Вентфасад без утеплителя: Вентилируемый фасад без утепления — Remontdz.ru — Информационный портал города Мичуринска. Афиша

Содержание

Вентилируемый фасад без утепления — Remontdz.ru — Информационный портал города Мичуринска. Афиша

Вентилируемый фасад без утеплителя

В конструкции вентилируемого фасада обычно присутствует утеплитель. Однако в южных регионах с мягким климатом нет необходимости в использовании этого материала. Система вентилируемого фасада в таких условиях играет декоративную роль. Но и его практическая функция не отменяется – дополнительная наружная стенка защищает основные поверхности от атмосферных воздействий, предотвращает перегрев помещений, избавляет находящихся внутри людей от лишнего шума извне.

Технологии создания вентилируемого фасада без утеплителя различные, то же самое касается применяемых материалов. Но в любом случае важно соблюсти главное условие – между стеной здания и созданной дополнительной поверхностью должен свободно циркулировать воздух.

Вентилируемый фасад без утепления из кирпича

Дом, отделанный таким образом, смотрится аккуратно и привлекательно. Здесь используется клинкерный кирпич, высокопрочный, кислотоустойчивый, почти не поглощающий влагу. Этот фасадный материал представлен в большом разнообразии. В частности, имеется богатый выбор расцветок.

Фрагменты клинкерного кирпича укладываются в один слой с соблюдением отступа от стены в пределах 2-4 см. Фундамент внизу по своей ширине должен перекрывать границы возводимой стенки. Дополнительная фасадная поверхность не выполняет несущую функцию, но на нее воздействуют ветровые нагрузки. Для прочной фиксации кирпичная кладка связывается со стенами с помощью стальных элементов или проволоки.

Для циркуляции воздуха часть вертикальных швов в самом нижнем и верхнем ряду оставляются пустыми, без раствора. Специальные сетки не дают насекомым проникать через эти щели в зазор между стеной и отделочным слоем.

Навесные фасады без использования утеплителя

Технология, по которой возводятся такие конструкции, предполагает навешивание облицовки на прочные кирпичные или железобетонные стены.

Свободное пространство для движения воздуха создается с использованием специальных крепежных деталей. Для возведения навесных систем без утепления применяются различные материалы.

Клинкерный кирпич

Ранее упомянутый материал в этом случае также можно использовать. При устройстве облицовки из него в ход идут консольные кронштейны. Они крепятся на профиле, а тот удерживается с помощью анкерных болтов. В процессе монтажа навесного фасада для многоэтажных строений на уровне каждого этажа закрепляется ряд кронштейнов.

Клинкерная плитка

При создании вентилируемых фасадов, в том числе сооружаемых без утепления, плитка становится достойной альтернативой кирпичу. Создается эффект такой же кладки. Крепление плитки в этом случае осуществляется не на клей, как обычно, а посредством горизонтальных штырей, присоединяемых к вертикальным профилям.

Сайдинг

Этот популярный материал тоже хорошо подходит для тех случаев, когда не требуется теплоизоляция. Панели имитируют продолговатые дощечки.

Отделка такого рода является простой и недорогой, качество при этом не страдает. Важным преимуществом является легкость всей конструкции. Таким способом можно отделывать любые строения без выполнения расчетов относительно несущей способности конструкционных элементов. Навешивание производится на каркас из вертикальных планок. Окна и двери обрамляются наличниками и специальными аксессуарами.

Композитные панели

В современном строительстве при возведении вентилируемого фасада без утепления выбор часто падает именно на этот материал. Панели этой разновидности применяются как для декорирования каркасных строений, так и для облицовки традиционных кирпичных, монолитных объектов общественного и жилого сектора.

Одной из разновидностей указанных панелей является алюкобонд. Фрагменты в этом случае являются пустотелыми, прямоугольными или квадратными. В их составе алюминий и полиэтиленовый наполнитель. За счет специального красочного покрытия такие панели служат не один десяток лет и с течением времени не теряют насыщенности окраски.

Инновационные разработки предлагают материал со специальным нанопокрытием, способным отталкивать грязь и различные химические вещества. К примеру, краска из баллончика с такой стены смывается простой водой.

Технология монтажа фасадов с композитными панелями в конструкции может быть разной, в зависимости от объекта. Сам материал для фасадов часто изготавливается под заказ. Объединяющим принципом является стыковка соседних фрагментов в замок. Фасадная плоскость собирается наподобие конструктора без необходимости подгонки составляющих частей.

Таким образом, устроить вентилируемый фасад, который не требуется утеплять, можно разными способами. Выбирать есть из чего. Стоимость работ по монтажу вентилируемых фасадов без утеплителя будет ниже, чем с ним. В любом случае облик здания станет привлекательней, а стены приобретут дополнительную защиту.

Утеплитель для вентфасада. Крепление минваты в два слоя ?

Важнейшей составной частью любого вентилируемого фасада является слой теплоизоляции. Он обеспечивает комфортные температурные условия во внутренних помещениях здания и позволяет экономить расход энергоресурсов, необходимых при его нормальной эксплуатации. Расположение теплозащитного слоя вплотную к наружной поверхности несущей стены смещает «точку росы» за ее пределы, что исключает конденсацию влаги внутри опорных конструкций. Это улучшает их теплоизоляционные свойства и продляет срок службы дома.

Существуют специально предназначенные для использования в составе вентилируемых фасадов изоляционные материалы и разработанные способы их монтажа. Соблюдение рекомендаций гарантирует правильную работу вентфасада и создание здорового микроклимата внутри здания.

Виды утепления вентфасадов: какие можно и нельзя применять в системе

В качестве слоя теплоизоляции следует применять только негорючие материалы. Иначе наличие вентилируемого зазора в случае возникновения пожара может привести к быстрому распространению огня по всей площади фасада. Пенопласт при устройстве вентфасадов не используется. Он горит с выделением токсичных газов, плохо пропускает сквозь себя пары воды, не позволяя дому «дышать», и со временем крошится.

Наиболее эффективный утеплитель для вентфасада – плиты из каменной ваты или стекловолокна. Они изготовлены из экологически чистых природных материалов с применением термической обработки и полностью соответствуют предъявляемым требованиям. Минеральные утеплители имеют широкий температурный диапазон применения, устойчивы к воздействию влаги, не подвержены распространению плесени и отлично поглощают шум. Их можно использовать отдельно и в комбинации друг с другом. При этом слой стекловолокна должен быть внутренним, а базальтового волокна – наружным.

Вата в виде прямоугольных плит, обладающих упругостью и способных сохранять свою форму в течение всего периода эксплуатации, удобна при монтаже и долговечна. Рулонные теплоизоляционные материалы не обладают этими качествами. Они имеют низкую плотность, быстро деформируются и подвергаются выветриванию волокон. Их при создании вентилируемых фасадов не используют.

Свойства и характеристики минеральной ваты

Утеплитель под вентилируемый фасад выпускается в виде плит шириной 600 мм, что соответствует стандартному шагу конструкции несущего каркаса. Их длина составляет 1000-1250 мм, а толщина лежит в интервале от 40 до 180 мм. Выбор размера теплоизоляционного слоя подтверждается тепловыми расчетами на стадии проектирования.

Теплопроводность и плотность утеплителя для вентиляционных фасадов являются важнейшими характеристиками, на которые обращают внимание при выборе изоляционных материалов. Первый показатель напрямую связан с энергетической эффективностью, второй – с долговечностью.

Свойства основных марок теплоизоляционных плит представлены в таблицах 1 и 2.

Таблица 1. Основные эксплуатационные свойства плиты из базальтового волокна KNAUF Insulation FRE 75

ПоказательЗначениеЕд. изм.
Плотность75кг/м3
Прочность на сжатие, не менее6,0кПа
Теплопроводность при 283оК, не более0,035Вт/м*К
Предел прочности при продольном растяжении, не менее4,0кПа
Сжимаемость, не более2,0%
Водопоглощение при кратковременном погружении, не более1,0кг/м3
Водопоглощение при полном погружении на 2 часа, не более1,5%
Содержание органических веществ, не более2,3%
Группа горючести по ГОСТ 30244-94НГ

Таблица 2. Основные эксплуатационные свойства плит на основе стекловолокна Thermo Slab 032 Aquastatik

ПоказательЗначениеЕд. изм.
Плотность30кг/м3
Теплопроводность при 283оК, не более0,032Вт/м*К
Предел прочности при продольном растяжении, не менее25,0кПа
Сжимаемость, не более
40,0
%
Водопоглощение при кратковременном погружении, не более0. 6кг/м3
Содержание органических веществ, не более7,0%
Группа горючести по ГОСТ 30244-94НГ

Технология укладки каменной ваты в вентфасаде

В большинстве случаев к устройству теплоизоляционного слоя приступают после подготовки основания и монтажа кронштейнов, на которые затем будут крепиться несущие профили. Перед началом работы проверяется наличие сертификатов соответствия и заводского паспорта качества. Материал, отличающийся по своим свойствам от показателей, указанных в сопроводительной документации, должен быть отбракован.

В процессе монтажа обрабатываемый участок стены и плиты минеральной ваты защищаются от попадания на них дождя или снега. Крепление слоев изоляции ведется снизу вверх с установкой первого ряда на опорный профиль, ширина которого соответствует толщине плит.

В местах прохождения кронштейна в изоляционном материале делается вырез нужного размера и формы. Плиты плотно прижимаются к стене и друг к другу. Смятие утеплителя не допускается. Наличие зазоров может привести к появлению «мостиков холода». На таких участках будет конденсироваться влага, что ухудшит теплозащитные свойства всей конструкции.

Использование однослойной тепловой изоляции ускоряет процесс монтажа за счет сокращения числа технологических операций. В этом случае применяется только базальтовый утеплитель. Его листы тщательно подгоняют один к другому, не допуская наличия просветов.

Хорошие результаты дает двухслойная схема нанесения теплоизоляции. Вплотную к стене могут располагаться листы с невысокой плотностью. Снаружи следует применять KNAUF Insulation FRE 75. В этом случае утепление вентилируемого фасада ведется со смещением стыков по вертикали и горизонтали. При этом часть плит подвергается раскрою. Рекомендуется располагать швы наружного и внутреннего слоев со сдвигом на 100-150 мм. Таким способом исключается появление «мостиков холода».

Ветрозащитная пленка

Со стороны вентилируемого зазора к минераловатной теплоизоляции крепится ветрозащитная пленка. Она обладает достаточно высокой прочностью на разрыв, пропускает сквозь себя пары воды и препятствует эрозийному разрушению утеплителя. Для этого применяется строительная ткань марок:

  • TEND
  • Изолтекс-НГ или Изолтекс-Фас
  • TECTOTHEN TOP 2000
  • FIBROTEK MASTER 90 или FIBROTEK SILVER
  • TYVEK
Крепление теплоизоляции

Крепление теплоизоляции выполняется с помощью тарельчатых дюбелей. Их требуется по 2 шт. на плиту внутреннего слоя и 5 шт. для наружного. Располагают их по углам и точно по центру наружной плиты. При этом два или три из них прижимают своими дисками еще и ветрозащитную пленку.

Вид, размеры дюбеля и диаметр отверстия под него определяются проектом. Глубина установки зависит от материала несущей стены, но не должна быть меньше 30 мм. Отверстие сверлится с запасом в 1 см и очищается от пыли и крошек. Распорный стержень забивается в корпус дюбеля до полного погружения в его прижимную часть.

Последовательность действий при креплении двухслойной теплоизоляции:

  1. установка плиты первого слоя на место с вырезкой прорезей под кронштейны металлического каркаса;
  2. разметка мест крепления дюбелей;
  3. сверление в стене отверстий необходимого диаметра с применением дрели или перфоратора;
  4. забивка тарельчатых дюбелей;
  5. забивка распорных стержней в корпус дюбелей;
  6. установка плиты наружного слоя на место с вырезкой прорезей под кронштейны металлического каркаса;
  7. разметка мест крепления дюбелей;
  8. сверление в стене отверстий необходимого диаметра с применением дрели или перфоратора;
  9. забивка двух тарельчатых дюбелей;
  10. забивка распорных стержней в корпус дюбелей;
  11. натяжение над плитами каменной ваты ветрозащитной пленки;
  12. забивка трех тарельчатых дюбелей с прижатием пленки к теплоизоляции;
  13. забивка распорных стержней в корпус дюбелей.

Некоторые системы вентилируемого фасада на основе решетчатого каркаса не требуют анкерного крепления теплоизоляции к стене. При этом плиты минеральной ваты закладываются с уплотнением до 5% по всем направлениям в ячейки из смонтированного с шагом в 600 мм горизонтального термопрофиля. Прижатие изоляционного слоя к основанию осуществляется вертикальными металлическими профилями, закрепляемыми саморезами.

Расположение дюбелей при двухслойном утеплении

Система «Мосрекон» использует другой способ прижатия термоизоляции. На применяемые здесь удлиненные анкерные шпильки, к которым крепятся все элементы каркаса, надеваются и прижимные пластины для фиксации утеплителя, удерживаемые гайками.

Что за новость: утеплитель с кэшированным слоем

Использование ветрозащитной ткани поверх теплоизоляционного слоя не всегда бывает удобным. Закрепленная со значительными интервалами на большой площади, она может отслаиваться и рваться. Решает проблему утеплитель с кэшированным слоем. В этом качестве выступает стекловолокно, надежно приклеенное в процессе изготовления к наружной поверхности плиты из минеральной ваты. Оно не позволяет потокам воздуха проникать внутрь материала, что увеличивает срок его службы. Процесс монтажа вентилированного фасада с такой изоляцией упрощается и ускоряется.

Основные производители

Большинство ведущих производителей минеральных теплоизоляционных материалов выпускают марки, специально предназначенные для использования в составе вентиляционных фасадов. К ним можно отнести:

  • ВЕНТИ БАТТС от Rockwool;
  • ТеплоКНАУФ и Insulation FRK, кэшированный стеклохолстом, от Knauf;
  • HITROCK Вент;
  • Paroc WAS;
  • ТЕХНОВЕНТ от Технониколь;
  • ИЗОВЕНТ от Изорок

Все они отличаются высоким качеством при небольшой разнице в цене.

Похожие статьи


  • Как правильно: укладывать или нет пароизоляцию…

    Но нас, как профессионалов в области фасадостроения, интересует только мембраны, уложенные на утеплитель в вентилируемых фасадах, каркасных стенах, и при любой облицовке стены с наружным утеплением, но без вентзазора.




  • Универсальная технология штукатурки фасада по…

    Вентилируемый фасад— прочный каркас вдоль стены, который заполняют теплоизоляционным материалом и с Слой утеплителя для мокрого фасада может быть базальтовым (плиты из каменной ваты) или пенополистирольным.

Вентилируемый фасад без утепления. Вентилируемый фасад – устройство системы

Вентилируемый фасад без утепления. Вентилируемый фасад – устройство системы

Вентилируемый фасад – универсальная многослойная система утепления ограждающих конструкций с обязательным вентиляционным зазором в 30-50 мм для беспрепятственной циркуляции воздуха по направлению снизу вверх. Благодаря вентиляционному зазору из стенового «пирога» удаляется водяной пар, образующийся в каждом жилом доме. Иными словами, вентфасад не только защищает стены от агрессивной внешней среды, но и обеспечивает оптимальный влажностный режим, продевая срок службы строения.

Система вентилируемого фасада обычно состоит из следующих слоев:

  • подсистема ;
  • телоизоляция;
  • вентиляционный зазор;
  • декоративный облицовочный экран.

В качестве утеплителя в вентфасадах обычно используются плиты, так как этот материал сочетает минимальную теплопроводность с гидрофобностью, негорючестью и отсутствием усадки. Проходя сквозь волокна, пар выпадает на внешней поверхности плит в виде конденсата и выветривается – изоляция поддерживается в сухом состоянии и не теряет теплосберегающих свойств. Привлекает и простой монтаж – враспор, без дополнительной фиксации механическим или клеевым способом. Система вентфасада включает и мембрану, закрывающую утеплитель от ветра и влаги, но она многих смущает своей горючестью.

nicola20 Участник FORUMHOUSE

Утепляю дом из газобетонных блоков по технологии вентфасада, утеплитель, (в два слоя, 50 плюс 100 мм), вентзазор и цокольный сайдинг. Смущает организация гидроветрозащиты – верхний слой утеплителя хоть и 90 кг/м³ плотностью, но сомневаюсь в его гидрофобных свойствах. Горючую же пленку класть не хочется, а негорючая кусается по цене вопроса при площади фасада около 300 м². Почему бы не подмешать в систему из технологии мокрого фасада, покрыв минвату разведенной до жидкой консистенции штукатуркой/раствором тонким слоем (валиком)? Смарткалк при таком пироге и штукатурке в 3-4 мм для любых растворов, даже ЦПС, дает точку росы в вентзазоре. От ветра дополнительно, имхо, защитим, от воды – тоже. Трещины, даже если будут, под вентфасадом незаметны. Есть ли подводные камни? Как будет жить раствор под вентфасадом? В чем заблуждаюсь?

Можно обойтись и без штукатурного слоя.

Железякин Участник FORUMHOUSE

Производители утеплителей разрешают не устанавливать мембрану поверх утеплителя на вентфасаде. И с этим согласны проектировщики. И заказчики, которые умеют слушать аргументы.

  • На невысоких объектах тяга в вентзазоре минимальная, поэтому выдувания волокон утеплителя не будет.
  • Этой тяги достаточно, чтобы снимать влагу с утеплителя. В нормально сделанном фасаде экран закрывает от потоков воды. Такого просто быть не должно. А влага практически всегда конденсат.
  • Сплошной экран фасада, кроме керамогранита на кляммерах, сам является хорошей ветрозащитой. И сдерживает прямой воздушный напор на стену здания.

Именно это мы всегда пишем проектировщикам с просьбой пересогласовать пирог фасада, убрав гидроветрозащитную мембрану. И они это делают.

Если же контур проницаем для разного рода «соседей», без защиты могут возникнуть проблемы.

Олег19731 Участник FORUMHOUSE

Без пленки у меня птички очень портили утеплитель, поэтому пришлось установить. А так разницы не заметил.

Когда горючесть мембраны критична и вентфасад с закрытым контуром (софиты, решетка/сетка), то на частном доме можно обойтись и без защиты, хотя в типовом конструктиве этот слой присутствует.

Вентфасады востребованы как при отделке общественных зданий, в том числе и многоэтажных, так и частных домов до трех этажей. Это обусловлено вариативностью, так как функционал и характеристики системы зависят от компоновки, а визуальное разнообразие дает возможность вписаться. Ограничением может стать состояние основания – если речь о реконструкции дома с солидным «стажем» и стены ветхие, фасадная система должна быть облегченной. Это не повод отказаться от вентфасада в принципе, но придется максимально точно просчитать все нагрузки и подобрать соответствующую подсистему, крепеж и облицовку.

Вентилируемый фасад размеры. Какие виды материалов используются для современной отделки вентиляционного фасада

Одним из современных способов внешней отделки дома является сооружение вентилируемых фасадов. С их помощью можно не только облагородить постройку, но и создать комфортные условия для проживания. Материалы для вентилируемых фасадов прочные и долговечные, в продаже представлен большой выбор расцветок.

Какие материалы используются для отделки вентфасадов

Декоративная отделка постройки – трудоемкий процесс, благодаря которому формируется архитектурная стилистика. Материалы облицовки должны обладать следующими характеристиками:

  1. Надежно защищать стены
    от неблагоприятных воздействий.
  2. Делать постройку внешне
    привлекательной.

Чтобы
сделать правильный выбор, нужно рассмотреть каждый вид отдельно.

Керамогранит

Это
искусственный материал, для изготовления которого используется смесь двух
сортов глины, краситель и продукт рассева кварца и породообразующих минералов
из силикатов. Далее все замешивается, формируются, и прессуются плитки.
Полученное изделие помещают в печь для обжига под температурой 1300 градусов.

Среди
преимуществ данного материала выделяются:

  • низкий показатель
    водопоглощения;
  • устойчивость к погодным
    условиям;
  • экологичность.

Обратите внимание! Полученные плиты прочные и долговечные, поэтому их используют как для внешней, так и для внутренней отделки.

Натуральный камень

Такой
вид отделки отличается привлекательным внешним видом и долговечностью, однако
многих отпугивает высокая стоимость натурального камня. Такой вид отделки имеет
и другие преимущества:

  1. Устойчивость к
    негативному воздействию (снег, дождь, перепады температур, механическое
    воздействие).
  2. Безопасность.
  3. Экологическая чистота.

Важно! При использовании данного вида облицовки следует учесть большой вес, поэтому потребуется укрепить фундамент.

Искусственный камень

Популярность
искусственного камня обусловлена схожестью с натуральным. Это делает внешний
вид постройки привлекательнее.

Преимущества
материала:

  • такой вид облицовки
    производится в виде плит, которые крепятся на любое основание;
  • малый вес;
  • экологическая
    безопасность;
  • устойчивость к погодным
    явлениям;
  • водонепроницаемость;
  • прочность и
    долговечность.

Поэтому
искусственный камень часто используется для отделки не только жилых, но и
производственных помещений.

Фиброцементные плиты

Материал
используется в строительстве благодаря доступности, невысокой стоимости и
универсальности. Плита состоит из цемента, гидравлических добавок и армирующих
волокон. Эти составляющие делают изделие влагостойким и прочным.

В
процессе производства, плиты помещают в автоклавы, где они затвердевают. Затем,
под воздействием высокого давления и температуры, они окончательно
полимеризуются. Для прочности, каждая плита обрабатывается грунтовкой с тыльной
стороны, и, акрило-полиуретановой защитой на лицевой поверхности и по бокам.

Преимущества
материала:

  • небольшой вес;
  • стойкость к коррозии и
    гниению;
  • огнестойкость;
  • морозоустойчивость;
  • экологическая чистота.

Среди
недостатков: высокое водополгощение и низкая ударопрочность.

Алюмокомпозитные материалы

Данный
вид материала получил широкое распространение из-за долговечности (более 50
лет), невысокой стоимости и малого веса. К тому же, панели не подвержены
коррозии и негативным погодным явлениям.

В
разрезе материал состоит из двух алюминиевых панелей, между которыми вставлен
слой полиэтилена или гидроксида алюминия и смолы. Сверху панель покрывается
противокоррозийным средством, внутри – защитным слоем полиэтилена или
поливинилхлорида и акрила.

Алюмокомпозитный
материал наделен рядом преимуществ:

  1. Высокие
    шумоизоляционные и антивибрационные качества.
  2. Прочность.
  3. Гибкость, что дает
    возможность создавать криволинейные формы.
  4. Стойкость к УФ-лучам.
  5. Большой выбор
    расцветок.

Среди
недостатков: неремонтопригодность изделия и пожароопасность.

Линеарные панели

Данный
материал — это нечто среднее между металлическим сайдингом и фасадными
кассетами. Так как в процессе производства панелей используется металл, то их
можно отнести к группе металлокассет. В продаже изделия представлены в разных
формах и размерах, что дает возможность создавать различные архитектурные
композиции.

Важно! Чтобы минимизировать количество стыков панелей, детали заказывают под необходимые для работ размеры.

Ламинат высокого давления

Данный
материал производится из целлюлозы, пропитанной смолой и декоративной бумагой.
Его изготавливают под воздействием высоких температур и давления. Чтобы изделие
получилось прочным, его обрабатывают специальными веществами, препятствующими
расслоению под действие влаги.

На
внешней стороне панели покрываются специальным составом, защищающим от
выгорания.

Важно! Такой вид ламината используется не только для внешней отделки, но и для возведения ограждений.

Монтаж откосов вентилируемого фасада. Откосы вентилируемых фасадов

Отделка откосов окон

После того, как окна установили, некоторые отказываются от отделки наружных откосов. А зря! Ведь наружные проемы выглядят некрасиво. Можно монтировать их самим. Это затратный процесс, но он того стоит. Ведь наружная отделка окон предотвратит появление проблем. Оставленные без отделки окна выглядят не только не эстетично, но и ,по прошествии определенного времени, это аукнется разгерметизацией проемов.

Монтажная пена под воздействием ультрафиолета и ветров разрушится, жаркое солнце поможет ей со временем стать просто крошкой, высыпающейся из окна. Это приведет к сквознякам в доме. И чтобы этого не случилось, нужно знать каким образом и чем отделывать наружные откосы.

Металлические откосы

Металлические откосы окон снаружи с полимерным покрытием, которые применяют для отделки оконных проемов со стороны улицы, имеют высокие теплоизоляционные характеристики. Они не подвержены коррозии за счет покраски, защищают окна и стены от промерзания и сквозняков. Дороговизна металлических откосов компенсируется длительным сроком службы.

Откосы из гипсокартона

Они отличаются от металлических. Этот материал широко используется при многих строительныхработах. Но у него есть один существенный недостаток – он впитывает влагу, что ограничивает его применение в строительных и отделочных работах. Гипсокартон можно использовать внутри помещения, но если там повышенная влажность, то лучше будет установить откосы из другого материала.

Гипсокартоновые откосы можно установить только для обсады и окосячки оконных проемов внутри помещения или на окнах, выходящих на веранды и балконы. В иных случаях будут иметь место проблемы, гипсокартон намокнет и разрушится быстро. Но к положительным свойствам материала можно отнести легкий его монтаж и отделку.

Керамические откосы

Керамические откосы смотрятся очень эстетично, лучше, чем металлические, и к тому же легко укладываются. Для этого не нужна идеально выровненная поверхность. При помощи керамической плитки можно выложить красивый орнамент. Для укладки на стенах делают насечки и грунтуют проемы. Затем наносят плиточный клей и укладывают плитку. Швы затирают. Стоимость таких откосов зависит от цены плитки.

Откосы из композитных панелей

Это наиболее предпочтительный вариант отделки оконных проемов. К тому же за ними легко ухаживать и чистить. Продаются в различных цветовых вариантах. Монтировать их можно как в деревянных, так и многоэтажных панельных сооружениях. У них много преимуществ- долговечность и достойные теплоизоляционные и звукоизоляционные параметры, и высокая стойкость к перепадам температур. К тому же и на вид они красивы и привлекательны, выглядят лучше металлических откосов на фасаде дома.

Штукатурные откосы

Это самый экономичный и популярный вариант откосов. Штукатурка откосов своими руками проста. Не нужно вызывать специалиста, чтобы монтировать их. Для того чтобы их сделать, понадобится сухая цементная или гипсовая смеси. Хоть это и простой способ установки откосов, но он довольно трудозатратный. А отделка наружных откосов потребует окраски. Также выполняется и отделка арочных проемов. Отделка арочных окон оштукатуриванием производится по этой же технологии.

Перед началом работы необходимо зачистить обрабатываемую поверхность от грязи. Для этого подойдут горячая вода и тряпка. Также придется выровнять все неровности. В начале работы надо удалить все выступы монтажной пены. Для этого сгодится любой острый нож. Чтобы не повредить случайно отливы и стекла, их нужно закрыть пленкой или малярным скотчем.

Штукатурить необходимо в определенном порядке:

  1. Сначала при помощи гипсового клея или гвоздей смонтировать маячки, отдаленные на 5 см от стекла. В дополнение нужно выставить правило (деревянная рейка), как дополнение к направляющей;
  2. Толщина слоя штукатурки должна быть так рассчитана, чтобы рама была закрыта на один сантиметр (стандарт равен 2 см и более). Угольником потребуется выровнять углы откоса;
  3. На очищенную поверхность наносят широкой кистью грунтовку для лучшего схватывания материалов;
  4. Готовую смесь из цемента и гипса выливают по маякам до того момента, когда все пространство будет залито. Затем шпателем все разравнивают движением снизу-наверх;
  5. После высыхания поверхности, маяки убирают, отверстия от них замазывают;
  6. Штукатурку наносят в несколько слоев, дожидаясь пока просохнет поверхность для следующего слоя. Углы выравнивают;
  7. После того, как раствор полностью затвердеет, следует убрать правило, а место его размещения обрабатывается цементно-гипсовым раствором;
  8. Затем теркой убирают все шероховатости, делая легкие круговые движения;
  9. Отделка проемов осуществляется в конце. В заключение все необходимо прошпаклевать, побелить и покрасить.

Вентилируемый фасад из керамогранита узлы. Конструктивные особенности вентфасада

Вентилируемые фасады из керамогранита состоят из четырех составляющих:

  • Каркас, установка которого производится непосредственно на фасадную стену здания;
  • Утеплитель и гидроизоляция;
  • Облицовка из керамогранита;
  • Дополнительные узлы и элементы.
Каркас

Каркас предназначается для крепления керамогранитных плит к стенам здания. Он состоит из системы направляющих профилей и крепежных деталей, монтаж осуществляется на несущую стену при помощи дюбель-гвоздей или анкерных болтов.

Профиль для керамогранита изготавливается из нержавеющей стали или алюминиевых сплавов, и бывает двух видов – горизонтальным и вертикальным.

Навесный крепёж представляет собой систему кронштейнов, установка которых производится путём крепления к стене и несущему каркасу. Особая конструкция кронштейнов даёт возможность регулировать величину зазора между стеной и керамогранитом.   Благодаря этому, с одной стороны, удаётся эффективнее вентилировать внутреннее пространство, а с другой – нивелировать неровности стеновых поверхностей.

Утеплитель и гидроизоляция

Технология монтажа вентилируемого фасада из керамогранита предусматривает создание теплоизоляционного и гидроизоляционного слоёв. Для наружного утепления здания чаще всего используют следующие материалы:

  • Листы пенополистирола;
  • Плиты из минеральной ваты;
  • Полиуретановую пену.

В таблице ниже даны сравнительные характеристики теплопроводности различных теплоизоляционных и конструкционных строительных материалов.

Монтаж пирога вентилируемого фасада осуществляется по следующей схеме:

  1. Внутренний паро- гидроизолирующий слой, располагающийся между бетонной или кирпичной поверхностью и теплоизоляцией;
  2. Слой утеплителя;
  3. Наружный слой гидроизоляции, уложенный поверх утеплителя;
  4. Воздушный зазор, служащий для вентиляции пространства под фасадом;
  5. Облицовка из керамогранита.
Декоративная керамогранитная плитка

Керамогранит представляет собой композитный материал, изготовляемый из смеси глины, кварца, полевого шпата и, при необходимости, разных пигментов. Все компоненты тщательно смешиваются, прессуются и обжигаются в высокотемпературных печах.

Таблица 1. Сравнительные характеристики керамогранита и керамической плитки.

В продаже можно встретить несколько видов керамогранитной плитки:

  • Техническая – наиболее бюджетный вариант. По внешнему виду практически не отличается от природного камня, имеет необработанную поверхность. Используется как напольное покрытие и для отделки внутренних и внешних стен производственных, торговых и складских помещений;
  • Глазурованная. Имеет гладкую глянцевую поверхность, может колероваться в процессе производства пигментирующими составами;
  • Сатинированная. Лицевая её часть обрабатывается посредством нанесения раствора минеральных солей, в результате чего она становится матовой. Также при изготовлении может окрашиваться в различные тона.

Фасады чаще всего монтируют с применением глазурованной плитки, благодаря её высоким эстетическим качествам, реже применяется матовый сатинированный керамогранит.

Главное отличие плитки для вентилируемого фасада от плитки для внутренних работ состоит в предъявляемых к ней требованиях. Она должна:

  • быть устойчива к внешним нагрузкам;
  • не терять насыщенности и яркости цвета под действием ультрафиолетового излучения;
  • обладать стойкостью к перепадам температуры и влажности воздуха;
  • хорошо переносить воздействие кислотных, щелочных и прочих агрессивных сред.

Линейные размеры и форма плит могут значительно различаться. Фасадный керамогранит 600х600 мм – наиболее распространённый вариант. Он имеет приемлемую массу, а одинаковая длина сторон упрощает разметку и монтаж каркасных направляющих.

Таблица 2. Требования, предъявляемые к качеству керамогранита для вентилируемых фасадов.

Дополнительные узлы и элементы

К дополнительным узлам относятся различные уплотнительные материалы и доборные элементы: прокладки из паронита или резины для установки под крепёж, декоративные вставки для заделки стыков между плитками. Вставки могут быть изготовлены из алюминия или полимеров – полиуретана, поливинилхлорида и т.д.

Видео вентилируемый фасад: монтаж подсистемы утеплителя и облицовки

Устройство вентилируемого фасада, рекомендации по монтажу и утеплению вентилируемого фасада от производителя утеплителя ISOVER

Потери тепла через неутепленные стены составляет от 30 до 80% . Эффективным способом утепления стен являются системы навесных вентилируемых фасадов (НВФ).

Преимущества системы НВФ

  • эффективное удаление влаги из конструкции,
  • проведение фасадных работ в любое время года,
  • разнообразие архитектурных решений.
Решение для вентилируемых фасадов

Однослойное утепление:  используется при небольших расчетных толщинах теплоизоляции, особенно при реконструкции и ремонте фасадов.

  • ISOVER ВентФасад-Моно – фасадный утеплитель применяется при однослойной теплоизоляции без каких-либо ограничений, относится к категории негорючих материалов, возможен заказ других размеров.
  • ISOVER Венти – применяется как в однослойном, так и при двухслойном утеплении (наружный слой) в зданиях всех типов без ограничений по высоте, относится к группе негорючих материалов.
  • ISOVER ВентФасад-Оптима – утеплитель фасада зданий до 16 метров. Этот материал имеет минимальный коэффициент воздухопроницаемости и теплопроводности, негорючий.

Двухслойное утепление наиболее распространено при новом строительстве. Состоит из двух слоев теплоизоляции: внутреннего и внешнего слоя:

  • внутренний слой является основным теплоизоляционных слоем,
  • внешний слой выполняет функцию ветрозащиты.

При двухслойной теплоизоляции можно использовать фасадные утеплители.

Для прокладки верхнего слоя можно монтировать ISOVER ВентФасад-Верх, этот утеплитель обеспечивает высокую теплозащиту. Благодаря своим оптимальным размерам он сокращает количество крепежа на 40%, увеличивая скорость монтажа в 2 раза, негорючий.

  • ISOVER ВентФасад-Низ – фасадный утеплитель, позволяющий исключить образование «воздушных карманов», благодаря эластичности и упругости волокна плотно прилегает к стене.
  • ISOVER ВентФасад-Оптима –   используется в качестве нижнего слоя при двухслойной теплоизоляции и в качестве внутреннего слоя. Этот материал имеет минимальный коэффициент воздухопроницаемости и теплопроводности, негорючий.
  • ISOVER Лайт – используется в качестве внутреннего слоя в навесных фасадных системах с воздушным зазором ( НФС) при двуслойном выполнении изоляции. Отличный материал для теплоизоляции фасадов, обладает высокой теплозащитой и звукоизоляцией, прост в монтаже (не требует дополнительного крепежа, так как ставится враспор, легко режется), как и остальные этот фасадный утеплитель ISOVER относится к группе негорючих материалов.
Рекомендации по монтажу
  1. Плиты теплоизоляции должны устанавливаться вплотную друг к другу с заполнением (при необходимости) зазоров между ними этим же материалом. Допустимая величина незаполненного шва — 2 мм.
  2. Угловые теплоизоляционные плиты устанавливаются с перевязкой каждого слоя. Не допускается выполнять утепление угла путем перегиба на нем плит теплоизоляции.
  3. Наружный слой фиксируется 5-ю тарельчатыми дюбелями, внутренний – 1-2-я.

Утепление вентилируемого фасада


Достаточно популярное решение, т.к. работы по отделке фасада можно производить в любое время года. Дело в том, что при его устройстве отсутствуют мокрые процессы.


Требования к вентилируемым фасадам таковы, что использование в них горючих материалов запрещено. Исключение составляют лишь различные защитные пленки. Остальные требования тоже достаточно жесткие. 


В частности, теплоизоляционный слой должен быть гидрофобизирован, не давать усадки при условии закрепления дюбелями.  


Еще очень важно, что бы в толще утеплителя не возникало конвективных потоков параллельных плоскости фасада, которые бы снижали его теплоизоляционные показатели. 


Для этого материал должен обладать низкой продуваемостью, которая связана внутренней структурой.


В качестве утеплителя в вентфасадах применяются исключительно негорючие минераловатные плиты или плиты из штапельного стекловолокна. С наружной стороны утеплителя в случаях предусмотренных проектом применяется ветрозащитная паропроницаемая мембрана.

Монтаж вентилируемого фасада


Обязательным требованием государственных надзорных органов, для разрешения применения вентилируемого фасада является прохождение сертификации системы и наличие Технического свидетельства (ТС) и Технической оценки Росстроя с описанием всех используемых в системе компонентов.


Кроме того, в связи с частыми случаями возгорания конструкций вентфасадов при их монтаже, либо быстрого распространения пожаров из-за горючих элементов систем, обязательным является требование о прохождении натурных огневых испытаний систем НВФ с присвоением конструкции определенной степени огнестойкости.


По этой же причине (частые случаи возгорания полимерных пленок) не утихают дискуссии по вопросу целесообразности применения ветрозащитной мембраны в конструкции вентилируемого фасада.


С одной стороны ветрозащитная пленка предотвращает эмиссию волокна из утеплителя и позволяет предотвратить фильтрацию воздуха, способствуя сохранению теплозащитных свойств конструкции. С другой стороны, как уже говорилось ранее ветрозащитные пленки являются изделиями на полимерной основе и относятся к материалам группы горючести Г2, при воздействии на них открытым огнем происходит их возгорание (с вытекающими последствиями — при возникновении пожара они могут способствовать его развитию).


Одним из конструктивных решений устройства теплоизоляции в системах вентилируемых фасадов является использование плотных минераловатных утеплителей без ветрозащитной мембраны. В этом случае основным критерием выбора теплоизоляции является плотность материала. Плотность наружного слоя минераловатного утеплителя устанавливается не менее 80-90 кг/м3, плотность внутреннего слоя устанавливается не менее 30 кг/м3 (в случае использования двухслойной системы изоляции). 


Достаточно жесткие волокнистые плиты, сами по себе являются хорошей ветрозащитой. Практика показала, что это действительно оптимальная плотность. Плиты остаются гибкими, и тем не менее довольно прочными. Они удобны при монтаже и надежны в эксплуатации. Требования к плотности утеплителя для навесных фасадных систем закреплены в ряде региональных строительных норм РФ.


В качестве наружного слоя подойдут такие плиты, как Роквул Венти Баттс, Лайнрок Венти, Лайнрок Венти Оптимал, ТехноВент, ISOVER RKL. В качестве внутреннего слоя подойдут плиты Роквул Лайт Баттс, Лайнрок Лайт, ТехноЛайт, ISOVER KL 34.


В случае если проектом предусмотрены ветрозащитные материалы (мембраны, пленки, стеклоткани), то их установка проводится в один слой, с перехлестом смежных полотен в зоне стыков не более 100-150 мм. В настоящее время появились мембраны, которые содержат в своем составе огнезащитные добавки позволяющие защищать от случайных возгораний: при проведении сварочных работ, при гидроизоляции цоколя, стен с паяльной лампой, при неаккуратном обращении с огнем.


Наиболее широкое распространение получили следующие марки ветрозащитных материалов: Изоспан A, Tyvek Housewrap (Тайвек), Ютавек 85, Ютавек 95, Изолтекс Фас, Изолтекс А.


Теплозащитные характеристики утеплителя могут ухудшиться также из-за наличия на его поверхности воздухопроницаемых щелей, через которые движется воздушный поток (сопротивление теплопередаче стены в этом случае уменьшается на 20-35%). Неплотности в щелях на местах стыковки минераловатных плит приводят к резкому снижению теплотехнической однородности стены – в месте разрыва плоскости теплоизоляции возникает «мостик холода». Одна из основных причин появления щелей и неплотностей – несоблюдение технологии при производстве работ.


Эту проблему в ряде случаев помогает решить использование двухслойной изоляции: плиты второго (наружного) слоя утеплителя укладываются таким образом, чтобы перекрыть стыки плит первого слоя. В этом случае удается устранить «мостики холода» и максимально уменьшить потери тепла в здании.


Для крепления теплоизоляционных плит в вентилируемых фасадах применяются крепежные тарельчатые дюбели. Количество тарельчатых дюбелей на 1 м2 поверхности фиксируется проектом и определяется расчетом, исходя из конкретных условий строительства, высоты здания, конструктивных решений, других факторов и фиксируется проектом. Марки дюбелей для крепления плит определяют прочностными расчетами с учетом рекомендаций производителя дюбелей и результатов испытаний.


При монтаже плит теплоизоляции в два слоя плиты первого слоя закрепляют тарельчатыми дюбелями со шляпками диаметром 110 мм или тарельчатыми дюбелями с дополнительными шайбами диаметром 140 мм независимо от крепления второго слоя. При монтаже плит утеплителя необходимо обеспечить “перевязку” стыков (по типу кирпичной кладки) и зубчатое сопряжение на углах.


При устройстве теплоизоляции в два слоя: плиты укладываются плотно друг к другу, а швы плит нижнего (внутреннего) слоя не должны совпадать со швами верхнего (наружного) слоя. Зазоры между плитами утеплителя не должны превышать 2 мм. Зазоры более 2 мм заполняются теплоизоляционным материалом того же типа и объемного веса, что и материал наружного слоя.


Вентилируемый воздушный зазор располагается между наружным облицовочным покрытием и теплоизоляционным слоем. Ширина воздушной прослойки должна быть не менее 40 мм и не более 150 мм. По результатам натурных огневых испытаний определено, что оптимальная ширина воздушной прослойки составляет 60 мм.

Используемые материалы

← Назад к списку готовых решений

Утепление вентилируемого фасада. Утеплители. ООО «Кронаm»

Особенности вентилируемых фасадов

Перед тем как выбрать утеплитель для вентфасада, составим представление о самой конструкции, которую будем теплоизолировать.

Традиционный вентилируемый фасад – это металлический каркас, закрепленный на внешних сторонах здания при помощи анкеров, к которому в свою очередь крепится так называемый экран (облицовка). Между стеной здания и экраном укладывается утеплитель.

Главная «фишка» такой конструкции заключается в том, что между экраном и утеплителем остается небольшой воздушный зазор. Он-то и придает фасаду ту самую «вентилируемость». Что же нам это дает?

Первое и самое главное – максимальную паропроницаемость стен, при этом отлично защищенных от ветра, дождя, механических повреждений и иных негативных факторов. На этом пункте, пожалуй, остановимся чуть подробнее.

Как правило, уровень влажности в помещении всегда выше, чем за его пределами. Избыток влаги непрерывно фильтруется через стены в виде пара. И любое непроницаемое для влаги покрытие становится неким барьером. Результат плачевный – стена накапливает влажность и в скором времени начинает разрушаться. Кстати, ее теплоизолирующие свойства также ухудшаются.

Ну а с другой стороны, всевозможные декоративные покрытия для фасадов, имея отличную паропроницаемость, хуже защищают здание от дождя. Стены будут намокать и опять же быстрее разрушатся

А вот удаление экрана от капитальной стены на небольшое расстояние полностью решает эту проблему.

Вентилируемый фасад в значительной степени снижает потери тепла, и плюс к этому является прекрасной защитой от шума. Этакая гасящая звук акустическая ловушка.

Логично будет предположить, что утеплитель для вентилируемого фасада должен иметь характеристики и качества, не противоречащие конструктивным особенностям данного вида фасада:

  • необходимо, чтобы паропропускаемость утеплителя, как минимум не уступала паропропускаемости стены;
  • теплоизоляционный материал должен максимально уменьшать потерю тепла от стены в окружающую среду;
  • неплохо было бы, если он еще обладал шумоизоляционными свойствами;
  • ну и, пожалуй, самое главное – утеплитель не должен впитывать влагу (или хотя бы должен легко сушился без потери своей первоначальной формы).

Если учитывать все эти требования, то какой теплоизоляционный материал лучше всего подойдет под вентилируемый фасад?

  • Превосходная негигроскопичность (материаль имеет структуру в виде закрытых ячеек), а это значит – данные утеплители могут переносить существенные температурные перепады, не разрушаясь при этом.
  • Устойчивость к влаге. Даже в том случае, если наружный слой теплоизолятора намокнет, выручит его эластичность. Как пенополистирол (например, утеплитель Пеноплекс), так и пенополиуретан способны без ущерба переносить многократное замерзание воды в порах.
  • Тепло- и шумоизоляция также на высоте.
  • Пластики не дают усадки, и уж тем более не слеживаются.
  • Как базальтовая, так и минеральная вата — весьма дешевые утеплители, их стоимость гораздо ниже, чем у пенополистирола и, тем более, у пенополиуретана.
  • Что самое важное – пар свободно проходит через эти утеплители.
  • Как базальтовая, так и минеральная вата обладают небольшим весом (что очень удобно при монтаже), пожаробезопасностью, химической и биологической стойкостью.
  • Оба утеплителя впитывают влагу, однако и легко отдают ее.
  • Шумо- и теплоизоляция также на должном уровне, хоть и уступает предыдущим материалам.
  • И самый больной вопрос – слеживание утеплителя. Дешевые изделия из минваты быстро теряют свои объемы, а вот плиты из базальтового волокна могут сохранять форму десятилетиями.

Вообще, конечный выбор теплоизолятора для того или иного вентфасада определяется климатическими условиями региона, свойствами стен и навесных покрытий, высотой строения и расположением ветровых зон. Уже, исходя из этих показателей, можно точно решить, с какой прочностью на сжатие, теплопроводностью, водопоглощением и плотностью покупать утеплитель.

Технология утепления вентфасада(базальтовая вата и минеральная вата)

В первую очередь к стене необходимо установить кронштейны для крепления будущего вентфасада.

Затем идет опорный угол: он крепится по горизонту к цоколю.

Плиты минваты или базальтовой ваты укладываются горизонтальными рядами с небольшим смещением вертикальных швов от ряда к ряду. Утеплитель надежно крепится к стене при помощи дюбелей-зонтиков (или, как их еще называют, грибков) из расчета – 2 дюбеля на 1 плиту.

На следующем этапе слой теплоизоляции дополнительно укрывается ветрозащитой, которая плотно накладывается горизонтальными полосами с нахлестом около 10 см.

И в завершение слой утеплителя окончательно фиксируется все теми же грибками – по 5 штук на 1 плиту.

На этом работа по теплоизоляции вентилируемого фасада заканчивается. Можно смело переходить к сборке каркаса.

Пеноплекс — один из современных утеплителей на основе экструзионного пенополистирола. Такой утеплитель обладает рядом достоинств и широко используется в строительстве. Неоспоримым преимуществом пеноплекса является низкая теплопроводность, паропроницаемость,нулевое водопоглощение и экологичность. А простота в использовании и легкий вес, делает пеноплекс незаменимым материалом, при строительстве конструкций любой сложности. Если говорить об утеплении брусового дома, то пеноплекс наиболее часто применяют в утеплении деревянных домов снаружи. Качественное и правильно сделанное утепление с вентилируемым фасадом, будет препятствовать проникновению холода в ваш дом, и уменьшит ваши расходы, связанные с оплатой энергоносителей. Принцип устройства вентилируемого фасада при утеплении довольно прост, и не нужно быть строителем-профессионалом , чтобы провести эту работу. По всему периметру здания к стене крепится пароизоляционная пленка. Она предназначена для предотвращения проникновения влаги к утеплителю изнутри помещения. Далее производится монтаж каркаса из деревянных брусков 50х50 мм. Ширина между брусками должна соответствовать ширине листов утеплителя. Обычная ширина пеноплекса 600 мм. Укладываем листы пеноплекса в каркас, и крепим их с помощью специально предназначенных дюбелей-зонтиков. Для качественной укладки теплоизоляции можно использовать монтажную пену. Гидроизоляционная пленка укладывается на слой утеплителя, и ее предназначение — перекрыть доступ влаги к утеплителю. Поверх каркаса набиваются рейки толщиной 50 мм на которые монтируется фасадная обшивка дома. При обшивке дома фасадными материалами необходимо оставить горизонтальные зазоры шириной 1-2 см внизу и вверху каркаса. Эти зазоры предназначены для доступа воздуха под обшивку, и именно благодаря таким зазорам, фасад вашего дома будет вентилируемым. 

что лучше, что дешевле. Как вентилируется мокрый фасад

Как бригадиру мне часто приходится самому выезжать на новый объект и разговаривать с заказчиками об особенностях фасадной отделки и применяемых технологиях. Многие из них не совсем разбираются в этом вопросе, путая вентилируемый и мокрый фасад. Когда дело доходит до выбора между вентилируемой и мокрой системой, меня часто спрашивают, а как вентилируется мокрый фасад?

Приходится объяснять, что это два разных способа, методы крепежа отличаются, а материалы финишной отделки чаще всего используются совершенно разные. Об этом и расскажу далее.

{autotoc}

Подробно о методах фасадной отделки

Чтобы понять основные различия мокрых и вентилируемых фасадов, рассмотрим обе технологии.

Мокрый фасад

Так называемый фасадный пирог внешней отделки по мокрой технологии состоит из таких слоев:

  • Утеплитель, который крепится на несущую внешнюю стену дома или другого строения при помощи клея с последующей фиксацией дюбелями. В качестве теплоизолятора применяются листовые материалы с плотностью от 15 кг/м³: пенопласт, пенополистирол, прессованная минеральная вата.
  • Армирующий слой из клеевого состава и мелкоячеистой сетки.
  • Финишная отделка. Используются различные штукатурные смеси: декоративные, фактурные, цементные и другие составы.

Все слои с соблюдением технологии монтируются последовательно друг на друга. Таким образом, получается прочная и монолитная конструкция, закрепленная на фасаде. Мокрая технология внешнего утепления обладает следующими преимуществами:

  • Повышается пожаробезопасность дома: штукатурные и клеевые составы не горят и защищают утеплитель, расположенный под ними.
  • Такая отделка имеет незначительный вес, поэтому может применяться для стен и фундамента со слабыми несущими способностями.
  • Простая технология монтажа.
Вентилируемый фасад

Под вентилируемым фасадом подразумеваются системы (конструкции), которые монтируются на стену при помощи специальных кронштейнов и направляющих. Это целая система из анкеров и профилей, для монтажа которых требуются определенные знания и навыки. Все крепления выполняются механическим способом, клеевые или другие составы не применяются.

Общая технология такой системы заключается в следующем:

  • На фасад крепятся кронштейны для крепления облицовки.
  • Затем при помощи дюбелей с тарельчатыми шляпками монтируется утеплитель. Чаще всего используются плиты минваты: они обладают хорошей паропроницаемостью.
  • Минеральная вата сверху накрывается специальной пленкой, пропускающей воздух в одном направлении: ветровой защитой.
  • После этого монтируются вертикальные и горизонтальные профили, на которые крепится декоративная отделка: панели из различных материалов. Например, панели из негорючего пластика или оцинкованного железа, фиброцементные или керамогранитные плиты.

Отличие вентилируемого фасада от мокрой системы заключается в следующем. Между утеплителем и панелями отделки остается 2–3 см воздушного зазора. Такая особенность навесной системы позволяет эффективно отводить влагу и конденсат за счет восходящих конвекционных потоков, возникающих за облицовкой. Из-за этого такие системы и получили название вентилируемых фасадов.

Есть вопросы?
Звоните, Спрашивайте!
+7 495 649-49-90

Из-за того, что такие системы имеют значительный вес (особенно при облицовке керамогранитом или плитами на основе цемента), монтаж навесных конструкций ограничен несущей способностью стен. Чаще всего такое утепление применяется для бетонных стен. Пеноблоки и другие ячеистые бетоны могут не выдержать значительной нагрузки, даже если кронштейны крепить насквозь с фиксацией при помощи шайб с внутренней стороны.

Я думаю, теперь понятны основные различия между мокрым и вентилируемым фасадом.

Давайте рассмотрим еще несколько вопросов, которые возникают при выборе технологии отделки.

Примеры наших работ

Ответы на некоторые вопросы

Один из вопросов, который возникает у людей, решивших утеплить свой дом и выбирающих способ это сделать: что лучше мокрый фасад или вентилируемый?

Однозначного ответа на этот вопрос не может дать никто: все зависит от конкретного случая. Иногда лучше использовать мокрый метод, а в других случаях эффективнее будет навесная система. По степени теплоизоляции оба способа одинаково эффективны, но при мокром методе можно использовать практически любой теплоизолятор. А для обустройства вентфасада подходят только негорючие материалы – это основное требование пожарной безопасности. Поэтому вопрос чаще решается на месте исходя из выделенного бюджета и особенностей здания (материала стен, типа фундамента и многого другого).

Получив ответ на предыдущий ответ, люди сразу спрашивают, а что дешевле: мокрый или вентилируемый фасад?

Здесь я однозначно отвечаю: мокрая технология дешевле. В стоимость мокрой отделки входит клеевая смесь, утеплитель и фасадная штукатурка. А вентфасад включает в себя утеплитель, навесную систему и облицовку. Причем облицовка и система креплений – наиболее дорогостоящие элементы. Приведу пример: утепление минеральной ватой по мокрой технологии стоит от 2500 тыс. руб/м². Стоимость утепленного минватой вентфасада зависит от облицовки. Например, при использовании керамогранита цена материалов и работ составит от 3600 руб/м², а при обшивке композитными панелями – от 4400 руб/м². Я считаю, что именно фактор цены, а также более легкая во всех смыслах технология мокрой отделки делает этот метод наиболее востребованным.

Иногда возникает вопрос, что лучше для пожаробезопасности вентилируемый фасад или мокрый?

Здесь обе системы одинаково безопасны, но это достигается различными методами. Отделка мокрым методом более пожароустойчива изначально, по самой сути технологии. Пожаробезопасность вентилируемого фасада достигается за счет применения огнеупорных и негорючих материалов: как утеплителя, так и облицовки. К тому же пожары чаще возникают внутри зданий, чем снаружи.

Подводя итоги еще раз отмечу, что вентилируемый и мокрый фасад – это совершенно разные способы внешней отделки зданий с утеплением. Поэтому монтаж вентилируемого фасада поверх мокрой штукатурки не практикуется, я думаю, никем.

  • Во-первых, это еще больше поднимет стоимость материалов и работ,
  • во-вторых, совершенно бессмысленно наносить клей или штукатурку поверх утеплителя, чтобы затем смонтировать еще один защитный слой.

Вся технология вентфасада заключается в том, чтобы естественным образом удалялась влага из утеплителя, а не из штукатурного слоя.

Надеюсь, что этот материал ответит на самые разные вопросы и поможет вам определиться, какому способу отделки отдать предпочтение.

Планируете отделку фасада?
Вам стоит только позвонить, дальше мы все сделаем сами!

+7 (495) 649-49-90

Многоканальный телефон

Вентилируемый фасад, дополнительный уровень защиты и эффективности

Анкеры

Ряд элементов, распорок, закрепленных на внутренней створке, будут отвечать за решение проблем обрушения фасада. В качестве опции можно добавить изоляционные прокладки для разрыва теплового моста.

Профили привинчиваются к этим распоркам, на которых будут установлены опорные узлы, с функцией регулировки высоты в соответствии с материалом, который будет использоваться на внешней створке.

В случае систем сборки STAC BOND лотки алюминиевых композитных панелей будут размещены на анкерах в соответствии с используемой системой.

Изоляционный слой

В вентилируемых фасадных системах изолирующий слой не всегда используется, но, если его добавить, он значительно улучшает тепло- и звукоизоляцию здания.

Поскольку изолирующий слой занимает весь фасад, он способствует улучшению всего ограждения, поскольку защищает наиболее уязвимые к утечкам участки, такие как окна, оконные ставни, полы и т. Д.

Как видно из статей, посвященных теплоизоляции и термическому сопротивлению, на рынке имеется множество материалов, которые используются для теплоизоляции. В случае вентилируемых фасадов минеральная вата обычно является наиболее распространенным материалом.

Наружная створка

Функция внешней створки заключается в физическом разделении внутренней и внешней среды здания. Он может быть изготовлен из различных материалов, как мы увидим ниже, и именно слой отвечает за эффект дымохода.

Этот лист состоит из разных частей, отделенных друг от друга, чтобы обеспечить циркуляцию воздуха и избежать проблем с расширением, что способствует увеличению срока службы продукта.

Наличие этой створки также защищает оригинальный фасад в случае ремонта или несущий фасад в случае нового строительства от проникновения влаги и конденсата.

ВЕНТИЛЯЦИОННЫЙ ФАСАД: ЦЕННОЕ ИССЛЕДОВАНИЕ

Здания химического факультета Автономного университета Барселоны представляют собой идеальные условия для термографического исследования теплового комфорта и энергоэффективности, сравнивая вентилируемый фасад с фасадом из бетона.

Кафедра химии, расположенная на территории комплекса Департамента науки, занимает два смежных здания в кампусе Беллатерра Автономного университета Барселоны. Эти два коробчатых здания, построенные в конце 1960-х годов, являются одними из самых старых построек на территории университета. Один из них имеет окрашенный бетонный фасад, а другой был отремонтирован и имеет вентилируемый фасад.

«Эта настройка позволяет нам включить только в одно термографическое изображение поведение

традиционный фасад рядом с одним облицован Trespa® Meteon®.”

Хавьер Виола и Гонсалес, директор Efcore и термограф

Одно из зданий было капитально отремонтировано в 1992 году, так как оно требовало размещения новых лабораторий и высокой концентрации оборудования. Поскольку в Испании уже действовали первые нормы терморегулирования зданий, было решено, что вентилируемый фасад — лучшее решение для ремонта здания из сборного железобетона. В качестве облицовки были выбраны панели Trespa® Meteon® среднего серого цвета.

Спустя более 20 лет помещения Департамента представляют собой идеальные условия для термографических исследований теплового комфорта, конденсации и эффективности использования энергии с вентилируемым фасадом и без него. «У нас есть фраза« изображение стоит тысячи слов », и эта настройка позволяет нам включить только в одно термографическое изображение поведение традиционного фасада рядом с фасадом, облицованным Trespa ® Meteon ® », — говорит Ксавьер. Виола и Гонсалес, директор испанской фирмы Efcore, ответственной за исследование.

Два здания химического факультета в кампусе UAB Bellaterra. Слева отреставрированная структура с Trespa ® Meteon ® , справа — все еще в своем первоначальном состоянии.

ВНЕШНИЕ ЗДАНИЯ

Пятиэтажные здания, построенные в типичном архитектурном стиле 1960-х годов, были построены из сборных железобетонных сэндвич-панелей без изоляции.Оба они используют систему центрального отопления в зимние месяцы. Помимо фасада, две конструкции имеют одинаковые, если не почти идентичные характеристики с точки зрения географической ориентации, внутренних условий, использования, высоты, занятости, технического обслуживания, руководства и конечных пользователей. Эти элементы могут исказить результаты сравнительного исследования. Кроме того, не было ни соседних, ни близлежащих зданий, которые могли бы повлиять на измерения.

«Мы не могли найти лучших условий для проведения термографического исследования, потому что все характеристики были одинаковыми, за исключением вентилируемого фасада, который был объектом исследования», — объясняет Виола и Гонсалес.После первоначального анализа коэффициента излучения фасадных материалов

, что гарантировало надежность изображений, Efcore сделал серию тепловизионных изображений в феврале 2014 года и вторую серию в июле того же года. Это позволило Виоле-и-Гонсалесу и техническому архитектору Хосепу Луису Эскобедо-и-Паре проанализировать поведение обоих зданий зимой и летом.

  1. Левое здание было облицовано в 1992 году Trespa ® Meteon ® после капитального ремонта.Здание справа имеет оригинальный бетонный фасад 1960-х годов.

  2. Февраль 2014 г .: Поверхность Trespa ® Meteon ® (слева) имеет такую ​​же температуру, что и внешняя (12 ° C), в то время как бетонная поверхность (справа) имеет более высокую температуру.

  3. Июль 2014 г .: Поверхность Trespa ® Meteon ® (слева) имеет более высокую температуру, чем внешняя (28 ° C), в то время как бетонная поверхность (справа) аналогична.

ПРОТИВОПОЛОЖНЫЕ РЕЗУЛЬТАТЫ

Согласно термографическим снимкам, в летние месяцы температура наружной поверхности бетонного фасада очень близка к температуре наружного воздуха. Обратное происходит зимой, когда температура поверхности бетона выше, чем температура наружного воздуха. Без теплоизоляции тепло переходит из внутреннего помещения в наружное, а не остается внутри. Кроме того, есть заметные колебания температуры внутри.Эти результаты указывают на «большую теплопередачу от внешней стороны к внутренней и значительную потерю энергии через бетонный фасад», — говорится в отчете. В свою очередь, эти потери и передачи привели к более высоким затратам на энергию для охлаждения и обогрева здания, в то же время создавая больший дискомфорт для пользователей, которые чувствуют колебания температуры.

Иная ситуация с отремонтированным домом. Температура поверхности Trespa ® Meteon ® имеет тенденцию быть выше в жаркие месяцы, в то время как она очень похожа на внешнюю температуру зимой.Не было замечено ни одного холодного помещения, и сообщалось о минимальных потерях энергии изнутри наружу. Эти результаты связаны с существованием вентилируемой фасадной системы, которая включает изоляцию и воздушную полость, которая обеспечивает непрерывный воздушный поток, способствующий отводу тепла и влаги.

«Панели Trespa ® Meteon ® и воздушная полость защищают изоляцию, которая, в свою очередь, защищает остальную часть оболочки, улучшая общие тепловые характеристики», — отмечается в независимом исследовании.Поскольку внутренняя температура более равномерная, комфорт составляет

.

больше. Кроме того, требуется меньше энергии для охлаждения здания летом или для его обогрева в холодное время года. Согласно расчетам Efcore, экономия энергии составляет около 22% по сравнению с потреблением энергии до ремонта.

Для ремонта химического факультета были использованы панели Trespa ® Meteon ® толщиной 8 мм. Вентилируемый фасад имеет воздушную полость 30 мм и изоляцию от 20 до 30 мм, что соответствовало действующим в то время испанским строительным нормам и правилам, в которых была введена изоляция минимальной толщиной 20-25 мм.

«Вентилируемый фасад химического факультета уже превзошел местные требования, так как на наружных стенах была установлена ​​изоляция. Это уже минимизировало тепловые мосты », — говорит Виола и Гонсалес. «Очевидно, что если бы изоляция была от 80 до 100 мм, как указано сейчас, экономия энергии и сокращение выбросов CO2 были бы выше».


Вентилируемые фасады с алюминиевыми фасадными панелями Metawall®

Задний вентилируемый фасад

В строительстве термин «вентилируемый фасад» описывает сложную технику, придающую фасадам внешний вид, характеризующийся индивидуальностью, высоким качеством и долговечностью.

Конструкция навесного вентилируемого фасада

Задний вентилируемый фасад

Задние вентилируемые фасады строятся следующим образом. Сначала к кладке крепится подконструкция; он служит статическим соединением между внешней стеной и облицовкой фасада. Между подконструкциями вставляется теплоизоляция. На следующем этапе к подконструкции крепятся фасадные панели.

Преимущества вентилируемых фасадов универсальны

Mit dem Laden des Videos akzeptieren Sie die Datenschutzerklärung von YouTube.
Mehr erfahren

Видео загружено

YouTube immer entsperren

Разделение изоляции и оболочки

Компоненты утеплителя (тепло, холод, противопожарная защита) и облицовки (защита от атмосферных воздействий) конструктивно отделены друг от друга в системе вентилируемого фасада. Задняя вентиляционная зона между компонентами контролирует содержание влаги в конструкции здания: строительная и эксплуатационная влага надежно отводится воздушным потоком.

Перерабатываемое и экологически безопасное оборудование

После использования в качестве вентилируемого фасада, основание, изоляция и облицовка фасада могут быть собраны отдельно и переработаны. Если производство сборных фасадных панелей на более чем 90% состоит из переработанного алюминия, как в случае с Metawall ® , и выбраны пригодные для повторного использования изоляционные материалы, цикл переработки и экологичности практически идеален. Подробный экологический баланс фасадных панелей можно найти в декларациях экологической продукции согласно DIN EN ISO 14025, тип III и EN 15804.

Снижение последующих затрат, например, чистка и обслуживание

По сравнению с системами теплоизоляции (ETICS) более высокие затраты на строительство амортизируются в течение периода использования, так как затраты на очистку и обслуживание вентилируемых фасадов ниже. (см. www.architektur-aktuell.at, «Die Analyze der Lebenszykluskosten spricht für die VHF»)
Повреждения фасадов навесных стен обычно можно отремонтировать путем замены отдельных элементов. Необязательно обновлять весь фасад.

В чем недостатки вентилируемого фасада по сравнению с другими фасадами?

Время, необходимое для монтажа вентилируемого фасада, обычно несколько больше, чем для других фасадов, например системы теплоизоляции. Затраты на материалы обычно также выше, чем затраты на композитные системы теплоизоляции. Можно отметить незначительные недостатки, например, в зависимости от толщины утеплителя, толщина фасада немного больше, а стена, на которой будет закреплен фасад, должна быть достаточно устойчивой.В настоящее время это уже не вопрос, потому что кирпичная кладка или бетон достаточно устойчивы.

Вентилируемые фасады с алюминиевыми сэндвич-панелями Metawall

®

Каменные постройки были первыми по-настоящему постоянными рукотворными постройками. С помощью железа и стали были достигнуты невероятные высоты, а алюминий, как самый современный из этих трех строительных материалов, позволяет создавать универсальные и легкие конструкции. Конечно, алюминий — почти мягкий строительный материал по сравнению с камнем и сталью, но это зависит от того, что из него сделано.Есть материалы, которые сами по себе практически не обладают стабильностью и несущей способностью. Однако, если одни и те же материалы комбинируются друг с другом в разных формах, грузоподъемность и устойчивость значительно возрастают. Такими материалами являются алюминиевые фасадные панели
Metawall ® . Комбинация двух алюминиевых накладок с гофрированным алюминиевым сердечником делает легкий металлический алюминий чрезвычайно прочным строительным материалом. По сравнению со сплошной алюминиевой пластиной той же толщины Metawall ® на 80% легче, но обеспечивает такие же статические характеристики.
Фасадная панель не изготовлена ​​из композитного материала. Покровные листы и основной материал изготовлены из алюминия. Поэтому вся панель изготовлена ​​из 100% перерабатываемого материала, который не нужно отделять для процесса переработки.
Непрерывный производственный процесс позволяет изготавливать исключительно большие фасадные элементы с плоской поверхностью, которая остается стабильной по размерам и плоской даже для крупных элементов.
Разные цвета, эл. грамм. Могут быть предложены цвета RAL, NCS, BS, Pantone и металлик.Индивидуальные цветовые решения доступны по запросу. В отличие от других сэндвич-панелей, панели Metawell ® могут иметь порошковое покрытие (по запросу).
Огнестойкость фасадных панелей классифицируется в соответствии с европейским стандартом EN 13501-1. «Metawall ® » имеет класс огнестойкости B — s2, d0 (огнестойкий) и «Metawall ® A2 ″ A2 — s1, d0 (негорючий).
Для получения строительного сертификата, например, DGNB или LEED, необходимы оценки жизненного цикла каждого используемого строительного продукта.Чтобы упростить это и сделать его более сопоставимым, используются так называемые экологические декларации продуктов (EPD). Для фасадных панелей Metawall ® и Metawall ® A2 доступны экологические декларации продукции согласно DIN EN ISO 14025 тип III и EN 15804.
В строительной отрасли неуклонно растет давление времени и затрат. Подход к снижению затрат заключается в проектировании здания в 3D до начала строительства, чтобы можно было уменьшить разногласия при планировании.Чтобы упростить работу архитекторов, проектировщиков и проектировщиков, элементы фасада можно загрузить для ArchiCad и Revit на сайте bimobject.

Вернуться к фасадам.

Энергетические аспекты вентилируемых фасадов с тыльной стороны

С появлением глобального потепления энергоэффективность и энергосбережение стали первостепенными факторами при проектировании здания. Сегодня на типичное здание приходится 40 процентов от общего энергопотребления. Фасад играет важную роль в определении энергоэффективности здания, являясь связующим звеном между внутренним и внешним миром.Используя задний вентилируемый фасад, для каждого здания можно разработать энергетическую концепцию, которая учитывает потребности здания в отоплении и охлаждении, а также идеальное качество освещения внутри него.

Что такое задний вентилируемый фасад?

Задний вентилируемый фасад — это многослойная фасадная система здания, состоящая из водонепроницаемого покрытия на внешнем слое в сочетании с рамой, атмосферостойкой мембраной, изоляцией, подрамником и вентилируемой полостью.(Изображение 1)

Разница между температурой лицевой системы облицовочной панели и температурой воздушной полости создает изменение плотности воздуха, что приводит к «эффекту дымохода», который создает восходящий поток воздуха внутри полости.

Материалы, которые могут использоваться для задних вентилируемых фасадов, включают композитные панели из HPL и армированной смолой, фиброцемент, минеральную вату, керамику, мелкий керамогранит, медь, титан-цинк, алюминиевые композитные панели, алюминиевые плиты, кирпичи, качественные фасадные ткани и Система опорных панелей для применения с гипсом, стеклом, тесаным камнем или керамикой.(Изображение 2)

Как задний вентилируемый фасад может помочь снизить энергопотребление здания?

Задние вентилируемые фасады с присущим им потоком воздуха обеспечивают ряд явных преимуществ по сравнению с другими фасадными системами, такими как:

Теплоизоляция и экономия энергии — Система вентилируемого заднего фасада может быть спроектирована с учетом различных требований к энергии с индивидуально подобранными изоляционными материалами любой желаемой толщины.Тепловые мосты уменьшаются, потому что нет прерываний, вызванных плитами перекрытия. Существуют варианты, которые помогают уменьшить количество вводимых тепловых мостов или даже полностью устранить тепловые мосты за счет постоянной постоянной изоляции всех элементов конструкции без разрывов или перемычек в изоляции, за исключением конечных креплений, используемых для прикрепления облицовки к зданию.

Из-за конструкции вентилируемого фасада, сопротивление диффузии пара снижается от внутренних стен к внешним.Любая влага от конденсации или накопления во время строительства проходит через вентилируемое пространство и способствует созданию здорового и комфортного климата в помещении. Изоляция также обеспечивает максимально возможное удержание тепла для конструкции, в то время как она компенсирует высокие температуры летом изнутри, что приводит к снижению требований к отоплению / охлаждению внутри здания.

• Звукоизоляция — вентилируемые фасады сзади положительно влияют на звукоизоляционные свойства внешней стены.В зависимости от толщины изоляции, размеров облицовки и процента открытых швов индекс звукоизоляции может быть увеличен до 14 дБ.

• Защита окружающей среды — Вентилируемые фасады устойчивы к проливному дождю. Влага быстро удаляется через вентилируемое пространство между изоляционным материалом и облицовкой. Защита от дождя на заднем вентилируемом фасаде работает на двух уровнях: вентиляционный зазор функционирует как комната компенсации давления, которая гарантирует, что в худшем случае проливной дождь стекает через заднюю часть облицовки, тем самым защищая теплоизоляцию. от сырости.Следовательно, можно построить задние вентилируемые фасады с открытыми горизонтальными швами без снижения защиты от дождя.

Какие энергетические параметры необходимо учитывать при проектировании вентилируемого фасада с тыльной стороны?

При проектировании фасада в целом следует учитывать следующие общие параметры:

  • Архитектурные требования / ограничения
  • Достижимые тепловые характеристики (коэффициент теплопроводности, коэффициент g, температура слоя)
  • Гибкость (регулируемая производительность)
  • Стратегия взаимодействия с системами HVAC (вытяжка, естественная вентиляция)

Помимо этих параметров более общего характера, следующие более конкретные параметры могут оказать существенное влияние на возможный дизайн и, следовательно, тепловые характеристики фасада:

  • Грузы
  • Техническое обслуживание (внутреннее или внешнее)
  • Размер модуля элемента
  • Инвестиции vs.текущие расходы (интегрированное представление)

Однако ниже мы сосредоточимся на одном из основных параметров тепловых характеристик: коэффициент теплопроводности с точки зрения подрядчика по фасаду.

Что такое U-значение и как рассчитывается U-значение?

Значение U или коэффициент теплопередачи — это плотность теплового потока, проходящего через один квадратный метр конкретного элемента стены, когда обе стороны стены подвержены разнице температур в один градус К. Значение U дает меру теплопотерь в любой строительный элемент, такой как стена, пол или крыша.Его также можно назвать «общим коэффициентом теплопередачи», и он измеряет, насколько хорошо части здания передают тепло. Значение U измеряет потери тепла всеми тремя режимами теплопередачи: теплопроводностью, конвекцией и излучением.

U-значения важны, потому что они составляют основу любого стандарта сокращения энергии или углерода. На практике почти каждый внешний элемент здания должен соответствовать тепловым стандартам, которые выражаются в виде максимального коэффициента теплопроводности. Чем ниже коэффициент теплопроводности, тем лучше элемент здания в качестве теплоизолятора.

Знание того, как рассчитать U-значения на ранней стадии процесса проектирования, помогает избежать дорогостоящих переделок на более поздних этапах проекта. Это позволяет проектировщику проверить осуществимость своего проекта на ранней стадии, чтобы убедиться, что он соответствует цели и соответствует ли он нормативным требованиям.

Чтобы вычислить U-значение, нам сначала нужно узнать тепловые сопротивления каждого элемента (R-значения). R-значение — это толщина продукта в метрах / лямбда (теплопроводность).R-значения всех материалов, используемых в приложении, складываются, и величина, обратная полученной сумме, даст нам U-значение для этого конкретного приложения в здании.

Существуют различные методы определения коэффициента теплопроводности стен с облицовкой от дождя. Они объяснены ниже:

a) Подробные расчеты для всей стены: Значение U всей стены, включая все крепления, оценивается численным расчетом в соответствии с BS EN ISO 10211.Результат относится только к этой конкретной стене в соответствии с расчетами, любые изменения необходимо повторно оценить.

b) Использование линейного коэффициента теплопередачи для крепежной рейки, проникающей через слой изоляции: фасад Двумерный численный расчет выполняется на участке стены, содержащем крепежную рейку. Границы модели должны находиться в адиабатических положениях, например, посередине между двумя рельсами. Результат сравнивается с расчетом, в котором рельс опущен, чтобы получить линейный коэффициент теплопередачи, как описано в BS EN ISO 10211.Этот расчет необходимо выполнить только один раз для данной конструкции рельса и толщины проникающей изоляции. Значение U стены тогда U = U0 + (L Ψ / A), где U0 — значение U стены без крепежных направляющих, L — общая длина направляющих, а A — общая площадь стены. .

c) Использование точечного коэффициента теплопередачи для дискретного крепежного кронштейна, проникающего через слой изоляции: Трехмерный численный расчет выполняется на участке стены, содержащем типичный крепежный кронштейн.Границы модели должны находиться в квазиадиабатических положениях, например, посередине между двумя скобками. Результат сравнивается с расчетом, в котором скобки опущены, чтобы получить точечный коэффициент теплопередачи, χ, как описано в BS EN ISO 10211. Этот расчет необходимо выполнить только один раз для данной конструкции кронштейна и проникающего 20 WFM. СПЕЦИАЛЬНОЕ ПРЕДЛОЖЕНИЕ НА КОНЕЦ ГОДА 2015 Толщина изоляции. Значение U стены тогда U = U0 + n χ, где U0 — значение U стены без крепежных направляющих, а n — количество кронштейнов на квадратный метр стены.

Высокие тепловые характеристики связаны с необходимостью учета перегрева, качества воздуха и вентиляции. Такие стены будут направлять все здание на путь к очень низкой эксплуатационной энергии и устойчивости, пока дизайнеры, конструкторы и владельцы устанавливают оставшиеся части и обеспечивают целостное мышление для выполнения работы.

При расчетах коэффициента теплопередачи не следует делать поправку на влияние самого дождевого экрана, потому что пространство позади полностью вентилируется.Эффект кронштейнов или направляющих, крепящих облицовку к стене позади, необходимо учитывать, если кронштейны или направляющие проникают через слой изоляции или часть слоя изоляции. Поскольку влияние крепежных кронштейнов или направляющих на коэффициент теплопередачи стены может быть большим, даже если в комплект входит терморазрывная прокладка, их вклад в общее значение коэффициента теплопередачи необходимо оценить с помощью подробных расчетов.

В расчетной модели не должно быть облицовки, но должны быть включены крепежные планки или кронштейны на всю их длину.Сопротивление внешней поверхности следует принять равным 0,13 м²K / Вт, чтобы учесть эффект затенения облицовки.

Воздух в хорошо вентилируемых помещениях считается таким же, как и наружный воздух. Соответственно сопротивление воздушного пространства и всех слоев между ним и внешней средой не учитывается. Однако, поскольку облицовка обеспечивает защиту от ветра, сопротивление внешней поверхности превышает его нормальное значение
0,04 м²К / Вт.

Какие параметры могут изменить значение U стены?

Показатель U рассчитывается в стандартных условиях, обычно при температуре воздуха 20 градусов Цельсия внутри и 10 градусов Цельсия на улице, коэффициент излучения поверхности равен 0.9, влажность 50% и скорость внешнего ветра 4 м / с. Однако значение U не всегда является постоянным и может измениться при следующих условиях:

• Изменение внешней температуры: Очень небольшое влияние на значение U. Не влияет на непрозрачные, хорошо утепленные стены. Для застекленных стен отклонение также очень мало: навесная стена со средним значением U 1,75 Вт / м2 градуса К при +10 градусах Цельсия будет иметь такое же значение при -10 градусах Цельсия снаружи и повысится до 1.76 Вт / м2 градусов К при температуре наружного воздуха +30 градусов Цельсия

• Изменение коэффициента излучения материалов может иметь влияние, и оно варьируется в зависимости от материала. Когда материал имеет низкий коэффициент излучения, трудно повлиять на значение U, если мы уменьшим его еще больше.

• Скорость ветра имеет важное значение, если стена представляет собой застекленный фасад, и не влияет на средний коэффициент теплопроводности, если это непрозрачная стена с хорошей изоляцией.

Вывод:

Сегодня задние вентилируемые фасады — одна из самых популярных фасадных систем.Помимо функциональной безопасности, архитекторы в первую очередь ценят дизайнерские возможности, которые дает использование задних вентилируемых фасадов. Таким образом, эти системы менее подвержены повреждениям, чем другие фасадные системы. Кроме того, требования к защите от пожара, шума и молнии можно реализовать легко и творчески.

Разделение материалов теплоизоляции и защиты от атмосферных воздействий делает дизайн фасада с задней вентиляцией не только конструктивно выгодным, но также позволяет использовать различную облицовку для создания различных эффектов.Доступен широкий выбор материалов, форматов, форм, швов, цветов и типов крепления, позволяющих воплотить индивидуальные дизайнерские идеи в жизнь.

Бесчисленные примеры нового строительства и модернизации демонстрируют, как конструкции с задними вентилируемыми фасадами чувствительно подходят к окружающей среде и отражают характер зданий в городском пространстве.

Вентилируемые фасады или стены и облицовка

Обшивка здания — один из самых интересных аспектов дизайна, которым уделяют внимание архитекторы в последние годы.Некоторые интерпретировали это графически, другие — через текстуры материалов, а третьи — пытаясь избавиться от этого, но у всех этих экспериментов есть одно общее: вентилируемый фасад или вентилируемая стена.
Эта строительная система оставляет архитектору идеальную эстетическую автономию, основанную на прочной основе с непревзойденными преимуществами теплоизоляции .
Вентилируемый фасад архитектурно охватывает здание и позволяет ему дышать, так что движение воздуха выполняет задачу сохранения тепла зимой и прохлады летом.Вентилируемый фасад состоит — снаружи внутрь — из слоя облицовки, удерживаемого на здании специальной анкерной конструкцией , обычно изготовленной из алюминия, и слоя изоляции , прикрепленного к опорной решетке. облицовка. Зазор 3-5 сантиметров, образованный между конструкцией и зданием, таким образом, становится пространством, в котором циркуляция воздуха уменьшает скачки температуры, улучшая эксплуатационные характеристики здания. Фактически это простая система, которая работает за счет эффекта стека, естественного явления, благодаря которому горячий воздух, движущийся вверх, помогает поддерживать постоянную температуру, улучшая условия в здании.

Эта система также сохраняет определенную степень независимости от архитектурного дизайна здания, поскольку принцип, лежащий в ее основе, заключается в статической независимости каждой отдельной плитки, устраняя раствор, используемый для удержания плиток на месте. Этот аспект позволяет свободно использовать любой облицовочный материал на вентилируемом фасаде или стене, оставляя внешний вид здания полностью на усмотрение архитектора: компактное, как камень, с глянцевой или матовой отделкой, как керамика или керамогранит, прозрачное, как стекло, полупрозрачное как металл и т. д.
Движение и оседание в соответствии с коэффициентом расширения отдельных строительных материалов могут действовать, не влияя на внешний вид здания в целом.
Примером всех этих качеств являются вентилируемые стены Granitech, многослойные строительные решения, позволяющие «сухой» монтаж элементов облицовки.

Преимущества, предлагаемые системой, включают снижение риска растрескивания и отслоения; легкий монтаж; возможность обслуживания и работы на отдельных панелях; защита стеновых конструкций от воздействия атмосферных агентов; устранение мостиков холода и поверхностной конденсации.

Таким образом, в архитектурном дизайне фасадной облицовки может быть использован скин нового поколения, способный сочетать технические характеристики, полученные в результате самых передовых исследований в области строительства, с талантом к композиции, характерным для классической архитектуры.
Теперь здания могут одеваться сами по себе, становясь дольше и образующими композиции, которые играют с эффектами полных и пустых объемов, с эффектами светотени света и тьмы и графики: короче говоря, вентилируемая стена — это современный принцип строительства, который обеспечивает преемственность истории архитектуры.

Контакт для информации: www.granitech.com

Водонепроницаемые вентилируемые фасады

Вентилируемые фасады — широко применяемое конструктивное решение как в новостройках, так и при реконструкции существующих зданий. Чтобы соответствовать всем требованиям, предъявляемым пользователями и требованиями всех строительных технических регламентов, вентилируемые фасады должны быть водонепроницаемыми и иметь оптимальную изоляцию .

Современные вентилируемые фасады возникли во второй четверти 20-го века в Англии, с появлением « Cavity Wall », которая представляет собой стену из двух листов, соединенных скобами с вентилируемым зазором между ними. . Первоначальным преимуществом этого типа фасадов было то, что он предотвращал проникновение дождевой воды .

Вентилируемый фасад — это тип ограждения, состоящий из внешней облицовки, вентилируемого зазора, изоляции на основном листе и внутренней отделки.Он должен соответствовать нескольким техническим требованиям, касающимся экономии энергии, защиты от шума, пожарной безопасности, отсутствия конденсата и защиты от воды.

Гидроизоляция вентилируемых фасадов системами напыляемого пенополиуретана

В конкретном случае вентилируемых фасадов, где в качестве изоляции используется напыляемый пенополиуретан, состав всей системы будет следующим:

Некоторые из преимуществ вентилируемых фасадов с использованием напыляемого пенополиуретана в качестве изоляционного материала:

  • Мостов холода нет .
  • Оптимизация пространства . Используя напыляемую пенополиуретан, мы достигаем максимальной изоляции при минимальной толщине изоляционного материала.
  • Звукоизоляция . Улучшает акустические характеристики строительного комплекса.
  • Не допускает конденсации. Позволяет зданию светиться естественным образом, избегая конденсации .
  • Длительный срок службы. Пенополиуретан напыляемый — это материал, который сохраняет свои свойства в течение всего срока службы здания, гарантируя его долговечность.
  • И, наконец, преимущество, которое мы анализируем в этой статье: непроницаемость фасада от дождевой воды .

Важность водонепроницаемости вентилируемых фасадов

Пенополиуретан напыляемый с закрытыми порами представляет собой сплошное промежуточное покрытие, гарантирующее защиту от воды.

Может наноситься на любой фасад, с любой степенью водонепроницаемости и без предварительной штукатурки. Соответствует максимальной степени водонепроницаемости 5 . Кроме того, его непрерывность гарантирует отсутствие швов или трещин, через которые вода могла бы попасть в здание.

В вентилируемых фасадах, , где теплоизоляция всегда подвергается воздействию дождевой воды, важно, чтобы изоляция действовала как водонепроницаемая преграда . Таким образом, он защитит основной лист фасада от воды и не повлияет на тепловые характеристики системы утепления.

Свяжитесь с нами или загрузите следующий каталог, чтобы получить дополнительную информацию о наших полиуретановых системах:

Навесные вентилируемые фасады из терракоты

Эстетика, экономическая эффективность и экологичность: сочетание этих трех факторов является основой растущего успеха навесных вентилируемых терракотовых фасадов с задней вентиляцией. Решающей причиной технического превосходства этих систем является структурное разделение функций теплоизоляции и защиты от атмосферных воздействий.

Вентилируемая полость между керамическими панелями и изоляционным материалом регулирует баланс влаги в здании, направляя влагу наружу и обеспечивая быстрое высыхание влажных наружных стен. Изоляционный материал остается сухим и полностью функциональным, а микроклимат в помещении улучшается. Независимо от высоты здания и степени использования, минеральные изоляционные материалы группы теплопроводности 040 или 035 обычно используются для вентилируемых терракотовых фасадов. Поскольку система допускает установку изоляционного материала любой толщины, требования Постановления об экономии энергии также могут быть легко соблюдены.Постоянно безопасное соединение керамических панелей с несущей внешней стеной обеспечивается подконструкцией, в которой сложные конструкции обеспечивают эффективную установку и компенсируют неровные поверхности на стенах.

Кроме того, алюминиевые каркасы играют ключевую роль в защите от молний. Как прочный материал, керамика не только обеспечивает оптимальную защиту от дождя и снега — панели и специальные детали в современной цветовой гамме также характеризуют внешний вид здания и поддерживают архитектора в реализации его идей.

Вентилируемый фасад без утепления. Вентилируемый фасад – устройство системы

Вентилируемый фасад без утепления. Вентилируемый фасад – устройство системы

Вентилируемый фасад – универсальная многослойная система утепления ограждающих конструкций с обязательным вентиляционным зазором в 30-50 мм для беспрепятственной циркуляции воздуха по направлению снизу вверх. Благодаря вентиляционному зазору из стенового «пирога» удаляется водяной пар, образующийся в каждом жилом доме. Иными словами, вентфасад не только защищает стены от агрессивной внешней среды, но и обеспечивает оптимальный влажностный режим, продевая срок службы строения.

Система вентилируемого фасада обычно состоит из следующих слоев:

  • подсистема ;
  • телоизоляция;
  • вентиляционный зазор;
  • декоративный облицовочный экран.

В качестве утеплителя в вентфасадах обычно используются плиты, так как этот материал сочетает минимальную теплопроводность с гидрофобностью, негорючестью и отсутствием усадки. Проходя сквозь волокна, пар выпадает на внешней поверхности плит в виде конденсата и выветривается – изоляция поддерживается в сухом состоянии и не теряет теплосберегающих свойств. Привлекает и простой монтаж – враспор, без дополнительной фиксации механическим или клеевым способом. Система вентфасада включает и мембрану, закрывающую утеплитель от ветра и влаги, но она многих смущает своей горючестью.

nicola20 Участник FORUMHOUSE

Утепляю дом из газобетонных блоков по технологии вентфасада, утеплитель, (в два слоя, 50 плюс 100 мм), вентзазор и цокольный сайдинг. Смущает организация гидроветрозащиты – верхний слой утеплителя хоть и 90 кг/м³ плотностью, но сомневаюсь в его гидрофобных свойствах. Горючую же пленку класть не хочется, а негорючая кусается по цене вопроса при площади фасада около 300 м². Почему бы не подмешать в систему из технологии мокрого фасада, покрыв минвату разведенной до жидкой консистенции штукатуркой/раствором тонким слоем (валиком)? Смарткалк при таком пироге и штукатурке в 3-4 мм для любых растворов, даже ЦПС, дает точку росы в вентзазоре. От ветра дополнительно, имхо, защитим, от воды – тоже. Трещины, даже если будут, под вентфасадом незаметны. Есть ли подводные камни? Как будет жить раствор под вентфасадом? В чем заблуждаюсь?

Можно обойтись и без штукатурного слоя.

Железякин Участник FORUMHOUSE

Производители утеплителей разрешают не устанавливать мембрану поверх утеплителя на вентфасаде. И с этим согласны проектировщики. И заказчики, которые умеют слушать аргументы.

  • На невысоких объектах тяга в вентзазоре минимальная, поэтому выдувания волокон утеплителя не будет.
  • Этой тяги достаточно, чтобы снимать влагу с утеплителя. В нормально сделанном фасаде экран закрывает от потоков воды. Такого просто быть не должно. А влага практически всегда конденсат.
  • Сплошной экран фасада, кроме керамогранита на кляммерах, сам является хорошей ветрозащитой. И сдерживает прямой воздушный напор на стену здания.

Именно это мы всегда пишем проектировщикам с просьбой пересогласовать пирог фасада, убрав гидроветрозащитную мембрану. И они это делают.

Если же контур проницаем для разного рода «соседей», без защиты могут возникнуть проблемы.

Олег19731 Участник FORUMHOUSE

Без пленки у меня птички очень портили утеплитель, поэтому пришлось установить. А так разницы не заметил.

Когда горючесть мембраны критична и вентфасад с закрытым контуром (софиты, решетка/сетка), то на частном доме можно обойтись и без защиты, хотя в типовом конструктиве этот слой присутствует.

Вентфасады востребованы как при отделке общественных зданий, в том числе и многоэтажных, так и частных домов до трех этажей. Это обусловлено вариативностью, так как функционал и характеристики системы зависят от компоновки, а визуальное разнообразие дает возможность вписаться. Ограничением может стать состояние основания – если речь о реконструкции дома с солидным «стажем» и стены ветхие, фасадная система должна быть облегченной. Это не повод отказаться от вентфасада в принципе, но придется максимально точно просчитать все нагрузки и подобрать соответствующую подсистему, крепеж и облицовку.

Вентилируемый фасад размеры. Какие виды материалов используются для современной отделки вентиляционного фасада

Одним из современных способов внешней отделки дома является сооружение вентилируемых фасадов. С их помощью можно не только облагородить постройку, но и создать комфортные условия для проживания. Материалы для вентилируемых фасадов прочные и долговечные, в продаже представлен большой выбор расцветок.

Какие материалы используются для отделки вентфасадов

Декоративная отделка постройки – трудоемкий процесс, благодаря которому формируется архитектурная стилистика. Материалы облицовки должны обладать следующими характеристиками:

  1. Надежно защищать стены от неблагоприятных воздействий.
  2. Делать постройку внешне привлекательной.

Чтобы сделать правильный выбор, нужно рассмотреть каждый вид отдельно.

Керамогранит

Это искусственный материал, для изготовления которого используется смесь двух сортов глины, краситель и продукт рассева кварца и породообразующих минералов из силикатов. Далее все замешивается, формируются, и прессуются плитки. Полученное изделие помещают в печь для обжига под температурой 1300 градусов.

Среди преимуществ данного материала выделяются:

  • низкий показатель водопоглощения;
  • устойчивость к погодным условиям;
  • экологичность.

Обратите внимание! Полученные плиты прочные и долговечные, поэтому их используют как для внешней, так и для внутренней отделки.

Натуральный камень

Такой вид отделки отличается привлекательным внешним видом и долговечностью, однако многих отпугивает высокая стоимость натурального камня. Такой вид отделки имеет и другие преимущества:

  1. Устойчивость к негативному воздействию (снег, дождь, перепады температур, механическое воздействие).
  2. Безопасность.
  3. Экологическая чистота.

Важно! При использовании данного вида облицовки следует учесть большой вес, поэтому потребуется укрепить фундамент.

Искусственный камень

Популярность искусственного камня обусловлена схожестью с натуральным. Это делает внешний вид постройки привлекательнее.

Преимущества материала:

  • такой вид облицовки производится в виде плит, которые крепятся на любое основание;
  • малый вес;
  • экологическая безопасность;
  • устойчивость к погодным явлениям;
  • водонепроницаемость;
  • прочность и долговечность.

Поэтому искусственный камень часто используется для отделки не только жилых, но и производственных помещений.

Фиброцементные плиты

Материал используется в строительстве благодаря доступности, невысокой стоимости и универсальности. Плита состоит из цемента, гидравлических добавок и армирующих волокон. Эти составляющие делают изделие влагостойким и прочным.

В процессе производства, плиты помещают в автоклавы, где они затвердевают. Затем, под воздействием высокого давления и температуры, они окончательно полимеризуются. Для прочности, каждая плита обрабатывается грунтовкой с тыльной стороны, и, акрило-полиуретановой защитой на лицевой поверхности и по бокам.

Преимущества материала:

  • небольшой вес;
  • стойкость к коррозии и гниению;
  • огнестойкость;
  • морозоустойчивость;
  • экологическая чистота.

Среди недостатков: высокое водополгощение и низкая ударопрочность.

Алюмокомпозитные материалы

Данный вид материала получил широкое распространение из-за долговечности (более 50 лет), невысокой стоимости и малого веса. К тому же, панели не подвержены коррозии и негативным погодным явлениям.

В разрезе материал состоит из двух алюминиевых панелей, между которыми вставлен слой полиэтилена или гидроксида алюминия и смолы. Сверху панель покрывается противокоррозийным средством, внутри – защитным слоем полиэтилена или поливинилхлорида и акрила.

Алюмокомпозитный материал наделен рядом преимуществ:

  1. Высокие шумоизоляционные и антивибрационные качества.
  2. Прочность.
  3. Гибкость, что дает возможность создавать криволинейные формы.
  4. Стойкость к УФ-лучам.
  5. Большой выбор расцветок.

Среди недостатков: неремонтопригодность изделия и пожароопасность.

Линеарные панели

Данный материал — это нечто среднее между металлическим сайдингом и фасадными кассетами. Так как в процессе производства панелей используется металл, то их можно отнести к группе металлокассет. В продаже изделия представлены в разных формах и размерах, что дает возможность создавать различные архитектурные композиции.

Важно! Чтобы минимизировать количество стыков панелей, детали заказывают под необходимые для работ размеры.

Ламинат высокого давления

Данный материал производится из целлюлозы, пропитанной смолой и декоративной бумагой. Его изготавливают под воздействием высоких температур и давления. Чтобы изделие получилось прочным, его обрабатывают специальными веществами, препятствующими расслоению под действие влаги.

На внешней стороне панели покрываются специальным составом, защищающим от выгорания.

Важно! Такой вид ламината используется не только для внешней отделки, но и для возведения ограждений.

Монтаж откосов вентилируемого фасада. Откосы вентилируемых фасадов


Отделка откосов окон

После того, как окна установили, некоторые отказываются от отделки наружных откосов. А зря! Ведь наружные проемы выглядят некрасиво. Можно монтировать их самим. Это затратный процесс, но он того стоит. Ведь наружная отделка окон предотвратит появление проблем. Оставленные без отделки окна выглядят не только не эстетично, но и ,по прошествии определенного времени, это аукнется разгерметизацией проемов.

Монтажная пена под воздействием ультрафиолета и ветров разрушится, жаркое солнце поможет ей со временем стать просто крошкой, высыпающейся из окна. Это приведет к сквознякам в доме. И чтобы этого не случилось, нужно знать каким образом и чем отделывать наружные откосы.

Металлические откосы

Металлические откосы окон снаружи с полимерным покрытием, которые применяют для отделки оконных проемов со стороны улицы, имеют высокие теплоизоляционные характеристики. Они не подвержены коррозии за счет покраски, защищают окна и стены от промерзания и сквозняков. Дороговизна металлических откосов компенсируется длительным сроком службы.

Откосы из гипсокартона

Они отличаются от металлических. Этот материал широко используется при многих строительныхработах. Но у него есть один существенный недостаток – он впитывает влагу, что ограничивает его применение в строительных и отделочных работах. Гипсокартон можно использовать внутри помещения, но если там повышенная влажность, то лучше будет установить откосы из другого материала.

Гипсокартоновые откосы можно установить только для обсады и окосячки оконных проемов внутри помещения или на окнах, выходящих на веранды и балконы. В иных случаях будут иметь место проблемы, гипсокартон намокнет и разрушится быстро. Но к положительным свойствам материала можно отнести легкий его монтаж и отделку.

Керамические откосы

Керамические откосы смотрятся очень эстетично, лучше, чем металлические, и к тому же легко укладываются. Для этого не нужна идеально выровненная поверхность. При помощи керамической плитки можно выложить красивый орнамент. Для укладки на стенах делают насечки и грунтуют проемы. Затем наносят плиточный клей и укладывают плитку. Швы затирают. Стоимость таких откосов зависит от цены плитки.

Откосы из композитных панелей

Это наиболее предпочтительный вариант отделки оконных проемов. К тому же за ними легко ухаживать и чистить. Продаются в различных цветовых вариантах. Монтировать их можно как в деревянных, так и многоэтажных панельных сооружениях. У них много преимуществ- долговечность и достойные теплоизоляционные и звукоизоляционные параметры, и высокая стойкость к перепадам температур. К тому же и на вид они красивы и привлекательны, выглядят лучше металлических откосов на фасаде дома.

Штукатурные откосы

Это самый экономичный и популярный вариант откосов. Штукатурка откосов своими руками проста. Не нужно вызывать специалиста, чтобы монтировать их. Для того чтобы их сделать, понадобится сухая цементная или гипсовая смеси. Хоть это и простой способ установки откосов, но он довольно трудозатратный. А отделка наружных откосов потребует окраски. Также выполняется и отделка арочных проемов. Отделка арочных окон оштукатуриванием производится по этой же технологии.

Перед началом работы необходимо зачистить обрабатываемую поверхность от грязи. Для этого подойдут горячая вода и тряпка. Также придется выровнять все неровности. В начале работы надо удалить все выступы монтажной пены. Для этого сгодится любой острый нож. Чтобы не повредить случайно отливы и стекла, их нужно закрыть пленкой или малярным скотчем.

Штукатурить необходимо в определенном порядке:

  1. Сначала при помощи гипсового клея или гвоздей смонтировать маячки, отдаленные на 5 см от стекла. В дополнение нужно выставить правило (деревянная рейка), как дополнение к направляющей;
  2. Толщина слоя штукатурки должна быть так рассчитана, чтобы рама была закрыта на один сантиметр (стандарт равен 2 см и более). Угольником потребуется выровнять углы откоса;
  3. На очищенную поверхность наносят широкой кистью грунтовку для лучшего схватывания материалов;
  4. Готовую смесь из цемента и гипса выливают по маякам до того момента, когда все пространство будет залито. Затем шпателем все разравнивают движением снизу-наверх;
  5. После высыхания поверхности, маяки убирают, отверстия от них замазывают;
  6. Штукатурку наносят в несколько слоев, дожидаясь пока просохнет поверхность для следующего слоя. Углы выравнивают;
  7. После того, как раствор полностью затвердеет, следует убрать правило, а место его размещения обрабатывается цементно-гипсовым раствором;
  8. Затем теркой убирают все шероховатости, делая легкие круговые движения;
  9. Отделка проемов осуществляется в конце. В заключение все необходимо прошпаклевать, побелить и покрасить.

Вентилируемый фасад из керамогранита узлы. Конструктивные особенности вентфасада

Вентилируемые фасады из керамогранита состоят из четырех составляющих:

  • Каркас, установка которого производится непосредственно на фасадную стену здания;
  • Утеплитель и гидроизоляция;
  • Облицовка из керамогранита;
  • Дополнительные узлы и элементы.

Каркас

Каркас предназначается для крепления керамогранитных плит к стенам здания. Он состоит из системы направляющих профилей и крепежных деталей, монтаж осуществляется на несущую стену при помощи дюбель-гвоздей или анкерных болтов.

Профиль для керамогранита изготавливается из нержавеющей стали или алюминиевых сплавов, и бывает двух видов – горизонтальным и вертикальным.

Навесный крепёж представляет собой систему кронштейнов, установка которых производится путём крепления к стене и несущему каркасу. Особая конструкция кронштейнов даёт возможность регулировать величину зазора между стеной и керамогранитом.  Благодаря этому, с одной стороны, удаётся эффективнее вентилировать внутреннее пространство, а с другой – нивелировать неровности стеновых поверхностей.

Утеплитель и гидроизоляция

Технология монтажа вентилируемого фасада из керамогранита предусматривает создание теплоизоляционного и гидроизоляционного слоёв. Для наружного утепления здания чаще всего используют следующие материалы:

  • Листы пенополистирола;
  • Плиты из минеральной ваты;
  • Полиуретановую пену.

В таблице ниже даны сравнительные характеристики теплопроводности различных теплоизоляционных и конструкционных строительных материалов.

Монтаж пирога вентилируемого фасада осуществляется по следующей схеме:

  1. Внутренний паро- гидроизолирующий слой, располагающийся между бетонной или кирпичной поверхностью и теплоизоляцией;
  2. Слой утеплителя;
  3. Наружный слой гидроизоляции, уложенный поверх утеплителя;
  4. Воздушный зазор, служащий для вентиляции пространства под фасадом;
  5. Облицовка из керамогранита.

Декоративная керамогранитная плитка

Керамогранит представляет собой композитный материал, изготовляемый из смеси глины, кварца, полевого шпата и, при необходимости, разных пигментов. Все компоненты тщательно смешиваются, прессуются и обжигаются в высокотемпературных печах.

Таблица 1. Сравнительные характеристики керамогранита и керамической плитки.

В продаже можно встретить несколько видов керамогранитной плитки:

  • Техническая – наиболее бюджетный вариант. По внешнему виду практически не отличается от природного камня, имеет необработанную поверхность. Используется как напольное покрытие и для отделки внутренних и внешних стен производственных, торговых и складских помещений;
  • Глазурованная. Имеет гладкую глянцевую поверхность, может колероваться в процессе производства пигментирующими составами;
  • Сатинированная. Лицевая её часть обрабатывается посредством нанесения раствора минеральных солей, в результате чего она становится матовой. Также при изготовлении может окрашиваться в различные тона.

Фасады чаще всего монтируют с применением глазурованной плитки, благодаря её высоким эстетическим качествам, реже применяется матовый сатинированный керамогранит.

Главное отличие плитки для вентилируемого фасада от плитки для внутренних работ состоит в предъявляемых к ней требованиях. Она должна:

  • быть устойчива к внешним нагрузкам;
  • не терять насыщенности и яркости цвета под действием ультрафиолетового излучения;
  • обладать стойкостью к перепадам температуры и влажности воздуха;
  • хорошо переносить воздействие кислотных, щелочных и прочих агрессивных сред.

Линейные размеры и форма плит могут значительно различаться. Фасадный керамогранит 600х600 мм – наиболее распространённый вариант. Он имеет приемлемую массу, а одинаковая длина сторон упрощает разметку и монтаж каркасных направляющих.

Таблица 2. Требования, предъявляемые к качеству керамогранита для вентилируемых фасадов.

Дополнительные узлы и элементы

К дополнительным узлам относятся различные уплотнительные материалы и доборные элементы: прокладки из паронита или резины для установки под крепёж, декоративные вставки для заделки стыков между плитками. Вставки могут быть изготовлены из алюминия или полимеров – полиуретана, поливинилхлорида и т.д.

Видео вентилируемый фасад: монтаж подсистемы утеплителя и облицовки

Нужна ли мембрана над минеральной ватой

При утеплении стен по системе «вентилируемый фасад» утеплитель постоянно омывается струей воздуха. Поэтому важнейшей характеристикой примененного утеплителя является его воздухопроницаемость. Нужно знать, насколько беспрепятственно воздух может двигаться внутри самого утеплителя. А значит и уменьшать теплоизоляционные характеристики слоя, или вообще создать «его исчезновение». В зависимости от воздухопроницаемости минеральной ваты может возникать необходимость применения ветрозащитных мембран.

В вентилируемом фасаде

При утеплении по системе «вентилируемый фасад» утеплитель прижимается к стене с помощью анкеров, навешенных на стену планок и др. Между утеплителем и внешней отделкой оставляется вентиляционный зазор.

Если система собрана правильно, то под действием тепла, проходящего через теплоизолятор, а также вследствие ветрового давления, в вентиляционном зазоре возникает естественная устойчивая тяга воздуха снизу вверх.


В системе навесного фасада с вентиляционным зазором на утеплитель постоянно воздействует воздух, двигаясь по вентиляционному зазору. Но воздух движется снизу вверх и сквозь слой утепления, т.е. прямо по утеплителю. И чем больше будет воздухопроницаемость этого материала, тем большее количество воздуха будет проходить через него.

Тепло убегает с воздухом

Это движение воздуха по утеплителю, является по сути прямой утечкой тепла из здания, снижая эффект от утепления. Это, так называемый, конвекционный перенос тепла воздухом, — явление снижающие сопротивление теплопередаче ограждающей конструкции по системе «вентилируемый фасад» на 20% и более.

Если при монтаже не обеспечивался плотный контакт утеплителя со стеной, то тогда конвекционные теплопотери значительно увеличиваются, а эффект от утеплителя снижается на 40 – 60%. Это весьма серьезная проблема при утеплении зданий по указанной технологии.

Скорость воздушной струи и ветровые зоны

Также потери будут возрастать с ростом скорости движения воздуха по вентиляционному зазору. Наблюдается значительное увеличение конвекционных потерь тепла в слое утеплителя в районах где частые ветра (6 – 7 ветровые зоны) или для высотных зданий (70 м от уровня земли) в любой ветровой зоне.

В каких утеплителях на основе базальтовой ваты возникают значительные конвекционные потери тепла?

Плотность минеральной ваты

Для плит из базальтового волокна плотностью 80 кг/м куб и больше эта проблема практически перестает существовать. Ее проявления могут быть лишь только если утеплитель не прижат к стене полностью, тогда возможно увеличение теплопотерь до 5%, но за счет движения воздуха в щелях между утеплителем и стеной.

Сейчас можно утверждать, что при использовании для утепления минераловатных плит плотностью 80 кг/м куб и больше конвекционные потери тепла не будут более чем 2,5%.

Таким образом, указанная плотность базальтовых плит является граничной для беспроблемной эксплуатации в системе вентилируемо фасада. И такие плиты могут применяться без дополнительной ветрозащиты – без супердифузионной мембраны.

Применять ли мембрану

Достаточное сопротивление воздухопроницанию можно обеспечивать или применяя теплоизолятор большой плотности, или увеличивая сопротивление слоя для движения воздуха за счет установки дополнительной ветрозащитной мембраны.

Какой путь решения проблемы лучше?

Применять более плотный, а значит и более дорогой утеплитель более толстым слоем, или навешивать дополнительный элемент системы, который, кстати, может приходить в негодность и как минимум, создавать пожарные проблемы?

Есть мнение, что лучше все же применять более плотную минеральную вату, без дополнительной мембраны, при этом, если требуется, в районах со значительной ветровой нагрузкой устанавливать базальтовые волокнистые утеплители плотностью 180 кг/м куб.

Проблема сокращения теплопотерь от конвекции воздуха должна решаться путем применения утеплителей с соответствующими характеристиками.

Что дороже, эффективнее – мембрана или….

Сам утеплитель при этом будет конечно дороже, но с учетом отсутствия мембраны удорожание не будет превышать и 2% от стоимости всей системы вентилируемого фасада. При этом надежность системы значительно повышается.

Нужно отметить, что могут применяться и двухслойные утеплители, в которых более дешевый, и более теплый слой, покрывается ветроупорным плотным слоем. Но такой вариант требует более высокой культуры строительства, отсутствия щелей между плитами при монтаже, что на практике обеспечить сложно.

В тоже время применение однослойного утепления более технологично, и удорожание всей системы на уровне 2% не должно сказаться на целесообразности именно такой технологии утепления «вентилируемый фасад».

На сегодняшний день не существует нормативов и правил строительства, которые бы определяли, когда можно обходиться без ветрозащитной мембраны в системе вентилируемый фасад, а когда нельзя.

Приведенные выше рекомендации основываются только на научных исследованиях, проведенных в последнее время в области строительных и утеплительных технологий.

инструкция, фото и видео-уроки, цена

Если бы по сей день не существовало вентфасадов, то их непременно стоило бы придумать! Преимущества использования данного вида фасада в разы превышают его незначительные минусы. Давайте рассмотрим, чем же он так хорошо, и как подобрать теплоизоляционный материал для этой конструкции.

Модель конструкции вентфасада

Особенности вентилируемых фасадов

Перед тем как выбрать утеплитель для вентфасада, составим представление о самой конструкции, которую будем теплоизолировать.

Традиционный вентилируемый фасад – это металлический каркас, закрепленный на внешних сторонах здания при помощи анкеров, к которому в свою очередь крепится так называемый экран (облицовка). Между стеной здания и экраном укладывается утеплитель.

Из чего состоит вентилируемый фасад

Главная «фишка» такой конструкции заключается в том, что между экраном и утеплителем остается небольшой воздушный зазор. Он-то и придает фасаду ту самую «вентилируемость».

Что же нам это дает?

  • Первое и самое главное – максимальную паропроницаемость стен, при этом отлично защищенных от ветра, дождя, механических повреждений и иных негативных факторов. На этом пункте, пожалуй, остановимся чуть подробнее.

Как правило, уровень влажности в помещении всегда выше, чем за его пределами. Избыток влаги непрерывно фильтруется через стены в виде пара. И любое непроницаемое для влаги покрытие становится неким барьером. Результат плачевный – стена накапливает влажность и в скором времени начинает разрушаться. Кстати, ее теплоизолирующие свойства также ухудшаются.

Ну а с другой стороны, всевозможные декоративные покрытия для фасадов, имея отличную паропроницаемость, хуже защищают здание от дождя. Стены будут намокать и опять же быстрее разрушатся

А вот удаление экрана от капитальной стены на небольшое расстояние полностью решает эту проблему.

  • Вентилируемый фасад в значительной степени снижает потери тепла, и плюс к этому является прекрасной защитой от шума. Этакая гасящая звук акустическая ловушка.

Выбор утеплителя для вентфасада

Продукция ISOVER – одна из самых востребованных на сегодняшний день

Логично будет предположить, что утеплитель для вентилируемого фасада должен иметь характеристики и качества, не противоречащие конструктивным особенностям данного вида фасада:

  • необходимо, чтобы паропропускаемость утеплителя, как минимум не уступала паропропускаемости стены;
  • теплоизоляционный материал должен максимально уменьшать потерю тепла от стены в окружающую среду;
  • неплохо было бы, если он еще обладал шумоизоляционными свойствами;
  • ну и, пожалуй, самое главное – утеплитель не должен впитывать влагу (или хотя бы должен легко сушился без потери своей первоначальной формы).

Если учитывать все эти требования, то какой теплоизоляционный материал лучше всего подойдет под вентилируемый фасад?

Пенополистирол и пенополиуретан

Плиты пенополистирола

Эти довольно-таки разные утеплители рассматриваются вместе потому, что в интересующем нас моменте обладают общим набором свойств:

  • Превосходная негигроскопичность (материалы имеют структуру в виде закрытых ячеек), а это значит – данные утеплители могут переносить существенные температурные перепады, не разрушаясь при этом.
  • Устойчивость к влаге. Даже в том случае, если наружный слой теплоизолятора намокнет, выручит его эластичность. Как пенополистирол (например, утеплитель Пеноплекс), так и пенополиуретан способны без ущерба переносить многократное замерзание воды в порах.
  • Тепло- и шумоизоляция также на высоте.
  • Пластики не дают усадки, и уж тем более не слеживаются.
  • Правда, вот паропроницаемость весьма мала. Ведь сами по себе пористые пластики – это полноценная пароизоляция.
  • Ну и последнее, цена даже на обычный пенопласт – довольно высокая. Поэтому утепление им фасада обойдется дорого.

Пенополиуретановые плиты

Конечно, пенополистирол и пенополиуретан (утеплитель ППУ) являются неплохими теплоизоляторами. Ими, например, можно успешно произвести утепление лоджии. А вот для вентилируемых фасадов это не самый лучший вариант.

Базальтовая и минеральная вата

Минвата

Что мы получим, отдав предпочтение этим утеплителям?

  • Как базальтовая, так и минеральная вата – весьма дешевые утеплители, их стоимость гораздо ниже, чем у пенополистирола и, тем более, у пенополиуретана.

Базальтовая вата немного дороже минваты, но до цены предыдущих материалов все равно не дотягивает.

  • Что самое важное – пар свободно проходит через эти утеплители.
  • Как базальтовая, так и минеральная вата обладают небольшим весом (что очень удобно при монтаже), пожаробезопасностью, химической и биологической стойкостью.
  • Оба утеплителя впитывают влагу, однако и легко отдают ее.
  • Шумо- и теплоизоляция также на должном уровне, хоть и уступает предыдущим материалам.
  • И самый больной вопрос – слеживание утеплителя. Дешевые изделия из минваты быстро теряют свои объемы, а вот плиты из базальтового волокна могут сохранять форму десятилетиями.

Базальтовая вата крупным планом

Внимание! Подобного рода утеплители, используемые в вентфасадах, должны выдерживать лишь собственный вес и не несут на себе какой-либо повышенной нагрузки. Но постоянное наличие движения воздуха в зазоре неблагоприятно сказываются на материале и помимо влаги уносят с собой волокна, тем самым нарушая структуру утеплителя, снижая его срок службы и увеличивая теплопотери.

Беря во внимание приведенный выше факт, к выбору базальтового или минерального утеплителя нужно подойти со всей ответственностью. Что вы должны здесь учесть?

  1. Плотность теплоизолятора. Она должна быть достаточно высокой, чтобы материал не разрушился под воздействием ветра. Сюда же можно отнести и такой параметр как «предел прочности на отрыв слоев», который достигается благодаря особому сцеплению волокон материала между собой.
  2. Известно, что сила и скорость воздушных потоков зависит от высоты здания. Получается, чем выше здание, тем большую скорость набирает поток движущегося воздуха и тем сильнее оказывает воздействие на утеплитель. Поэтому при утеплении многоэтажного дома, для верхней части фасада лучше приобретать плотный теплоизоляционный материал.

А вот для малоэтажных строений можно использовать утеплитель с меньшей плотностью, так как воздушный поток не оказывает на них чрезмерно большой нагрузки.

Как правильно использовать минвату в качестве теплоизолятора

Для большей ясности ниже мы приведем таблицу с характеристиками некоторых базальтовых и минеральных теплоизоляторов для вентилируемых фасадов:

НаименованиеПлотностьДлинаШиринаТолщина
Изовент, Изовент-Л80, 90100 см50, 60 см4-16 см
П-75до 75100 см50 см5-15 см
П-125до 125100 см50, 60 см5-12 см
Vattarus Блок60-70120 см50, 60 см4 см
Vattarus ВЕНТ80-90120 см60 см40-150 мм
Техновент80-90100, 120 см50, 600 мм40-200 мм

Вообще, конечный выбор теплоизолятора для того или иного вентфасада определяется климатическими условиями региона, свойствами стен и навесных покрытий, высотой строения и расположением ветровых зон. Уже, исходя из этих показателей, можно точно решить, с какой прочностью на сжатие, теплопроводностью, водопоглощением и плотностью покупать утеплитель.

Технология утепления вентфасада

Последовательность изоляции вентфасада деревянного дома ничем не отличается от утепления кирпичных или каких-либо других строений

Если еще раз все проанализировать, то сомнений не останется: минеральная или базальтовая вата имеет большие преимущества перед остальными теплоизоляторами (имеется в виду конкретно в случае с вентфасадами). Честно говоря, именно она чаще всего и используется для этой цели. Остается один вопрос – как утеплить вентилируемый фасад своими руками? Существует ли инструкция на этот счет?

В общем-то, здесь все просто:

  1. В первую очередь к стене необходимо установить кронштейны для крепления будущего вентфасада.
  2. Затем идет опорный угол: он крепится по горизонту к цоколю.
  3. Плиты минваты или базальтовой ваты укладываются горизонтальными рядами с небольшим смещением вертикальных швов от ряда к ряду. Утеплитель надежно крепится к стене при помощи дюбелей-зонтиков (или, как их еще называют, грибков) из расчета – 2 дюбеля на 1 плиту.
  4. На следующем этапе слой теплоизоляции дополнительно укрывается ветрозащитой, которая плотно накладывается горизонтальными полосами с нахлестом около 10 см.
  5. И в завершение слой утеплителя окончательно фиксируется все теми же грибками – по 5 штук на 1 плиту.

На этом работа по теплоизоляции вентилируемого фасада заканчивается. Можно смело переходить к сборке каркаса.

На фото хорошо видно, что между облицовкой и утеплителем осталось необходимое для вентиляции пространство

Внимание! Между облицовочной поверхностью и слоем утеплителя должно оставаться 3-5 свободных сантиметров.

 

Вывод

Вот мы и ответили на основные вопросы, связанные с таким, казалось бы, простым, но ответственным делом, как выбор теплоизоляционного материала для вентфасада. А заодно и рассмотрели вкратце технологию монтажа! Если какие-то моменты все же остались неясными для вас, то в видео в этой статье вы найдете дополнительную информацию по данной теме.


Утепление вентилируемого фасада :устройство с двухслойным утеплением минватой

Исторической родиной вентилируемых фасадов является Германия, в которой с пятидесятых годов прошлого века велись разработки такой технологии на основании металлического каркаса и облицовочных материалов.

Фото вентилируемого фасада

Вентилируемые фасады – что это такое

Под вентилируемым фасадом понимают систему облицовочных материалов, которая крепится к монолитному перекрытию или несущему слою стены с помощью каркаса из оцинкованной стали, нержавейки или алюминия. Основной особенностью такой системы является зазор между стеной и облицовкой – по нему беспрепятственно перемещается воздух, что позволяет решить проблему конденсата в конструкции.

Для дополнительного утепления стены здания в систему включается слой утеплителя – он должен быть негигроскопичным. При утеплении вентилируемого фасада важно сохранить зазор между стеной и утеплителем примерно в 40 мм, чтобы потоки воздуха, циркулирующие между облицовочным материалом и слоем теплоизоляции, избавляли последний от влаги. Вообще, величина такого зазора стандартная, но в разных странах стандарты колеблются от 20 до 50 мм.

В перечень достоинств вентилируемых фасадов можно отнести следующее:

  • Широкая цветовая гамма;
  • Высокие теплоизоляционные характеристики;
  • Многослойная конструкция позволяет обеспечить хорошую звукоизоляцию, что актуально для крупных городов;
  • Естественная вентиляция, которая избавляет используемые материалы и само здание от повышенной влажности и разрушения;
  • Своевременное избавление от конденсата обеспечивает сохранение свойств утеплителя – утепление стен вентилируемым фасадом снижает теплопотери в холодный период на весь период эксплуатации;
  • Долговечность – срок службы такой конструкции 50 лет;
  • Пожаробезопасность;
  • Оперативный монтаж, которым можно заниматься в любой сезон года;
  • Защита от перегрева в жаркий период;
  • Конструкция ремонтопригодна – частичное повреждение можно отремонтировать.

Не стоит забывать и об эстетичности – фасада, облагороженный таким образом, выглядит современно и привлекательно.

Все эти преимущества актуальны только в тех случаях, когда вентилируемый фасад смонтирован с соблюдением всех правила монтажа.

Утеплители для вентилируемого фасада

Виды утеплителей

Выбирая утеплитель для вентфасада, необходимо оценивать комплекс свойств:

  • Паропропускаемость утеплителя не должна быть меньше паропропускаемости стены;
  • Утеплитель должен обеспечить термоизоляцию стен;
  • Снижение шума из-за наличия шумоизоляционных свойства будет дополнительным плюсом;
  • Утеплитель не должен быть гигроскопичным, по крайней мере, он должен легко осушаться за счёт потоков воздуха между вентфасадом и стеной.

Такие свойства имеются у пенополистирола, пенопласта, пенополиуретана, минеральной и базальтовой ваты.

Пенополистирол, пенопласт, пенополиуретан

Такие утеплители отличаются общим набором следующих свойств:

  • Не впитывают влагу за счёт мелкоячеистой структуры;
  • Способны выдерживать перепады температуры, не теряя своих свойств;
  • Устойчивость к влаге – даже в случае намокания внешнего слоя пенополистирола и пенопласта эластичность спасает их от разрушения, утеплители выдерживают многократные циклы замораживания/размораживания воды в порах;
  • Высокие показатели тепло- и шумоизоляции;
  • Отсутствие усадки;
  • Небольшая паропроницаемость пенополиуретана и прочих утеплителей из полимеров обеспечивает полноценную пароизоляцию.

Общим недостатком этих материалов является довольно высокая цена, поэтому утепление фасада будет затратным мероприятием.

Минеральная вата

Затраты на минеральную или базальтовую вату существенно меньше, чем у утеплителей из полимеров. Такой утеплитель обладает следующими свойствами:

  • Высокая паропропускаемость;
  • Большой вес;
  • Химическая, биологическая стойкость;
  • Не горит;
  • Легко впитывает влагу и без проблем высыхает;
  • Хорошие показатели шумо- и теплоизоляции (не такие высокие, как у материалов из полимеров).

Основной недостаток минеральной ваты – это потеря объемов, материал быстро теряет форму. Это обусловлено как структурой минваты, так и тем фактом, что движение воздуха в зазоре уносит с собой волокна и нарушает структуру утеплителя. Это не только снижает срок его эксплуатации, но и ухудшает теплоизоляционные свойства Именно поэтому выбор такого материала, как минеральная вата для создания фасадов высотных зданий не самый лучший.

Чем больше высота строения, тем большую скорость и силу набирает воздушный поток, разрушая материал – тем больше должна быть плотность материала. Что касается толщины утеплителя, то для расчета этого значения можно использовать специальные калькуляторы, которые позволят учесть как климатические особенности местности, так и параметры выбранного материала.

Технология укладки каменной ваты в вентфасаде

Технология монтажа вентилируемого фасада с утеплением

Утепление фасада минватой не представляет сложности – его можно выполнить даже своими руками без особенных навыков:

  1. Установите кронштейны для фиксации элементов вентилируемого фасада.
  2. Закрепите опорный угол к горизонту к цоколю.
  3. Укладываете плиты утеплителя горизонтальными рядами, при этом вертикальные швы должны быть выполнены с небольшим смещением между рядами. Для крепления утеплителя к стене используйте дюбеля-зонтики, плотность установки дюбелей – 2 шт./1 плиту.
  4. В случае двухслойного утепления вентфасада: cмонтируйте ветрозащитную пленку – такой слой накладывается горизонтальными полосами, внахлест должен составлять порядка 10 см.
  5. Завершающий этап – слой утеплителя ещё раз фиксируется грибками, плотность установки дюбелей – 5 шт./1 плиту.

Особенности монтажа пенопласта, пенополистирола и пенополиуретана

Монтаж пенопласта на стену

Технология установки теплоизоляции из пенопластовых плит при создании фасада несколько отличается. Для таких лёгких закрытоячеистых утеплителей нет нужды в создании обрешётки. Плиты можно просто приклеить, очистив стену от загрязнений.

Единственное, каркас необходимо будет сделать, если в качестве теплоизоляции используются плиты пенополистирола – в этом случае вспененный утеплитель фиксируется широкими шляпками. Они вставляются в стыки между плитами. Не стоит монтировать плиты вплотную – разумно оставить зазоры между кромками. Это позволит нивелировать температурное расширение, поскольку ППУ, ППС и пенопласт при нагревании немного увеличиваются в размерах – наличие зазоров позволит избежать коробления материала.

Порядок проведения монтажных работ

Технология монтажа и утепления вентфасадов следующая:

  1. Подготовительные работы. На этом этапе сбивают осыпающуюся и непрочную штукатурку, если имеется разрушенная кирпичная кладка – ее необходимо восстановить. Подготовленную стену размечают, выдерживая стандартное расстояние между кронштейнами для крепежа – по горизонтали расстояние должно быть в пределах 400-600 мм, по вертикали 800-1400мм.
  2. Изготовление и установка каркаса обрешетки под облицовку. Элементы каркаса монтируются за счет шурупов непосредственно на стену. Параметры крепежных элементов определяются на стадии расчётов. При этом стоит учитывать, что отверстие для дюбелей запрещено сверлить в пустотелых кирпичах и строительных блоках, используя перфоратор. После монтажа кронштейны выравнивают в единую рабочую плоскость.
  3. Укладка тепло- и гидроизоляции. На этапе теплогидроизоляция выбранные на основании теплотехнических расчетов плиты крепятся грибками или наклей в зависимости от выбранного материала. Укладка стартует с нижнего ряда и продолжается в направлении снизу вверх. При выполнении двойной теплогидроизоляции после монтажа утеплителя укладывается материал, защищающий листы от влаги – это слой также крепится с помощью дюбелей тарельчатого типа.
  4. Монтаж вентилируемой фасадной системы. Г-образные планки устанавливаются на крепежные кронштейны с помощью шурупов. После монтажа поверхность каждой планки выравнивается в единую поверхность. На завершающем этапе происходит крепление облицовки. Кости, в качестве отделочного материала можно использовать алюминиевые панели, сайдинг, керамогранит, фиброцементные и асбестоцементные панели, натуральный камень, гранит и так далее.

В целом монтаж вентилируемого фасада представляет собой сложный технологический процесс, для которого нередко требуется привлечение спецтехники. Именно поэтому установку фасадных систем стоит доверить специалистам.

что лучше, что дешевле. Как вентилируется мокрый фасад

Как бригадиру мне часто приходится самому выезжать на новый объект и разговаривать с заказчиками об особенностях фасадной отделки и применяемых технологиях. Многие из них не совсем разбираются в этом вопросе, путая вентилируемый и мокрый фасад. Когда дело доходит до выбора между вентилируемой и мокрой системой, меня часто спрашивают, а как вентилируется мокрый фасад?

Приходится объяснять, что это два разных способа, методы крепежа отличаются, а материалы финишной отделки чаще всего используются совершенно разные. Об этом и расскажу далее.

{autotoc}

Подробно о методах фасадной отделки

Чтобы понять основные различия мокрых и вентилируемых фасадов, рассмотрим обе технологии.

Мокрый фасад

Так называемый фасадный пирог внешней отделки по мокрой технологии состоит из таких слоев:

  • Утеплитель, который крепится на несущую внешнюю стену дома или другого строения при помощи клея с последующей фиксацией дюбелями. В качестве теплоизолятора применяются листовые материалы с плотностью от 15 кг/м³: пенопласт, пенополистирол, прессованная минеральная вата.
  • Армирующий слой из клеевого состава и мелкоячеистой сетки.
  • Финишная отделка. Используются различные штукатурные смеси: декоративные, фактурные, цементные и другие составы.

Все слои с соблюдением технологии монтируются последовательно друг на друга. Таким образом, получается прочная и монолитная конструкция, закрепленная на фасаде. Мокрая технология внешнего утепления обладает следующими преимуществами:

  • Повышается пожаробезопасность дома: штукатурные и клеевые составы не горят и защищают утеплитель, расположенный под ними.
  • Такая отделка имеет незначительный вес, поэтому может применяться для стен и фундамента со слабыми несущими способностями.
  • Простая технология монтажа.

Вентилируемый фасад

Под вентилируемым фасадом подразумеваются системы (конструкции), которые монтируются на стену при помощи специальных кронштейнов и направляющих. Это целая система из анкеров и профилей, для монтажа которых требуются определенные знания и навыки. Все крепления выполняются механическим способом, клеевые или другие составы не применяются.

Общая технология такой системы заключается в следующем:

  • На фасад крепятся кронштейны для крепления облицовки.
  • Затем при помощи дюбелей с тарельчатыми шляпками монтируется утеплитель. Чаще всего используются плиты минваты: они обладают хорошей паропроницаемостью.
  • Минеральная вата сверху накрывается специальной пленкой, пропускающей воздух в одном направлении: ветровой защитой.
  • После этого монтируются вертикальные и горизонтальные профили, на которые крепится декоративная отделка: панели из различных материалов. Например, панели из негорючего пластика или оцинкованного железа, фиброцементные или керамогранитные плиты.

Отличие вентилируемого фасада от мокрой системы заключается в следующем. Между утеплителем и панелями отделки остается 2–3 см воздушного зазора. Такая особенность навесной системы позволяет эффективно отводить влагу и конденсат за счет восходящих конвекционных потоков, возникающих за облицовкой. Из-за этого такие системы и получили название вентилируемых фасадов.

Есть вопросы?
Звоните, Спрашивайте!
+7 495 649-49-90

Из-за того, что такие системы имеют значительный вес (особенно при облицовке керамогранитом или плитами на основе цемента), монтаж навесных конструкций ограничен несущей способностью стен. Чаще всего такое утепление применяется для бетонных стен. Пеноблоки и другие ячеистые бетоны могут не выдержать значительной нагрузки, даже если кронштейны крепить насквозь с фиксацией при помощи шайб с внутренней стороны.

Я думаю, теперь понятны основные различия между мокрым и вентилируемым фасадом.

Давайте рассмотрим еще несколько вопросов, которые возникают при выборе технологии отделки.

Примеры наших работ

Ответы на некоторые вопросы

Один из вопросов, который возникает у людей, решивших утеплить свой дом и выбирающих способ это сделать: что лучше мокрый фасад или вентилируемый?

Однозначного ответа на этот вопрос не может дать никто: все зависит от конкретного случая. Иногда лучше использовать мокрый метод, а в других случаях эффективнее будет навесная система. По степени теплоизоляции оба способа одинаково эффективны, но при мокром методе можно использовать практически любой теплоизолятор. А для обустройства вентфасада подходят только негорючие материалы – это основное требование пожарной безопасности. Поэтому вопрос чаще решается на месте исходя из выделенного бюджета и особенностей здания (материала стен, типа фундамента и многого другого).

Получив ответ на предыдущий ответ, люди сразу спрашивают, а что дешевле: мокрый или вентилируемый фасад?

Здесь я однозначно отвечаю: мокрая технология дешевле. В стоимость мокрой отделки входит клеевая смесь, утеплитель и фасадная штукатурка. А вентфасад включает в себя утеплитель, навесную систему и облицовку. Причем облицовка и система креплений – наиболее дорогостоящие элементы. Приведу пример: утепление минеральной ватой по мокрой технологии стоит от 2500 тыс. руб/м². Стоимость утепленного минватой вентфасада зависит от облицовки. Например, при использовании керамогранита цена материалов и работ составит от 3600 руб/м², а при обшивке композитными панелями – от 4400 руб/м². Я считаю, что именно фактор цены, а также более легкая во всех смыслах технология мокрой отделки делает этот метод наиболее востребованным.

Иногда возникает вопрос, что лучше для пожаробезопасности вентилируемый фасад или мокрый?

Здесь обе системы одинаково безопасны, но это достигается различными методами. Отделка мокрым методом более пожароустойчива изначально, по самой сути технологии. Пожаробезопасность вентилируемого фасада достигается за счет применения огнеупорных и негорючих материалов: как утеплителя, так и облицовки. К тому же пожары чаще возникают внутри зданий, чем снаружи.

Подводя итоги еще раз отмечу, что вентилируемый и мокрый фасад – это совершенно разные способы внешней отделки зданий с утеплением. Поэтому монтаж вентилируемого фасада поверх мокрой штукатурки не практикуется, я думаю, никем.

  • Во-первых, это еще больше поднимет стоимость материалов и работ,
  • во-вторых, совершенно бессмысленно наносить клей или штукатурку поверх утеплителя, чтобы затем смонтировать еще один защитный слой.

Вся технология вентфасада заключается в том, чтобы естественным образом удалялась влага из утеплителя, а не из штукатурного слоя.

Надеюсь, что этот материал ответит на самые разные вопросы и поможет вам определиться, какому способу отделки отдать предпочтение.

Планируете отделку фасада?
Вам стоит только позвонить, дальше мы все сделаем сами!

+7 (495) 649-49-90

Многоканальный телефон

Влаговетрозащитная мембрана в вентилируемом фасаде – Статьи

В настоящее время при строительстве и модернизации зданий в формировании их внешнего вида все большую популярность набирают вентфасады. Навесной вентилируемый фасад – это современная система, отвечающая всем строительным требованиям и нормам. Это надежная защита стен от дождя, ветра и других климатических явлений. Система НВФ — превосходная теплозащита зданий и сооружений. Большой выбор облицовочных материалов, всевозможных цветов и размеров, позволяют сделать поистине архитектурный шедевр.

Однако отдельные элементы фасадной системы нуждаются в дополнительной защите. Речь идет о минеральном утеплителе, который, под воздействием ветра, влаги и пыли, имеет тенденции к деградации. Из-за ветровых потоков, попадания воды, выхода и конденсации пара, его структура разрушается, приводя к нарушению целостности и снижению эффективности.

В системе НВФ существует эффект «аэродинамической трубы». Пульсация воздушного давления в вентзазоре (частота 0,2-1 Гц) вследствие изменения ветрового воздействия на фасад здания вызывает вибрацию всего массива волокон. За счет этого, утеплитель расщепливается на волокна, рвется и выветривается из вентфасада. Теряет свои свойства. Волокна утеплителя в виде пыли, залетают в открытые окна и форточки жилых помещений. Что негативно может сказаться на самочувствии жителей.

Для защиты утеплителя используют влаговетрозащитные паропроницаемые мембраны с высокими показателями воздухо и влагонепроницаемости.

Под влаговетрозащитой утеплителя и фасада подразумевается не просто ветрозащитная пленка. Это должна быть полноценная многофункциональная строительная мембрана. Обладающая и другими качествами: негорючестью, прочностью и долговечностью. Вот как комментирует применение строительных мембран для вентилируемых фасадов заведующий лабораторией НИИСФ, доктор технических наук профессор Гагарин Владимир Геннадьевич:

— Обычно первый аргумент «за» — то, что влаговетрозащитная пленка предотвращает эмиссию волокна из утеплителя. При движении воздуха вдоль поверхности минеральной ваты, не защищенной влаговетрозащитной пленкой, на приповерхностные волокна действует аэродинамическая сила, которая вызывает ряд напряжений в материале. Не стану вдаваться в физические подробности явления, но в итоге таких воздействий волокна могут отрываться и вылетать из воздушной прослойки. Это явление и получило название «эмиссия волокна». Если это явление имеет место, то установка ветрозащитной пленки конечно же его предотвратит.

Другой аргумент сторонников применения таких пленок — они предотвращают фильтрацию воздуха и тем самым способствуют сохранению теплозащитных свойств конструкции.

Фильтрация воздуха в ограждающих конструкциях может быть поперечной и продольной. В свою очередь поперечная делится на инфильтрацию (снаружи внутрь помещения) и эксфильтрацию (изнутри помещения наружу). Именно эти виды фильтрации и должна предотвращать влаговетрозащитная пленка. Если при помощи устройства влаговетрозащитной пленки фильтрация ликвидирована, то тем самым достигнуто сохранение теплозащитных свойств конструкции.

Аргументом «за» также нередко называют то, что влаговетрозащитная пленка защищает утеплитель от увлажнения атмосферными осадками в период эксплуатации объекта. Если дождь сопровождается ветром, то такой «косой дождь» как раз может представлять опасность для сохранности эксплуатационных свойств утеплителя. И если влаговетрозащитная пленка предохраняет утеплитель от увлажнения водой в случае ее попадания на поверхность, то эту пленку можно называть ветровлагозащитной.

Нередко приходится слышать в защиту использования ветрозащитных пленок то, что они обеспечивают сохранность утеплителя в период монтажа, когда с момента установки утеплителя и подконструкции до начала монтажа облицовки проходит значительное время, иногда этот перерыв достигает нескольких месяцев. Конечно, тут вроде все ясно: в течение такого большого времени утеплитель может быть существенно поврежден вследствие климатических воздействий, и потому в подобных случаях установка влаговетрозащитной пленки должна защитить утеплитель от повреждений.

Негорючая фасадная мембрана нашей компании стойко выдерживают любые природно-климатические явления. Будь то морозы, ветра, снег, дождь, жару. Штукатурка под воздействием таких явлений разрушается, дает протечки, ухудшается теплоизоляция дома. Да, такие стены можно восстановить, заделав трещины, оштукатурив дом заново, НО это не дает гарантии долговечности влаго- и ветрозащиты. Через некоторое время трещины появятся вновь и работы по восстановлению придется повторять.

НВФ создает надежную защиту стен дома, оберегая от погодных воздействий. При этом, сама стена дома всегда остается сухой, не подвергается перепадам температур и разрушениям. Утеплитель, применяемый в навесных фасадных системах, сохраняет тепло дома и позволяет существенно экономить на затратах на отопление. Важно лишь надежно укрыть его защитной негорючей фасадной мембраной.

Энергетические аспекты вентилируемых фасадов с тыльной стороны

С появлением глобального потепления энергоэффективность и энергосбережение стали первостепенными факторами при проектировании здания. Сегодня на типичное здание приходится 40 процентов от общего энергопотребления. Фасад играет важную роль в определении энергоэффективности здания, являясь связующим звеном между внутренним и внешним миром. Используя задний вентилируемый фасад, для каждого здания можно разработать энергетическую концепцию, которая учитывает потребности здания в отоплении и охлаждении, а также идеальное качество освещения внутри него.

Что такое задний вентилируемый фасад?

Задний вентилируемый фасад – это многослойная фасадная система здания, состоящая из водонепроницаемого покрытия на внешнем слое в сочетании с рамой, атмосферостойкой мембраной, изоляцией, подрамником и вентилируемой полостью. (Изображение 1)

Разница между температурой лицевой системы облицовочной панели и температурой воздушной полости создает изменение плотности воздуха, что приводит к «эффекту дымохода», который создает восходящий поток воздуха внутри полости.

Материалы, которые могут использоваться для задних вентилируемых фасадов, включают композитные панели из HPL и армированной смолой, фиброцемент, минеральную вату, керамику, мелкий керамогранит, медь, титан-цинк, алюминиевые композитные панели, алюминиевые плиты, кирпичи, качественные фасадные ткани и Система опорных панелей для применения с гипсом, стеклом, тесаным камнем или керамикой. (Изображение 2)

Как задний вентилируемый фасад может помочь снизить энергопотребление здания?

Задние вентилируемые фасады с присущим им потоком воздуха обеспечивают ряд явных преимуществ по сравнению с другими фасадными системами, такими как:

Теплоизоляция и экономия энергии – Система вентилируемого заднего фасада может быть спроектирована с учетом различных требований к энергии с индивидуально подобранными изоляционными материалами любой желаемой толщины.Тепловые мосты уменьшаются, потому что нет прерываний, вызванных плитами перекрытия. Существуют варианты, которые помогают уменьшить количество вводимых тепловых мостов или даже полностью устранить тепловые мосты за счет постоянной постоянной изоляции всех элементов конструкции без разрывов или перемычек в изоляции, за исключением конечных креплений, используемых для прикрепления облицовки к зданию.

Благодаря конструкции вентилируемого фасада, сопротивление диффузии пара снижается от внутренних стен к внешним.Любая влага от конденсации или накопления во время строительства проходит через вентилируемое пространство и способствует созданию здорового и комфортного климата в помещении. Изоляция также обеспечивает максимально возможные показатели удержания тепла для конструкции, в то время как она компенсирует высокие температуры летом изнутри, что приводит к снижению требований к обогреву / охлаждению внутри здания.

• Звукоизоляция – Задние вентилируемые фасады положительно влияют на звукоизоляционные свойства внешней стены.В зависимости от толщины изоляции, размеров облицовки и процента открытых швов индекс звукоизоляции может быть увеличен до 14 дБ.

• Защита окружающей среды – Вентилируемые фасады устойчивы к проливному дождю. Влага быстро удаляется через вентилируемое пространство между изоляционным материалом и облицовкой. Защита от дождя на заднем вентилируемом фасаде работает на двух уровнях: вентиляционный зазор функционирует как комната компенсации давления, которая гарантирует, что в худшем случае проливной дождь будет стекать через заднюю часть облицовки, тем самым защищая теплоизоляцию. от сырости.Следовательно, можно построить задние вентилируемые фасады с открытыми горизонтальными швами без снижения защиты от дождя.

Какие энергетические параметры необходимо учитывать перед проектированием вентилируемого фасада с тыльной стороны?

При проектировании фасада в целом следует учитывать следующие общие параметры:

  • Архитектурные требования / ограничения
  • Достижимые тепловые характеристики (коэффициент теплопроводности, коэффициент g, температура слоя)
  • Гибкость (регулируемая производительность)
  • Стратегия взаимодействия с системами HVAC (вытяжка, естественная вентиляция)

Помимо этих параметров более общего характера, следующие более конкретные параметры могут оказать существенное влияние на возможный дизайн и, следовательно, тепловые характеристики фасада:

  • Грузы
  • Техническое обслуживание (внутреннее или внешнее)
  • Размер модуля элемента
  • Инвестиции vs.текущие расходы (интегрированное представление)

Однако ниже мы сосредоточимся на одном из основных параметров тепловых характеристик: коэффициент теплопроводности с точки зрения подрядчика по фасаду.

Что такое U-значение и как рассчитывается U-значение?

Значение U или коэффициент теплопередачи – это плотность теплового потока, проходящего через один квадратный метр конкретного элемента стены, когда обе стороны стены подвержены разнице температур в один градус К. Значение U дает меру теплопотерь в любой строительный элемент, такой как стена, пол или крыша.Его также можно назвать «общим коэффициентом теплопередачи», и он измеряет, насколько хорошо части здания передают тепло. Значение U измеряет потери тепла всеми тремя режимами теплопередачи: теплопроводностью, конвекцией и излучением.

U-значения важны, потому что они составляют основу любого стандарта по сокращению выбросов энергии или углерода. На практике почти каждый внешний элемент здания должен соответствовать тепловым стандартам, которые выражаются в виде максимального коэффициента теплопроводности. Чем ниже коэффициент теплопроводности, тем лучше элемент здания в качестве теплоизолятора.

Знание того, как рассчитать U-значения на ранней стадии процесса проектирования, помогает избежать дорогостоящих повторных работ на более поздних этапах проекта. Это позволяет проектировщику проверить осуществимость своего проекта на ранней стадии, чтобы убедиться, что он соответствует цели и соответствует ли он нормативным требованиям.

Чтобы рассчитать коэффициент теплопередачи, нам сначала нужно узнать тепловые сопротивления каждого элемента (значения R). R-значение – это толщина продукта в метрах / лямбда (теплопроводность).R-значения всех материалов, используемых в приложении, складываются, и величина, обратная полученной сумме, даст нам U-значение для этого конкретного приложения в здании.

Существуют различные методы определения коэффициента теплопроводности стен с облицовкой от дождя. Они объяснены ниже:

a) Подробные расчеты для всей стены: U-значение всей стены, включая все крепления, оценивается численным расчетом в соответствии с BS EN ISO 10211.Результат относится только к этой конкретной стене в соответствии с расчетами, любые отклонения необходимо повторно оценить.

b) Использование линейного коэффициента теплопередачи для крепежной рейки, проникающей через слой изоляции: фасад. Двумерный численный расчет выполняется на участке стены, содержащем крепежную рейку. Границы модели должны находиться в адиабатических положениях, например, посередине между двумя рельсами. Результат сравнивается с расчетом, в котором рельс опущен, чтобы получить линейный коэффициент теплопередачи, как описано в BS EN ISO 10211.Этот расчет необходимо выполнить только один раз для данной конструкции рельса и толщины проникающей изоляции. Значение U стены тогда U = U0 + (L Ψ / A), где U0 – значение U стены без крепежных направляющих, L – общая длина направляющих, а A – общая площадь стены. .

c) Использование точечного коэффициента теплопередачи для дискретного крепежного кронштейна, проникающего через слой изоляции: Трехмерный численный расчет выполняется на участке стены, содержащем типичный крепежный кронштейн.Границы модели должны находиться в квазиадиабатических положениях, например, посередине между двумя скобками. Результат сравнивается с расчетом, в котором скобки опущены, чтобы получить точечный коэффициент теплопередачи, χ, как описано в BS EN ISO 10211. Этот расчет необходимо выполнить только один раз для данной конструкции кронштейна и проникающего 20 WFM. СПЕЦИАЛЬНОЕ ПРЕДЛОЖЕНИЕ НА КОНЕЦ ГОДА 2015 Толщина изоляции. Значение U стены тогда U = U0 + n χ, где U0 – значение U стены без крепежных направляющих, а n – количество кронштейнов на квадратный метр стены.

Высокие тепловые характеристики связаны с необходимостью учета перегрева, качества воздуха и вентиляции. Такие стены будут направлять все здание на путь к очень низкой эксплуатационной энергии и устойчивости, пока дизайнеры, конструкторы и владельцы устанавливают оставшиеся части и обеспечивают целостное мышление для выполнения работы.

При расчетах коэффициента теплопередачи не следует делать поправку на влияние самого дождевого экрана, потому что пространство позади полностью вентилируется.Необходимо учитывать влияние кронштейнов или направляющих, прикрепляющих облицовку к стене позади, если кронштейны или направляющие проникают через изоляционный слой или часть изоляционного слоя. Поскольку влияние крепежных кронштейнов или направляющих на коэффициент теплопередачи стены может быть большим, даже если в комплект входит терморазрывная прокладка, их вклад в общее значение коэффициента теплопередачи необходимо оценить с помощью подробных расчетов.

В расчетной модели не должно быть облицовки, но должны быть включены крепежные планки или кронштейны на всю их длину.Сопротивление внешней поверхности следует принять равным 0,13 м²K / Вт, чтобы учесть эффект затенения облицовки.

Воздух в хорошо вентилируемых помещениях считается таким же, как и наружный воздух. Соответственно сопротивление воздушного пространства и всех слоев между ним и внешней средой не учитывается. Однако, поскольку облицовка обеспечивает защиту от ветра, сопротивление внешней поверхности превышает его нормальное значение
0,04 м²К / Вт.

Какие параметры могут изменить значение коэффициента теплопередачи стены?

Показатель U рассчитывается в стандартных условиях, обычно при температуре воздуха 20 градусов Цельсия внутри и 10 градусов Цельсия на улице, коэффициент излучения поверхности равен 0.9, влажность 50% и скорость внешнего ветра 4 м / с. Однако значение U не всегда является постоянным и может измениться при следующих условиях:

• Изменение внешней температуры: Очень небольшое влияние на значение U. Не влияет на непрозрачные, хорошо утепленные стены. Для застекленных стен отклонение также очень мало: навесная стена со средним значением U 1,75 Вт / м2 градуса К при +10 градусах Цельсия будет иметь такое же значение при -10 градусах Цельсия снаружи и повысится до 1.76 Вт / м2 градусов К при температуре наружного воздуха +30 градусов Цельсия

• Изменение коэффициента излучения материалов может иметь влияние, и оно варьируется в зависимости от материала. Когда материал имеет низкий коэффициент излучения, трудно повлиять на значение U, если мы уменьшим его еще больше.

• Скорость ветра имеет важное значение, если стена представляет собой застекленный фасад, и не влияет на средний коэффициент теплопроводности, если это непрозрачная стена с хорошей изоляцией.

Заключение:

Сегодня задние вентилируемые фасады – одна из самых популярных фасадных систем.Помимо функциональной безопасности, архитекторы в первую очередь ценят дизайнерские возможности, которые дает использование задних вентилируемых фасадов. Таким образом, эти системы менее подвержены повреждениям, чем другие фасадные системы. Кроме того, требования к защите от пожара, шума и молнии можно реализовать легко и творчески.

Разделение материалов теплоизоляции и защиты от атмосферных воздействий делает дизайн фасада с задней вентиляцией не только конструктивно выгодным, но также позволяет использовать различную облицовку для создания различных эффектов.Доступен широкий выбор материалов, форматов, форм, швов, цветов и типов крепления, позволяющих воплотить индивидуальные дизайнерские идеи в реальность.

Бесчисленные примеры нового строительства и модернизации демонстрируют, как конструкции с задними вентилируемыми фасадами чувствительно подходят к окружающей среде и отражают характер зданий в городском пространстве.

часов Ventiladas

Вентилируемый фасад представляет собой конструктивную систему вентилируемого конверта, состоящую из внутреннего листа, изоляционного слоя и внешнего листа без уплотнения.Этот тип фасадной отделки обычно отличается долговечностью, высоким качеством и хорошими тепловыми характеристиками, но имеет высокую цену. Это обычное решение, используемое в институциональных зданиях.

Для уменьшения количества потребляемой энергии в искусственном климате здания и повышения теплового комфорта внутри здания необходимо изучить и оптимизировать конструкцию вентилируемого фасада, используя новейшие инструменты численного анализа.

На рынке уже имеется программное обеспечение, которое рассчитывает потоки энергообмена в вентилируемом фасаде с учетом как вертикального, так и горизонтального теплового потока.

строительство

Фасад здания (внутренняя створка) крепится с помощью несущей конструкции, предназначенной для поддержки внешней отделки створки и изоляционного слоя с помощью пластиковых шпилек или клеевого раствора. После того, как изолирующий слой размещен, лист устанавливается поверх. Подконструкция оставляет воздушный зазор в несколько дюймов между изоляцией и пластинами, составляющими вторую обшивку. Стыки между этими пластинами открыты, пропуская воздух.

Наружные пластины могут быть из различных материалов: камня, дерева, сэндвич-панелей и т. Д. Наружная обшивка или отделка должны иметь прорези как снизу, так и сверху, для обеспечения воздухообмена. В особых точках (линия гребня, экраны по периметру) необходимо располагать желоб или другие элементы защиты, препятствующие попаданию воды во внутреннюю камеру, что снизило бы эффективность теплоизоляции.

операция

Наличие стыков между элементами фасада позволяет избежать типичных трудностей, поэтому они представляют собой фасады, сохраняющие хороший внешний вид долгое время. Кроме того, температура внешнего листа изменяется как в теплоизоляции, так и в гидроизоляции, что продлевает срок его службы. Наконец, наличие внешнего листа помогает снизить тепловые потери здания: в летние месяцы внешняя обшивка нагревается, создавая конвективный эффект, который обеспечивает циркуляцию воздуха внутри камеры.

Этот «эффект дымохода» вытесняет теплый воздух и заменяет его более холодным. В зимние месяцы воздух в камере нагревается, но недостаточно, чтобы создать такой же эффект, и тепло лучше сохраняется.

Фасадное стекло или облицовка расширяются, чтобы сформировать камерный вентилируемый фасад, обновить внешний вид здания, не отказываясь от его первоначального внешнего вида, или включить эффект Тромбе в качестве биоклиматического улучшения здания.Но и у этого вида фасада есть определенные контрагенты.

В состав системы вентилируемого легкого фасада входят:

Две навесные стены или

Навесная стена снаружи и внутренняя часть ограждения.

Преимущества вентилируемого фасада

Основные вентилируемые фасады обеспечивают защиту от атмосферных воздействий и оптимизируют тепловой комфорт внутри камеры за счет вентиляции воздуха между двумя стенами.

Удаление воздуха из указанной камеры снижает количество тепловой энергии, которая достигает внутренней части здания.

Эта система очень универсальна, поскольку она позволяет использовать различные типы вентиляции и использовать различные типы материалов для внутреннего фасада, всегда оставляя внешний вид отдельным вопросом.

Конвекционное охлаждение

Вентиляция фасадов этого типа осуществляется естественной или принудительной конвекцией.Естественная конвекция вызывается «эффектом дымохода» из-за камеры нагрева воздуха, откачки и части энергии, поглощаемой внешним листом стекла.

Принудительная вентиляция влияет на скорость конвекции воздуха внутри камеры, регулируя поток воздуха, который входит и выходит из камеры. Они часто устанавливаются внутри вентилируемой шторы или другого солнцезащитного элемента, который может значительно варьировать солнечный коэффициент, светопропускание, температуру поверхности и коэффициент теплопередачи по желанию без необходимости замены стекла снаружи.

Внутренняя часть вентилируемого фасада должна состоять из теплоизоляционного материала и звукопоглощающего материала. В случае вентилируемых фасадов с двойным остеклением, защитные пояса также должны быть размещены внутри камеры, чтобы уменьшить максимально возможное количество падающей солнечной энергии на второй фасад. В этом типе стеклянных фасадов часто используются полуотражающие материалы, цветные или нанесенные трафаретной печатью на внешнюю оболочку, которые могут играть разными тонами, чтобы обеспечить оптимальное светопропускание и отражение хорошего изображения.Для внутренней обшивки предпочтительнее двойное остекление в здании, обеспечивающее хорошую звуко- и теплоизоляцию.

Часто задаваемые вопросы

Где можно установить вентилируемые фасады?

Вентилируемые фасады можно использовать для облицовки зданий любого типа, включая жилые, производственные или офисные здания, как новостройки, так и реконструируемые.

Можно ли быстро заменить части вентилируемого фасада в случае повреждения одного или нескольких компонентов?

«Сухая» установка отдельных компонентов фасада позволяет проводить работы на отдельном фрагменте или участке плитки, которые были сломаны или повреждены.

Для всех вентилируемых фасадов Granitech использует сетку, прикрепленную к обратной стороне плитки, которая удерживает любые фрагменты облицовки на месте в течение времени, необходимого для удаления и замены сломанной части, чтобы не вызвать повреждений.

Какое обслуживание требуется на вентилируемых фасадах?

Система вентилируемой облицовки не требует планового обслуживания, за исключением случаев повреждения или непредвиденного напряжения, которое могло вызвать проблемы с конструкцией.

Какой утеплитель можно использовать в вентилируемом фасаде?

Тип и толщина используемой изоляции связаны с энергетическими характеристиками системы стен и / или конструкцией ограждающей конструкции здания.Можно использовать любой жесткий изоляционный материал, который можно наносить и прикреплять вертикально к стенам и который способен выдерживать внешний контакт с атмосферными агентами (даже минимальный и временный).

Может ли воздушный зазор быть достаточно большим для размещения кабелей и коммуникаций?

Конечно. Размер полости может быть достаточно большим не только для естественной вентиляции и энергоэффективности, но также соответствовать эстетическим и функциональным требованиям и, следовательно, достаточно большим для размещения кабелей, трубопроводов или услуг.

Как выбрать анкерную систему для вентилируемого фасада?

Тип анкера, используемого для крепления металлического каркаса к стене, подлежащей облицовке, выбирается после обследования площадки и проверки типа существующей стены.

Однако, что касается системы анкеровки для крепления системы облицовки к основанию, выбор делается между видимым или скрытым креплением, в зависимости от предпочтений архитектора, а также экономических факторов.

Можно ли использовать в системе вентилируемого фасада несколько форматов облицовки?

Да.Можно использовать несколько разных форматов облицовки или изменить раскладку плитки, можно использовать даже разную толщину. Однако следует иметь в виду, что это может повлечь за собой модификацию или расширение металлического каркаса с соответствующими затратами.

Какой вид дизайна и гарантийную поддержку вы предлагаете для вентилируемых фасадов?

Granitech может выполнить проекты вентилируемых фасадов от первоначальной концепции до окончательного проектирования и строительства, с расчетами и отчетами с последующим монтажом на месте.При варианте «под ключ» предоставляется окончательная гарантия на систему после тестирования.

Вентилируемые стены, облицовка наружных фасадов

Преимущества

Преимущества обратной теплоизоляции вентилируемых стен

Вентилируемый фасад – это система стенового покрытия и утепления, способная характеризовать строительные, гигрометрические, статические, безопасные и эстетические аспекты здания.
Он состоит из внешней облицовки, воздушного пространства глубиной в несколько сантиметров, подконструкции, обычно сделанной из алюминия, прикрепленной к зданию, и изоляционного слоя, прикрепленного к внешней стене здания.Основные функции внешней облицовки – эстетические и защитные. Основные преимущества:
– Равномерная изоляция здания без теплового моста;
– Устранение водяного пара, образующегося внутри здания, без препятствий и преград;

Другие преимущества

– Меньшие структурные сдвиги, вызванные изменениями внешней температуры и различиями между коэффициентами расширения различных материалов, из которых состоит здание;
– Более низкие затраты на кондиционирование благодаря уменьшенной дисперсии;
– Стены намного тоньше, так как нет необходимости во внутренней изоляционной стене;
– Выбор типа и толщины утеплителя в зависимости от условий окружающей среды здания;
– Улучшенное шумоподавление за счет многоуровневой конструкции вентилируемого фасада и использования звукопоглощающих материалов;

Анкерные устройства

Видимые зацепы для вентилируемых стен

Их типичная особенность заключается в том, что они прикрепляют технические керамические плиты облицовки к несущей конструкции вентилируемого фасада с помощью зажимов, которые остаются снаружи облицовки и поэтому видны.Конструкции состоят из кронштейнов, прикрепленных к стене с помощью химических или механических анкерных болтов, в зависимости от типа кладки.
Утеплитель крепится к стене с помощью отдельных приспособлений, сформированных вокруг кронштейнов, с вертикальными стойками, прикрепленными к выступающей части кронштейна. К вертикальным стойкам прикреплены зажимы из нержавеющей стали для удержания плит облицовки.

Невидимые зацепы для вентилируемых стен

Они прикрепляют технические керамические плиты облицовки к металлической конструкции с помощью фиксирующих устройств на задней стороне плит, чтобы они не были видны.Система состоит из кронштейнов, прикрепленных к стене с помощью химических или механических анкерных болтов, в зависимости от типа стены, к которой должны быть прикреплены плиты, а также решетки из стоек и стрингеров.
Невидимая система крепления обеспечивает лучший эстетический результат, устраняя видимость крепежных приспособлений или зажимов на облицовке.

Настенная плитка

Настенная плитка из технического керамогранита на вентилируемую стену

Технические керамические плиты большого формата, используемые в вентилируемых фасадах, изготавливаются исключительно из искусственного мрамора, гранита, камня или сланца.
Различная площадь поверхности плит определяет разные конечные затраты:
Чем меньше плиты, тем большее количество устройств необходимо для их фиксации на месте, что увеличивает затраты на конструкцию и установку.
В системах с невидимым зацеплением, чем больше плиты, тем меньше объем выполняемых работ на квадратный метр и, следовательно, стоимость их установки.

Сопротивление нагрузки

При использовании прямоугольных плит важно учитывать направление, в котором они размещаются, поскольку вертикальная, а не горизонтальная установка может повлиять на окончательные затраты на установку.Когда используются вентилируемые стены с видимыми зацепами, дешевле монтировать плиты с более длинной стороной в горизонтальном положении, поскольку стойки имеют такой же шаг, что и плита, и, следовательно, необходимое количество будет меньше.
В случае вентилируемых фасадов с невидимым зацепом плиты подготавливаются с несколькими положениями отверстий, чтобы обеспечить надлежащую фиксацию даже плит, обрезанных по размеру.

вентилируемых фасадов: не все технологии равны

вентилируемые фасады: не все технологии равны

Предоставлено Isopan ShareShare
  • Facebook

  • Twitter

  • Pinterest

    944
  • Почта

Или

https: // www.archdaily.com/881143/ventilated-walls-not-all-technologies-are-equal

Сегодня строительная отрасль сталкивается со все более высокими требованиями с точки зрения безопасности, энергосбережения и эстетики. Фактически, были введены очень строгие правила и стандарты в области энергетики и безопасности, чтобы гарантировать, что новые здания, а также отремонтированные, устойчивы к пожарам и землетрясениям при сохранении окружающей среды. В настоящее время вентилируемый фасад является одной из наиболее широко используемых и наиболее инновационных систем как в жилом, так и в производственном секторе: это отличная система вертикального закрытия, характеризующаяся огнестойкими и антисейсмическими элементами, которые могут изолировать здание как термически. и акустически, уменьшая воздействие атмосферных воздействий на каменные конструкции (UNI 11018).

Фасады «вентилируются» благодаря воздушному зазору между изоляционной панелью и внешней облицовкой, через который с эффектом дымохода воздух течет снизу вверх, создавая естественную вентиляцию. Однако не все продукты одинаковы: когда дело доходит до повышения эффективности вентилируемых стен, сокращения времени монтажа и обеспечения большей гибкости с точки зрения индивидуализации и возможностей дизайна, итальянская компания Isopan предлагает интересное решение.Isopan, дочерняя компания Manni Group, является ведущим в мире производителем металлических и изоляционных панелей, которая недавно расширилась в России и Мексике за счет двух производственных компаний. Компания Isopan в сотрудничестве с компанией Inpek разработала систему Arkwall для вентилируемых фасадов, которая сочетает в себе изоляционную способность сэндвич-панелей с высокой эстетической ценностью архитектурных фасадных панелей, доступных как из HPL, так и из минеральной ваты. Конечно, со всеми преимуществами и безопасностью вентилируемых стен.

Предоставлено Isopan

Очень интересное решение для различных типов зданий, но для выбора наиболее подходящего продукта необходимо учитывать множество элементов: время укладки, огнестойкость и водонепроницаемость, индивидуальный дизайн и эстетические характеристики.

Щелкните здесь, чтобы получить дополнительную информацию или записаться на прием к техническому специалисту Isopan.

Предоставлено Isopan

В системе вентилируемого фасада сэндвич-панель Arkwall, состоящая из двух внешних металлических листов, которые покрывают изоляционный слой из полиуретана или минеральной ваты, защищена от непогоды и износа, обеспечивая долговечность. .Фактически, в отличие от обычных систем вентилируемого фасада, он не требует установки каких-либо несущих стен (которые обычно не несущие и изготовлены из гипсокартона), на которых должны быть закреплены фасадные панели, что позволяет избежать неудобства выхода из слоя. изоляционного материала. Это позволяет не только значительно сократить время укладки, но и получить более настраиваемую конструкцию и повысить уровень безопасности. Фактически, конструкция Arkwall не способствует распространению огня внутри вертикального дымохода и является водонепроницаемой.

Предоставлено Isopan

В конечном счете, особое внимание, уделяемое эстетике и дизайну, делает Arkwall уникальным продуктом: архитектурные фасадные панели доступны во многих различных цветах и ​​отделках, так что любое здание, будь то жилое, коммерческое или industrial, можно превратить в элегантный, современный и функциональный объект с оригинальным и привлекательным дизайном.

Некоторые работы по перепланировке, выполненные с использованием вентилируемых стен Arkwall компании Isopan, включают промышленные здания, такие как верфи Baglietto в Специи и штаб-квартира I.MA Srl в Витторио Венето (в провинции Тревизо), магазины бренда Piazza Italia в Мессине и Волгоградский музей «Россия – моя история».

Щелкните здесь, чтобы получить дополнительную информацию или записаться на прием к Isopan технический специалист.

Система вентилируемого фасада из легкого камня

Система вентилируемого фасада из легкого камня основана на методе вентилируемого фасада. Этот тип конструкции становится все более и более распространенным в строительстве благодаря своей оптимальной производительности в различных аспектах.Его основные преимущества:

  • Защита внутреннего шкафа от прямого воздействия дождя и ветра.
  • Повышенная энергоэффективность зданий по сравнению с другими традиционными решениями благодаря непрерывной внешней изоляции и вентилируемой камере.
  • It позволяет избежать влажности в корпусе благодаря вентиляции камеры. Его наличие облегчает отвод водяного пара из салона.
  • Производится гигротермальное равновесие , что улучшает состояние здоровья внутри.
  • It позволяет избежать тепловых мостов , позволяя использовать изолятор непрерывно за пределами всего основного корпуса.
  • Это увеличивает тепловую инерцию корпуса. В отличие от традиционных корпусов, в вентилируемых фасадах изоляция остается снаружи основного корпуса. Таким образом, вся масса работает как «тепловой склад», позволяя поддерживать более постоянную внутреннюю температуру в течение дня.

На диаграмме показано, как он работает термически в любое время года. Летом солнечное излучение напрямую влияет на покрытие, нагревая его. Это тепло передается в воздушную камеру, повышая температуру в воздушной камере, создавая восходящий конвективный поток, то есть эффект дымохода. Этот уменьшает лучистую энергию, поступающую в здание .

С другой стороны, зимой позволяет избежать потери внутренней температуры , потому что изоляция расположена снаружи основного корпуса, отсекая все мосты холода и превращая базовый корпус в аккумулятор тепла.

Точно так же непрерывное расположение теплоизоляции, исключающее тепловые мосты, предотвращает появление конденсационной влаги внутри.

Чтобы узнать больше о Каменные вентилируемые фасады из легкого камня , посетите секцию фасадов или свяжитесь с нами>

Преимущества вентилируемого фасада

Эстетичность

Фасад здания, являясь важнейшим архитектурным элементом, должен придавать ему красоту и стиль.Благодаря тому, что вентилируемый фасад доступен в бесконечном разнообразии форм и цветов, он может многое предложить с точки зрения улучшения внешнего вида здания. Они представляют собой довольно адаптивную систему, которую можно комбинировать в различных формах и цветах, что позволяет придавать вашему зданию различные конструкции по желанию.
Благодаря усовершенствованным производственным мощностям и технологиям, фиброцементные панели могут изготавливаться с бесконечными возможностями с точки зрения тона и текстуры. Их легко воспроизвести в любых системах облицовки.

Сокращенное обслуживание и простота ремонта

Хотя эти панели негорючие и практически не требуют обслуживания, тем не менее, если дела пойдут плохо, их можно легко отремонтировать. Они легкие, с ними легко работать. Эти панели легко устанавливаются независимо от температуры и погоды.

Звукоизоляция

Хотя сами по себе фиброцементные листы плохо пропускают звук, дополнительные слои системы облицовки позволяют улучшить звукоизоляцию.Существуют панели с изоляцией из фиброцемента специальной конструкции, обеспечивающие отличные акустические характеристики.

Энергоэффективность и уменьшение плесени / грибка вопросов

С фасадом из фиброцемента; будет постоянная циркуляция воздуха, которая оптимизирует эффективность вашей изоляции. Благодаря безупречному слою теплоизоляции вы получите значительную экономию энергии на охлаждение и обогрев.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *