Утепление фасада деревянного: Утепление фасада деревянного дома – материалы из раздела Наши статьи

Содержание

Утепление фасада деревянного дома – материалы из раздела Наши статьи

Огромный выбор современных строительных материалов и технологий часто усложняет застройщикам подбор оптимального варианта для собственного строительства. Каждый производитель пытается эффективно продвигать на рынке свою продукцию, в рекламе, к сожалению, не всегда раскрывается вся правда о физических и эксплуатационных характеристиках материала. Иногда дается полуправда, а иногда можно увидеть и откровенный обман покупателя. Мы постараемся быть объективными, статья не защищает ничьи интересы. Мы лишь дадим правдивую информацию о способах и методах утепления фасадов деревянных домов, а окончательное решение пусть каждый примет самостоятельно.

Постоянное увеличение стоимости энергоносителей заставляет собственников деревянных домов заботиться об их утеплении – это прямая экономия существенных денежных средств в отопительный сезон. Кроме этого, во всех развитых странах уже давно действуют государственные стандарты по тепловой защите зданий, ни один проект строения не получит официального разрешения на строительство, если в нем не предусмотрена тепловая защита внешних стен согласно действующим нормам. И в нашей стране в последнее время приняты жесткие меры по теплотехническому планированию с учетом энергосбережения (ТСН НТП 99 и СНиП 23-02-2003). Каждый регион имеет свои показатели по минимальной толщине стен с учетом материала их возведения, способа дополнительного утепления и существующих климатических условий. Возьмем, к примеру, московский регион. Исходные данные – дом построен из соснового обрезного бруса, тепловодность материала в данных условиях составляет 0,18 Вт/м°С. Это значит, что минимальная толщина стен в таком доме без дополнительного утепления должна составлять 54 см, только такая толщина может обеспечивать все требования действующих стандартов по тепловой защите внешних стен.

Утепление деревянного дома снаружи

Реально построить деревянный дом с толщиной внешних стен в более чем полметра? Вопрос риторический, ответа не требует. Что касается кирпичных или бетонных зданий, то у них толщина стен должна достигать двух метров. Выход – использовать дополнительное утепление фасадных стен с применением современных материалов, обладающих низкими показателями теплопроводности. О том, как утеплять стены деревянных домов и какие именно утеплители использовать, мы и поговорим в этой статье.

Отделка фасада и утепление стен – какой вариант выбрать

Многие владельцы домов не видят большой разницы межу утеплением фасадных стен изнутри и снаружи, считают оба способа равноценными. Но это далеко не так, давайте подробно рассмотрим этот вопрос как с точки зрения строителя, так и сточки зрения владельца дома. Сразу заметим, что во многих случаях интересы строителей и потребителей не совпадают. Строителям нужно работы выполнять быстро и с минимальными усилиями – это напрямую влияет на прибыль. Владельцам дома нужна надежность, эффективность и минимальная цена выполнения работ по утеплению стен. Что следует иметь в виду при выборе способа утепления фасадных стен деревянного дома?

Ни одно из существующих сегодня финишных покрытий деревянных стен (лаки, краски и т. д.) не может служить более 10-15 лет. Спустя это время нужно делать косметический ремонт – дерево неизбежно потеряет свой внешний вид. Для реставрации и возвращения «внешнего облика» деревянного фасада понадобится только немного краски или лака, кисточка или краскопульт – и фасад полностью восстановит свои первоначальные характеристики. Но это еще не все. При минимальной стоимости выполнения лакокрасочных работ есть возможность полностью изменить дизайн стен: использовать другие цветовые решения, создавать на фасадных стенах различные геометрические узоры и т. д. И последнее. Наука не стоит на месте, есть большая надежда, что через 10-15 лет появятся такие новые краски и лаки, срок эксплуатации которых будет исчисляться десятками лет. Первый же ремонт с большой долей вероятности станет последним. Применение пластиковых панелей, винилового сайдинга или фиброцементных панелей нельзя считать оптимальным выходом по несколькими причинам. Пластиковые элементы под воздействием жесткого ультрафиолетового излучения теряют пластичность, в них появляются микротрещины, нарушается прочность молекулярных связей, что значительно понижает показатели физической прочности, при малейших динамических или физических нагрузках панель разрушается. По цене, конечно, этот материал дешевле всех остальных, но никому не хочется жить в доме с «дырявой обшивкой». Ремонтировать пластиковые панели нельзя, придется полностью менять внешнюю обшивку. Недостаток фибропанелей – большая цена и большой вес. Общий вес обшивки может достигать таких значений, что придется усиливать фундамент дома или еще во время проектирования предусматривать устройство дорогого армированного ленточного фундамента с увеличенными несущими способностями, что вызывает значительное увеличение сметной стоимости строительства. Кроме этого, фибропанели выгорают на солнце, а восстановление первоначальной цветовой гаммы невозможно.

Стоимость деревянных домов существенна, это значит, что каждый квадратный метр полезной площади дорого обходится владельцу жилья. В московском регионе минимальная толщина стен брусчатого дома должна составлять 150 мм, а для того, чтобы теплопроводность стен отвечала действующим требованиям, нужно их дополнительно утеплять слоем минеральной ваты толщиной не менее 10 сантиметров. Общее увеличение толщины стен составит: 10 см (минеральная вата) + 5 см (вентиляционный брусок) = 15 см. Это по всему периметру внешних стен. Допустим, размеры дома 8×10 метров, общая площадь внутренних помещений составит 80 м2. За счет монтажа утеплителя внутри дома размер каждой стены уменьшится на 30 см (с каждой стороны по 15 см), общая внутренняя площадь строения составит 74,69 м2. (7,7×9,7 м). Уменьшение внутренней площади дома более пяти квадратных метров, а это одна полноценная комната! Так стоит ли за свои же деньги уменьшать жилую площадь? Мы подсчитали только уменьшение площади, а если просчитать уменьшение объема (данные умножить на высоту комнат)? Объем помещения – также очень важная характеристика, оказывающая непосредственное влияние на комфортность проживания.

Какой использовать утеплитель

Надеемся, что со способом утепления вы уже определились, теперь следует остановиться на выборе утеплителя. Чаще всего применяется минеральная вата и пенопласт, именно эти два утеплителя возьмем для сравнения.

Рулонная и прессованная минеральная вата

  • Теплопроводность. По этому показателю большой разницы нет, оба материала имеют низкий коэффициент теплопроводности.
  • Технологичность. И здесь оба материала почти равны, работать с ними несложно. Есть нюанс – с минеральной ватой, как и со всеми пиломатериалами, следует работать только в сухую погоду. Еще один момент – минеральная вата может в больших пределах деформироваться без потери целостности, пенопласт не имеет такой возможности. Эта характеристика играет важную роль во время усадки деревянного дома.
  • Эксплуатационные характеристики. Пенопласт (более правильно пенополистирол) не пропускает влагу, деревянные стены перестают «дышать», в разы возрастают риски появления грибков и гнили в деревянных конструкциях. Теряются все преимущества деревянного дома – показатели микроклимата в помещениях существенно ухудшаются. Минеральная вата не становится препятствием для свободного воздухообмена.
  • Экологичность. Абсолютно все полистиролы выделяют в воздух вредные химические соединения, относительная безопасность регламентируется только количеством этих выделений. Устанавливают «безопасные» нормы испарений химических соединений санитарные службы, нормы эти в каждой стране разные. Почему разные? Ответ простой. Санитарные службы, к сожалению, во время определения критерия безопасности товаров руководствуются не столько заботой о здоровье потребителей, сколько пытаются «упростить жизнь» производителям и увеличить их прибыльность. В отличие от пенопласта минеральная вата – не полимер, изготавливается из базальта, а это полностью безвредный природный минерал.
  • Пожаробезопасность. Пенопласты горят, некоторые раньше, некоторые позже, но они не могут длительное время сопротивляться открытому огню. Во время горения выделяются токсичные вещества, которые чаще всего становятся причиной удушья. Минеральная вата способна более трех часов сопротивляться открытому огню, температура плавления превышает 1000°С. В связи с такими показателями ее часто используют для сооружения различных огнезащитных препятствий.
  • Цена. Стоимость минеральной ваты несколько больше, чем стоимость пенополистирола. Но нужно помнить, что дешевая продукция может намного дороже обойтись в конечном итоге.

Как правильно рассчитывать толщину минеральной ваты

Расчет тепловой защиты регламентирован СНиПом 23-02-2003, конкретные значения зависят от климатической зоны расположения строения. В основу берется теплопроводность материалов и требования по тепловой защите. Во время расчетов принимаются во внимание показатели теплопроводности и коэффициент сопротивления теплопередачи.

Табл. 1. Коэффициенты теплопередачи, уставленные стандартом для различных регионов

РегионКоэффициент теплопередачи R, м2×°С/Вт
Московский3,28
Краснодарский2,44
Сочинский1,79
Красноярский4,84
Волгоградский2,91
Новосибирский3,93
Воронежский3,12

Коэффициент теплопередачи R=d/K, где K – коэффициент теплопроводности материала, d – толщина материала. Коэффициенты теплопроводности зависят от влажности и породы дерева, в Московском регионе для хвойных пород древесины он составляет 0,18 Вт/м°С, теплопроводность минеральной ваты в пределах 0,05÷0,06 Вт/м°С. Имея эти исходные данные легко рассчитать рекомендованную толщину минеральной ваты в зависимости от толщины бруса. Возьмем, к примеру, Московский регион, примем, что толщина бруса дома составляет 150 мм, СНиП требует, чтобы коэффициент теплопередачи равнялся 3,28 м2×°С/Вт. Как выполнить расчет толщины слоя минеральной ваты?

  • Подсчитываем коэффициент теплопередачи бруса: 0,15 (толщина в м)/0,18 (коэф. теплопроводности)=0,83.
  • Вычисляем, какая толщина должна быть у минеральной ваты. Для того чтобы иметь рекомендованный показатель по теплосопротивлению в 3,28 м2×°С/Вт, нужно набрать за счет утеплителя еще 3,28-0,83 (коэф. теплопередачи сены из бруса)=2,45. Толщина минеральной ваты определяется по формуле d (толщина минеральной ваты) = R (недостающий коэф. теплопередачи)× K (теплопроводность минеральной ваты), в нашем примере d = 0,05×2,45=0,1225 м, приблизительно 12 сантиметров. Вот и все, теперь вы можете выбирать свою климатическую зону проживания, материал и толщину фасадных стен и самостоятельно рассчитывать минимальную толщину минеральной ваты.

Схемы монтажа направляющих для утеплителя из минеральной ваты

Главное отличие деревянных домов от всех остальных – они дают усадку. В связи с этим настоятельно рекомендуется не приступать к работам по отделке ранее, чем через год после возведения сруба. Усадка может в некоторых случаях превышать 10 сантиметров, а это не только усложняет процесс внешнего утепления, но и понижает его качество. Для того чтобы минимизировать последствия усадки, нужно использовать плавающий способ крепления направляющих, они должны обеспечивать свободную усадку сруба без деформирования несущих элементов внешней обшивки. Сегодня реализуются специальные металлические кронштейны, которые неподвижно фиксируются к стене, а сами рейки (металлические или деревянные) имеют возможность скользить вдоль стены по кронштейнам.

Минеральная вата производится прессованной или рулонной, сам принцип фиксации различных видов к стене ничем не отличается. Используются специальные метизы с широкими головками, с их помощью крепится слой изоляции. Утеплитель может располагаться в вертикальном или горизонтальном положении, конкретный выбор пространственного положения зависит от архитектурных особенностей здания. Важно – нарушение технологии может становиться причиной появления мостов холода. Что это такое?

Вертикальное расположение реек

Схема утепления на деревянном каркасе

Как не допускать мостиков холода

Наглядный пример мостика холода – металлические гвозди в деревянной обрезной доске. Зимой именно на шляпках гвоздей появляется роса или иней, гвозди являются мостиками холода в досках. Почему? Они намного лучше проводят тепло, соответственно, быстрее нагреваются или, в нашем случае, охлаждаются. Мостики холода появляются тогда, когда в строительных элементах используются материалы с различным коэффициентом теплопроводности. Это первая причина. Вторая причина – нарушение технологии строительства. Это может быть и неравномерно уложенная теплоизоляция, и использование минеральной ваты с повышенной удельной влажностью и т. д. Все мостики холода увеличивают тепловые потери и считаются явным браком строительства. Конечно, за исключением тех случаев, когда сама строительная конструкция предполагает использование материалов с различными физическими характеристиками.

В брусчатых домах мостики холода наиболее часто возникают между венцами из-за неправильной технологии укладки утеплителя. Потери тепла в этих местах могут полностью компенсироваться конопаткой межвенцового утеплителя и качественным внешним утеплением фасадных стен, что в совокупности позволяет достичь существенной экономии на платежах, связанных с отоплением дома в зимний период, в некоторых случаях экономия может достигать 20% и более.

Крепежный элемент для подвижных или скользящих соединений

Крепеж для утеплителя

Особенности монтажа диффузионной мембраны

Минеральная вата имеет отличные показатели по сохранению тепла, но даже незначительное повышение ее относительной влажности существенно понижает эти характеристики. Кроме того, после повышения влажности вата очень долго ее сохраняет, что крайне негативно сказывается на долговечности всех деревянных элементов, располагающихся поблизости. Это значит, что вопросам защиты минеральной ваты от попадания влаги нужно уделять большое внимание. В настоящее время выпускается отличный материал – супердиффузионная мембрана. Этот материал без проблем пропускает пары влаги и полностью задерживает конденсат, влажность минеральной ваты имеет стабильные значения.

Супердиффузионная мембрана дает возможность «дышать» внутренним помещениям деревянного строения и поддерживать показатели относительной влажности минеральной ваты в рекомендованных производителем параметрах. Мембрана укладывается на утеплитель с внешней стороны и защищает конструкцию стен от вредных внешних факторов. Для отвода большого количества конденсата используются капельники, нижний конец мембраны должен ложиться на капельники.

Конденсат на минеральной вате

Вентиляция обшивки

Для обеспечения оптимального функционирования естественной вентиляции между внешней обшивкой и утеплительным пирогом должно быть расстояние не менее пяти сантиметров, деревянные бруски или металлические элементы, к которым крепится финишная отделка, должны обеспечивать беспрепятственное движение воздуха. Отсутствие вентиляции приводит к сокращению сроков эксплуатации не только внешнего утепления, но и всего дома. В качестве внешней финишной обшивки может использоваться имитация бруса, блок-хаус.

Монтаж финишной облицовки выполняется снизу вверх по периметру дома в случае их горизонтальной укладки или от одного из углов строения в случае вертикальной укладки. Для фиксации используются саморезы или небольшие гвозди, соединения делаются в пазах, таким способом прячутся головки метизов. Во время обшивки главное правильно уложить первый ряд, а для этого следует несколько раз проверить правильность его разметки и только потом можно начинать выполнять работы. Нужно помнить, что ошибка в любом случае себя проявит, а исправить ее очень сложно. В некоторых случаях придется выполнять демонтаж уже установленных конструкций.

Финишная декоративная обшивка

Утепление стен фасада сруба — как сохратить тепло в деревяном доме

Утепление фасада деревянного дома

Содержание:

За последние несколько лет на рынке недвижимости отмечается небывалая востребованность домов из натуральных материалов. И это не удивляет никого, поскольку преимущества, которыми обладают деревянные дома из бруса, позволяют создать все условия для приятного проживания в доме. Но это вовсе не значит, что если дом построен из натуральной древесины, его не нужно утеплять. Деревянный дом как раз требует утепления стен, поскольку древесина не обеспечивает достаточного уровня теплозащиты.

Утеплив стены, хозяева не просто получат удовлетворительные условия в помещении. Деревянный дом, обработанный с помощью теплоизоляционных материалов, будет защищен от постоянных перепадов температур. Таким образом, срок эксплуатации дома будет увеличен.

В случае необходимости утепления дома, появляется масса вопросов, на которые мало кто может дать ответы. Актуальность данных вопросов стала мотивацией для создания данной статьи. В этом материале мы расскажем вам о том, как правильно производить теплоизолирование стен, какому материалу отдавать предпочтение, как правильно произвести пароизоляцию, а также расскажем, как нужно конструировать обрешетку для стен из бруса или бревна.


Содержание статьи:

 Особенности технологии утепления деревянного дома

Эксперты в области строительных технологий утверждают, что для каждого владельца деревянного дома вопрос о наружном утеплении стен должен быть приоритетным. Практика показывает, что утепление стен изнутри имеет свои недостатки, а именно:

  • уменьшается площадь внутри помещений;
  • между стеной и утеплителем всегда накапливается конденсат;
  • из-за неправильного расположения утеплителя стена оказывается в холодной атмосфере, вследствие чего со временем трескается и раскалывается.

Выполнять утепление стен нужно по особенной технологии. Все слои требуется располагать по принципу «изнутри-наружу». Первым слоем нужно располагать пароизоляцию, поскольку этот слой не будет пропускать поток влажного воздуха. После укладки первого слоя необходимо установить теплоизоляцию — она будет вторым слоем. Теплоизолирующий материал позволит сохранить теплый воздух внутри помещения. Затем устанавливается третий и последний слой — гидроизоляция. Она удерживает влагу и пропускает пар.

Утепление деревянного дома снаружи либо изнутри

Перед тем как приступить к процессу утепления, нужно определиться с типом установки — снаружи или внутри. Бревенчатные стены рекомендуется утеплять изнутри, поскольку снаружи стены не потеряют свой натуральный вид.

Утепляя срубы, основная стена, находящаяся непосредственно перед утеплителем, располагается в зоне низких температур. Эта зона будет немного захватывать и сам утеплитель, что провоцирует ухудшение его характеристик. Кроме того, утепляя брус изнутри, хозяин рискует нарушить естественную диффузию паров, из-за чего возникнут благоприятные условия для возникновения конденсата на границе утеплителя и стены.

Обратите внимание, что при выборе варианта внутреннего утепления, монтаж теплоизоляционных материалов невозможно будет выполнить в местах, где перекрытия примыкают к стенам. В данных зонах будут образоваться так называемые «мостики холода». В данных зонах тепло теряется настолько быстро, что коэффициент теплопотерь иногда может превышать показатели потерь тепла через весь периметр стены.

Утепление стен деревянного дома снаружи

Утепляя дом снаружи, вы получаете равномерное снижение температурных показателей по всей стене. Резкие падения температуры отмечаются ближе к наружным стенам, при этом зона отрицательных температур не касается конструктивных элементов дома, поскольку она находится в толще теплоизоляционного материала.

[ads1]На условия, создающие скопление влаги и на влажностной режим деревянных стен, благоприятно влияет грамотное расположение плотных материалов, которые не пропускают водяные пары изнутри конструкции. Пористые и легкие материалы рекомендуется устанавливать именно снаружи. Надежно защитив теплоизоляционные материалы от пагубного влияния атмосферных осадков, стена, которую утеплили снаружи, всегда будет сохранять высокие теплоизоляционные свойства.

Преимущества, как вы видите, предельно понятны. Но при всем этом, существуют и минусы. Наружное утепление дома из сруба — процесс далеко не самый простой. В данном случае эстетические требования к выполнению конструкции напрямую связаны с грамотным подбором материалов для внутренней отделки. В принципе, всегда есть возможность доверить утепление специалистам, знающим все особенности применения теплоизоляционных систем. Но благодаря нашей статье, необходимость в этом отпадает.

Типы утеплителей для деревянных домов

утепление фасада 3 способа

Брусовые стены (см. утепление дома из бруса)всегда можно утеплить с помощью наружной облицовки кирпичом, мелких блоков, керамических или бетонных камней, а между деревом и слоем облицовки проложить слой теплоизоляционного материала. В наружной стороне утеплителя всегда должен находиться предусмотренная заранее вентилируемая воздушная прослойка, главным назначением которой станет удаление излишков влаги из древесины.

Практика показывает, что чаще всего владельцы привыкли создавать наружную облицовку с помощью кладки из газобетонных блоков. Данные блоки имеют практически идентичную с газобетонными блоками теплопроводность, при этом показатели паропроницаемости намного выше, чем у стен из натурального дерева. Создание кладки из газобетонного блока толщиной 20 сантиметров позволяет увеличить сопротивление теплопередаче стен из натурального бруса (толщина которых обычно составляет 15 см) в два раза и более. Газобетон является идеальным вариантом, поскольку обеспечивает пожаробезопасность, морозостойкость и экологичность дома. При облицовке газоблоком отпадает необходимость в использовании пароизоляционного слоя и вентилируемых зазоров, которые создаются между деревом и газобетоном.

В случае с бревенчатыми стенами идеальным вариантом является использование минеральной ваты в качестве утеплителя. По своим качества она полностью отвечает самым распространенным требованиям — высокий коэффициент теплоизоляции, минимальный коэффициент теплопроводности и малая гигроскопичность. Минеральная вата не поддается влиянию высоких температур, не дает грибку/плесени/насекомым распространяться по своей структуре и выводит пары во внешнюю среду.

Кроме того, при создании минеральной ваты не используются токсические вещества.

Пароизоляция деревянных стен

Обычно процесс утепления стен из бревна и бруса начинается с подготовки пароизоляционного слоя. На протяжении первого года эксплуатации дома отмечается особо интенсивное изменение показателей влажности дома. Изменяя показатели влажности, дерево дает усадку, вследствие чего могут возникнуть трещины, деформации формы и размеров бревен. Данные процессы происходят в первые пять лет эксплуатации. В результате того, что влажность провоцирует изменение формы, герметичность пазов и стыков находится под большой опасностью. Особенно актуальным данный вопрос является для пиленого бруса и бревен ручной рубки.

Пирог утепление стен фасада брусового/ бревенчатого дома

Менее актуальным данный вопрос является для профилированного бруса и оцилиндрованного бревна, так как в результате механической обработки мест сопряжений гарантируется максимальная герметичность.

В качестве пароизоляционного материала можно использовать полиэтиленовую пленку, алюминиевую фольгу или рубероид.

Если в качестве основы для стен был использован клееный брус, дополнительное обустройство пароизоляции, в большинстве случаев, не требуется. В данном случае роль барьера для пара выполняет сам материал. В производственных условиях клееный брус высушивают для достижения минимальных показателей влажности. При производственной обработке также достигается минимальный коэффициент усадки, благодаря чему к утеплителю поступает ограниченное количество пара.

Варианты создания пароизоляции для деревянных стен

Если на утеплитель попадает избыточное количество пара, который поступает через дефектные участки герметизации, со временем утеплительный материал будет полностью разрушен. Обычно, отделкой стен с помощью обшивки выполняют после полной просушки древесной структуры. Но здесь есть одна проблема: после того, как древесина будет высушена, доступ к дефектным участкам стен будет проблематичным.

Эксперты разработали несколько методов решения данной проблемы.

Вариант первый. Никуда не торопиться и подождать с обшивкой и утеплением несколько лет. Обработать все стыки с помощью герметика для древесины (такой продается на любом строительном рынке), проконопатить пазы с наружной и внутренней стороны стены. Функции утеплителя должен выполнять материал с повышенной плотностью; обработанный с помощью гидрофобизированного способа обработки. Коэффициент плотности должен находиться в районе 80-150 кг/м3.

В данном случае мы получим стены с пониженным показателем теплосопротивления, так как масса пара, находящаяся в помещении, будет напрямую взаимодействовать с утеплителем. Но не забывайте, что в данном случае имеет место риск возникновения новых герметизационных дефектов. Никто не рискнет гарантировать вам долговечность подобной пароизоляции, но стены при этом будут дышать свободно, сохраняя экологичный микроклимат внутри помещения.

Пароизоляция деревянных стен и монтаж утеплителя

Вариант второй. Пароизоляция с внутренней стороны. В качестве пароизолятора разрешается использовать обычную полиэтиленовую пленку или пароизоляционную мембрану. Минимальная толщина, которая допускается для применения — не меньше 0.1 мм.

Использование данного варианта сводит к минимуму поступление пара в слой древесины и в утеплитель. Долговечность и теплосопротивление увеличивается в данном случае. Есть одно требование — пароизоляция стен, имеющих пароизоляционные покрытия цокольного или чердачного перекрытия, обязательно должны создавать единый контур сооружения. В данном случае есть существенный недостаток в виде нарушения микроклимата. Причина проста — создается оболочка из недышащих материалов.

