Термоленты были разработаны как метод крепления радиатора.Они устраняют необходимость во внешних зажимах, что снижает общие требования к оборудованию. Термоленты представляют собой заполненные чувствительные к давлению клеи (PSA), нанесенные на опорную матрицу, такую ​​как полиимидная пленка, мат из стекловолокна или алюминиевая фольга. PSA прилипают к поверхностям при контакте и при небольшом надавливании. Их обычно можно найти на бинтах и ​​«липкой» бумаге для заметок.

Как и в случае с прокладками, тепловые характеристики находятся в диапазоне сопротивления 1–4 К·см 2 /Вт и сильно зависят от качества поверхности.На самом деле, основной движущей силой использования лент часто является их адгезионная способность, а тепловые характеристики имеют второстепенное значение. Ленты также имеют очень ограниченную податливость и, как правило, не подходят для современных формованных корпусов BGA с вогнутыми верхними поверхностями.

Материалы с фазовым переходом Материалы с фазовым переходом

сочетают в себе тепловые характеристики смазки с удобством эластомерной прокладки. Первоначально разработанные в 1980-х годах, они приобрели известность в 1990-х годах, когда их можно было легко предварительно нанести на радиаторы на Тайване.Затем окончательная сборка микропроцессора была выполнена у контрактного производителя без необходимости работы с «грязной» смазкой.

Материалы с фазовым переходом преимущественно представляют собой воски, которые обычно плавятся в диапазоне 50–80°C. По сути, это низкотемпературные термопластичные клеи. На практике они являются эффективными проводниками тепла как выше, так и ниже точки плавления. При работе выше точки плавления они неэффективны в качестве клея и нуждаются в механической поддержке, поэтому они всегда используются с зажимом, создающим давление в диапазоне 300 кПа.

Как и в случае прокладок и лент, их можно получить в различных конфигурациях, как с опорой, так и без нее, с добавлением наполнителей для повышения теплопроводности. Уровни производительности очень близки к консистентной смазке, в диапазоне 0,3 – 0,7 к·см 2 /Вт. Что мешает им быть идеальным решением? Ремонтопригодность. Несмотря на то, что он не классифицируется как клей, его адгезия достаточна для того, чтобы дорогие компоненты подвергались риску во время доработки. Это основное соображение при переходе на смазку с новейшими высокопроизводительными микропроцессорами.

Гели Гели

— еще один недавно разработанный вариант, который распределяется подобно смазке, но затем отверждается до частично сшитой структуры, что устраняет проблему откачивания [3]. Уровни термостойкости сопоставимы со смазкой в ​​диапазоне 0,4 – 0,8 К·см 2 /Вт.

Теплопроводящие клеи

Теплопроводящие клеи часто упускают из виду инженеры-теплотехники. Обычно составы на основе эпоксидной смолы или силикона, содержащие наполнители, обеспечивают превосходную механическую связь, которая может уменьшить размер и вес системы.При термическом сопротивлении, как правило, < 1 К·см 2 /Вт, наилучшие показатели достигают 0,15 К·см 2 /Вт. Однако они требуют надежных производственных процессов, поскольку повторная обработка нецелесообразна. Преимуществом клея является компактный корпус, высокоэффективный интерфейс и долговременная надежность.

Припой

Solder — еще один TIM, который часто упускают из виду. Он представляет собой окончательный интерфейс из твердого металла с сопротивлением < 0,05 К·см 2 /Вт.Несмотря на проблемы высокотемпературной обработки (и переделки), припой используется в качестве теплового интерфейса там, где не существует другого жизнеспособного варианта: присоединение силового кристалла первого уровня. На более высоких уровнях упаковки интерфейсы обычно не подходят для использования припоя, а расширенные области делают обработку очень сложной.

Количественное определение

«Почти все существующие решения для термоупаковки ограничены тепловым сопротивлением на твердотельных поверхностях на основных путях отвода тепла от чипа к окружающему воздуху, особенно на поверхности чипа и у основания радиатора.[4]  

Инженеры-теплотехники постоянно ищут «лучшие» продукты для теплового интерфейса. Обычно это выражается в требовании более высокой теплопроводности. Но так ли это на самом деле? Это достаточно? Насколько критична ситуация? Следующий анализ пытается дать количественную оценку проблемы.

Хорошо известно, что тепло будет течь везде, где это возможно, и будет использовать любой способ, предлагающий путь с наименьшим сопротивлением, будь то теплопроводность, конвекция или излучение. Все электронные системы в конечном итоге отводят свое тепло в атмосферу за счет конвекции.Вдоль промежуточного пути всегда есть проводящий участок (обычно это основной путь), и где-то по пути вступают в контакт два разных материала, отсюда и необходимость в ТИМ.

Рис. 2. Модельная диаграмма одномерного теплового потока через пять резистивных путей: три объемных материала и два интерфейса. Самый простой, короткий и, возможно, наиболее желательный путь — это прямой контакт между кремниевым устройством и алюминиевым конвектором (« радиатор”).Интересующие в данном случае ТИМ тонкие и легко моделируются одномерным переносом тепла. В данном случае (рис. 2) будем исследовать тепловое течение через кремниевые и алюминиевые пластины, сопряженные с ТИМ, предполагающим равномерный теплообмен по оси z с общим сопротивлением:

(1) Легко продемонстрировать [5], что сопротивление интерфейса фактически состоит из двух новых контактных сопротивлений плюс объемного сопротивления TIM:

(2) Объединение значений отдельных контактов и введение соотношения объемной проводимости по одной оси дает зависимость сопротивления от площади и толщины межфазного контакта:

(3) где t — толщина материала (м), A — его площадь (м 2 ), а k TIM — теплопроводность в Вт/м·К.

. Применив соотношение объемной проводимости к кремнию и алюминию, мы получим общее сопротивление системы:

(4)
Таблица 1. Типовые значения теплопроводности и сопротивления

  Тепловая
Электропроводность Вт/м·К
Толщина
мм
Сопротивление
К·см 2 /Вт
Кремний 139 0.5 0,04
Алюминий 230 3 0,13

Типичные значения для кремния и алюминия показаны в таблице 1. С этими базовыми значениями для алюминия и кремния чувствительность к толщине для репрезентативных ТИМ показана на рисунке 3. Очевидно, что на самом деле интерфейс представляет собой критическим звеном в тепловом тракте и может составлять значительную часть бюджета управления температурным режимом.В этой модели эластомерная прокладка толщиной 0,2 мм составляет 90 % от общего сопротивления системы (1,7 к·см 2 /Вт). Значительное улучшение достигается при толщине поверхности раздела смазки 0,1 мм, что составляет 56% от общего значения 0,4 к·см 2 /Вт. Очевидно, что более тонкие интерфейсы и более высокая проводимость улучшают ситуацию. Но также важно понимать, что контактное сопротивление на самом деле может быть более важным фактором, особенно для приложений с высокими требованиями к температуре. Повышение теплопроводности «сглаживает» характеристику общего сопротивления, но если это достигается за счет контактного сопротивления, никакого общего улучшения не происходит.Ясно, что как поставщики, так и пользователи ТИМ должны учитывать как объемную проводимость, так и контактное сопротивление, чтобы добиться успеха.

Рис. 3. Общее тепловое сопротивление твердых тел плюс структуры TIM.

Заключение

Пока электронные системы не являются монолитными (т. е. построены из различных комбинаций материалов, таких как металлы, полимеры, керамика, полупроводники), будет потребность в материалах для теплового интерфейса.По мере того, как электронные системы становятся быстрее, горячее, компактнее и портативнее, потребность в улучшенных ТИМ будет сохраняться. Победители будут решать проблемы термостойкости (возможно, адаптированные для конкретных интерфейсов), будут просты в использовании в производстве, будут ремонтопригодны при необходимости и будут иметь долгосрочную надежность.

Каталожные номера

1. Йованович М.М., Калхэм Дж.Р., Тирстра П. Расчет сопротивления интерфейса // ElectronicsCooling. 3, № 2, май 1997 г., с.24 – 29.
2. «Руководство по расчету тепловых характеристик процессора AMD Athlon™ 64», публикация 26633, версия 3.02, февраль 2003 г., www.amd.com.
3. Уэллс Р., Сандерс Дж., Пекорари Л. и Хунади Р., «GELEASE™ — высокоэффективная альтернатива термопастам и материалам с фазовым переходом», 1998 г., www.thermoset.com.
4. Бар-Коэн, А., «Компьютерная термоупаковка на рубеже тысячелетий», ElectronicsCooling, Vol. 6, № 1, январь 2000 г., стр. 32–40.
5. Чу С.П., Солбреккен Г.Л., Чанг Ю.D., «Тепловое моделирование материала интерфейса консистентной смазки в применении PPGA», Труды 13-й конференции IEEE SEMI-THERM, 1997, Vol. 1, стр. 57 – 63.

.

Добавить комментарий

Ваш адрес email не будет опубликован.