Для того, чтобы пароизолировать стены, можно также использовать фольгированные теплоизоляционные материалы. Обычно данный материал крепится к внутренним поверхностям стен, при этом фольгированная сторона направляется на воздушный промежуток. В этом случае возрастает сопротивление теплоотдаче, но при одном условии — герметизируйте стыки материала с помощью клейкой ленты. Решение вопроса именно таким способом особенно хорошо пригодится, если внутренние стены обшиты плитными материалами, вмонтированными на каркасе.

Вариант третий. Разместите пароизоляционную мембрану между стеной и утеплителем. На этом месте рекомендуется оставлять небольшой зазор для вентиляции, соединенный продухами с воздушной средой. Длина вентиляционного зазора должна составлять приблизительно 5 см. Этого вполне будет достаточно. С помощью продухов будет обеспечена одинаковая температура в помещении и в зазорах. Для утепления необходимо применять экструдированный пенополистирол или пенопласт. Применяя данные материалы, для обеспечения высокой пожароустойчивости необходимо дополнительно возвести наружную кладку из кирпича.

[ads1]Необходимо всегда помнить о том, что пароизоляция не должна быть размещена прямо на поверхности наружной стены, поскольку данный тип установки провоцирует появление конденсата в дальнейшем. Таким образом, стена будет постоянно находится по влиянием влаги. Это поясняется большим уровнем термического сопротивления деревянной стены по сравнению с аналогичной каменной или кирпичной. А если в данном случае еще и учитывать большую паропроницаемость стены, такая схема распределения температуры и влажности приведет к снижению температуры до уровня появления росы с внутренней стороны.

В данном варианте не учитывается теплосопротивление деревянной стены дома. Соответственно, владельцу дома нужно увеличить толщину утеплителя, при этом конструктивный материал применяется такой же, как и во втором случае. Если вы имеете утеплитель, в составе которого имеются вспененные полимеры, создавать вентилируемые зазоры между облицовкой и слоем утеплителя не обязательно.

Недостатком данного способа обустройства системы пароизоляции является пониженная степень экологичности материалов, которые окружают паропроницаемую оболочку. Но главное преимущество заключается в том, что технология может быть применена для утепления новых деревянных домов и уже эксплуатируемых.

 Обрешетка для деревянных стен

Утеплить деревянные дома будет гораздо проще и быстрее, если в процессе создать специальную деревянную обрешетку. Эксперты могут предложить сразу несколько вариантов установки обрешетки, но выбирать один из них придется в зависимости от типа стен в доме и материала облицовки.

Монтаж обрешетки для утеплителя дома из бруса

Самый недорогой вариант обрешетки — это конструкция из деревянных, предварительно высушенных реек. Запомните: при создании данной конструкции нужно учитывать, что длина реек и высота стен должна быть строго одинаковой. Особенно тщательно нужно измерять высоту обрешетин для стен из бревна, ведь с ними обычно появляются трудности при определении вертикали.

В случае применения сайдинга удобнее всего будет сделать двухслойную обрешетку, при этом слои обрешетки обязательно должны располагаться в перпендикулярном положении. В процессе применения технологии утепления стен, первым делом начинают устанавливать брусья обрешетки, расположенные горизонтально. В этом варианте можно использовать высушенные доски или брусья толщиной минимум 30 мм, максимум — 50 мм. Ширина подбирается в зависимости от толщины слоя утеплителя.

Горизонтальную обрешетку необходимо монтировать из брусков. Их располагают на расстоянии от 60 до 80 сантиметров друг от друга, ориентируясь на ширину плиты утеплителя. Чтобы установить утеплительную плиту «враспор» (без зазоров), специалисты рекомендуют уменьшить расстояние брусков обрешетки минимум на 2 сантиметра. Упругость, которой обладают плиты, не будет препятствовать усадке деревянных стен, но при этом сам материал не будет сползать. Плотность утеплителя должна составлять 15-35 кг/м3. Рекомендованный тип укладки — в два слоя с соблюдением перекрытий швов.

Чтобы утеплитель не продувался воздушным потоком, на материал сверху накладывается паропроницаемая ветрозащитная пленка. Паропроницаемость пленки не даст влаге задерживаться на стенах и утеплителе, так как температурный режим не позволит этого сделать. Чтобы закрепить мембрану, на горизонтальной обрешетке, используются скобы.

Сечение досок, использующихся для вертикальной обрешетки, должно быть 25х80 мм или 30х40 мм, при этом сами доски прикрепляют на бруски горизонтальной обрешетки. Обрешетка крепится непосредственно к деревянной стене с помощью гвоздей или саморезов, но при фиксации необходимо соблюдать правильность угла закручивания самореза или забивания гвоздя. Правильный угол компенсирует усадку стен из бруса. Можно изготовить подвижное крепление. Делается оно следующим образом: в досках создают вертикальные прорези; в каждую из прорезей по центру вкручивают саморезы с шайбами. Существует еще один вариант — произвести монтаж вертикальной обрешетки с помощью специальных скоб, которые будет охватывать доску. Скоба являет собой перфорированную монтажную полосу из закаленной стали. Ее крепят с двух сторон вертикальной доски, используя саморезы. Чтобы избежать смещения, низ вертикальных досок жестко крепится с помощью нескольких саморезов к горизонтальному брусу снизу.

Каждый шаг вертикального бруска подбирают в соответствии с необходимым шагом для крепления облицовки. Шаг для обустройства наружного типа облицовки с помощью винилового сайдинга, должен быть примерно 40 сантиметров. Ширина вентилируемого зазора будет идентична толщине досок вертикальной обрешетки.

Стены из бревна лучше всего обеспечивать именно трехслойной обрешеткой. Такой вариант обрешетки монтируется сначала из вертикальных брусков, постепенно выравнивая в оной плоскости с помощью подкладок из дерева. В некоторых бревнах из стены создают небольшие пазы, а чтобы компенсировать усадку стен, используют подвижное крепление, способ изготовления которого мы рассматривали выше. Утеплитель для стен из бревен нужно прижать с помощью деревянных планок, чтобы обеспечить максимально плотное прилегание к стене. После этого монтаж производят брусьями, расположенными в перпендикулярном направлении.

Такое расположение позволяет правильно и без дополнительных усилий подобрать шаг для монтажа утеплителя и облицовочного материала. Деревянная обрешетка обязательно должна быть обработана с помощью специального антисептического средства, которое не даст дереву прогнивать, а также защитит от вредного влияния грибка, плесени и насекомых.

 Комментарии специалистов об утепление фасада деревянного дома

 1. «Сейчас я говорю только о домах ручной рубки, то есть, построенных именно по этой технологии. Согласно данной технологии, в основе стенового материала применяется кондовая (рудовая) сосна, которую обычно можно встретить на возвышенных местах с песчаной основой. Возраст сосны должен составлять минимум 80 лет, максимум — 120. Диаметр ствола — от 22 до 35 сантиметров. Мяндовая сосна (растущая на влажной почве) и ель используют не так часто, как можно подумать изначально. Их свойства являлись оптимальными разве что для дома эконом-класса. Бревенчатые стены в прошлом веке не обшивали, так как стоимость досок была относительно велика, а на создание обшивки требовалось очень много материала. Состоятельные люди предпочитали штукатурить дом снаружи, делая их «каменными». Но это делалось не для утепления фасада, а ради демонстрации статуса хозяина, который проживал в таком доме. Тогда это было модным явлением.

Огромное внимание уделяли тому, каким именно способом рубили угол сруба. Тогда считалось, что дом промерзал именно по углам, а не по периметру стены. Тепло в углах держалось за счет слоя утепляющего материала (см. межвенцовый утеплитель из джута)  и за счет специально созданного «теплового замка».

Как было отмечено выше, в качестве строительного материала использовалась древесина возрастом минимум 80 и максимум 120 лет. Если древесине меньше 80 лет, недостаточная ее готовность разрушит дом уже через несколько лет после возведения. Если древесине больше, чем 120 лет, сердцевинная часть ствола начнет разрушаться. Большинство экземпляров с таким возрастом имеет диаметр ствола от 32 до 40 см, а согласно стандарту СНиП 23-02-2003 «Тепловая защита зданий», устанавливающему жесткие требования к энергосбережению, диаметр бревен для создания стен должен иметь диаметр не менее 50 см. Под данные требования вписывается разве что перезрелый лес, но его применение в строительстве домов не является возможным.»

2. «Мы уверены в отсутствии необходимости утепления фасадов коттеджей из клееного бруса, поскольку данный материал за счет специфических свойств достаточно хорошо удерживает тепло. А если учитывать плотность прилегания венцов и точность соединений, надежная теплозащита обеспечивается сама по себе.

Какому сечению клееного бруса необходимо отдавать предпочтение? Основываясь на проведенных нами теплотехнических расчетах, специалисты  уверены, что идеальным сечением является 175*186 мм и 175*206 мм. Для климатического пояса России этого вполне достаточно.

При сравнении профилированного бруса и клееного, первый отличается более низким коэффициентом плотности и высоким уровнем теплопроводности. Без специальной обшивки фасада с применением утеплителя обогреть дом, построенный из профилированного бруса, зимой очень проблематично.

Здания, построенные из клееного бруса, как раз предназначаются для круглогодичного проживания. Проживая в таком доме, прохлада летом и тепло зимой обеспечивается стабильно.

Единственный нюанс, который обязательно нужно учитывать, — площадь остекления дома. Обычно используются витражные панорамные окна, создаются зимние сады и так далее. Если данная площадь является сравнительно небольшой, ничем серьезным для владельца дома это не обернется. Если же используется большая площадь, отведенная под окна, возможно, у вас увеличатся расходы на отопление дома частного дома. Поскольку максимальный уровень теплопотерь приходится именно на дверные и оконные проемы, архитекторам необходимо учитывать этот фактор при строительстве деревянных домов».

3. «Дома из оцилиндрованного бревна и бруса рекомендуется утеплять лишь в том случае, если стены имеют толщину меньше 25 см. Утепление стен рекомендуется выполнять только с наружной стороны стен. Для этого используется целый комплекс утеплительных материалов. Мы же рекомендуем использовать минеральную вату. Количество слоев минеральной ваты, необходимой для утепления, зависит от толщины стены. Если стена имеет толщину 200-250мм, потребуется 50 мм утеплителя, то есть, один слой. Если толщина стены составляет 150-200 мм, используется два слоя утеплителя общей толщиной 100 мм. «Пирог» обшивки создается следующим образом. На наружной стене создается деревянный каркас, в основе которого используются необрезные доски шириной от 50 до 100 мм. Шаг каждой доски — 60 см (стандартная ширина утеплителя). На каркасе устанавливается паронепроницаемая мембрана (Изоспан-В, например), после мембраны — слой теплоизоляционного материала. Все это закрывается ветрогидрозащитной пленкой (Изоспан-АМ). Предпоследний этап — прибивание контррейки, толщина которой должна быть минимум 25-50мм. Она создаст вентиляционный зазор. Уже к контррейкам пришивается облицовка (сайдинг, вагонка, имитация бруса и так далее).

Утеплять стены из внутренней стороны дома не рекомендуется, так как влага будет накапливаться в утеплителе, после чего слой теплоизоляционного материала намокнет и значительно ухудшит свойства.

Если утеплить деревянный дом общей площадью до 200 м2, для его обогрева будет достаточно от 5 до 10 кВт электричества».

4. «Дома из оцилиндрованного, клееного или профилированного бруса обязательно должны утепляться. Единственная преграда, которая не дает владельцам домов достаточно мотивации — эстетика. Как правило, указанные выше материалы выбирают эстеты — истинные ценители красоты дерева, для которых скрыть дерево за обшивкой равносильно смерти. Те, кто все-таки решился построить дом из бруса, обязательно должен принимать во внимание большие расходы на отопление. Если речь идет об эстетике, приходится жертвовать отоплением. Здесь нельзя ничего поделать. Разве что постараться подобрать оптимальную толщину стен. Например, для стены из оцилиндрованного бруса оптимальным показателем толщины является 240-280 мм.

Дом из непрофилированного бруса сечением 200х200 мм или 150х150 мм придется в любом случае утеплять. При выборе теплоизоляционного материала стоит отдать предпочтение каменной (минеральной) вате. Существует еще один вариант — пенополистирол, но он не подойдет — данный материал не обладает свойством «дышать». Для обшивки  используется сайдинг, вагонка, блок-хаус, имитация бруса, цементно-стружечная плита (если планируется облицовка фасада декоративным камнем или его оштукатуривание). В процессе утепления, внешняя поверхность получает бруски с уровнем сечения 50х50 мм. В пазы между брусками устанавливают блоки утеплителя , а сверху развертывают слой гидроветрозащитной пленки. Все это фиксируется с помощью брусков сечением 25х50 мм. Что касается использования пароизоляционной мембраны, существуют разные мнения по этому поводу. Мы предпочитаем не использовать ее в данном случае, поскольку пар проходит через утеплитель и гидроветрозащитную мембрану. Точка росы располагается именно на пленке, поэтому использовать паробарьер нет никакой необходимости».

5. «Существуют специальные стандарты СНиП 23-02-2003, благодаря которым регламентируется сопротивление передаче тепла через стены здания. Как показывает практика, в большинстве случаев данные требования полностью игнорируются. А если дом из бруса или бревна не соответствует указанным в стандарте требованиям, его обязательно нужно утеплять.

Проблема заключается далеко не в неизбежных теплопотерях. Отопить дом из клееного бруса или бревна можно, сейчас это не является бедой. Но при таком подходе, внутренние стены будут постоянно увлажняться, из-за чего выпадет конденсат. Именно конденсат является главной причиной возникновения грибка и плесени. Их наличие не просто губит эстетику и древесину, но и отрицательно влияет на общее состояние организма проживающих в доме людей. Почему так происходит? Температура стен в доме гораздо ниже температуры воздуха в комнатах (стандарты СНиП 23-02-2003 требуют перепада температур максимум на 4 градуса). Именно это и вызывает возникновение конденсата. Образование влаги на стене далеко не всегда можно обнаружить, поскольку он далеко не всегда может появляться на поверхности стены. В 35% случаев конденсат образуется именно во внутренних слоях древесины, где материал прогрет недостаточно хорошо. В этом случае никакие биовлагозащитные составы не помогут добиться положительного результата.

Здание можно теплоизолировать разными способами, но идеальным способом в данном случае является утепление фасада снаружи. Для этого используется минеральная вата, разработанная на основе стеклянного или каменного волокна. С помощью теплотехнических расчетов определяют необходимую толщину материала, но в большинстве случаев устанавливается два слоя общей толщиной 100 мм.

Следующей задачей является сохранение изначально определенных параметров утеплителя и полная его защита от пагубного влияния осадков и ветра. Для решения данной проблемы утеплитель закрывают одним слоем ветрогидроизоляционной мембраны, которая не дает влаге выветриться. Паропроницаемая мембрана, установленная там же, позволяет стене «дышать».

Таким образом, достигается оптимальный коэффициент сопротивления теплопередаче стен и обеспечивается не просто комфорт жильцов, но и финансовая выгода в виде уменьшенных затрат на отопление. Наша фирма исследовала показатели эффективности применения ветро- и гидрозащитных мембран. Оказывается, что наличие утепления позволяет сохранить 40% тепла в помещении.

Еще один важный момент. Даже если стены «дышат», все равно нужно установить систему вентиляции».

6. «Отделка сайдинга расценивается как завершающий этап процесса утепления дома. Чаще всего используется виниловый сайдинг, поэтому его можно увидеть на облицовке коттеджей, в том числе из натуральной древесины. На обшивку деревянного дома решается далеко не каждый обитатель, а спустя некоторое время. Иногда владельцы решаются на такой поступок не ради того, чтобы сделать дом теплее, а чтобы избавиться от постоянных проблем, связанных с необходимостью в поддержании хорошего внешнего вида. Практика показывает, что потребители предпочитают останавливать выбор на продукции зарубежных фирм. Ее преимущества заключаются в повышенной цветостойкости, разнообразии фактур и легкости монтажа.

Важно подбирать сайдинг так, чтобы он отлично сочетался с водостоками, кровлей, отделкой цоколей и так далее. Большой востребованностью характеризуется материал пастельных оттенков.

При покупке сайдинга помните о том, что главным его компонентом является поливинилхлорид — материал, который имеет солидный коэффициент расширения под влиянием температуры. При неправильном монтаже материал будет коробиться. В этом случае закройте глаза на обещания производителей прослужить более, чем 50 лет — при неправильной установке срок службы сокращается минимум втрое.

Первая и главная ошибка — неправильный выбор обрешетки. Для сайдинга ее шаг должен составлять минимум 30-40 см. Некоторые «специалисты» стараются убить двух зайцев сразу — сделать теплоизоляционную обрешетку, засунуть туда как можно больше утеплителя и использовать аналогичную обрешетку для сайдинга. О вентиляционных зазорах речь не идет. В такой ситуации сайдинг начнет деформироваться под влиянием жаркой погоды и будет постоянно вспучиваться.

Вторая ошибка заключается в фиксации обшивки «намертво» к обрешетке или несоблюдении зазоров между внутренней стенкой углов/соединительных реек и торцами панелей сайдинга. При фиксировании «намертво», сайдинг не сможет двигаться, вследствие чего материал коробится и выпучивается. Чтобы предотвратить данную проблему, нужно оставить небольшой люфт, который не даст обшивке деформироваться, а позволит свободно двигаться при расширении.

Как ухаживать за сайдингом? Данный материал можно спокойно мыть водой, не боясь при этом, что влага попадет во внутреннюю часть облицовки. Как показывает практика, мыть сайдинг выгодно далеко не всегда — останутся разводы и пятна. Правда, лишь в том случае, если вы не используете моющие средства. Отмыть сайдинг от следов органических веществ достаточно сложно.

Что касается цветового разнообразия, на рынке вы сможете найти большое количество оттенков. Практически все панели сохраняют свой оттенок долго, но южная часть дома все равно будет светлее. Поэтому рекомендуется использовать материалы темных оттенков. Разница в данном случае будет почти незаметной».

Подведем итоги.

Согласно статистическим данным, при постройке домов из древесины, полностью игнорируются положения стандарта СНиП 23-02-2003 о тепловой защите домов. Поэтому вне зависимости от того, какой вид материала был применен при строительстве деревянного дома (брус, бревно), его все равно нужно теплоизолировать. Некоторые владельцы домов считают, что проконопаченный рубленный дом не нуждается в дополнительной теплоизоляции. Настоящие эстеты с такой же уверенностью утверждают, что деревянные дома не надо обрабатывать теплоизоляционными материалами. В принципе, обойтись можно, уменьшив срок эксплуатации дома и потратив больше денег на отопление.

Что касается материалов, необходимых для обеспечения теплоизоляции деревянных построек, традиционно применяется стекловата или вата на каменной основе. Применение полистирола не рекомендуется, поскольку стены перестают «дышать», вызывая тем самым гниение древесного волокна. Специалисты также не забывают напомнить о необходимости использования гидроветрозащитной паропроницаемой мембраны и предупреждают о важности соблюдения правильности процесса утепления.

В качестве обшивки можно использовать сайдинг, цементно-стружечную плиту или вагонку. Для ценителей красоты рекомендуется использовать имитацию бруса или блок-хаус.

Утепление деревянного дома снаружи фото

В том, что деревянные дома несут большую теплопотерю виновата сама конструкция и толщина домовых стен. Опыт показывает, что постройка брусового особняка несет в себе не только расчет толщины стен постройки, но и другие параметры. Чаще всего особняки строят, применяя балки, сечение которых составляет 15х15 или 20х20 сантиметров. Такая толщина бруса может применяться в более южных странах, но у нас ее нужно обогащать дополнительным утеплением. Вы можете увидеть, как сделано утепление деревянного дома снаружи. Фото здесь:

Это приводит к тому, что наблюдаются противоречия – вместе с недорогой постройкой можно наблюдать серьезное газовое обеспечение или колоссальные траты на электроэнергию.

Правда, если говорить о том, что наши люди привыкли делать все своими руками, профессионально и точно, теплопотери могут быть минимизированы за счет того, что будет применен утеплитель для деревянного дома снаружи.

Вся работа, связанная с наружным утеплением особняка делится на несколько этапов:

  1. Подборка утеплителей.
  2. Количество необходимых материалов.
  3. Монтаж теплоизоляционного слоя.
  4. Завершение внешней фасадной отделки.

Подборка утепляющих материалов

Строительный рынок может предложить несколько теплоизоляций, предпринимаемых в наружных работах – листовые пенопласты (пенополистиролы) и минеральную вату. Если касаться опыта, использование полистирола является ошибочным, поскольку утеплитель для деревянного дома снаружи должен быть эффективным:

  1. Теплопроводность пенополистирола составляет 0,082 Вт/м.кв. Если же говорить о минеральной вате, ее теплопроводность намного меньше и равна всего лишь 0,036 Вт/м.кв. Следовательно, утепление минеральной ватой (при том же слое) практически в два раза эффективнее утепления пенополистиролом. Естественно, это компенсируется большей толщиной (вы можете приобрести слой пенополистирола, толщина которого составляет от одного до десяти миллиметров). Правда, стоит сказать, что, в отличие от кирпичных или ракушечных домов, утеплять фасад деревянного дома полистиролом не рекомендуется.
  2. Утепление и отделка деревянного дома предусматривает также пожаробезопасность, которая обеспечивается именно минеральной ватой.
  3. Кроме того, что присутствует коэффициент теплопроводимости, необходимо еще написать и о том, что использованием минеральной ваты обеспечивается нормальный воздухообмен между помещением и внешней средой. Благодаря пористой структуре минеральной ваты помещение получает нормальную вентиляцию и доступ свежего воздуха, в отличие от пенопласта, который практически блокирует его.
  4. При выборе пенополистирольной защитной обшивки деревянного дома знайте, что такая обшивка приведет к тому, что внешняя поверхность стен может быть покрыта плесневым грибком, поэтому лучше остановиться на выборе минеральной ваты. Если же у вас каменный фундамент, его лучше утеплять именно пенополистиролом.

Рассчитываем толщину слоя

Последовательность утепления деревянного дома начинается с выбора плит минеральной ваты. Минеральноватные плиты в продаже чаще всего встречаются в виде матов – это более удобно. Рулонными матами лучше утеплять полы и потолки, а также неровности стен.

При температурных показателях зимой не ниже 20 градусов, хватит и одного 5-ти сантиметрового слоя. Утепление деревянного дома снаружи (фото можно посмотреть на строительных сайтах) предусматривает выбор количества слоев утеплителя в зависимости от температурного режима.

При более низких температурных показателях желательно организовать второй слой теплоизоляции.

Кроме использования минеральной ваты необходимо запастись деревянным брусом (рейкой), сечение (1 ватным слоем – 5х5 сантиметров или двумя ватными слоями брус выбирают сечением 5х10 сантиметров).

Кроме того необходимо приобретение обрешеточных реек, гидроизоляционной пленки, анкеров, саморезов и противогрибковой эмульсии. Не забудьте о том, что стыки перекрытия пленки должны укладываться вперехлест 10-10 сантиметров. Также необходимо использование строительного степлера, отвеса или уровня.

Правила утепления деревянного дома предусматривают:

  1. Сначала подготавливаем поверхность.
  2. Укладываем гидроизоляцию.
  3. Устанавливаем утеплитель.
  4. Укладываем следующий гидроизоляционный слой.

Сначала, для того чтобы сделать утепление деревянного дома под штукатурку необходимо подготовить поверхность при помощи антигрибкового средства, вещества, противостоящего короедам и различным насекомым.

После высыхания средств можно смонтировать специальную гидроизоляционную мембрану (глянцевая сторона – внешняя и пропускает влажность).

Пленку крепят строительным степлером (расстояние между скобами от десяти до пятнадцати сантиметров), а также изолируют стыки при помощи специального строительного скотча.

Порядок утепления дома деревянного далее состоит в укладке минеральной плиты (ее размеры можно подкорректировать при помощи острого строительного ножа). Надежное укрепление на стене могут гарантировать анкера (независимо от того, сделаны они из пластика или металла). Утепление деревянного дома снаружи (фото можно посмотреть на строительных сайтах) далее предусматривает установку их на расстоянии полуметра друг от друга.

После того, как теплоизоляционный слой уложен, укладывают еще один слой теплоизоляции, далее саморезами монтируется еще одна рейка с сечением 4х5 сантиметров, служащая основой финальной отделки фасада.

Лучше всего для отделки использовать вагонку, фасадную доску или планкен. Также возможно использование сайдинга и других отделок.


Утепление и отделка фасадов частных деревянных домов снаружи: видео

При строительстве загородного дома нужно оградить стены от холода. Для этого существует большой выбор материалов. Утепление фасадов частных домов в регионах, где сильно холодно, выполняют одними материалами, другие будут пригодны в районах с постоянными осадками. Выбирать утеплитель придётся в зависимости от условий.

Процесс утепления фасада дома пенопластом Вернуться к оглавлению

Содержание материала

Зачем утеплять дом снаружи

Выполняя работы, достигают решения следующих задач:

  • защищают стены от влияний изменения климата;
  • декорируют фасад;
  • исключают утечку тепла из дома;
  • увеличивают сопротивляемость к перепадам температур;
  • закрывают мостики холода, щели.


Правильно выполненная теплоизоляция частного дома, позволит поддерживать постоянную температуру в помещении, что сократит расходы на отопление.

Вернуться к оглавлению

Распространённые виды утепления

Для утепления фасада частного дома можно брать один вид материала, или применять комбинированную теплоизоляцию. Например, когда теплоизоляционные плиты покрывают сверху штукатуркой, которая будет защищать их от внешнего влияния.

Клеевой способ укладки утеплителя на стены дома

Для скрепления материала применяют армирующую сетку.

Материалы для утепления

В качестве утеплителей применяют:

  1. Минеральная вата. Подходит для утепления наружных стен, особенно для отделки фасадов деревянных домов. Продаётся в виде плиток или матов. Плотность материала составляет около 80 кг/м3, он имеет толщину 50 и 100 мм, размеры – 50 на 100 см и 60 на 120 см. Такие параметры выдерживают перепады температур от + 35 и до – 30˚ С, материал негорюч.

    Утепление здания плитами минеральной ваты

  2. Стекловата – в её составе известняк, доломит, песок, другие наполнители. Переносит механические нагрузки, спасает от непогоды. Недостаток — тяжёлая укладка, руки и лицо нужно закрывать. Есть вид, который содержит дополнительный слой фольги или ткани, чтобы частицы не отделялись от основы. Цена материала сравнительно невысока.
  3. Базальтовая вата изготовлена из частиц базальтовых горных пород, которые соединяются между собой. Пористый утеплитель выносит температуру до +1000˚С, значит, он пожароустойчив. Ячеистая структура поглощает посторонние шумы, а гидрофобные составляющие помогают не впитывать влагу. Однако, базальтовая вата содержит фенол, он вреден.
  4. Шлаковата получается в результате переработки отходов производства металлургии, состоит из пор. Обладает высоким коэффициентом теплоизоляции. Из недостатков — быстро намокает, поэтому не подходит для утепления фасада деревянного дома. Её лучше применять для теплоизоляции панельных стен.
  5. Пенопласт широко применяют для утепления фасадов деревянных домов. Один из быстрых способов теплоизоляции, применим к разным видам стен. В этом лёгком материале не заводятся микроорганизмы, он не деформируется. Но легко воспламеняется и выделяет вредные вещества. Есть пенопласт, пропитанный спецсоставом, лучше работать с ним. Ещё есть риск, что в пенопласте заведутся грызуны, но при правильной укладке это исключено. Покупая пенопласт в качестве материала для утепления фасадов частных домов, выбирайте плиты высокой плотности, толщиной до 5 см. Они бывают трёх размеров: 50 х 100 см, 100 х 100 см и 200 х 100 см.

    Монтаж листов пенопласта на фасад дома

  6. Эковата. В её состав входят бумажные отходы, борная кислота, тетраборат натрия. Эковату применяют в помещениях с повышенной влажностью. Она хорошо поглощает влагу, которую, при хорошем проветривании, отдаёт в атмосферу. Недостатки — постепенное снижение уровня теплопроводности, уменьшение в объёме. Этого можно избежать, закладывая утеплитель с запасом.

Монтируют эковату спецобородуванием – надувным пневматическим прибором. В этом случае понадобятся услуги по утеплению фасадов частных домов, которые предоставят специалисты, обладающие опытом работы с эковатой. Ведь монтаж её зависит от состояния атмосферы в местности. При сухом способе может образоваться пыль, при влажном материал будет долго сохнуть.

Способ укладки теплоизоляционного материала — эковаты

Последний метод более надежный: эковата равномерно распределяется и уплотняется, уровень звуко- и теплоизоляции здания повышается.
Не рекомендуется применять эковату возле непосредственной близости к огню, иначе будет происходить её тление.

Плюсы эковаты:

  • в её составе не содержатся вредные вещества;
  • обладает повышенной звукоизоляцией;
  • небольшой расход материала.

Еще для отделки и утепления фасадов применяют пенополистирол или другое его название – пеноплекс. Материал изготавливают из пенопласта. Он обладает низким поглощением влаги, ровной поверхностью, прочностью, однако имеет малую адгезию. Смотрите видео-инструкцию по правильному утеплению фасада дома снаружи.

Вернуться к оглавлению

Порядок выполнения утепления минеральной ватой

Монтаж выполняется по следующей технологии:

Схема и конструкция утепления фасада минеральной ватой
  • делают обрешётку и размещают подвесы;
  • для жёсткости во время укладки материала используют профили;
  • плиты плотно вставляют в ячейки каркаса и фиксируют их дюбелями и клеем;
  • тщательно обрабатывают стыки;
  • выполняется слой гидроизоляции.

Затем поверхность штукатурят или обшивают вагонкой.

Вернуться к оглавлению

Вентилируемые и невентилируемые фасады

Основной признак вентилируемого утепления — наличие между стеной и декоративной отделкой проветриваемого промежутка, в котором потоки воздуха вытягивают влагу, образовавшуюся на стенках.

Это предотвращает гниение, создаётся тепловая завеса. Получается такая система при утеплении фасада снаружи.

Конструкция вентилируемого утепленного фасада здания

В зданиях из железобетона, кирпича, строительных блоков, домах из газобетона, которые не боятся влаги, принято сооружать невентилируемые фасады, не нуждающиеся в утеплении.

Устройство вентилируемой стены отделанной плиткой

Иногда применяют комбинированную технологию: здание отделывают большими газобетонными плитами, а потом выполняют облицовку «мокрым» способом плиткой из клинкера или искусственным камнем.

Вернуться к оглавлению

Виды фасадов и как их утеплить

Для отделки фасадов используют разные материалы:

  • деревянная штукатурка;
  • декоративный камень;
  • кирпич;
  • древесина;
  • панели.

Процессу облицовки уделяют подобающее внимание, потому что отделка, имеет кроме декоративных свойств, ещё и защитные функции.

Вернуться к оглавлению

Утепление фасадов деревянных домов

Дерево лучше, чем другой материал удерживает тепло, однако, и такие здания нужно утеплять. С течением времени древесина усыхает, оседает, даёт трещины и щели. Выполняя теплоизоляцию деревянного дома, можно избежать этих проблем.

Устройство и схема утепления стен дома из бруса

Материал хорошо впитывает влагу и, хотя его обрабатывают пропитками, полностью удалить эту проблему не удаётся. В утеплённом доме создаётся нормальная система вентиляции, влага постепенно испаряется, не причиняя вреда брусу.

Рекомендации

При утеплении деревянного дома нужно соблюдать правила:

  • стены должны быть полностью сухими;
  • обязательно применять паронепроницаемый утеплитель;
  • укрыть его гидроизоляцией.

При проведении теплоизоляционных работ в деревянном доме используют:

Выполняя финишную отделку, оставляют пространство между ней и утеплителем, образуя зазор. Если этого не сделать, материал подвергнется воздействию влаги и потеряет теплоизоляционные свойства.

Порядок работы на примере размещения минеральной ваты

Первоначальный этап утепления фасада деревянного дома — двукратная обработка антисептическим раствором. Далее выполняют такие работы:

Есть бескаркасный вариант укладки утеплителя, при помощи металлических подвесов. Эковату тщательно размешивают миксером, помещают между стеной и подготовленной обшивкой.
Можно наносить её «мокрым» способом, в виде клейкой массы, которую ровным слоем помещают на стену, дают просохнуть. Крепят на неё защитную мембрану и приступают к финишной отделке.

Полимерные утеплители монтируют на обрешётку или на поверхность стен клеевым способом, используя крепления — зонтики.

Вернуться к оглавлению

Утеплители для кирпичных стен

Выполняя теплоизоляцию кирпичного дома, рекомендуется создавать вентилируемый фасад. Это поможет уменьшить расходы на отопление, создаст эстетическую отделку. Утеплитель подбирают согласно климатическим условиям.

Укладка плит утепления на кирпичную стену

Это могут быть: минеральная вата, пенопласт, пенополистирол, пенополиуретан, штукатурка.
Процесс обустройства утеплителя на примере пенопласта:

  1. Стены очищают от грязи, заделывают трещины и устраняют изъяны, покрывают грунтом.
  2. Выполняют деревянную обрешётку и в её ячейки помещают пенопласт, фиксируя его строительным клеем, укрепляя дюбелями.

    Установленная обрешетка на стене кирпичного дома

  3. Швы заделывают клеем.
  4. Для повышения качества теплоизоляции при утеплении дома пенопластом создают вентилируемый зазор шириной 40 мм, добавляя плиты стекловаты, расположенные перпендикулярно относительно предыдущего слоя. Утеплителями здесь можно варьировать, создание воздушной тепловой завесы поможет уменьшить потери тепла, урегулирует температурные колебания между стеной и отделкой.

    Вентилируемый зазор, который предназначен для отведения влаги от стены и поддержания ее сухой

Здесь перечислены не все материалы для утепления фасадов частных домов, а только популярные и удобные. Изучив характеристики материала и этапы монтажа, можно утеплить свой дом самостоятельно.

Утепление фасада домов в Самаре

Качественное утепление частного дома может помочь решить проблему отопительного вопроса, устраняя сквозные щели и холодные зоны внутри помещения. Для решения этой проблемы нужно провести эту процедуру с соблюдением всех правил, чтобы тепло внутри жилища сохранялось дольше, а стены не начинали раньше времени терять свои свойства из-за сырости в зимний сезон. В Самаре утеплением домов занимается компания “ДоМастер”. Обращаясь к нам, Вы выбираете комфорт и безопасность.
В наше время цена утепления домов может быть значительно выше, чем заявленное качество изделия. Однако также не стоит забывать о соотношении цены и качества. Покупать крайне недорогой материал – не лучший вариант, поскольку так Вы можете потратить значительную сумму своих финансов и остаться разочарованными. Но также стоит понимать, что цены должны быть обоснованными и адекватными на тот или иной товар. Регулярная замена термоизоляции со временем начинает терять свои физические свойства. К тому же сам процесс укладки тоже является сложным: необходимо не только соблюдать нужные пропорции утеплителя по отношению к толщине стен, но и правильно его фиксировать.
Кроме того, существует масса нюансов, следовать которым необходимо, чтобы утепление фасада работало так, как и должно. Необходимо быть внимательным при утеплении с наружной стороны, где неправильно установленная в стену изоляция может стать причиной пожара. Поэтому доверять эту часть отделки дома следует опытным и квалифицированным специалистам, знающим свое дело от начала и до конца.
“ДоМастер” предоставляет услуги по установке теплоизоляции и ее замене с учетом всех стандартов и правил этой процедуры. Мы предлагаем высокое по качеству и цене утепление фасада дома в Самаре, а также плановую проверку состояния уже установленной изоляции. Что касается цены утепления фасада дома, то здесь вопрос обстоит индивидуально в зависимости от площади и сложности отделочных работ.

Как можно утеплить деревянный дом снаружи правильно по технологии

Брус, благодаря доступной стоимости, долговечности и прочности стал популярным материалом при возведении домов. Натуральная древесина создает внутри помещения здоровый микроклимат и обладает хорошей паропроницаемостью. Низкая теплопроводность — одно из достоинств бруса, но недостаточная толщина стен становится причиной высоких расходов на отопление.

Даже при тщательной стыковке между пиломатериалом остаются щели, пропускающие холод и сквозняк внутрь помещения. Изменить ситуацию можно выполнив утепление бревенчатого дома. Процесс термоизоляции деревянного здания отличается доступностью технологии, поэтому его реально выполнить своими руками.

Почему предпочтительней поместить утеплитель снаружи?

Внешняя теплоизоляция брусового дома имеет свои преимущества:

  • снижение расходов на отопление;
  • защита гигроскопичных деревянных стен от воздействия влаги;
  • внешний вид фасада изменяется по индивидуальным предпочтениям владельцев;
  • не уменьшается площадь внутреннего пространства.

Критерии выбора теплоизоляционного материала

При выборе утеплителя стоит обратить внимание на его характеристики: упругость, устойчивость к горению и влаге, показатель теплопроводности, воздухопроницаемость. Толщина эффективного слоя зависит от температуры в регионе и параметров бруса. В умеренном климате достаточно 50 мм теплоизоляционного материала, а при зимних морозах ниже −20 градусов этот показатель увеличивается вдвое. Следует учесть и сложность монтажа, ведь работа выполняется своими руками.

Способы утепления, что выбрать для стен из бруса

Наружная отделка бревенчатого дома осуществляется тремя способами:

  • Устройство вентилируемого фасада.

Навесная конструкция включает деревянную обрешетку, утеплитель и внешнюю облицовку из вагонки, сайдинга или керамогранита. Монтаж фасада своими руками дает стенам дополнительную тепло- и звукоизоляцию и выносит точку росы наружу. Конструкция легко собирается и служит до 50 лет.

  • Герметичное покрытие пенополиуретаном.

Напыление полимера создает монолитную бесшовную поверхность и укрепляет стены из бруса. Работа выполняется с применением аппарата высокого давления. Он смешивает два компонента и подает состав через пистолет на поверхность, которую нужно утеплить. Под слоем полимера не собирается конденсат, он не горит, не гниет, снижает уровень шума. После напыления пенополиуретана требуется финишная отделка фасадным материалом. Главным недостатком этого способа утепления является высокая цена.

  • Использование плит пенопласта.

Низкая стоимость материала делает его самым доступным утеплителем. Он устойчив к колебаниям температуры и влажности, но имеет существенный недостаток — поддерживает горение. Фиксация пенопласта на стенах выполняется специальным клеем. Перед монтажом первого ряда прибивается стартовый профиль, ограничивающий сползание материала.

Проанализировав плюсы и минусы способов, которыми можно утеплить бревенчатый дом снаружи, большинство владельцев останавливается на вентилируемом фасаде.

Практичный утеплитель для деревянного дома

При устройстве наружной теплоизоляции рекомендуется жесткий материал, который не будет сминаться со временем. Одним из требований к нему является упругость, ведь деревянная основа стен подвержена расширению.

Оптимальным выбором для утепления дома станет минеральная вата. Она производится из шлака, горных пород или стекла, поэтому не поддерживает горение. Материал легко укладывается своими руками, хорошо сохраняет тепло и доступен по цене.

Как правильно собрать вентилируемый фасад

Технология правильного монтажа навесного фасада включает несколько этапов:

  • крепление обрешетки;
  • укладывание утеплителя;
  • установка диффузной мембраны;
  • фиксация декоративного покрытия.

Работа начинается с нанесения на брус антисептического слоя, защищающего от гниения и влаги. На готовую поверхность набивается каркас из деревянных планок. Шаг вертикальной обрешетки на 1,5 см меньше, чем ширина утеплителя. Это позволит плотно уложить материал, избегая щелей и мостиков холода.

Бруски крепятся к стене саморезами, их вертикальная плоскость выставляется с помощью уровня с отвесом. Маты минеральной ваты вставляются между планками каркаса, плотно прижимаются и фиксируются дюбелями-зонтиками. При расположении деревянного дома в регионе с низкой температурой правильно будет выполнить наружную теплоизоляцию в два слоя.

Для защиты утеплителя от сырости укладывается специальная перфорированная пленка. Она не позволяет воде проникать внутрь, а накопившуюся в вате влагу выпускает наружу. Мембрана укладывается с нахлестом и крепится скобами, ее стыки проклеивают скотчем.

Вентилирующий слой фасада создается набиванием планок поверх гидроизоляции. Они обеспечивают пространство между утеплителем и облицовкой, в котором циркулирует воздух. Второй ряд реек становится основой для финишного фасадного покрытия. В нижней и верхней части конструкции остаются щели для вентиляции. От попадания осадков их защищают специальными козырьками.

Рекомендации

Минеральная вата отличный утеплитель, но она теряет свои качества при намокании, поэтому ее следует хранить в закрытом помещении. При работе с материалом появляется пыль и волокно, которые вызывают раздражение. Укладывать плиты минеральной ваты нужно в защитных очках и перчатках.

Чтобы утеплить бревенчатый дом снаружи не потребуется много времени и средств. Результатом качественной работы станет комфортная температура в помещении при меньших затратах на отопление.

Утепление деревянного дома. Вентилируемый фасад

Чтобы правильно утеплить деревянный дом, нужно соблюдать требования технологии. Иначе утеплитель будет намокать и замерзать зимой, что приведет не только к потерям тепла, но и к намоканию основных стен дома. Здесь мы обсудим, как происходит правильное утепление деревянного дома с вентилируемым фасадом.

Зачем утеплять деревянный дом?

Дерево считается сравнительно теплым строительным материалом. Однако в соответствии со строительными нормами, введенными в действие в 2000 году, дома, построенные из дерева, все же нужно утеплять. Ведь для того, чтобы соответствовать этим нормам, толщина сплошной не утепленной деревянной стены должна была бы превышать 40 см. Построить деревянный дом со стенами такой толщины, конечно, можно, но вряд ли целесообразно. В то же время, утепление деревянных домов ничуть не снижает их известных достоинств: благотворного влияния на микроклимат в помещении, хорошей экологии, большого срока службы и эстетической привлекательности.

Примеры домов с утепленным вентилируемым фасадом:

И другие проекты домов из бруса.

Строим сруб и делаем паузу

Основные стены деревянных домов с утепленным вентилируемым фасадом строят из самого недорогого лесоматериала — нестроганного бруса естественной влажности. Важно, чтобы лес был заготовлен зимой и не хранился длительное время на улице, тем более — под открытым небом. Несмотря на то, что сруб будет утеплен, его конопатят.
Когда сруб построен и подведен под крышу, ему нужно дать время для просушки и просадки. Пауза, как правило, занимает порядка года.

Укладываем утеплитель и закрываем ветрозащитной мембраной

После того как сруб устоялся, можно приступать к утеплению. Утепление выполняется снаружи. К стенам из бруса прибиваются бруски обрешетки с шагом, позволяющим плотно, враспор уложить между ними маты утеплителя — минеральной ваты.

Для того чтобы уложить второй слой утеплителя, — а в условиях Подмосковья по современным теплотехническим нормам требуется утепление толщиной около 10 см, — поверх первого слоя прибиваются бруски крест-накрест, чтобы не допустить сквозных щелей и «мостиков холода».

Когда утеплитель плотно, без зазоров, уложен в ячейки обрешетки, он укрывается снаружи ветрозащитной диффузионной мембраной, свободно пропускающей водяной пар, но задерживающей воду.

Создаем вентиляционный зазор

Теперь необходимо устроить вентиляционный зазор. Он нужен для того, чтобы излишки водяного пара не накапливались в утеплителе, а быстро уносились потоком воздуха на улицу. Откуда водяной пар может попасть в утеплитель? Он поступает из отапливаемых помещений дома сквозь стены из бруса. Ведь это и есть одно из достоинств натуральной древесины — способность выводить из помещения избыток влаги. Чтобы поддерживать циркуляцию воздуха в вентиляционном зазоре, нужны отверстия-продухи внизу и вверху стены. Их оставляют внизу у цоколя и вверху под свесом кровли.

Вентиляционный зазор в деревянных домах образуется вертикальными брусками контробрешетки. Их набивают поверх обрешетки, а к ним уже крепится вентилируемый фасад с декоративным отделочным материалом.

Из чего делается конструкция вентилируемого фасада — дерево или металл?

Как правило, в деревянных домах применяется описанная выше деревянная конструкция вентилируемого фасада. Если отделочный материал достаточно тяжел — скажем, искусственный камень или тяжелая керамическая плитка, имитирующая кирпич, то может применяться не деревянная, а металлическая конструкция вентилируемого фасада, подобная той, что используется при монтаже вентилируемых фасадов городских многоэтажных домов. Чтобы правильно выбрать ту или иную конструкцию вентилируемого фасада, требуется технический расчет на этапе проектирования.

Стройте утепленные дома вместе с нами!

Утепление деревянных домов с вентилируемым фасадом — надежная технология, проверенная временем и отлично себя зарекомендовавшая.

Строительная компания «Загородный дом» предлагает множество разнообразных проектов утепленных деревянных домов из бруса с вентилируемым фасадом, выполняет их индивидуальное проектирование и строительство. Мы считаем, что эти дома отличаются наилучшим соотношением цена/качество среди всех типов деревянных загородных домов.

Изоляция в эпоху экологической сознательности: Примеры проектов с изоляцией из древесного волокна – ПОДРОБНЕЕ

Компания Gutex, расположенная в пограничном треугольнике Германии, Швейцарии и Франции, позиционирует себя как пионер в области экологически чистой изоляции в Европе. Более 85 лет Gutex производит изоляционные материалы из древесины, полученной из экологически рациональных лесов, расположенных рядом со своим производственным предприятием. Со временем сырье не изменилось, но технологии обработки и конструкционные свойства постоянно оптимизируются.Результат: изоляционные решения из древесных волокон для фасадов, крыш и интерьеров, экологичность которых подтверждена рядом сертификатов по охране окружающей среды, здорового образа жизни и устойчивости.

Деревянный фасад и изоляция из древесного волокна, способствующие охране природы.
Различные ссылки показывают диапазон возможных применений, которые, в частности, но не исключительно, относятся к деревянному строительству. Например, в конце 2018 года компания Braun + Müller Architekten из Констанца построила многофункциональное здание для Немецкой ассоциации охраны природы.Помимо офисов, в центре NABU Bodensee в Констанце также расположены выставочные площади, мастерская по сохранению ландшафта и жилая зона для волонтеров. Центр передового опыта в области природоохранных работ состоит из двух отдельных зданий, фасады которых отделаны деревом из домашней ели и стеклянными поверхностями. Строительные работы выполняла компания Ettwein Holzbau. Для вентилируемого фасада и внутренней отделки использовались только древесноволокнистые изоляционные материалы.

Реконструкция деревянного строительства в Веймаре
Для многоквартирного дома в Веймаре местная компания Koop Architekten und Ingenieure остановила свой выбор на строительстве из массивной древесины и в основном из экологически чистых строительных материалов.Работы по деревянному строительству выполняла компания Pfeiffer из Ремптендорфа. Новое здание, в котором с января 2018 года разместились четыре семьи по 120 м2 соответственно, стоит на месте 3-этажного здания с башней, разрушенной в 1945 году. Кубическая структура с неоднородной фасадной облицовкой превращает ансамбль памятника Зюдштадт в современную архитектуру. язык. Жюри Государственной премии Тюрингии за инженерные услуги, присудившее объекту специальный приз за деревянное строительство в 2017 году, постановило: «Не только все несущие и жесткие части сделаны из дерева, но и использованная изоляция сделана из экологическая изоляция из древесного волокна.В этой структуре систематически реализованы устойчивость и экология. Благодаря внешнему штукатурному фасаду новое здание кубической формы, разделенное выступающими выступами, гармонично вписывается в меланж ».

Изоляция из древесного волокна для проектов реконструкции и ремонта
Два проекта в Берлине и на юге Шварцвальда демонстрируют потенциал дерева волокнистая изоляция в существующих проектах С одной стороны, древесноволокнистая изоляция использовалась при экологической реконструкции крыши берлинского здания конца 19 века.Так называемая берлинская крыша, модификация односкатной крыши, представляет собой сложную задачу как для проектировщиков, так и для мастеров своими крутыми боковыми наклонами между плоскими крышами. Чтобы сделать ранее не вентилируемую плоскую крышу пригодной для использования в берлинском проекте, крыша была оборудована пароизоляцией с изменяемой влажностью и экологической изоляцией каркаса из древесного волокна вместе с изоляцией PIR в качестве огнестойкого перекрытия. Таким образом, по требованию заказчика была реализована экологичная и в то же время прочная конструкция крыши.

При переоборудовании пансиона в оздоровительный центр в Витцнау на юге Германии обеспечение здорового климата в помещении стало первостепенной задачей. Кроме того, по возможности должен был быть сохранен внешний вид исторического фасада, а также конструкция балок крыши внутри. Для этого использовалась система внутренней изоляции Gutex, имеющая сертификат RAL. Теплопередача через внешнюю стену уже замедлена со стороны помещения, что исключает риск образования конденсата в кладке.Для изоляции крыши и полов в качестве листового материала и в качестве изоляции полостей использовались изоляционные материалы из древесного волокна.

Микроархитектура с изоляцией из древесного волокна
Экологический изоляционный материал может быть использован даже в небольших проектах, как показывает проект Изабель Теллье «Маленький домик в Берлине». Здесь для кровли, пола и потолка использовались изоляционные материалы из древесного волокна. Берлинский художник, работающий на стыке инновационных технологий, скульптуры и строительства, самостоятельно спроектировал и разработал свою собственную микроквартиру площадью 16 м2.В результате получилась скульптурная деревянная конструкция размером 6 x 2,5 x 4 м, которая, по словам Теллье, была реализована с использованием новейших технологий и экологически безопасных методов строительства с низкими затратами. Кроме того, минимальное жилое пространство смонтировано на мобильной раме, заимствованной из судостроения, так что учитывается еще один аспект современной городской жизни – мобильность.

На выставке BAU 2019 Gutex представит свой репертуар изоляционных материалов и системных решений. К ним относится, например, жесткая подложка Ultratherm, которая позволяет производить монтаж без стыков с соединением шпунт и паз для сплошного уровня крыши.По заявлению производителя, геометрия запатентованного краевого профиля означает особенно высокую защиту от атмосферных воздействий. Другой темой выставки станет противопожарная защита и возможность использования древесноволокнистого утеплителя в многоэтажном деревянном домостроении. Стенд Gutex находится в зале B5, стенд 302.

www.gutex.de

Пассивный дом с деревянной конструкцией и теплоизоляцией из Neopor

.
  • Пассивный дом с деревянной конструкцией и теплоизоляцией из неопора

Один из первых пассивных домов с несущей деревянной конструкцией из многослойных панелей и изоляцией фасада с использованием Neopor ® компании BASF уже завершен.Отдельно стоящий двухуровневый дом, расположенный в Вайнхайме, Германия, выделяется видимой изнутри многоярусной стеной из досок, а также высокоэффективным использованием строительного пространства благодаря арочной крыше, переходящей в наклонную стену. Дополнительное пространство и комфорт стали возможны благодаря внешней теплоизоляционной композитной системе (ETICS) толщиной 30 см с Neopor (EPS: вспенивающийся полистирол). Благодаря высокой изолирующей способности Neopor фасады можно изолировать панелями, которые почти на 20% тоньше, чем панели из обычного пенополистирола.Neopor способствует снижению потерь тепла и снижению выбросов CO 2 . У сертифицированного пассивного дома остаточная потребность в тепле составляет 13 кВтч на квадратный метр в год, что соответствует теплотворной способности 1,3 литра топочного мазута.

Изоляция салона не нужна

Арочная крыша и восточная стена, наклоненная на 5 ° наружу, придают дому силуэт традиционного плетеного шезлонга, а также оптимально используют пространство.В сочетании с гладкой деревянной конструкцией фасад был изолирован с помощью ETICS из Neopor, который проще и быстрее монтировать, чем другие изоляционные материалы. Это также означает, что внутренняя изоляция становится ненужной: вместе с системой вентиляции открытые деревянные стены обеспечивают комфортный климат для проживания. Как это типично для пассивных домов, жилые помещения и спальни вентилируются свежим воздухом, который проходит через холлы и выбрасывается из ванных комнат и кухни.Окна из древесно-алюминиевого композита имеют тройное остекление. Цоколь сделан из сборных железобетонных элементов и изолирован прочным на сжатие и водоотталкивающим материалом Styrodur ® C от BASF (XPS: экструдированная панель из жесткого пенополистирола), которая служит изоляцией по периметру под фундаментной плитой и в области, соприкасающейся с земля.

Все эти меры способствуют тому, чтобы этот дом в значительной степени не зависел от ископаемого топлива. Общая потребность в первичной энергии для горячего водоснабжения, отопления и вспомогательной энергии составляет 118 кВтч на квадратный метр в год, распределенных по двум жилым домам площадью около 250 квадратных метров.Энергия, которая все еще необходима для отопления и горячего водоснабжения, вырабатывается компактным тепловым насосом и корзинами геотермального теплового насоса; стороны дома, выходящие на фасад, и двор поставляют большую часть солнечного тепла. На южной стене проложены дополнительные трубы для дооснащения гелиотермических модулей.

Концепция пассивного дома: экономическая целесообразность и защита климата

Пассивный дом может обойтись без обычной системы отопления и кондиционирования, но при этом в нем остается прохладно летом и тепло зимой.Пассивные дома не только энергоэффективны, но и имеют ощутимо лучший климат для жизни, чем обычные здания. Текущее положение ЕС устанавливает пассивный дом в качестве энергетического стандарта, который будет требоваться по закону для всех новых зданий в будущем. Типичными элементами этого стиля здания являются хорошо изолированная оболочка здания и усовершенствованная система вентиляции и рекуперации тепла. Необходимые энергетические ресурсы низкие: согласно определению Passivhausinstitut Darmstadt, Германия, вся первичная энергия для любого дополнительного тепла, горячей воды и электричества должна оставаться ниже 120 кВтч на квадратный метр в год.

Дополнительная информация доступна на сайте: www.neopor.de.

Примечание для редакций: фотографию для прессы можно скачать с сайта www.basf.de/pressphotos под ключевым словом «Пластмассы». В ближайшем будущем этот текст и фотография будут доступны в архиве пресс-релизов BASF по пластмассам на сайте www.basf.de/plastics/pressreleases.

Р-09-102

Экономия на сборной деревянной изоляции – Блог IAAC

Круговой дизайн в застроенной среде

Проект: Йонас

Архитекторы: Orange Architects

Строительство: 2017

Расположение: Амстердам, Нидерланды

Йонас – знаковый, устойчивый и привлекательное строение, которое выделяется на фоне окружающих построек.Здание формирует темы, которые здесь важны: вода, набережная и морские суда. В то же время, принимая «душу сайта» и делая ее видимой, Йонас выглядит так, как будто он принадлежит ему.

«Имя Джонас является отсылкой к« Джонасу и киту », сказке о приключениях и близости, а также о приюте, безопасности и домашнем уюте внутри« большого тела ». – Orange Architects

Необычный композиция оконных проемов создает впечатление, что они плавно переходят по фасаду.Это отличает Джонаса немного от другого: немного искаженного, немного странного. Сетка не правильная, а искаженная. Фасад не касается земли, но приподнят. Здание не ортогональное, а ромбовидное. Это делает здание одновременно знакомым и отчуждающим, скульптурным, но рациональным, узнаваемым, но новаторским.

ИЗДЕЛИЯ ДЛЯ СБОРКИ

  1. ЦИНКОВЫЙ ЭЛЕМЕНТ: Цинковая внешняя панель в черном цвете и предварительно окрашенная от WVH Gevelprojecten
  2. ИЗОЛЯЦИОННЫЙ ЭЛЕМЕНТ: Мягкая изоляция e.g Минеральная вата 300 мм от Logrotex Isolgreen Insulation
  3. СТЕКЛЯННЫЙ ЭЛЕМЕНТ: Тройной стеклопакет с рамой из анодированного алюминия темного цвета от Metaglas Facade Systems
  4. ДЕРЕВЯННЫЙ ЭЛЕМЕНТ РАМЫ: HSB RC: мин. 4.5 от Kingspan / Knauf Insulation

Блок-схема материалов

Круговая диаграмма распределения материалов

Свойства соединения

Сборный узел

  • Сборный деревянный каркас может быть установлен на месте быстрее, чем сопоставимый кирпично-блочное строительство.
  • Сборные пиломатериалы классифицируются как возобновляемые материалы, поскольку согласно принципу, если дерево вырублено, на его место высаживается другое.

• Сборные деревянные конструкции требуют меньше CO2 для его обработки и производства, чем, например, сталь.

1] Материал: цинковые панели Свойства

Примерно 30% всего производимого цинка производится из вторичных источников. Общее количество цинкового лома в мире растет и оценивается примерно в 3 миллиона тонн.

  • При контакте с влажностью цинковые панели образуют самозащитный слой, который летом изолирует тепло от внутренних помещений.
  • Дождь и снег, легко скользит по поверхности.
  • Его модульные панели могут иметь изогнутые формы или быть перфорированными в соответствии с архитектурным дизайном.
  • Панели можно комбинировать в фасадах и / или потолках с помощью различных оттенков, яркости и цвета.

A] Технический лист: WVH Gevelprojecten Zinc Composite

Composite Zinc – это многослойная панель, состоящая из двух листов цинка с нулевым содержанием цинка.Толщина 5 мм и термоклейка с обеих сторон сердечника из обогащенного минералами полиэтилена для оптимальной реакции на огонь.

Углеродный след

Полный весь жизненный цикл: ——- кг эквивалента CO2 / функциональная единица

Этап продукта: 3,99 кг эквивалента CO2 / функциональная единица

Конечный этап жизненного цикла: 0,00285 кг эквивалента CO2 / функциональная единица

Местоположение: Германия

Срок использования: 75 лет

2] Материал: Изоляционные свойства фасада

Целлюлозная изоляция, которая в основном используется в качестве изоляции ограждающих конструкций здания, состоит из большого количества переработанных материалов; как сообщается, в диапазоне от 80 до 85%.

  • Используется для тепловых целей, но также обеспечивает решения для акустических, пожарных и ударных проблем.
  • После надлежащей герметизации изоляция является наиболее важным элементом здания с точки зрения комфорта и энергоэффективности.
  • Из-за высокой степени теплоизоляции и больших окон на фасаде существует значительный риск перегрева.

B] Технический паспорт: Logrotex Isolgreen Cotton

Ассортимент хлопка включает губчатые наппы из натурального или переработанного хлопка для утепления потолков, стен и т. Д., улучшая воздухопроницаемость и даря ощущение свежести.

Углеродный след

Общий весь жизненный цикл: 0,4 кг эквивалента CO2 / функциональная единица

Стадия продукта: —- кг эквивалента CO2 / функциональная единица

Этап в конце жизненного цикла: —- кг эквивалента CO2 / функциональная единица

Местоположение: Ла-Риоха, Испания

Срок использования: 25 лет

3] Материал: Фасадное остекление Свойства

По данным отраслевых экспертов, только около 27% произведенного стекла в конечном итоге перерабатывается в твердые бытовые отходы. или на объектах строительства и сноса.

  • Позволяет дневному свету проникать внутрь здания, обеспечивая обзор в здание и из него и в то же время обеспечивая защиту от непогоды.
  • Восприятие в зависимости от таких факторов, как пропускание, поглощение, отражение, рассеяние света, адаптация яркости, блики.
  • Вместо заполняющего материала стекло иногда используется для переноса нагрузок, превышающих нагрузки на единицу площади из-за собственного веса, колебаний температуры, ветра и снега.

C] Технический лист: тройное остекление Metaglas

Этот дизайн подчеркивает стиль, который часто требуется для жилой архитектуры. Идеально подходит как для новостройки, так и для энергичного ремонта.

Углеродный след

Полный жизненный цикл: 141,2 кг эквивалента CO2 на функциональную единицу

Стадия продукта: 121,4 кг эквивалента CO2 на функциональную единицу

Конечная стадия жизненного цикла: 20.27 кг CO2 экв / функциональная единица

Расположение: Luxembourg et Allemagne

Срок использования: 50 лет

4] Материал: фасадная древесина Свойства

Древесные отходы составляют около 40% внутренних корм для смешанных предприятий по переработке C&D.

  • Максимальное использование возобновляемых и перерабатываемых материалов, что можно увидеть, например, во внутренней отделке и внутренних фасадах, сделанных преимущественно из дерева.
  • Деревянная каркасная система – это наиболее широко используемая строительная техника, дающая большую свободу архитектурного выражения.
  • Конструкционное стекло в сочетании с деревянным каркасом представляет собой композитную систему, которая имеет предрасположенность к хорошим структурным характеристикам, является энергоэффективной и экономичной, эстетически приемлемой и обладает хорошими несущими характеристиками.

D] Технический лист: древесноволокнистая плита Flex 50

Древесноволокнистые изоляционные плиты FLEX 50 представляют собой конструкционные изделия из дерева в форме панелей, изготовленные из древесных волокон в соответствии с / DIN EN 13171 /.Небольшие количества двухкомпонентных (= бико) волокон и антипиренов, которые соответствуют требованиям / nature plus /, добавляются во время производственного процесса, а плиты собираются в конце. Возможно изготовление однослойных изоляционных плит толщиной до 220 мм. Потребляемая энергия, указанная в этой декларации, относится к сырой плотности 50 кг / м3.

Углеродный след

Всего за весь жизненный цикл: 8.53 эквивалента CO2 / функциональная единица

Стадия продукта: -82,4 кг эквивалента CO2 / функциональная единица

Этап в конце срока службы: 87,7 кг эквивалента CO2 / функциональная единица

Местоположение: Германия

Срок использования: 50 лет

Предлагаемый продукт

Диаграмма Сэнки для древесины

Заключение – стратегия потенциальных отходов

Принятие этой замкнутой экономики, поощрение вторичного цикла, а не просто переработки, чтобы помочь минимизировать отходы и максимально использовать ресурсы.

  • Экономия циркуляции потока отходов и их переработка в вашем конкретном районе.
  • Экономия цикличности в самом процессе проектирования.
  • снизить затраты на постпроизводство обновленных материалов.
  • Определите участие сообщества путем оценки.

Заключение – потенциальный источник материалов

В настоящее время изоляционные материалы на строительном рынке представляют собой преимущественно неорганические материалы.

  • В этом исследовании материал из натурального волокна в виде древесных отходов исследуется экспериментально, чтобы оценить его пригодность для использования в качестве теплоизоляционного материала без добавления какого-либо связующего в конструкции деревянной каркасной стены.
  • С точки зрения здоровья, древесные отходы поступают из первичных производственных источников с использованием необработанного материала. Кроме того, утеплитель из древесного волокна, регулирующий влажность, помогает дыхательной системе.
  • Исторически мы утепляли наши дома деревом на протяжении многих веков: другие виды утепления появились сравнительно недавно.

Примечания

1] «jonas, a Amsterdam», SPS.Edu, по состоянию на 25 марта 2021 г.,

https: //www.orangearchitects.nl / projects / jonas /

2] «Уникальное жилищное строительство, которое делает устойчивый образ жизни доступным и доступным для широкой аудитории», по состоянию на 25 марта 2021 г., Йонас, Нидерланды – BREEAM

3] «Йонас», доступ к 25 марта 2021 г.,

https://architizer.com/projects/jonas/

Круговой дизайн

в искусственной среде – это проект IAAC, Института передовой архитектуры Каталонии, разработанный в MAA01 2020/21 студентами: Jiaqi Сан, Хосе Ригоберто Морено, Юлия Мария Личвар, Синю Чжан и преподаватели: Игнаси Кубинья, Ариане Лима, София Баттистино, Мария Колантони

Изолированная деревянная сэндвич-панель, звукоизоляция Sapisol

Отличные тепловые характеристики

Sapisol® – это воздухонепроницаемость т и обеспечивает эффективную изоляцию вашего дома без тепловых мостов. Он изготовлен в соответствии с высочайшими стандартами и обеспечивает долговременный уровень тепловых характеристик . При укладке с древесным волокном под слоем он соответствует нормам по звукоизоляции .

Деревянный диван

С Sapisol за один шаг вы получаете: высокоэффективную изоляцию, деревянный потолок и полностью готовые свесы крыши, а также надежную и прочную опору для кровли.

Широкие пролеты

Огромным преимуществом Sapisol является то, что он может охватывать расстояние (до 6 м между опорами), что снижает потребность в дополнительной конструкции, снижает затраты на строительство, а также освобождает объемы и создает дополнительное жилое пространство.

Производство на заказ

Мы можем обрабатывать детали и поставлять отрезки по длине в нашем заводском цехе, чтобы упростить установку, а также сократить количество отходов на объекте.

Надежный и экологичный продукт

Sapisol ® адаптируется и подходит для всех сред, чувствительных и чрезвычайно чувствительных, на всех высотах и ​​широтах.

Низкое потребление энергии
Изолированные панели

Sapisol ® позволяют снизить затраты на электроэнергию.

Изготовлен из прочных и экологически чистых материалов, представляет собой качественное и экологически чистое решение.

Панели Simonin Sapisol ® S186 (R = 5,02) и S220f (R = 6,11) специально разработаны для домов с низким энергопотреблением и соответствуют тепловым нормам.

Под новую или после ремонта

Новое или обновленное: С изоляционной плитой Sapisol ® варианты крыш безграничны (прямая крыша, крыша с низким уклоном, изогнутая крыша, коническая крыша или слегка завуалированная крыша, установка на металлический каркас) без компромиссов для теплоизоляции . Утеплитель вашего дома.

Sapisol® – это продукт, предназначенный не только для новых построек, его дизайн позволяет адаптировать его ко всем типам ремонта, таким как изоляция существующих кровельных пространств.

Легкий и легко транспортируемый, он отвечает требованиям самых интересных проектов и проектов в самых отдаленных регионах земного шара.

Исключительные работы

Sapisol ® используется в нескольких сотнях общественных и частных зданий по всему миру.

Он использовался в специализированных проектах, а также в биоклиматических домах. За 25 лет работы Sapisol ® доказал свою эффективность и эффективность.

Наружная облицовка деревянного основания – пробка на глазах, заявки

Внимание! Заполните обязательные поля.

Я хочу получать информационные бюллетени Amorim Cork Insulation.

Имя*

Эл. адрес*

Страна Выберите себе countryAFGHANISTANLAND ISLANDSALBANIAALGERIAAMERICAN SAMOAANDORRAANGOLAANGUILLAANTARCTICAANTIGUA И BARBUDAARGENTINAARMENIAARUBAAUSTRALIAAUSTRIAAZERBAIJANBAHAMASBAHRAINBANGLADESHBARBADOSBELARUSBELGIUMBELIZEBENINBERMUDABHUTANBOLIVIABOSNIA И HERZEGOVINABOTSWANABOUVET ISLANDBRAZILBRITISH ИНДИЙСКИЙ ОКЕАН TERRITORYBRUNEI DARUSSALAMBULGARIABURKINA FASOBURUNDICAMBODIACAMEROONCANADACAPE VERDECAYMAN ISLANDSCENTRAL АФРИКАНСКИЕ REPUBLICCHADCHILECHINACHRISTMAS ISLANDCOCOS (Keeling) ISLANDSCOLOMBIACOMOROSCONGOCONGO, ДЕМОКРАТИЧЕСКАЯ РЕСПУБЛИКА THECOOK ISLANDSCOSTA RICACOTE D’IVOIRECROATIACUBACYPRUSCZECH REPUBLICDENMARKDJIBOUTIDOMINICADOMINICAN REPUBLICECUADOREGYPTEL SALVADOREQUATORIAL GUINEAERITREAESTONIAETHIOPIAFALKLAND (Мальвинские) острова ФАРЕРСКИЕ ISLANDSFIJIFINLANDFRANCEFRENCH GUIANAFRENCH POLYNESIAFRENCH ЮЖНОЕ TERRITORIESGABONGAMBIAGEORGIAGERMANYGHANAGIBRALTARGREECEGREENLANDGRENADAGUADELOUPEGUAMGUATEMALAGUERNSEYGUINEAGUINEA- БИССАУГЯНА ОСТРОВ ХАЙТИХАРД И МАКДОНАЛД ОСТРОВ ШОЛИ (ВАТИКАН C ITY STATE) HONDURASHONG KONGHUNGARYICELANDINDIAINDONESIAIRAN, Исламская Республика OFIRAQIRELANDISLE О MANISRAELITALYJAMAICAJAPANJERSEYJORDANKAZAKHSTANKENYAKIRIBATIKOREA ДЕМОКРАТИЧЕСКАЯ НАРОДНАЯ РЕСПУБЛИКА OFKOREA, РЕСПУБЛИКА OFKUWAITKYRGYZSTANLAO НАРОДНАЯ ДЕМОКРАТИЧЕСКАЯ REPUBLICLATVIALEBANONLESOTHOLIBERIALIBYAN АРАБСКИЕ JAMAHIRIYALIECHTENSTEINLITHUANIALUXEMBOURGMACAOMACEDONIA, бывшая югославская Республика OFMADAGASCARMALAWIMALAYSIAMALDIVESMALIMALTAMARSHALL ISLANDSMARTINIQUEMAURITANIAMAURITIUSMAYOTTEMEXICOMICRONESIA, Федеративные Штаты OFMOLDOVA, РЕСПУБЛИКА OFMONACOMONGOLIAMONTENEGROMONTSERRATMOROCCOMOZAMBIQUEMYANMARNAMIBIANAURUNEPALNETHERLANDSNETHERLANDS ANTILLESNEW CALEDONIANEW ZEALANDNICARAGUANIGERNIGERIANIUENORFOLK ISLANDNORTHERN MARIANA ISLANDSNORWAYOMANPAKISTANPALAUPALESTINIAN ТЕРРИТОРИЯ, OCCUPIEDPANAMAPAPUA NEW GUINEAPARAGUAYPERUPHILIPPINESPITCAIRNPOLANDPORTUGALPUERTO RICOQATARREUNIONROMANIARUSSIAN ФЕДЕРАЦИЯ RWANDASAINT HELENASAINT KITTS И NEVISSAINT LUCIASAINT PIERRE, MIQUELONSAINT VINCENT И GRENADINESSAMOASAN MARINOSAO ТОМ И PRINCIPESAUDI ARABIASENEGALSERBIASEYCHELLESSIERRA LEONESINGAPORESLOVAKIASLOVENIASOLOMON ISLANDSSOMALIASOUTH AFRICASOUTH ГРУЗИЯ И Южные Сандвичевы ISLANDSSPAINSRI LANKASUDANSURINAMESVALBARD И ЯН MAYENSWAZILANDSWEDENSWITZERLANDSYRIAN АРАБ REPUBLICTAIWAN, провинция CHINATAJIKISTANTANZANIA, Объединенная Республика OFTHAILANDTIMOR-LESTETOGOTOKELAUTONGATRINIDAD И TOBAGOTUNISIATURKEYTURKMENISTANTURKS И КАЙКОС ISLANDSTUVALUUGANDAUKRAINEUNITED АРАБ EMIRATESUNITED KINGDOMUNITED STATESUNITED Внешних малые ISLANDSURUGUAYUZBEKISTANVANUATUVENEZUELAVIET NAMVIRGIN ОСТРОВА, BRITISHVIRGIN ОСТРОВА, U.С.УАЛЛИС И ФУТУНАВЕСТЕРН САХАРАЙМЕНЗАМБИАЗИМБАБВЕ

Amorim Cork Insulation стремится защищать и уважать вашу конфиденциальность. В соответствии с новыми правовыми положениями мы должны получить ваше явное согласие на хранение и обработку ваших личных данных, прежде чем мы сможем отправить вам запрошенный контент. Если вы согласны, поставьте отметку в следующем поле, чтобы подтвердить, что вы хотите получать от нас информацию. Вы можете прекратить получать наши сообщения в любое время.Обратитесь к нашей Политике конфиденциальности для получения дополнительной информации о наших мерах по обеспечению конфиденциальности и о том, как реализовать свои права на личные данные.

границ | Проектирование массивных деревянных панелей в качестве теплообменников (динамическая изоляция)

1. Введение

На строительство зданий приходится 28% выбросов парниковых газов (ПГ), в то время как 11% выбросов связаны со строительной деятельностью, в основном с производством строительных материалов, таких как цемент и сталь (Международное энергетическое агентство и Программа Организации Объединенных Наций по окружающей среде, 2018 г. ).В ближайшие десятилетия рост и урбанизация мирового населения создаст огромный спрос на новые здания и инфраструктуру. Таким образом, «воплощенные» выбросы в строительном секторе должны резко возрасти, так же как и глобальные выбросы должны резко сократиться (Röck et al., 2020). Возможно ли превратить эту потенциальную угрозу для глобальной климатической системы в мощное средство смягчения последствий изменения климата?

1.1. Утилизация углерода

Существует растущая вероятность того, что для достижения климатических целей потребуются методы удаления углерода, также известные как «отрицательные выбросы».Ученые и практики начали анализировать потенциал новых зданий как глобального поглотителя углерода (Чуркина и др., 2020; Hoxha и др., 2020; Помпони и др., 2020). Существует ряд материалов, в которых может храниться C или CO 2 , включая древесину, бетон, бамбук, коноплю и солому. Бетон традиционно является источником выбросов CO 2 из-за интенсивного производственного процесса, но может реабсорбировать значительное количество углерода в течение длительного срока службы (Cao et al., 2020). Последние достижения в области производства – адаптация процесса отверждения для поглощения большего количества углерода или минерализация CO 2 , образующегося при производстве в дымоходе для использования в качестве заполнителя, – открывают возможности для использования углерода в бетонной промышленности, помимо карбонизации на протяжении всего срока службы (Monkman and MacDonald, 2017; Habert et al., 2020). Между тем, биогенные материалы, такие как древесина и бамбук, растут путем фотосинтеза, улавливая углерод в своей биомассе. Собранные продукты биомассы могут обеспечивать отрицательные выбросы в течение жизненного цикла, если леса или посевы хорошо управляются и продукты являются достаточно долгоживущими по сравнению с их циклом роста биомассы (Guest et al., 2013; Levasseur et al., 2013). Композиты, такие как растительный бетон – бетоны, в которых в качестве связующих используются такие быстрорастущие культуры, как конопля или солома, – потенциально могут использовать влияние накопления как биогенного поглощения углерода, так и карбонизации (Pittau et al., 2018). Согласно недавнему анализу, древесина и бетон могут хранить ~ 0,5 Гт CO 2 в год при условии надлежащей координации их производственных циклов (Hepburn et al., 2019). Эти потенциальные количества ставят новые здания в один ряд с другими лидерами в использовании атмосферного углерода в техносфере.

Если здания могут работать вместе с лесами в качестве глобального поглотителя углерода, то интеграция проектирования может многократно увеличить потенциал сокращения выбросов. Например, если массивные деревянные конструкции могут активно создавать внутренний климат, используя только низкопотенциальное тепло, потребность в дополнительных материалах и механических системах будет меньше. Показатель умножения сокращений выбросов ПГ за счет функционального замещения известен как «фактор замещения» (Smyth et al., 2018; Seppälä et al., 2019; Hurmekoski et al., 2020).Однако для того, чтобы использование CO 2 полностью раскрыло свой потенциал, материалы, накапливающие углерод, должны делать больше, чем заменять обычные материалы по частям. Материалы должны выполнять как можно больше функций, чтобы они могли заменить целые системы с интенсивным выбросом вредных веществ.

1.2. Радикальная интеграция

Какие достижения в области материаловедения могут обеспечить такую ​​радикальную интеграцию? «Разработанные пористые среды» – это материалы, имеющие внутреннюю и внешнюю форму для обмена теплом и массой (Bejan et al., 2004). Подобно «Архитектурным материалам» (Estrin et al., 2019) и «Формоактивным структурам» (Wu et al., 2020), инновационный аспект заключается в том, как морфология материала управляет потоком энергии. Применение этих новых методов может стать ключом к совершенствованию строительных материалов, хранящих углерод. Не только для улучшения их структурных характеристик, но и для интеграции функций охлаждения и вентиляции, поэтому дополнительные материалы и механические системы не требуются.

Одним из примеров является проектирование массивных деревянных панелей в качестве теплообменников или «дышащих стен».«Принцип состоит в том, чтобы ввести воздушные каналы в твердое тело и оптимизировать их размер и расстояние, чтобы исходящая проводимость нагревала входящий воздух. Этот метод может сделать изоляцию и облицовочные материалы ненужными, помогая упростить системы отопления, вентиляции и кондиционирования воздуха. Рисунок 1 объясняет концепцию теплообмена и принцип оптимизации геометрии. В недавнем исследовании использовались физические эксперименты для проверки корреляции для оптимизации теплообменных материалов (Craig and Grinham, 2017). Корреляция дизайна была первоначально разработана другими исследователями (Kim et al., 2007) для экстремальных температурных условий, но результаты исследования 2017 года показывают, что он работает и для строительных материалов в умеренных условиях. Этот документ является продолжением их работы. В нем рассматривается, как применить соотношение и принципы проектирования к массовым деревянным панелям. «Массовая древесина» относится к изделиям из инженерной древесины, ламинированным из более мелких плит в структурные компоненты, такие как клееные балки (клееный брус) или панели из поперечно-клееной древесины (CLT).

Рисунок 1 . Как оптимизировать размер и расстояние между каналами, чтобы спроектировать массивную деревянную панель в качестве теплообменника.Расчетные корреляции (уравнения 1–14) были первоначально разработаны для аэрокосмических приложений (Kim et al., 2007), но было показано, что они работают для строительных материалов (Craig and Grinham, 2017). Это исследование применяет их к массивной древесине.

1,3. Динамическая изоляция

Использование конструкционного материала в качестве теплообменника делает его разновидностью технологии динамической изоляции (DI). DI начинался как новая стратегия вентиляции сельскохозяйственных зданий в холодном климате. Инженеры описали, как всасывать свежий воздух через слой волокнистой изоляции, уменьшая потери проводимости и одновременно нагревая воздух (Bartussek, 1981).В начале девяностых исследователи установили DI в жилом доме в Японии и сообщили о 50% -ном сокращении потерь тепловой оболочки (Dalehaug et al., 1993). Вскоре последовали два значительных прогресса в теории DI. Была разработана простая аналитическая модель для описания устойчивого теплообмена в DI, когда известны температура внутренней поверхности или скорость поверхностной конвекции (Taylor et al., 1996, 1998; Taylor and Imbabi, 1997, 1999, 2000). Подробная аналитическая модель была также разработана, чтобы учесть эффекты аккумулирования тепла и показать влияние периодических изменений во внешней среде (Krarti, 1994).

В последние годы возобновился интерес к теории, измерениям и проектированию систем DI. Группа из Миланского политехнического университета описала микроскопические эффекты теплообмена в волокнистой изоляции и разработала прибор для тестирования панелей DI (Alongi and Mazzarella, 2015a, b). Они использовали устройство для проверки поведения теплообмена в установившихся и периодических условиях по сравнению с простыми и подробными аналитическими моделями (Alongi et al., 2017a, b, 2020). Группа из Университета Хуачжун разработала конечно-разностную модель и аппарат для тестирования DI (Wang et al., 2018; Zhang et al., 2019а, б). Их работа показывает, как уменьшить рост оболочки летом, вытесняя отработанный воздух через изоляцию. Многие сотрудники разработали стратегии управления DI и определили потенциальную экономию энергии для «переключаемых» значений U в различных контекстах (Park et al., 2015; Menyhart and Krarti, 2017; Shekar and Krarti, 2017; Rupp and Krarti, 2019). ; Даббаг и Крарти, 2020; Дехва и Крарти, 2020). Вместо использования пористого материала в качестве теплообменника они разработали перегородки, которые можно открывать или закрывать, чтобы контролировать конвекцию внутри герметичной панели.

1,4. Почему Вуд?

Было показано, как ввести воздушные каналы в стандартные строительные материалы и оптимизировать их для теплообмена (Craig and Grinham, 2017). Эта новая возможность предлагает другой способ строительства, более подходящий для задач удаления углерода. Вместо того, чтобы строить конструкцию и облицовывать ее слоями специальных материалов, можно объединить все основные функции в одном материале. Но какой материал? Как уже говорилось, такие материалы, как древесина, бетон, бамбук, солома и конопля, могут накапливать углерод в глобальном масштабе (Hepburn et al., 2019; Чуркина и др., 2020). Древесина и бетон – единственные, которые сегодня широко используются в строительной отрасли, но в каждом случае необходимо преодолеть серьезные проблемы. Например, биогенные материалы должны быть достаточно долгоживущими по сравнению с ростом их биомассы, чтобы увеличивать запасы углерода в строительном секторе, не нанося ущерба лесам или запасам углерода насаждениям (Guest et al., 2013; Pingoud et al., 2018). Лесам требуются десятилетия, чтобы отрасти, в то время как для таких культур, как бамбук, конопля и солома, период ротации может составлять всего 1 год.Однако эти быстрорастущие материалы требуют более интенсивного производства и дополнительных материалов, чтобы превратить их в монолитный материал, пригодный для предлагаемого метода теплообмена. Между тем, бетон требует значительных изменений в процессах отверждения и производства, чтобы сократить выбросы от колыбели до ворот, но сохраняет карбонаты в течение десятилетий или столетий, в то время как биогенные материалы, такие как древесина, подвержены риску высвобождения в поздний срок.

Несмотря на препятствия, цепочки поставок и жизненные циклы продуктов для всех инженерных материалов нуждаются в коренном пересмотре, и в обеих областях необходимо провести важные исследования.Промышленности, вероятно, потребуются технологии как биогенного хранения углерода, так и технологии декарбонизации в бетонной промышленности, чтобы иметь шанс обратить вспять тенденцию к увеличению выбросов в ближайшие десятилетия. Основное внимание в этом исследовании уделяется древесине, поскольку она уже широко используется, а ее тепловые свойства делают ее идеально подходящей для предлагаемого метода теплообмена. На рисунке 2 сравнивается устойчивый теплообмен двух панелей, одной деревянной и одной бетонной. Оба они оптимальны, рассчитаны на одинаковую относительную скорость теплообмена.Однако бетонная панель нецелесообразна, потому что абсолютные требования к нагреву и тепловые потери слишком высоки. Причина в теплопроводности бетона, которая в 10 раз выше, чем у дерева (см. Рисунок 6 в разделе 4). Низкая теплопроводность древесины делает ее уникальной по сравнению с другими конструкционными материалами. Он не только может накапливать углерод и поддерживать здание, но также может соответствовать строгим стандартам по потерям проводимости без чрезмерной вентиляции или перегрева.

Рисунок 2 .Принцип теплообмена, показанный на рисунке 1, изображен в виде санки: U 0 представляет потери тепла по базовой линии, U 1 общий теплообмен, U 2 приток тепла при вентиляции и U 3 кондуктивные потери тепла. Древесина имеет более низкую теплопроводность, чем бетон, поэтому потери теплопроводности ( U 3 ) можно уменьшить без чрезмерной вентиляции ( U 2 ) или перегрева ( U 1 ), что делает ее более подходящей. к этому приложению.

1,5. Граничные условия

Один давний вопрос в исследованиях DI с пористыми материалами – какие граничные условия использовать при моделировании. Полевые эксперименты показали, что температура на внутренней поверхности ниже прогнозируемой, что отрицательно сказывается на тепловом комфорте и экономии энергии (Dalehaug et al., 1993).

Как ведет себя конвективная пограничная пленка на внутренней поверхности? Этот вопрос важен для исследования DI, потому что пористые материалы должны получать тепло из комнаты, прежде чем они смогут обменять его с входящим воздухом.Используя визуализацию Шлирена, исследователи обнаружили, что пористые материалы теряют тепловой контакт с комнатным воздухом, когда входящий воздух поднимает граничную пленку с внутренней поверхности (Craig and Grinham, 2017). Они также обнаружили тонкие эффекты на внешней поверхности. Конвекционная теплопередача была увеличена в несколько раз, а тепло в граничной пленке засасывалось обратно в материал. Они пришли к выводу, что существует возможность рекуперации тепла на внешней поверхности, и что лучше всего нагревать внутреннюю поверхность путем прямого контакта.

Следуя этой рекомендации, тестовые панели в настоящем исследовании нагреваются непосредственно на внутренней поверхности. Не требуется много обогрева. Например, для примера деревянной панели на Рисунке 2 требуется только U1 = 2 (Вт / м2 · К), что находится в диапазоне стандартных полов с подогревом. В настоящем исследовании использовался электрический резистивный нагрев, поскольку это было практично с учетом имеющихся ресурсов. Специальная гидравлическая панель была изготовлена ​​для нагрева испытательных панелей в исследовании Шлирена. Стандартные капиллярные трубки также подходят для прямого контактного нагрева.Для будущих применений предпочтительны гидравлические контуры. Технологии обогрева или охлаждения, в которых используются большие теплообменные поверхности внутри помещений, называются излучающими системами или термоактивными поверхностями (TAS) (Moe, 2010; Rhee and Kim, 2015; Rhee et al., 2017). Большой TAS с водяным контуром, подключенным к тепловому насосу с низким подъемом, может использовать небольшие перепады температур от возобновляемых поглотителей и источников, таких как солнечная, геотермальная и инфракрасная область неба (Meggers et al., 2012 ; Лим, 2019).

1.6. Естественная вентиляция

Если гидронные поверхности идеально подходят для мономатериальных теплообменных оболочек, есть ли другие возможности для интеграции функций HVAC? Естественная вентиляция играет важную роль в минимизации инфраструктуры HVAC и ее выбросов в течение жизненного цикла (Kiamili et al., 2020). Значительные успехи были достигнуты в понимании жидкостной механики выталкивающей вентиляции, которая управляется теплом, а не ветром. Например, прорыв произошел в 2009 году, когда исследователи охарактеризовали автоматический механизм рекуперации тепла, известный как «естественное перемешивание» (Woods et al., 2009). Когда теплый воздух поднимается и выходит, свежий воздух заменяет его, попадая через то же отверстие. Выходящий воздух предварительно нагревает входящий воздух в состоянии динамического равновесия.

Некоторые исследователи изучили возможность сочетания DI с естественной вентиляцией (Etheridge and Zhang, 1998; Ascione et al., 2015; Park et al., 2016). Связь может быть усилена за счет использования мономатериальных теплообменных оболочек (то есть «дышащих стен»). Используя эффект плавучести, все тепло- и воздухообмены можно контролировать с помощью встроенной гидравлической поверхности.На рисунке 3 показаны две возможности. С левой стороны плавучесть обеспечивает вентиляцию, но на выходе нет рекуперации тепла. Справа показана гипотеза о том, как восстановить вентиляцию на выходе с помощью двойной оболочки. В этой статье не рассматриваются естественные контуры рекуперации тепла. Тем не менее, он делает первый шаг, показывая, что возможно соединить дышащие стены с выталкивающей вентиляцией в идеальных условиях.

Рисунок 3 . Умозрительные схемы, подсказывающие, как соединить «дышащие стены» с вытяжной вентиляцией. (слева) Плавучесть обеспечивает вентиляцию, но нет рекуперации тепла на выходе. (справа) Гипотеза о том, как восстановить вентиляцию на выходе с помощью двойной оболочки.

1,7. Outlook

В данной статье представлены результаты трех экспериментов, которые характеризуют поведение массивных деревянных панелей, оптимизированных в качестве теплообменников. Предоставляется приложение, чтобы читатели могли самостоятельно оценить возможные варианты дизайна (Craig and Fortin, 2020). В первом эксперименте измеряется устойчивое состояние панели, подвергшейся ступенчатому изменению нагрева.Во втором эксперименте измеряются изменения теплообмена из-за изменения температуры. Последний эксперимент показывает, что можно втягивать вентиляцию через панели, используя тепловую плавучесть вместо вентилятора, при сохранении ожидаемой скорости теплообмена.

2. Теория

2.1. Устойчивый теплообмен

На рис. 1 показан принцип оптимизации параллельных каналов в твердом материале для «встречного» теплообмена. Для этого сценария были разработаны две численные корреляции (Kim et al., 2007). Обе корреляции были экспериментально подтверждены (Craig and Grinham, 2017). Первая корреляция дает оптимальное расстояние между каналами:

HoptL = 3,22 Be − 1/3 Φ − 0,85 (kka) 0,17 (1)

, где H opt – оптимизированное расстояние между каналами, L – толщина панели, k – теплопроводность материала панели и k a – теплопроводность воздух. Число Беджана, Be , определяется как:

. Be = ΔP L2μα (2)

, где Δ P – расчетное давление, μ – динамическая вязкость воздуха, а α – коэффициент температуропроводности воздуха.Пустотная доля панели Φ определяется как:

Φ = π D24 h3 (3)

где D – диаметр каналов. Геометрия показана на рисунке 4.

Рисунок 4 . Определение геометрии панели.

Вторая корреляция предсказывает общую (нормализованную) теплопередачу через оптимальную конструкцию:

NTU = 0,41Be1 / 3 Φ0,6 (kka) -0,65 (4)

Количество тепловых единиц, NTU , представляет собой отношение общего коэффициента теплопередачи во время теплообмена, U 1 , к базовому условию при отсутствии теплообмена, U 0 :

NTU = U1U0 = q1 ″ / (Ts-Te) k / L (5)

, где q1 ″ – тепловой поток на нагретой внутренней поверхности, T s – температура нагретой внутренней поверхности, а T e – температура наружного воздуха (который входит по каналам).Во время ощутимого устойчивого теплообмена поверхностный тепловой поток (q1 ″) частично передается входящему воздуху (q2 ″), а оставшаяся часть (q3 ″) теряется во внешнюю среду из-за теплопроводности:

q1 ″ = q2 ″ + q3 ″ (6)

Рисунок 2 иллюстрирует этот баланс теплообмена, который также может быть определен в терминах коэффициентов теплопередачи:

где:

U1 = q1 ″ (Ts-Te) = NTU U0 (8) U2 = q2 ″ (Ts-Te) = ε NTU U0 (9) U3 = q3 ″ (Ts-Te) = (1-ε) NTU U0 (10)

и ε – эффективность теплообмена:

Эти определения ε и NTU действительны до тех пор, пока поверхностный тепловой поток (q1 ″) или температура поверхности ( T s ) постоянны и однородны.Интегрированная гидроника может точно аппроксимировать оба граничных условия (Craig and Grinham, 2017). В любом случае ε эквивалентно относительному увеличению температуры поступающего воздуха:

ε = Ти-ТэЦ-Те (12)

, где T i – температура входящего воздуха в момент, когда он покидает каналы и попадает во внутреннее пространство. Обратите внимание, что при ε → 1, T i T s .

Следуя соглашению в литературе по динамической изоляции, U 3 в уравнении (10) может называться «динамическим значением U ». Однако важно подчеркнуть баланс, выраженный в уравнении (7) и проиллюстрированный на рисунке 2. То есть достижение низких значений для U 3 не должно происходить за счет чрезмерной вентиляции ( U 2 ) или перегрев ( U 1 ). Расход воздуха на единицу площади панели определяется как:

u = D2 Φ ΔP32 мкл (13)

и имеет блоки м / с или м 3 / м 2 / с .Наконец, есть важный предел размеров, на который следует обратить внимание:

Уравнения (1) и (4) недействительны, если этот предел превышен. Панель слишком тонкая относительно расстояния между каналами. Физически недостаточно места для того, чтобы тепло могло отклоняться к каналам, как показано на правой стороне рисунка 1 (тепло распространяется только на более низкие температуры, поэтому “ изгиб ” потока более чем на 90 ° будет противоречить второму закону термодинамика).

Приведенные выше уравнения описывают устойчивый теплообмен в оптимизированных панелях.Каковы последствия проектирования для массивной древесины? На рисунке 5 показан снимок экрана приложения, которое можно загрузить бесплатно и которое решает приведенные выше уравнения, чтобы помочь оценить варианты оптимизации массовых деревянных панелей в качестве теплообменников (Craig and Fortin, 2020). В приложении есть четыре управляющих параметра. Дизайнеры могут выбирать значения для каждого параметра из указанного диапазона (эти диапазоны легко настроить, изменив исходный код):

• Теплопроводность к ( Вт / м · к ) основного материала.Диапазон 0,1 < k <0,4 был выбран для охвата большинства пород древесины хвойных и лиственных пород, независимо от ориентации волокон (см. Рисунок 6).

• Коэффициент теплопроводности, то есть U3 (Вт / м2 · К), «динамическое значение U ». Этот широкий диапазон был выбран для того, чтобы исследователи могли оценивать различные конструкции, выбирая между стандартами U в разных странах или высокопроизводительными стандартами, такими как Passivhaus .

• Коэффициент нагрева поверхности U1 (Вт / м2 · К) (который можно регулировать с помощью встроенного водяного обогрева).Диапазон 1 < U 1 <4 намеренно занижен, как и у стандартных полов с подогревом. (Напомним, что иметь низкие потери проводимости бессмысленно, если для достижения этой цели требуется слишком много тепла)

• Расчетное давление △ P ( Па, ), которое прикладывается к панели посредством всасывания. Диапазон 2 <△ P <8 был выбран потому, что эти давления можно поддерживать механически с помощью вентилятора или естественным образом с использованием тепловой плавучести (эффект суммирования).

Рисунок 5 . Скриншот приложения, написанного для партнера по этой статье, которое можно бесплатно загрузить здесь (Craig and Fortin, 2020). Он решает уравнения (1) – (14), показывающие, как оптимизировать массовые деревянные панели в качестве теплообменников.

Рисунок 6 . Измерения тепловых свойств сосны южной желтой: проводимость ( k) , коэффициент диффузии (α) и объемная теплоемкость (ρ c ). Измерения проводились на радиальных и поперечных образцах.Данные нанесены на график вместе с другими древесными материалами и строительными материалами для справки. Образцы сосны были испытаны в комнатных условиях (T = 23 C и относительная влажность 49%).

В таблице 1 сравниваются три возможных проекта теплообменных массивных деревянных панелей, рассчитанных с помощью приложения. Во всех трех гипотетических случаях достигается одно и то же низкое «динамическое значение U », U3 = 0,2 Вт / м2 · К, что находится в диапазоне значений U , предусмотренных строгими стандартами энергоэффективности. Различия между вариантами дизайна связаны с панельным отоплением, которое изменяется с небольшими приращениями (U1 = 2,3,4 Вт / м2 · K).Панели становятся тоньше по мере увеличения нагрева поверхности ( L ≈ 23, 18, 15 см ). Обратите внимание, что эта толщина находится в диапазоне стандартных толщин для панелей CLT. Другое изменение касается расхода воздуха на единицу площади панели, который увеличивается ( u ≈ 10, 14, 16 l / s / m 2 ) по мере того, как панели становятся тоньше. Эти показатели означают, что примерно один квадратный метр панели удовлетворяет потребности одного человека в вентиляции. Для контекста международные стандарты рекомендуют скорость вентиляции ~ 10 л / с на человека в офисной среде, хотя неблагоприятные последствия для здоровья или производительности были задокументированы, когда скорость вентиляции достигает 25 л / с на человека (Carrer et al., 2015).

Таблица 1 . Три примерных варианта деревянных теплообменных панелей, каждый из которых оптимизирован для U3 = 0,2 Вт / м2 · K.

Прилагаемое приложение показывает, что относительно высокая интенсивность вентиляции (5 < u <20 л / с / м 2 ) необходима для обеспечения эффективности теплообмена (ε> 0,6), что приводит к низкому нагреву -коэффициенты потерь (0,1

Поскольку для панелей требуется относительно высокая интенсивность вентиляции, они лучше всего подходят для относительно больших зданий с высокой посещаемостью. Рассмотрим кубическое здание квадратной длины x = 12 м . Он террасированный, поэтому видны только два фасада. Скорость вентиляции на единицу площади панели составляет u = 0,01 м 3 / с / м 2 (т.е.е., 10 л / с / м 2 ). Количество воздухообменов в час составляет N = 3, 600 · u · 2 x 2 / x 3 = 7200 u / x . Если панели занимают 100% площади фасада, N = 6. Если панели занимают 50% площади фасада, N = 3 и так далее.

2.2. Переходный теплообмен

Работа деревянных панелей при устойчивом теплообмене является многообещающей, но сколько времени требуется для достижения устойчивого состояния и как суточные колебания внешней температуры влияют на теплообмен?

Модель 1994 года, описывающая переходное поведение динамической изоляции, недавно была проверена в контролируемых периодических условиях (Krarti, 1994; Alongi et al., 2020). Однако эта модель предназначена для теплообмена в одном пространственном измерении. Он подходит для волокнистых изоляционных материалов или изоляционных материалов с открытыми порами в противофлюсе, но не применяется к материалам, где поток проводимости изменяется в двух или трех пространственных измерениях, как показано на Рисунке 1. Основа принципа «дышащей стены», показанного на На рисунке 1 показано исследование, показывающее, как оптимизировать параллельные каналы для устойчивого теплообмена в экстремальных тепловых условиях (Kim et al., 2007). Эти исследователи расширили свою работу, оптимизировав древовидные каналы в установившемся состоянии, а затем охарактеризовав переходную реакцию на внезапное нагревание (Kim et al., 2008, 2009). Однако их переходный анализ применим только к древовидным каналам.

2.2.1. Время достижения устойчивого состояния

Похоже, что в литературе нет модели для описания переходного встречного теплообмена в панели с параллельными каналами. Вместо этого тепловой отклик можно аппроксимировать как функцию числа Фурье:

Fo = α tLc2 (15)

, где α – коэффициент температуропроводности материала, t – время в секундах и L c – характерная длина, определяемая как отношение объема твердого тела к открытой площади поверхности, которая для геометрия, определенная на рисунке 4, составляет:

Lc = (h3-π D24) L 2 (h3-π D24) + π D L (16)

Число Фурье – это мера времени без единиц измерения.Это соотношение, где 1 означает, что тепло проникло на всю глубину объекта. Тепловая реакция «дышащей стены» на скачкообразное изменение температуры поверхности или теплового потока поверхности теперь может быть охарактеризована как:

NTU (t) = (a1 NTU + a2Fo) LLc (17)

, где NTU – расчетное значение в установившемся режиме, определенное уравнением (4), а a 1 и a 2 – эмпирические коэффициенты. Напомним, что трехмерная эволюция теплового потока через материал неизвестна.Следовательно, оба коэффициента действуют как поправочные коэффициенты для эффектов формы. На графике NTU ( t ) по сравнению с Fo , a 1 контролирует положение кривой (и, следовательно, величину теплопередачи), тогда как a 2 контролирует кривизну. Стандартные аналитические растворы служат полезным ориентиром для калибровки (Bart and Hanjalić, 2003; Incropera et al., 2007). Плоская стена – это сплошная стена, подверженная нагреву с обеих поверхностей.При панельном отоплении с постоянным тепловым потоком:

А при панельном обогреве с постоянной температурой:

, где a 1 = 0 для обоих условий. Таким образом, мы предполагаем, что при ступенчатом изменении нагрева поверхности общий теплоперенос через «дышащую стену» будет развиваться аналогично плоской стенке той же характерной длины с небольшими различиями из-за формы. эффекты.

2.2.2. Периодический теплообмен

Что делать, если внешняя температура периодически меняется в течение суточного цикла? Когда применяется постоянная температура поверхности или поверхностный тепловой поток, и по прошествии достаточного времени для достижения квази установившегося состояния, общий (нормализованный) теплоперенос должен периодически колебаться вокруг среднего установившегося значения.Поведение должно приближаться к полубесконечному твердому телу, но, опять же, с различиями из-за эффектов формы (Bart and Hanjalić, 2003; Incropera et al., 2007):

NTU (t) = NTU + a1 Lcω / α sin (ωt + π / 4) (20)

, где ω – угловая частота (2π / 86400). Здесь коэффициент a 1 калибруется для величины колебаний. Мы предполагаем, что значение для a 1 будет одинаковым в обоих уравнениях (17) и (20).

2.3. Теплообмен с вытяжной вентиляцией

Рассмотрим здание в левой части рисунка 3, работающее в устойчивом состоянии и без людей.Только встроенный TAS (термоактивная поверхность) обогревает комнату. Других явных тепловыделений или скрытых эффектов теплопередачи нет. Часть тепла от TAS передается в комнату, а остальное теряется в окружающую среду за счет теплопроводности:

, где q 0 – общий нагрев от (с обеих сторон) TAS, q hx – общий теплообмен в комнату, а q cl – полная потеря проводимости через оболочку.Теплообмен от ТАС к помещению ( q hx ) происходит двумя способами. Во-первых, за счет передачи поступающему воздуху через теплообменную панель. Во-вторых, при прямом контакте с комнатным воздухом через открытую поверхность:

qhx = q1 ″ A1 ε + h A1 (Ts-Tii) (22)

Новые термины: A 1 , h и T ii – это общая площадь интегрированного TAS, средний коэффициент теплопередачи между нагретой поверхностью и воздухом в помещении, а также температура внутреннего воздуха соответственно.Для простоты предположим, что теплообмен внутри комнаты незначителен, а внутренний воздух хорошо перемешан.

Потери проводимости ( q cl ) также происходят двумя способами. Во-первых, через заднюю часть теплообменных панелей, а во-вторых, через части оболочки здания, не участвующие в теплообмене:

qcl = q1 ″ A1 (1-ε) + UA (Tii-Te) (23)

Термин UA – это полная проводимость ( Вт, / K ) ограждающей конструкции здания, которая не участвует в теплообмене.Тепло, содержащееся в вентиляционном потоке, теперь можно определить как:

Q ρcp (Tii-Te) = q0 – qcl (24)

, где ρ c p – объемная теплоемкость воздуха, а Q – интенсивность вентиляции за счет разницы температур внутри / снаружи:

Q = A * (г ZTii-TeTe) 12 (25)

, где г, – сила тяжести Земли, Z – это изменение высоты между входом и выходом потока (например, от середины теплообменной панели до верха дымохода) и A * – общая эффективная вентиляционная площадь (Acred, 2014)

А * = (12c12A12 + 12c22A22) -12 (26)

, который возникает из определения объемной скорости:

, где A 1 и A 2 – физические площади входа и выхода, а c 1 и c 2 – соответствующие коэффициенты расхода соответственно.Для теплообменных панелей A 1 – это общая площадь поверхности, а коэффициент расхода равен:

c1 = (△ Pρu2 / 2) -12 (28)

Переставив уравнение (13), перепад давления в теплообменнике можно определить как:

△ P = 32 мкл uD2 Φ (29)

Для простоты предположим, что перепад давления по высоте панели одинаков. На рисунке 3 показано более реалистичное изменение давления из-за плавучести. Подстановка уравнения (29) в уравнение (28) дает:

c1 = (64 L μD2 u ρ Φ) -12 (30)

Наконец, коэффициент расхода для выпускного отверстия, если предположить, что он имеет острую кромку, можно аппроксимировать как (Acred, 2014)

Следующие уравнения описывают существенные особенности тепловой связи между «дышащими стенками» и вытяжной вентиляцией.Забегая вперед, в разделе 4.3 представлены результаты экспериментального устройства, предназначенного для демонстрации этой связи в действии. Теплообменная панель устанавливается горизонтально на уровне пола, поэтому давление по поверхности панели равномерное, а внутренний воздух хорошо перемешивается. Следует подчеркнуть, что это идеализированные обстоятельства. Возможна горизонтальная установка, но в будущем более вероятны вертикальные или наклонные оболочки. Если панель расположена вертикально, давление на ней будет изменяться с высотой, равно как и скорость и теплообмен.Внутренний воздух может расслаиваться ниже верхней части панели, в зависимости от высоты дымохода относительно верхней части панели. В этом случае будет отток через верхние каналы. Все эти эффекты были специально разработаны на основе эксперимента, описанного в 4.3, чтобы проверить основные элементы тепловой связи.

Аппарат высотой с комнату (для создания разумного давления в дымовой трубе) по своим пропорциям напоминает тонкий дымоход. Следовательно, вместо сжатия потока на выходе необходимо вычислить потери на трение на боковых стенках.После преобразования коэффициентов трения в коэффициенты расхода (Jones et al., 2016), если поток ламинарный, то:

, а если поток турбулентный, то:

c2 = 10,079 Re − 0,25 (33)

, где число Рейнольдса потока:

3. Материалы и методы

Были спроектированы и выполнены эксперименты для проверки эффективности теплообмена в установившихся и переходных условиях, а также когда вентиляция приводится в действие плавучестью, а не вентилятором. Первый эксперимент измеряет теплообмен в установившемся режиме и время достижения установившегося состояния, когда панели подвергаются ступенчатому изменению нагрева.Во втором эксперименте измеряется, как теплообмен периодически изменяется при ежедневных изменениях внешней температуры. В последнем эксперименте измеряется внутренняя температура и скорость потока внутри прокси-здания, когда вентиляция через испытательную панель приводится в действие тепловой плавучестью, а не вентилятором.

3.1. Тестовые панели

Были изготовлены две испытательные панели, одна из цельной древесины, другая из акрила. Для деревянного панно была выбрана южная желтая сосна. Акрил был выбран в качестве контроля, потому что он имеет такие же тепловые свойства, что и древесина, за исключением того, что тепловые свойства изотропны, а не анизотропны, и он не впитывает влагу.Панели имели размеры 12 дюймов × 16 дюймов (30,48 × 40,64 см) с площадью теплообмена 12 дюймов × 12 дюймов (30,48 × 30,48 см) и толщиной 2 дюйма (5,08 см). Обе панели были оптимизированы для расчетного давления 3 Па. В таблице 2 приведены свойства каждой панели, и они показаны рядом на рисунке 7.

Таблица 2 . Параметры конструкции тестовой панели.

Рисунок 7 . Экспериментальная установка для вентиляции с вентилятором. Этот прибор использовался для первого и второго экспериментов (см. Раздел 3.2), измерение (1) стационарного поведения панели, подвергшейся ступенчатому изменению нагрева и (2) периодических изменений теплообмена из-за изменения внешней температуры.

3.1.1. Тепловые свойства

Свойства материала, необходимые для прогнозирования устойчивой и переходной проводимости: теплопроводность k ( Вт / м K ), температуропроводность α ( м 2 / с ) и объемная теплоемкость ρ c ( J / м 3 · K ).Для древесины эти свойства зависят от породы, направления и места измерения, а также от условий окружающей среды. Для измерения тепловых свойств южной желтой сосны использовали измерительное устройство (анализатор теплопроводности C-Therm) и метод источника переходной плоскости (ASTM D7984). Образцы были приготовлены из той же партии, что и испытательная панель, и разрезаны в радиальном и поперечном направлениях к волокнам. Было приготовлено по пять образцов каждого направления зерен, каждый испытан по десять раз.Результаты показаны на Рисунке 6 в сравнении с другими породами древесины и строительными материалами.

3.1.2. Датчики
Датчики

FluxTeq Ultra 09 (85 × 95 мм) использовались для измерения теплового потока и температуры на обеих поверхностях тестовых панелей. «Внутренний» датчик теплового потока был помещен в выемку с выемкой так, чтобы TAS (см. Раздел 3.1.3) прилегал заподлицо с поверхностью. Размер датчиков теплового потока определял расстояние между каналами в панелях. Температуру воздуха измеряли с помощью термопар Omega Type T.Температура T e была измерена путем размещения наконечников двух термопар над центром двух каналов с последующим усреднением. Это измерение было близко сравнимо с измерением температуры вне испытательного бокса. Измерения регистрировались с использованием регистратора данных GL240. Небольшой канал сделал невозможным измерение T и с помощью термопар. При размещении над каналом TAS воздействовал на термопару, и вставка термопары в канал блокировала поток.

3.1.3. Термоактивная поверхность

Поверхностный нагреватель, называемый здесь термически активной поверхностью (TAS), был изготовлен с использованием нагревательных проводов электрического сопротивления. Матрица из 26 Ga нихрома 60 была установлена ​​на алюминиевом листе толщиной 0,063 дюйма, в котором просверлены отверстия, соответствующие каналам в испытательной панели. Проволочная решетка была намотана вокруг секций из ПТФЭ стержня 1/2 дюйма высотой 1/4 дюйма. Стержни были прикреплены к алюминиевой пластине с шагом 1 дюйм, чтобы создать расстояние между проволоками 1/2 дюйма. Проволока была электрически изолирована от алюминия листом полиэфирной пленки с клейкой основой.Покрытая алюминием полиэфирная пленка была закреплена на проволочной сетке с помощью аэрозольного клея. TAS был разделен на две параллельные цепи и был подключен к регулируемому источнику питания Extech 600 Вт.

3.2. Аппарат с вентилятором

Это устройство позволяло всасывать воздух через испытательную панель при постоянном давлении. Испытательная камера была сделана из деревянных рам, собранных с натянутым на них тонким прозрачным пластиковым листом (см. Рис. 7). Использовались тонкие листы, поэтому камера была герметичной, но не накапливала тепло.Стыки камеры были заделаны герметиком и слоем ленты. К одному концу коробки прикрепляли деревянную раму с непрерывным уплотнительным кольцом, которое прижималось к краю испытательной панели. Стержни с резьбой, по одному в каждом углу, проходили через панель. Для крепления панели к раме и сжатия прокладки использовались резиновые шайбы и гайки. На другом конце коробки был установлен кусок жесткой изоляционной панели размером 2 дюйма с отверстием для установки откалиброванного вентилятора серии RetroTec 5000. Вентилятор снижает давление внутри коробки, имитируя интерьер здания.Перепад давления контролировали и отслеживали с помощью расходомера RetroTec DM32 и набора трубок Пито. TAS наносился на поверхность панели, обращенную внутрь камеры, и контролировался регулируемым источником питания Extech 600 Вт.

3.2.1. Устойчивый теплообмен, время до установившегося состояния

Испытания проводились при расчетном давлении (3 Па) и увеличивающемся приращении давления (5, 7, 9 Па). Устойчивое состояние было определено как точка, когда тепловой поток (q1 ″) достиг ± 5% от заданного теплового потока.Для каждого давления был проведен цикл из трех испытаний с использованием расчетного теплового потока (то есть теплового потока, оптимизированного для 3 Па). Затем был проведен еще один цикл из трех испытаний для каждого давления, на этот раз постепенно увеличивая тепловой поток, как если бы панель была оптимизирована для этого давления. Разница между обоими методами была незначительной, и результаты всех раундов были объединены для расчета стандартной ошибки.

3.2.2. Периодический теплообмен

В этом эксперименте использовалось то же оборудование, что и в стационарном эксперименте.Тест проводился на открытом воздухе в затененном месте. Постоянное давление ( P = 3 Па ) поддерживалось на протяжении всего эксперимента, который длился 5 дней. Также поддерживалась постоянная электрическая мощность ТАС, так что средний тепловой поток находился в пределах ± 5% от расчетного теплового потока.

3.3. Аппарат с приводом от плавучести

Отдельная камера, выступающая в качестве прокси-здания, была изготовлена ​​для проверки соединения с вытяжной вентиляцией. Теплообменная панель была установлена ​​горизонтально на уровне пола, чтобы обеспечить равномерное давление на поверхности TAS и хорошее перемешивание внутреннего воздуха (как описано в разделе 2.3, если бы панель была вертикальной, давление на ней изменялось бы с высотой, как и скорость и теплообмен, и возник бы риск обратного потока, если бы внутренний воздух расслоился; эти эффекты будут изучены в будущих исследованиях). Аппарат имел высоту 8 футов (2,44 м), высоту помещения, для создания приемлемого давления в дымовой трубе. Камера была тонкой с конусом, похожим на дымоход, чтобы избежать обменных потоков наверху. Камера была покрыта войлоком и жесткой изоляцией (см. Рис. 8). Испытательная панель была установлена ​​на дне камеры так, чтобы ТАС была обращена внутрь.Слой ленты был наложен на стык между камерой и панелью для создания герметичного уплотнения. Верхнее отверстие камеры было 2 на 2 дюйма (5 × 5 см). Вся сборка была установлена ​​на ножках, которые удерживали дно камеры 2 ′ (60 см) от земли. Термопары были расположены в тех же местах над каналами, что и эксперимент с вентилятором, и с равными интервалами внутри дымохода. Датчики перепада давления Sensirion SDP800 были прикреплены к трубке Пито для измерения скорости воздуха на выходе.Испытания проводились путем постепенного увеличения мощности нагрева ТАС. Перед проведением измерений панели позволили достичь установившегося состояния (определяемого в этом исследовании, когда тепловой поток достигает ± 5% от расчетного теплового потока).

Рисунок 8 . Экспериментальная установка для вентиляции, управляемой плавучестью. Этот прибор использовался в третьем эксперименте (см. Раздел 3.3), измеряя внутреннюю температуру и скорость потока в промежуточном здании, когда вентиляция через испытательную панель приводится в действие тепловой плавучестью, а не вентилятором.

4. Результаты и обсуждение

4.1. Устойчивый теплообмен

На рис. 9 показаны общие нормализованные результаты теплопередачи для обеих панелей. Черные пунктирные линии представляют уравнение (4), а заштрихованные маркеры показывают измерения при расчетном давлении, а именно 3 Па. Слева направо незатененные маркеры показывают измерения при нерасчетном давлении, а именно 5, 7 и 9. Па. Таблицы 3, 4 суммируют результаты в терминах U 1 , NTU и ε.

Рисунок 9 .Измерения устойчивого теплообмена для акрила (слева) и сосны (справа). Данные нанесены на график относительно прогнозируемого теплообмена по уравнению (4) при расчетном (заполнено) и нерасчетном давлении (открыто). Вторичные пунктирные линии показывают новые корреляции (уравнения 35, 36) для теплообмена для всего диапазона давлений.

Таблица 3 . Замеры для устойчивого теплообмена, сосновая панель.

Таблица 4 . Замеры для устойчивого теплообмена, акриловая панель.

Обратите внимание, что «расчетное давление» – это давление, для которого оптимизирована данная панель. Уравнение (1) показывает, как оптимизировать геометрию панели при расчетном давлении. Уравнение (4) предсказывает общую (нормализованную) теплопередачу оптимизированной панели при расчетном давлении. Его можно использовать для прогнозирования производительности при гибком изменении технических характеристик (например, теплопроводности, толщины панели) после указания расчетного давления, как показано в прилагаемом приложении (Craig and Fortin, 2020).

Таблица 3 показывает, что нормализованная теплопередача при расчетном давлении составила NTU = 1,47 ± 0,05 для деревянной испытательной панели по сравнению с прогнозируемым значением NTU = 1,53 ± 0,03. Для «контрольной» тестовой панели согласие было еще более тесным (см. Таблицу 4). Тесное соответствие между прогнозами и измерениями при расчетном давлении расширяет результаты недавней экспериментальной проверки (Craig and Grinham, 2017) и подчеркивает надежный характер исходных корреляций.Эти корреляции были разработаны для экстремальных тепловых условий (Kim et al., 2007), поэтому примечательно, что они так точно переносятся на строительные материалы в условиях окружающей среды. Анизотропия текстуры древесины не оказала существенного влияния на результаты при расчетном давлении, вызывая лишь небольшое снижение общей теплопередачи. Необходимы дальнейшие исследования, чтобы понять, существует ли способ использования текстуры древесины для повышения эффективности теплообмена.

Уравнение (4) предсказывает только теплопередачу при расчетном давлении.Поэтому неудивительно, что измерения при 5, 7 и 9 Па отклоняются от уравнения (4). Производительность для всего диапазона давлений коррелировала для акриловой панели следующим образом:

NTU акрил = 1,12 NTU 0,44 (35)

, а для сосновой панели:

NTUpine = 1,37 NTU 0,15 (36)

Где NTU – полная теплопередача при расчетном давлении, определяемом уравнением (4). Коррелирующие коэффициенты и показатели в уравнениях (35) и (36) были найдены автоматически с помощью функции LinearModelFit в системе Mathematica.Коэффициент детерминации (R 2 ) был> 0,999 для обеих моделей линейной подгонки. В следующих экспериментах уравнение (36) используется для прогнозирования устойчивой теплопередачи испытательной панели при нерасчетных давлениях (давлениях, для которых панель не была оптимизирована).

Уравнения (35) и (36) имеют разные наклоны (показатели степени). Поэтому кажется, что анизотропия действительно играет роль в ограничении общей теплопередачи при нерасчетных давлениях. Пологий наклон для NTU, как видно из уравнения (36), подразумевает значение U с двумя состояниями.То есть значение U , которое не сильно зависит от давления, но которое переключает между расчетными значениями U 0 и U 3 .

Общая теплопередача ( U 1 , q1 ″, NTU) ведет себя так, как ожидалось. Однако таблицы 3, 4 показывают несоответствие между предсказаниями и измерениями ε. Какое объяснение? Он помогает рассмотреть методы измерения эффективности теплообмена, которых существует четыре. Первый метод – измерить его косвенно, измерив NTU:

.

Этот метод делает предположение о том, как ведет себя эффективность теплообмена, на основе стандартной теории теплообменников.Второй метод измеряет отношение исходящей проводимости к общей теплопередаче:

ε = 1-U3U1 = 1-q3 ″ q1 ″ (38)

Это прямое измерение, которое использовалось в настоящем исследовании. Чтобы подтвердить это измерение, необходимо отслеживать теплообмен с вентиляционным потоком, который можно измерить напрямую двумя способами. Либо:

ε = U2U1 = q2 ″ q1 ″ (39)

или:

ε = Ти-ТэЦ-Те (40)

Оба метода требуют точного измерения T i , поскольку q2 ″ = u ρc (Ti-Te).Однако было невозможно измерить T i с помощью существующего прибора. Малый диаметр каналов означал, что термопара либо блокировала канал, либо находилась под влиянием TAS (см. Раздел 3.1.2). Следовательно, хотя этот эксперимент подтверждает общую теплопередачу, необходимы дальнейшие исследования, чтобы понять, какая часть тепла передается входящей вентиляции. Вопреки здравому смыслу, тепло, исходящее от внешней поверхности, не может полностью передаваться окружающей среде.Оптическое отображение Шлирена показало, что во время всасывания конвекция усиливается на внешней поверхности, в то время как граничная пленка втягивается в каналы (Craig and Grinham, 2017). Следовательно, более высокие, чем ожидалось, значения для q3 ″ и U 3 могут быть признаком рекуперации тепла в действии, а не увеличения потерь. В дальнейших исследованиях для измерения T i можно использовать такой метод, как Фоново-ориентированный Шлирен, поэтому измерения эффективности теплообмена можно триангулировать, а влияние рекуперации тепла внешней пленки может быть определенный.

4.2. Переходный теплообмен

4.2.1. Время достижения устойчивого состояния

На рисунке 10 показано, как теплообмен развивается при ступенчатом изменении нагрева поверхности. Данные взяты из сосновой панели, усредненные по трем испытаниям при расчетном давлении (3 Па). Электрическая мощность, нагревающая поверхность, была постоянной на протяжении всего эксперимента. Левый график показывает общую теплопередачу ( NTU ( t )), правый график показывает эффективность теплообмена (ε). Оба графика отслеживают изменение числа Фурье, определяемого уравнением (15), относительного показателя того, как проводимость развивается внутри объекта с течением времени.Характерная длина панели составляла L c = 0,021, рассчитанная с использованием уравнения (16). Эксперименты длились чуть более 240 мин. Следовательно, Fo = 1 означает ~ 1 час. Это также знаменует важный порог: время, когда тепло предположительно проникает на всю глубину объекта.

Рисунок 10 . Испытательная панель из сосны, время достижения устойчивого теплообмена в зависимости от числа Фурье. Fo = 1 составляет ~ 1 час. Измерения общего теплообмена (NTU) и эффективности теплообмена (ε) сравниваются с эталонными прогнозами для плоской стенки (уравнения 17–19).

На поверхности испытательной панели тепловой поток q1 ″ достигал ± 5% от прогнозируемого значения через ~ 110 мин, когда Fo ~ 1,8. (После этого данные использовались для измерения устойчивого теплообмена, см. Раздел 4.1). Fo ~ 1.8 знаменует собой еще один важный момент, когда данные выходят за рамки тестов, обозначенных черными пунктирными линиями. Эти эталоны представляют собой передачу тепла через плоскую стенку той же характерной длины во время ступенчатого изменения нагрева, с постоянной температурой или постоянным тепловым потоком, приложенным к обеим поверхностям (см. Уравнения 17–19).Как и предполагалось, до достижения установившегося состояния теплопередача развивается аналогично плоской стенке той же характерной длины с небольшими различиями из-за эффектов формы. Данные для NTU ( t ) хорошо коррелируют с уравнением (17), когда:

и:

, когда уравнение (36) заменяет уравнение (4). Напомним, что a 1 контролирует положение кривой, описываемой уравнением (17), а a 2 контролирует кривизну.Необходимы дальнейшие исследования, чтобы установить, в какой степени эти коэффициенты формы для переходной проводимости изменяются в зависимости от размеров панели, если вообще изменяются. Физические эксперименты или анализ методом конечных элементов – подходящие способы решения этого вопроса.

Правый график показывает, как эффективность теплообмена изменяется со временем согласно двум методам ее измерения. Как уже говорилось, остается вопрос относительно фактической эффективности теплообмена и дополнительных измерений, необходимых для ее подтверждения.Отклоняющаяся кривая на правом графике фиг. 10 может отражать улучшенную теплопередачу на внешней поверхности из-за всасывания. Кроме того, рекуперация тепла на внешней поверхности из-за засасывания пограничной пленки в каналы может компенсировать отклонение между двумя кривыми. Короче говоря, хотя U 3 и q3 ″ больше, чем ожидалось, значительная часть этого тепла, вероятно, рекуперируется, а не теряется во внешнюю среду.

4.2.2. Периодический теплообмен

Панель из сосны была испытана в тени на открытом воздухе с использованием того же устройства с вентилятором, что и в предыдущих экспериментах.Постоянное давление (3 Па) и постоянная электрическая мощность для нагрева применялись в течение 3 дней. Цель эксперимента состояла в том, чтобы увидеть, будет ли общая (нормализованная) теплопередача периодически изменяться около установившегося значения, как предсказывается уравнением (20). На рисунке 11 показаны результаты. График (a) показывает изменение температур ( T e , T s , T s T e ) во времени, пока график (b) показано изменение коэффициентов теплопередачи ( U 1 , U 3 ).Обратите внимание, что базовое значение U составляет U 0 = k / L = 2,95 (см. Таблицу 2).

Рисунок 11 . Периодический теплообмен в уличных условиях для испытательной панели из сосны. (A) Температуры. (B) Коэффициенты теплопередачи. (C) Полная (нормализованная) теплопередача. (D) Эффективность теплообмена.

Графики (a) и (b) включены для справки, но графики (c) и (d) представляют собой результаты, представляющие общий интерес, так как образцы для NTU (t) и ε должны воспроизводиться в разных климатических условиях с разными дизайнами панелей. .Общая (нормализованная) теплопередача действительно вела себя так, как предсказано уравнением (20), несмотря на воздействие легкого бриза и нормальных изменений внешней температуры (то есть изменений, которые не были идеально синусоидальными). Уравнение (20) включает коэффициент a 1 , который учитывает эффекты формы и калибрует величину теплопередачи. Здесь использовалось значение a 1 , определенное в предыдущем эксперименте, уравнение (41). Тот факт, что a 1 одинаковы в обоих экспериментах, предполагает, что это допустимый коэффициент формы для переходной проводимости (Bart and Hanjalić, 2003).Если это правда, это не изменится существенно, если размеры панели будут отличаться (хотя и оптимизированы).

Предыдущие два эксперимента выявили несоответствие между двумя методами измерения ε (см. Таблицу 3 и Рисунок 10B). Это несоответствие усиливается на Рисунке 11D. Сигнал данных от метода измерения 2 (уравнение 38) ниже и более изменчив, чем метод измерения 1 (уравнение 37). На рисунке 11 метод измерения 2, показанный на графике (d), накладывает сигналы для U 1 и U 3 , показанных на графике (b).Напомним, что более высокие, чем ожидалось, значения для U 3 не обязательно приводят к большим потерям. Как обсуждалось, необходимы дальнейшие исследования для измерения теплопередачи к вентиляционному потоку (уравнения 39 и 40), чтобы можно было полностью определить граничные эффекты на внешней поверхности и их влияние на ε.

4.3. Теплообмен с вытяжной вентиляцией

Отдельная камера, выступающая в качестве прокси-здания, была изготовлена ​​для испытания сцепки с выталкивающей вентиляцией в установившемся режиме.На рисунке 12 представлены результаты. График (a) показывает относительную температуру внутри помещения ( T ii T e ) как функцию общего нагрева от TAS ( q 0 ). График (b) показывает скорость выталкивающей вентиляции (Q), а также как функцию общего нагрева от TAS. На графиках показаны две прогнозируемые кривые, представляющие ламинарный (синий) или полностью турбулентный (красный) поток. Эти прогнозы были сделаны путем численного решения системы уравнений из раздела 2.3, где уравнения (32) и (33) оценивают коэффициент расхода дымохода в соответствии с любым режимом потока.

Рисунок 12 . Испытательная панель из сосны, теплообменник сцепления с вытяжной вентиляцией. (A) Внутренняя температура (относительно наружного воздуха) и (B) скорость потока вентиляции как функция увеличения тепловложения.

По мере увеличения обогрева ( q 0 ), также увеличивается скорость выталкивающей вентиляции (Q) и средняя температура внутри ( T ii ).Большинство точек попадают в заштрихованную область, подтверждая теорию, описанную в разделе 2.3. Эти результаты являются дополнительным подтверждением того, что ожидаемые скорости теплообмена имеют место.

Обратите внимание, что погрешность измерения температуры больше, чем для вентиляции. Скорость вентиляции измерялась в самом узком месте дымохода, чуть ниже его вершины, где поток сходился перед выходом. Измерения температуры проводились в нескольких точках вверх по дымоходу и усреднялись.Изменение температуры с высотой было незначительным, но датчики действительно испытывали турбулентность.

Этот эксперимент демонстрирует, что можно втягивать вентиляцию через панели, используя тепловую плавучесть вместо вентилятора, при сохранении ожидаемых скоростей теплообмена и давления. Следует подчеркнуть, что это идеализированные обстоятельства. Возможна горизонтальная установка, но в будущем более вероятны вертикальные или наклонные оболочки. Если бы панель была вертикальной, давление на ней изменялось бы с высотой, равно как и скорость и теплообмен.Внутренний воздух может расслаиваться ниже верхней части панели (в зависимости от высоты дымохода относительно верхней части панели). В этом случае был бы отток через верхние каналы. Все эти эффекты были специально разработаны вне эксперимента, чтобы подтвердить основные элементы тепловой связи. Требуются дальнейшие исследования, чтобы определить, что происходит, когда панели расположены вертикально (или наклонно), а не горизонтально. Также необходимы дальнейшие исследования, чтобы увидеть, есть ли способы естественной рекуперации тепла из вентиляции.В правой части рисунка 3 показана одна возможная конфигурация.

5. Заключение

Общая тема заключается в том, как радикально упростить проектирование деревянных зданий, чтобы сократить объемные и эксплуатационные выбросы углерода и облегчить хранение углерода в глобальном масштабе. Наше исследование было сосредоточено на том, как оптимизировать каналы в массивных деревянных панелях, чтобы они обменивались теплом с входящим воздухом. Анализ и эксперименты показывают, что можно достичь низких тепловых потерь (0,1 0,6), что, в свою очередь, требует относительно высокой скорости вентиляции (5

Мы предоставили приложение, чтобы коллеги-исследователи могли оценить влияние различных параметров на оптимальную геометрию и теоретические характеристики деревянных панелей при устойчивом теплообмене. Можно быстро увидеть, как теплопроводность, расчетное давление, внутренний тепловой поток и целевое значение U влияют на эффективность теплообмена и скорость вентиляции, а также на толщину панели, размер и расстояние между каналами. .

Мы провели эксперимент, чтобы проверить общую теплопередачу при установившемся теплообмене, измерить эффективность теплообмена и изолировать влияние анизотропии из-за структуры волокон в древесине. Нормализованная теплопередача при расчетном давлении составила NTU = 1,47 ± 0,05 по сравнению с прогнозируемым значением NTU = 1,53 ± 0,03. Следовательно, анизотропия древесины не оказала существенного влияния на общую теплопередачу при расчетном давлении. Расчетный теплообмен при расчетном давлении составил ε = 0.78 ± 0,01 по сравнению с косвенным измерением ε = 0,62 ± 0,02. В будущих экспериментах потребуется изолировать эффекты внешнего пограничного слоя, чтобы правильно измерить эффективность теплообмена.

Затем мы использовали те же экспериментальные данные, чтобы охарактеризовать переходную реакцию испытательной панели на скачкообразное изменение температуры. Мы обнаружили, что общая теплопередача развивается, как это происходит через плоскую стенку эквивалентной характеристической толщины, переходя в стационарное состояние, когда Fo ≈ 2.Затем мы протестировали устройство на открытом воздухе, чтобы охарактеризовать теплопередачу в ответ на естественные колебания внешней температуры, применяя постоянный нагрев поверхности и давление. Общая теплопередача периодически изменялась около среднего значения – расчетного значения в установившемся режиме. Простая модель, описывающая периодические колебания, которая включала эмпирический коэффициент формы, полученный в эксперименте со ступенчатым изменением, учитывала теплопередачу с точностью до R 2 = 0,9953 ± 0,0023.

Наконец, мы показали, что возможно соединить дышащие стены с вытяжной вентиляцией.Образец для испытаний устанавливали горизонтально на дне дымохода. Аппарат был сконструирован таким образом, чтобы внутренний воздух оставался хорошо перемешанным. Хотя это представляло идеализированные условия, это позволило нам подтвердить ключевые отношения тепловой связи, как выражено системой уравнений в разделе 2.3. Измерения внутренней температуры и скорости вентиляции находились в пределах прогнозируемых значений в зависимости от ламинарного или турбулентного потока. Согласно этим результатам, скорость теплообмена через панель произошла, как и ожидалось.

Заявление о доступности данных

Наборы данных, созданные во время и / или проанализированные в ходе текущего исследования, доступны в репозитории Scholars Portal Dataverse, https://doi.org/10.5683/SP2/DCEJJR.

Авторские взносы

SC: концептуализация, методология, программное обеспечение, формальный анализ, ресурсы, курирование данных, написание – первоначальный проект и написание – просмотр и редактирование. AH, KF, PR и JE: программное обеспечение, формальный анализ, расследование, курирование данных, написание – первоначальный черновик, написание – просмотр и редактирование, визуализация и администрирование проекта.AF: надзор, ресурсы, администрирование проекта, получение финансирования и написание – проверка и редактирование. ДК и КМ: надзор и написание – просмотр и редактирование. Все авторы внесли свой вклад в статью и одобрили представленную версию.

Финансирование

Финансирование. Это исследование было поддержано подарочным фондом Rural Studio (http://ruralstudio.org/give/) и инициативой McGill Sustainability Systems Initiative (MSSI).

Конфликт интересов

Авторы заявляют, что исследование проводилось при отсутствии каких-либо коммерческих или финансовых отношений, которые могут быть истолкованы как потенциальный конфликт интересов.

Благодарности

Авторы хотели бы поблагодарить весь персонал и преподавателей сельской студии Обернского университета, особенно Стивена Лонга, за предоставленные ресурсы и среду, которые сделали это исследование возможным. Также спасибо доктору Дэниелу Харрису и доктору Чандону Рою, которые помогли с тестированием тепловых свойств. Наконец, спасибо Инициативе устойчивого лесного хозяйства за интерес и поддержку.

Ссылки

Acred, A. (2014). Естественная вентиляция в многоэтажных зданиях: эскизный подход (докторская диссертация), Имперский колледж Лондона.

Google Scholar

Алонги А., Анджелотти А. и Маццарелла Л. (2017a). Аналитическое моделирование «дышащих стен»: экспериментальная проверка на лабораторном стенде с двойным вентилируемым тепловым боксом. Energy Proc . 140, 36–47. DOI: 10.1016 / j.egypro.2017.11.121

CrossRef Полный текст | Google Scholar

Алонги А., Анджелотти А. и Маццарелла Л. (2017b). Экспериментальное исследование стационарного поведения дыхательных стенок с помощью нового лабораторного оборудования. Сборка. Окружающая среда . 123, 415–426. DOI: 10.1016 / j.buildenv.2017.07.013

CrossRef Полный текст | Google Scholar

Алонги А., Анджелотти А. и Маццарелла Л. (2020). Экспериментальная проверка устойчивой периодической аналитической модели для дыхательных стен. Сборка. Окружающая среда . 168: 106509. DOI: 10.1016 / j.buildenv.2019.106509

CrossRef Полный текст | Google Scholar

Алонги А. и Маццарелла Л. (2015a). Характеристика волокнистых изоляционных материалов при их применении в технологии динамической изоляции. Energy Proc . 78, 537–542. DOI: 10.1016 / j.egypro.2015.11.732

CrossRef Полный текст | Google Scholar

Алонги А. и Маццарелла Л. (2015b). Термобокс с двойной вентиляцией: лабораторный прибор для тестирования технологий воздухопроницаемых ограждающих конструкций. Energy Proc . 78, 1543–1548. DOI: 10.1016 / j.egypro.2015.11.198

CrossRef Полный текст | Google Scholar

Ascione, F., Bianco, N., Stasio, C.D., Mauro, G.M., и Vanoli, G.П. (2015). Динамическая изоляция оболочки здания: численное моделирование в переходных условиях и связь с ночным естественным охлаждением. Прил. Therm. Eng . 84, 1–14. DOI: 10.1016 / j.applthermaleng.2015.03.039

CrossRef Полный текст | Google Scholar

Барт, Г. К. Дж., И Ханьялич, К. (2003). Оценка коэффициента формы для переходной проводимости. Внутр. Дж. Рефриг . 26, 360–367. DOI: 10.1016 / S0140-7007 (02) 00079-8

CrossRef Полный текст | Google Scholar

Бартуссек, Х.(1981). Porenluftung, eine zugfreie Stalluftung. DLZ 32, 48–58.

Google Scholar

Бежан А., Динсер И., Лоренте С., Мигель А. и Рейс Х. (2004). Пористые и сложные структуры течения в современных технологиях . Нью-Йорк, штат Нью-Йорк: Springer-Verlag.

Google Scholar

Цао, З., Майерс, Р. Дж., Луптон, Р. К., Дуан, Х., Сакки, Р., Чжоу, Н. и др. (2020). Эффект губки и возможности сокращения выбросов углерода в глобальном цементном цикле. Нат. Коммуна . 11: 3777. DOI: 10.1038 / s41467-020-17583-w

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Carrer, P., Wargocki, P., Fanetti, A., Bischof, W., Fernandes, E. D. O., Hartmann, T., et al. (2015). Что научная литература говорит нам о взаимосвязи вентиляции и здоровья в общественных и жилых зданиях? Сборка. Окружающая среда . 94, 273–286. DOI: 10.1016 / j.buildenv.2015.08.011

CrossRef Полный текст | Google Scholar

Чуркина, Г., Органски А., Рейер К. П. О., Рафф А., Винке К., Лю З. и др. (2020). Здания как глобальный поглотитель углерода. Нат. Выдержать . 3, 269–276. DOI: 10.1038 / s41893-019-0462-4

CrossRef Полный текст

Крейг, С., и Гринхэм, Дж. (2017). Дышащие стены: конструкция из пористых материалов для теплообмена и децентрализованной вентиляции. Энергетическая сборка . 149, 246–259. DOI: 10.1016 / j.enbuild.2017.05.036

CrossRef Полный текст | Google Scholar

Даббаг, М., и Крарти, М. (2020). Оценка эффективности системы динамической изоляции, подходящей для изменяемой оболочки здания. Энергетическая сборка . 222: 110025. DOI: 10.1016 / j.enbuild.2020.110025

CrossRef Полный текст | Google Scholar

Далехауг А., Фукусима А. и Йошинори Х. (1993). Динамическая изоляция в стене: изоляция, вентиляция, энергосбережение . Собрание отчетов Архитектурного института Японии, № 66, 261–264.

Google Scholar

Дехва, А.Х.А., и Крарти, М. (2020). Влияние переключаемой изоляции крыши на энергоэффективность жилых домов в США. Сборка. Окружающая среда . 177: 106882. DOI: 10.1016 / j.buildenv.2020.106882

CrossRef Полный текст | Google Scholar

Эстрин Ю., Бреше Ю., Данлоп Дж. И Фратцл П. (ред.). (2019). Архитектурные материалы в природе и технике: Архиматы . Чам: Издательство Springer International.

PubMed Аннотация | Google Scholar

Этеридж, Д.У. и Чжан Дж. Дж. (1998). Динамическая изоляция и естественная вентиляция: технико-экономическое обоснование. Сборка. Серв. Англ. Res. Технол . 19, 203–212. DOI: 10.1177 / 014362449801

3

CrossRef Полный текст | Google Scholar

Гость, Г., Керубини, Ф. и Стрёмман, А. Х. (2013). Потенциал глобального потепления выбросов углекислого газа из биомассы, хранящейся в антропосфере и используемой для биоэнергетики в конце жизни. J. Ind. Ecol . 17, 20–30. DOI: 10.1111 / j.1530-9290.2012.00507.x

CrossRef Полный текст | Google Scholar

Habert, G., Miller, S. A., John, V. M., Provis, J. L., Favier, A., Horvath, A., et al. (2020). Воздействие на окружающую среду и стратегии обезуглероживания в цементной и бетонной промышленности. Нат. Rev. Earth Environ . 1, 559–573. DOI: 10.1038 / s43017-020-0093-3

CrossRef Полный текст | Google Scholar

Хепберн, К., Адлен, Э., Беддингтон, Дж., Картер, Э. А., Фасс, С., Доуэлл, Н. М. и др.(2019). Технологические и экономические перспективы утилизации и удаления CO 2 . Nature 575, 87–97. DOI: 10.1038 / s41586-019-1681-6

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Ходжа, Э., Пассер, А., Сааде, М. Р. М., Триго, Д., Шаттлворт, А., Питтау, Ф. и др. (2020). Биогенный углерод в зданиях: критический обзор методов LCA. Сборка. Города 1, 504–524. DOI: 10.5334 / bc.46

CrossRef Полный текст | Google Scholar

Хурмекоски, Э., Myllyviita, T., Seppälä, J., Heinonen, T., Kilpeläinen, A., Pukkala, T., et al. (2020). Влияние структурных изменений в деревообрабатывающей промышленности на чистые выбросы углерода в Финляндии. J. Ind. Ecol . 24, 899–912. DOI: 10.1111 / jiec.12981

CrossRef Полный текст | Google Scholar

Incropera, F., DeWitt, D., Bergman, T. L., and Lavine, A. S. (2007). Основы тепломассообмена . Хобокен, Нью-Джерси: Джон Уайли и сыновья.

Google Scholar

Джонс, Б.М., Кук, М. Дж., Фицджеральд, С. Д., и Иддон, К. Р. (2016). Обзор терминологии в области вентиляционных отверстий. Энергетическая сборка . 118, 249–258. DOI: 10.1016 / j.enbuild.2016.02.053

CrossRef Полный текст | Google Scholar

Киамили К., Холлберг А. и Хаберт Г. (2020). Детальная оценка воплощенного углерода систем HVAC для нового офисного здания на основе BIM. Устойчивость 12: 3372. DOI: 10.3390 / su12083372

CrossRef Полный текст | Google Scholar

Ким, С., Лоренте, С., Бежан, А. (2007). Васкуляризированные материалы с нагревом с одной стороны и нагнетанием охлаждающей жидкости с другой стороны. Внутр. J. Тепломассообмен 50, 3498–3506. DOI: 10.1016 / j.ijheatmasstransfer.2007.01.020

CrossRef Полный текст | Google Scholar

Ким С., Лоренте С. и Бежан А. (2008). Дендритная васкуляризация для противодействия интенсивному нагреву сбоку. Внутр. J. Тепломассообмен 51, 5877–5886. DOI: 10.1016 / j.ijheatmasstransfer.2008.04.063

CrossRef Полный текст | Google Scholar

Ким С., Лоренте С. и Бежан А. (2009). Преходящее поведение васкуляризированных стенок при внезапном нагревании. Внутр. J. Therm. Sci . 48, 2046–2052. DOI: 10.1016 / j.ijthermalsci.2009.03.019

CrossRef Полный текст | Google Scholar

Левассер А., Лесаж П., Маргни М. и Самсон Р. (2013). Биогенный углерод и временное хранение решаются с помощью динамической оценки жизненного цикла. Дж.Инд. Ecol . 17, 117–128. DOI: 10.1111 / j.1530-9290.2012.00503.x

CrossRef Полный текст | Google Scholar

Меггерс Ф., Риттер В., Гоффин П., Бетчманн М. и Лейбундгут Х. (2012). Внедрение низкоэксергетических строительных систем. Энергия 41, 48–55. DOI: 10.1016 / j.energy.2011.07.031

CrossRef Полный текст | Google Scholar

Менихарт, К., и Крарти, М. (2017). Возможная экономия энергии за счет использования динамических изоляционных материалов для жилых домов в США. Сборка. Окружающая среда . 114, 203–218. DOI: 10.1016 / j.buildenv.2016.12.009

CrossRef Полный текст | Google Scholar

Мо, К. (2010). Термически активные поверхности в архитектуре . Нью-Йорк, Нью-Йорк: Princeton Architectural Press.

Google Scholar

Монкман, С., и Макдональд, М. (2017). Об использовании углекислого газа как средстве повышения устойчивости товарного бетона. J. Clean. Прод . 167, 365–375. DOI: 10.1016 / j.jclepro.2017.08.194

CrossRef Полный текст | Google Scholar

Парк, Б., Срубар, В. В., и Крарти, М. (2015). Анализ энергоэффективности ограждающих конструкций с переменным тепловым сопротивлением в жилых домах. Энергетическая сборка . 103, 317–325. DOI: 10.1016 / j.enbuild.2015.06.061

CrossRef Полный текст | Google Scholar

Пак, К.-С., Ким, С.-В., и Юн, С.-Х. (2016). Применение дышащих архитектурных элементов для естественной вентиляции пассивного солнечного дома. Энергия 9: 214. DOI: 10.3390 / en

14

CrossRef Полный текст | Google Scholar

Пингоуд, К., Экхольм, Т., Сиеванен, Р., Хуусконен, С., и Хайнинен, Дж. (2018). Компромисс между запасами углерода в лесах и урожайностью в устойчивом состоянии – многокритериальный анализ. J. Environ. Менеджер . 210, 96–103. DOI: 10.1016 / j.jenvman.2017.12.076

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Pittau, F., Krause, F., Lumia, G., and Habert, G.(2018). Быстрорастущие материалы на биологической основе как возможность для хранения углерода в наружных стенах. Сборка. Окружающая среда . 129, 117–129. DOI: 10.1016 / j.buildenv.2017.12.006

CrossRef Полный текст | Google Scholar

Помпони, Ф., Харт, Дж., Арехарт, Дж. Х. и Д’Амико, Б. (2020). Здания как глобальный поглотитель углерода? Проверка на реальность пределов осуществимости. Одна Земля 3, 157–161. DOI: 10.1016 / j.oneear.2020.07.018

CrossRef Полный текст | Google Scholar

Ри, ​​К.-N., И Ким, К. В. (2015). 50-летний обзор фундаментальных и прикладных исследований в области систем лучистого отопления и охлаждения для искусственной среды. Сборка. Окружающая среда . 91, 166–190. DOI: 10.1016 / j.buildenv.2015.03.040

CrossRef Полный текст | Google Scholar

Ри, ​​К.-Н., Олесен, Б. В., и Ким, К. В. (2017). Десять вопросов о системах лучистого отопления и охлаждения. Сборка. Окружающая среда . 112, 367–381. DOI: 10.1016 / j.buildenv.2016.11.030

CrossRef Полный текст | Google Scholar

Рек, М., Сааде, М. Р. М., Балукци, М., Расмуссен, Ф. Н., Биргисдоттир, Х., Фришкнехт, Р. и др. (2020). Воплощенные выбросы парниковых газов от зданий – скрытая проблема для эффективного смягчения последствий изменения климата. Прил. Энергия 258: 114107. DOI: 10.1016 / j.apenergy.2019.114107

CrossRef Полный текст | Google Scholar

Рупп, С., и Крарти, М. (2019). Анализ многоступенчатых стратегий управления системами динамической изоляции. Энергетическая сборка . 204: 109459. DOI: 10.1016 / j.enbuild.2019.109459

CrossRef Полный текст | Google Scholar

Сеппяля, Дж., Хейнонен, Т., Пуккала, Т., Килпеляйнен, А., Маттила, Т., Мюллювиита, Т., и др. (2019). Влияние увеличения объемов заготовки и использования древесины на требуемые коэффициенты вытеснения парниковых газов древесными продуктами и топливом. J. Environ. Менеджер . 247, 580–587. DOI: 10.1016 / j.jenvman.2019.06.031

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Шекар В. и Крарти М.(2017). Стратегии контроля динамических изоляционных материалов, применяемых в коммерческих зданиях. Энергетическая сборка . 154, 305–320. DOI: 10.1016 / j.enbuild.2017.08.084

CrossRef Полный текст | Google Scholar

Смит, К. Э., Смайли, Б. П., Магнан, М., Бердси, Р., Дуган, А. Дж., Ольгин, М., и др. (2018). Смягчение последствий изменения климата в лесном секторе Канады: пространственно конкретное тематическое исследование для двух регионов. Управление балансом углерода . 13:11. DOI: 10.1186 / s13021-018-0099-z

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Тейлор, Б.Дж., Коуторн, Д. А., и Имбаби, М. С. (1996). Аналитическое исследование стационарного поведения динамических и диффузионных ограждающих конструкций зданий. Сборка. Окружающая среда . 31, 519–525. DOI: 10.1016 / 0360-1323 (96) 00022-4

CrossRef Полный текст | Google Scholar

Тейлор, Б. Дж., И Имбаби, М. С. (1997). Влияние термического сопротивления воздушной пленки на поведение динамической изоляции. Сборка. Окружающая среда . 32, 397–404. DOI: 10.1016 / S0360-1323 (97) 00012-7

CrossRef Полный текст | Google Scholar

Тейлор, Б.Дж. И Имбаби М. С. (1999). Динамическая изоляция в многоэтажных домах. Сборка. Серв. Англ. Res. Технол . 20, 179–184. DOI: 10.1177 / 014362449

0403

CrossRef Полный текст | Google Scholar

Тейлор, Б. Дж., И Имбаби, М. С. (2000). «Экологический дизайн с использованием динамической изоляции», ASHRAE Transactions . 106, 15–28.

Google Scholar

Тейлор Б. Дж., Вебстер Р. и Имбаби М. С. (1998). Оболочка здания как воздушный фильтр. Сборка. Окружающая среда . 34, 353–361. DOI: 10.1016 / S0360-1323 (98) 00017-1

CrossRef Полный текст | Google Scholar

Ван, Дж., Ду, К., Чжан, К., Сюй, X., и Ганг, В. (2018). Механизм и предварительный анализ эффективности изоляции вытяжного воздуха ограждающей стены здания. Энергетическая сборка . 173, 516–529. DOI: 10.1016 / j.enbuild.2018.05.045

CrossRef Полный текст | Google Scholar

Вудс, А. В., Фицджеральд, С., и Ливермор, С. (2009).Сравнение требований к предварительному подогреву в зимнее время для естественной вытеснительной и естественной смешанной вентиляции. Энергетическая сборка . 41, 1306–1312. DOI: 10.1016 / j.enbuild.2009.07.030

CrossRef Полный текст | Google Scholar

Ву, Х., Лью, А., Меле, Т. В., и Блок, П. (2020). Анализ и оптимизация сводчатого перекрытия с ребрами жесткости для обеспечения динамических характеристик. Eng. Struct . 213: 110577. DOI: 10.1016 / j.engstruct.2020.110577

CrossRef Полный текст | Google Scholar

Чжан, К., Ганг, В., Сюй, X., Ли, Л., и Ван, Дж. (2019a). Моделирование, экспериментальные испытания и проектирование активной воздухопроницаемой стены с использованием низкокачественного отработанного воздуха. Прил. Энергия 240, 730–743. DOI: 10.1016 / j.apenergy.2019.02.087

CrossRef Полный текст | Google Scholar

Чжан К., Ван Дж., Ли Л. и Ганг В. (2019b). Динамические тепловые характеристики и параметрический анализ ограждающих конструкций здания с рекуперацией тепла на основе воздухопроницаемых пористых материалов. Энергия 189: 116361.DOI: 10.1016 / j.energy.2019.116361

CrossRef Полный текст | Google Scholar

Номенклатура

Изоляция в фахверковых домах

Роберт Демаус

Большие оригинальные выступы этого исторического дома с деревянным каркасом защищают стену внизу, в то время как изогнутая «пенопластовая» доска над окном первого этажа отводит воду от стены внизу.(Все фото: Роберт Демаус)

В термическом отношении стены с деревянным каркасом, как правило, плохо работают по сравнению с другими традиционными постройками и с трудом соответствуют современным ожиданиям. В этой статье рассматриваются проблемы и риски, связанные с модернизацией изоляции для улучшения ее тепловых характеристик. Основное внимание уделяется случаям, когда древесина обнажена снаружи, что обычно является наиболее проблематичным, но также учитываются деревянные рамы, скрытые за облицовкой (того же периода или более поздней).

Существуют обстоятельства, при которых установка изоляции на стены с деревянным каркасом приемлема и выгодна, но другие меры могут оказаться более рентабельными и менее опасными. Чтобы определить наилучший способ продвижения вперед, обследование и анализ должны проводиться независимым консультантом, а не поставщиком материалов или подрядчиком. Помимо комфорта, экономии средств и защиты окружающей среды, необходимо также учитывать многие другие факторы, в том числе:

  • Историческое значение здания в целом, а также относительное значение отдельных элементов и степень, в которой модернизированная изоляция изменит его
  • Состояние строительной ткани, а также характер и объем любых вмешательств (кроме теплоизоляции), которые могут потребоваться
  • Причины любой существующей деградации и способы ее наилучшего устранения
  • Текущие гигротермические характеристики стен с деревянным каркасом и здания в целом
  • «Ландшафтная ценность» здания и потенциальное влияние любых изменений на его внешний вид
  • Производительность систем отопления и горячего водоснабжения и рентабельность модернизации
  • Состояние и эффективность существующей изоляции, например, в крышах и полах, а также рентабельность модернизации
  • Возможность внедрения экономичных и обратимых новых элементов, таких как вторичное остекление, которые не наносят значительного ущерба исторической ткани
  • Текущее использование здания и ожидания жильцов.

Абсолютная и относительная важность этих и других факторов будет сильно различаться не только между зданиями, но и между частями одного и того же здания.

Тепловые характеристики стены с деревянным каркасом контролируются не только материалами, из которых она изготовлена. Состояние, ориентация и экспозиция будут иметь гораздо большее влияние на стену с деревянным каркасом толщиной 100 мм, чем на кирпичную стену толщиной 225–350 мм. Удержание влаги в стене также имеет решающее значение для ее тепловых характеристик.

Деревянные рамы полны стыков и трещин, через которые может проникать воздух (и вода). Наиболее эффективным улучшением общих гигротермических характеристик является заполнение этих пробелов. Чувствительная термографическая камера – лучший способ их найти, при условии разумной разницы температур (5-10 ° C) внутри и снаружи, и желательно, когда дует ветер. Чтобы определить, где уходит тепло, не менее важно обследовать снаружи здания, чем изнутри, чтобы определить, куда проникает холодный воздух.Обследование следует повторить после завершения ремонтных работ, но оно почти бессмысленно, если оно не проводится в тех же погодных условиях. Большинство зданий с деревянным каркасом слишком воздухопроницаемы, чтобы их можно было использовать при стандартных испытаниях под давлением.

Оптимальные методы и материалы для заполнения зазоров будут различаться в зависимости от размера и расположения зазоров, но всегда должны быть гибкими и дышащими: овечья шерсть, проталкиваемая в зазор тонким лезвием и покрытая известковой штукатуркой, может быть очень эффективной.Запрещается использовать фирменные герметики, мастики и цементные растворы.

В этом доме с деревянным каркасом сохранились оригинальные карнизы и грани, красивые и практичные. Дом всегда должен был быть облицован плиткой.
Глубина соломы укрывает стену внизу.Если солому заменить плиткой или шифером (как было раньше), стена становится очень уязвимой.
Эти стропила были восстановлены до их первоначального свеса, что значительно улучшило защиту стены под ними.

В деревянных каркасных стенах гораздо больше разнообразных строительных материалов и деталей, чем в кирпичных или каменных стенах, с соответственно сложными, переменными и непредсказуемыми физическими свойствами и взаимодействиями.Более того, исходная широкая палитра материалов часто дополнительно усложняется последующими изменениями и дополнениями, такими как переходы от плетенки и мазка к кирпичной кладке, от извести к цементной штукатурке и от проницаемой к непроницаемой отделке. Многие из этих изменений могут происходить в пределах одной отметки. Для сравнения: кирпичные и каменные стены относительно однородны и предсказуемы.

В результате вычисления потерь тепла на настольных компьютерах с использованием стандартных формул и компьютерного моделирования менее надежны, если стены имеют деревянный каркас.Требуется подробное физическое обследование на месте. Чувствительные инфракрасные термографические камеры могут использоваться для обнаружения скрытых деревянных конструкций, определения состава панелей заполнения и оценки потерь тепла и проникновения влаги. Микродрели для обнаружения распада также очень полезны для этих исследований.

Для того, чтобы такие оценки имели ценность, оценщик должен хорошо разбираться в том, как было построено здание, какие изменения могли произойти с тех пор, а также причины и степень любого ухудшения.

Как правило, здания с деревянным каркасом строились из свежесрубленной древесины, которая значительно сжималась и двигалась, особенно в течение первых 30 лет. Деревянные доски обычно оставляли открытыми снаружи и изнутри, а промежутки между рамой заполняли мазком на глиняной основе, часто заканчивая известковой промывкой. Зазоры, образовавшиеся между рамой и заполнением по мере оседания и усадки материалов, регулярно заполнялись и наносились дополнительные слои известкового раствора.

Таким образом, вся ткань была очень воздухопроницаемой, что позволяло любой проникшей влаге легко испаряться, а уровень влажности в стене, как правило, оставался ниже точки, при которой различные материалы разлагаются.Стены были защищены большими свесами крыши и пенопластом (см. Иллюстрацию к заголовку), но в последующие столетия они были утрачены, в результате чего стены становились более влажными более часто и на более длительные периоды. Как следствие, плетень и мазня начали быстро разрушаться, а древесина – медленнее.

В 18-19 веках деревянные рамы часто скрывали за фасадами из обшивки, кирпича, плитки или известковой штукатурки. Ранние штукатурки были на основе извести и пропускали воздух; более поздние штукатурки часто были гораздо менее воздухопроницаемыми, например, римский цемент Паркера, который был запатентован в 1796 году.

Там, где рамы оставались открытыми до XIX века, деградировавшие плетень и мазня часто заменялись кирпичом, что, как правило, усугубляло деградацию. Все более широкое использование цементных штукатурок, непроницаемых красок, влагонепроницаемых мембран и мастичных герметиков в 20-м веке имело тенденцию к снижению воздухопроницаемости и улавливанию воды, увеличивая разложение и потерю тепла.

В последнее время все большее значение приобретает экономическое и экологическое давление, направленное на улучшение тепловых характеристик, но зачастую плохая детализация и неподходящие материалы усугубляют гниение.

В 21 веке растет понимание того, что здания должны дышать, и, как следствие, переход на более проницаемые материалы. Решающим моментом является то, что непроницаемые современные отделочные материалы и герметики не только вызывают значительные и продолжающиеся повреждения деревянного каркаса и другой исторической ткани, но также значительно снижают тепловые характеристики стены.

Состояние стены и ее гигротермическое поведение тесно связаны.Если неисправности не будут устранены, установка изоляции может принести относительно небольшую пользу и может значительно повысить риск дальнейшего ухудшения состояния. Только после завершения подробного обследования можно будет оценить целесообразность модернизации изоляции и выбрать лучший метод.

Существует три основных варианта установки теплоизоляции на открытую стену с деревянным каркасом; внешне, внутренне или в глубине кадра.

В РАМКЕ

Учитывая, что стены с деревянным каркасом часто имеют толщину менее 100 мм, изоляция по глубине каркаса почти неизбежно влечет за собой потерю существующего заполняющего материала.

Исходная плетень и мазня должны быть сохранены и по возможности отремонтированы, но если есть более поздняя кирпичная кладка, ее историческое и эстетическое значение и ее состояние могут повлиять на решение. Там, где есть доказательства значительной деградации, можно привести веские доводы в пользу его замены более подходящим и более эффективным материалом. Если деревянный каркас требует ремонта, включающего удаление заполнения, есть возможность использовать более удобную и более эффективную заполнение.

В настоящее время общепринято, что панели заполнения должны быть воздухопроницаемыми и паропроницаемыми по всей своей толщине, но существует много теорий о лучших материалах и методах. Многие рекомендуемые системы включают сложные комбинации материалов, включая синтетические краевые уплотнения, дышащие мембраны и пароизоляцию, сетку из нержавеющей стали, основы из древесной ваты и подрамники из мягкой древесины. Подобные системы могут работать лучше в теории, чем в изменчивых условиях на месте, где контроль качества может быть затруднен, особенно когда деревянный каркас не является прямым и не находится в идеальном состоянии.

Как правило, чем проще метод и материалы, тем больше вероятность того, что они будут функционировать предсказуемо и надежно. Большое значение имеет использование методов и материалов, максимально приближенных к оригинальной плетенке и мазке. Теоретически более низкое значение U может быть не таким плохим на практике, и наибольшее снижение потерь тепла часто достигается просто за счет создания сухой конструкции без сквозняков. Современный материал, аналогичный по концепции daub, но с большей прочностью и лучшим показателем U, представляет собой гидравлическую смесь извести / конопли, которую можно заливать на месте для образования однородного воздухопроницаемого наполнителя.

Если рама и / или панели находятся в плохом состоянии и ремонт повлечет за собой потерю значительной части исторически значимой ткани, будет веский аргумент в пользу защиты стены за защитным слоем из известковой штукатурки или другого материала, подходящего для данного региона. . Обычно это предпочтительнее создания грубой современной копии стены из ленточнопильного бруса и может обеспечить возможность утепления за пределами линии стены.

ВНУТРИ СТЕНОВОЙ ЛИНИИ

Если деревянный каркас и заполнение находятся в достаточно хорошем состоянии и достаточно прочны, чтобы выдерживать продолжительное воздействие с ограниченными вмешательствами, изоляция может быть прикреплена к внутренней стороне либо непосредственно к стене, либо с воздушным зазором.Однако это окажет серьезное влияние на внешний вид комнаты, затеняя такие элементы, как оконные рамы, плинтусы и прилегающие потолочные молдинги, и уменьшит внутреннюю площадь пола. Что еще более важно, существует повышенный риск попадания влаги в стену, даже если все материалы, используемые в новой облицовке (изоляция, штукатурка и лакокрасочное покрытие), являются паропроницаемыми. Если проблемы все же возникают, они вряд ли станут очевидными до тех пор, пока не будет нанесен значительный ущерб.

Риск проникновения сильного дождя можно снизить путем тщательной остановки зазоров и восстановления выступов, но любое вмешательство, ограничивающее прохождение водяного пара через стену, значительно увеличивает риск конденсации и / или захвата воды. По этой причине не следует использовать непроницаемую для воздуха жесткую изоляцию, такую ​​как плиты PIR (полиизоцианурат), даже если они могут достичь лучших показателей U при относительно небольшой толщине.

Изоляция внутри стены также значительно увеличивает риск образования конденсата из-за образования мостиков холода в тех областях, которые по разным причинам невозможно изолировать.В частности, торцы балок перекрытия и балок, встроенных во внешнюю стену, подвергаются большему риску повышенной деградации.

ВНЕ СТЕНОВОЙ ЛИНИИ

По многим причинам установка теплоизоляции на внешнюю поверхность стены с деревянным каркасом часто является лучшим решением как с точки зрения гигротермических характеристик, так и с точки зрения сохранения здания.

Исторически сложилось так, что многие здания с деревянным каркасом строились для повышения их водонепроницаемости.Часть видимой штукатурки сделана на основе извести и, вероятно, начала 19 века, другие части были заменены цементной штукатуркой в ​​20 веке.
  • Стена полностью защищена (при условии правильности материалов и деталей)
  • Необходимый ремонт может быть сведен к минимуму структурно необходимых, и обычно может принимать форму дополнительных фиксируемых на поверхности ремней и т. Д. Эти ремонтные работы обратимы и не приводят к потере исторической ткани.
  • Проникновение воздуха через стену можно полностью контролировать
  • Изоляция может быть сплошной со всей оригинальной тканью на теплой стороне, что снижает риск образования мостиков холода и конденсации.
  • Сохранение тепловой массы стены на теплой стороне также помогает уравновесить суточные колебания.
  • Историческое значение и внешний вид интерьера не нарушены
  • Вмешательство обратимое.

Внешняя изоляция изменит внешний вид: дополнительная толщина требует изменения оконных проемов и других элементов, а также скрывает деревянную раму. Это часто встречает сопротивление, как профессиональное, так и общественное. Тем не менее, есть веский исторический прецедент, и преимущества значительны.

Исторически рендеринг обычно наносился непосредственно на планку, прибитую к раме, и широко распространено мнение, что это должно обеспечивать хорошую защиту рамы просто потому, что она воздухопроницаема.Тем не менее, довольно часто можно найти широко распространенное активное нападение жуков Караула Смерти в древесине сразу за известковой штукатуркой, но редко можно найти его в обнаженной внешней древесине, что позволяет предположить, что иногда содержание влаги в известковой раме может быть достаточно высоким, чтобы выдержать грибок и жуков. атака. При нанесении новой или замене старой штукатурки следует использовать паропроницаемую мембрану и, если возможно, обрешетку контрастировать с каркасом на контр-обрешетках.

Недавняя разработка относительно высокоэффективных воздухопроницаемых многослойных изоляционных одеял, эффективно изолированных дыхательных мембран, имеет большой потенциал, поскольку они увеличивают толщину стен гораздо меньше, чем большинство других воздухопроницаемых изоляционных материалов.Хотя эти лоскутные одеяла предназначены для использования на крышах, они успешно использовались для изоляции стен с деревянным каркасом за штукатуркой или обшивкой. Новые материалы необходимо использовать с осторожностью до тех пор, пока не будет лучше изучено их долговременное функционирование, но в равной степени их не следует сразу же отказываться от них. Кроме того, импортные материалы, которые хорошо работают в холодном сухом климате, могут не работать в более влажных условиях Великобритании. Возможно, лучший совет – все подвергать сомнению.

В удивительном количестве случаев то, что кажется деревянным каркасом, на самом деле представляет собой скопление краски, мастики и цементной штукатурки для ремонта, скрывающее сильно разрушенный и структурно нарушенный каркас.Рано или поздно это потребует такого обширного ремонта / замены, что защита известковой штукатуркой или другой облицовкой почти наверняка обеспечит более эффективное и консервативное решение, избегая при этом дальнейших потерь. Если внешний вид здания с деревянным каркасом считается желательным, это всегда можно применить к лицевой стороне новой штукатурки – существует давняя традиция того, что многие теперь считают «фальшивкой». По крайней мере, то, что осталось от рамы и окружающей ткани, сохраняется для будущих поколений.

СВЯЗАННЫЙ РЕМОНТ

Если деревянный каркас должен оставаться открытым, первым важным шагом в улучшении тепловых характеристик является обеспечение того, чтобы каркас и окружающая ткань находились в хорошем состоянии и состояли из материалов, которые позволяют стене дышать. Конфликт возникает, когда изменение, которое считается частью истории здания, явно причиняет ущерб. Кирпичное заполнение, например, не всегда вызывает проблемы, но может значительно увеличить скорость разрушения каркаса, особенно при укладке в цементный раствор, когда каркасы относительно легкие, плохо построены или ослаблены из-за гниения, или где кирпичи выступают за пределы лицевую сторону рамы, создавая выступы, задерживающие воду.

Сильно изношенная торцевая стена с деревянным каркасом была усилена и защищена за обшивкой из обшивки, включая слой воздухопроницаемой многослойной изоляции.

Использование неподходящих материалов – не единственная проблема. Внедрение непроницаемых материалов обычно было вызвано выходом из строя более ранней или оригинальной плетеной и мазковой засыпки, которая обычно начинала выходить из строя после потери защиты больших выступов.Хотя непроницаемые материалы обычно наносят ущерб, если проницаемые материалы вводятся повторно без восстановления исходной защиты (например, выступов), их воздействие на обширное и постоянное смачивание приведет к грибковой деградации, потере сцепления и повреждению от замерзания.

Кроме того, гораздо больше потери тепла из-за постоянно влажной мазки, штукатурки или кирпича. Недавние изменения погодных условий также могут создать большие проблемы для плохо защищенных зданий.Поэтому важным элементом любой модернизации здания (особенно для зданий с деревянным каркасом) является повторное введение адекватных свесов и других защитных мер, даже если доказательства в их пользу неубедительны.

Еще одна важная проблема заключается в том, что содержание влаги имеет решающее значение и часто хорошо сбалансировано. Типичное содержание влаги в древесине в ухоженном здании составляет около 16% (ниже при обогреве). В ухоженных наружных стенах этот показатель обычно увеличивается до 18-20%.Многие грибы прорастают примерно на 27%, но могут выжить до 23-24%. Жук Караула смерти процветает там, где существует или была грибковая активность, и может выжить в древесине при содержании влаги до 16 процентов или ниже.

Поэтому критически важно контролировать проникновение воды, конденсацию и испарение, а использование неподходящих материалов или деталей может повысить содержание влаги всего на несколько процентов и вызвать риск возникновения или возобновления деградации.Точно так же повторное использование правильных материалов и деталей должно снизить влажность всего на несколько процентов до безопасной зоны.

РЕЗЮМЕ

1

Решение о том, модернизировать ли изоляцию, и если да, то какой подход следует принять, не может быть принято изолированно. Необходимо провести детальную оценку здания, включая историческое значение деревянного каркаса, филеночных панелей и других характеристик, а также точную оценку состояния.

2

Будут перечислены самые традиционные здания с деревянным каркасом. На ранней стадии следует обсудить с местным инспектором по охране окружающей среды выявленные проблемы и предлагаемые способы их устранения.

3

Повышение гигротермических характеристик стен с деревянным каркасом путем модернизации теплоизоляции очень сложно и редко может быть достигнуто без значительного ущерба для исторического значения и / или внешнего вида здания.Любые потенциальные преимущества с точки зрения экономии затрат, комфорта и снижения выбросов углерода необходимо сопоставить с первоначальной стоимостью, потерей исторической ткани и потенциалом дальнейшей деградации исторической ткани.

4

Если стены с деревянным каркасом сохраняют большую долю оригинальной или исторически значимой ткани, модернизация изоляции должна рассматриваться как последнее средство и использоваться только после изучения других потенциальных улучшений.

5

Потери тепла через различные материалы, из которых состоит относительно тонкая стена с деревянным каркасом, часто усугубляются утечкой воздуха по краям панелей и через стыки в каркасе. Сведение к минимуму неконтролируемого движения воздуха имеет решающее значение и часто оказывается более эффективным и менее опасным.

6

Следует рассмотреть альтернативные меры по повышению общей производительности всего здания.Это может включать восстановление свесов крыши и установку пенопластов, удаление непроницаемых материалов и отделки, а также меры по уменьшению воздействия ветра.

7

Стены с деревянным каркасом обычно имеют низкую тепловую массу и высокое неконтролируемое проникновение воздуха. Системы отопления, в которых в качестве накопителей тепла используются большие внутренние кладочные трубы или каменные полы, часто более эффективны, чем системы, которые нагревают воздух с помощью обычных радиаторов.Радиаторы нельзя ставить у внешних стен с деревянным каркасом.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *