Теплый водяной пол своими руками
Теплый пол – отличное решение, как с точки зрения комфорта для потребителя, так и с точки зрения экономии тепловой энергии. Теплые полы бывают разных видов: электрические проводные, пленочные, инфракрасные и т.д. Мы же подробно остановимся на водяных теплых полах – т.к. считаем что человеческое жилище и так пронизывает достаточное количество электромагнитных полей.
Принцип водяного теплого пола прост: на черновой пол укладывают утеплитель, к утеплителю крепят трубу. Труба может быть из полиэтилена с алюминиевым слоем, чистый полиэтилен PE-RT или PE-X или меди. Мы рекомендуем однослойную трубу PEX или PERT. На стыках будущей стяжки и стен укладывают демпферную ленту Поверх трубы заливают стяжку из бетона с добавлением пластификатора. На стяжку укладывают плитку. Можно и ламинат – но это покрытие будет менее эффективно отдавать тепло.
Теплый пол готов. Как правило, в трубу подают теплоноситель температурой не более 50°С, чтобы избежать температурных расширений стяжки и, как следствие.
Вариант 1:
– помещение имеет небольшую площадь, это ванная комната, туалет или прихожая. Если помещение с теплым полом одно – то устанавливать узел подмеса достаточно дорого. Как выход – можно использовать комплект для напольного отопления Herz Floor Fix.
Внешний вид комплекта для теплого пола Herz Floor Fix |
Схема 1. Теплый пол в маленьком помещении |
Вид клапана для теплого пола |
Как видно из схемы 1, трубы контура теплого пола подключаются к выводам коллектора, используемого для радиаторного отопления.В нижней части клапана есть маховичок, управляющий термостатом. С его помощью задается максимально температура воды в контуре теплого пола. Если в контур попадет более горячая вода – термостат перекроет клапан. В верхней части клапана находится термостатическая букса. На нее одевается дистанционная термостатическая головка, например 1933005. Термостатическая головка следит за температурой в помещении: если в помещении жарко – головка закроет клапан и циркуляции в контуре не будет.Предварительно, еще на этапе укладки труб в теплый пол, посреди контура делается разрыв, и концы труб подключаются к комплекту Herz Floor Fix. В комплект входит следующее оборудование: термостатический клапан со встроенным термостатом, два отсечных вентиля, ящичек для скрытого монтажа с крышкой.
Если отапливать теплыми полами планируется целый этаж, или даже целый коттедж, для этого случая придется использовать либо группу быстрого монтажа в котельной, либо смесительную группу для коллектора на этаже, либо соорудить его из специальных комплектов, чтобы отделить высокотемпературный контур радиаторов (от 70 до 90°С), от низкотемпературного контура теплых полов (40-50°С).

Вариант 3 готовый узел:
Оптимальные по соотношению цена/качества узлы выпускает компания Watts Industries. В линейке есть узлы для небольших помещений и для помещений побольше. В комплекте уже есть насос, термореле, смесительный клапан и присоединение к коллектору.
Регулирующий модуль для теплых полов малой мощности до 5 кВт |
Схема. Теплый пол схема с готовым модулем |
Группа автономной циркуляции для теплого пола до 15 кВт |
Вариант 4 комплект клапан+ термоголовка:
Соорудить дешевый вариант узла подмеса поможет схема на готовых комплектах.
Комплект подмеса для теплого пола до 100м2 |
Схема 2. Теплый пол небольшой площади |
Комплект подмеса для теплого пола до 200м2 |
Схема 3. Теплый пол на несколько помещений |
Коллектор для теплого пола |
На схеме 2 показан теплый пол состоящий из одного, но большого контура. Циркуляцию теплоносителя в контуре обеспечивает насос.Принцип работы теплого пола описанный этой схемой: трехходовой клапан Calis стоит на пересечении обратной линии и байпаса. Термоголовка, установленная на клапане выносным датчиком измеряет температуру подачи, если температура подачи выше горячее заданного значения термоголовки (например 45°С) то клапан перекрывает обратку, и циркуляция идет по малому кругу – по трубам теплого пола. Чтобы теплый пол не перегревал помещение, контроллер 1779123 управляющий термостатическим клапаном TS-E 772303 через привод следит за температурой в помещении, и если жарко – перекрывает подачу в контур теплого пола или выключает циркуляционный насос малого круга.На подаче в теплый пол установлен термостатический клапан, управляемый через привод электронным регулятором температуры 1779015 или 1779123 .
Принцип работы теплого пола на схеме 3 тот же что и на схеме 2, трехходовой клапан разделительного типа Calis отделяет высокотемпературный контур от контура теплого пола.Каждая ветка теплого пола присоединена к коллектору с расходомерами на обратной линии. Расходомеры позволяют задать каждой ветке необходимый расход теплоносителя. На подаче коллектора установлены термостатические буксы, ими через термоприводы Herz 771111 могут управлять комнатный термостат 1779015 или программируемый контроллер 1779123 . Один контроллер может управлять одним помещением имеющим до 8 веток.
Вариант 5 трехходовой смесительный термостатический клапан:
3-х ходовой смесительный клапан ESBE VTA 372 до 150 м2 3-х ходовой смесительный клапан ESBE VTA 572 до 250 м2 |
Схема. Теплый пол с трехходовым смесительным клапаном на подаче |
Вариант 6:
– если речь идет о многоквартирном жилом доме со своей котельной и большим количеством помещений с теплым полом, то можно разбить дом на зоны, и в каждой зоне использовать предыдущие схемы, а можно организовать достаточно крупный узел смешения для всех контуров теплого пола.

Клапан трехходовой ротационный ESBE VRG 131 |
Схема 4. Узел смешения с постоянной температурой подачи
|
|
|
Привод-контроллер ESBE CRC111 |
|
На схеме 4 показан ввод от источника тепла, это либо котельная, либо теплообменник, либо ИТП или ЦТП.

Этот вариант является компактным видом варианта 2: вместо обычных коллекторов и узла смешения, использована станция управления теплым полом Herz Compact Floor.
Станция управления теплым полом Herz Compact Floor |
Схема 6. Станция управления теплым полом Herz Compact Floor |

Что еще может понадобится? – Возьмите готовый комплект из оборудования
Термостатические смесительные клапаны Watts AM63C AQUAMIX для теплого пола
Основные характеристики оборудования Термостатические смесительные клапаны Watts AM63C AQUAMIX для теплого пола
Функция:
регулирующая
Вид оборудования:
клапаны термостатические смесительные
Материал изготовления:
никелированная латунь
Область применения:
для отопления и водоснабжения
Максимальная температура:
+110 °C
Гарантия:
2 года
Происхождение бренда:
ГерманияОценка покупателей:
Стоимость:
от 7340 до 7730
Напечатать
Добавить в закладки
Добавить в сравнения
Нужен совет? Позвоните нам!
+7 (812) 401-66-31 (многоканальный) или
+7 (800) 333-56-06 (бесплатный по России)
Цены на оборудование Термостатические смесительные клапаны Watts AM63C AQUAMIX для теплого пола
Информация об оборудовании Термостатические смесительные клапаны Watts AM63C AQUAMIX для теплого пола
Термостатические смесительные клапаны Watts AM63C AQUAMIX 25-50°C используются для поддержания стабильной температуры подачи в системах теплых полов. Имеется 10 позиций предустановки и фиксированный байпас между входом обратки и и выходом смешанной воды против превышения максимально допустимой температуры.
Латунный корпус клапанов имеет никелевое покрытие как снаружи, так и изнутри, а внутренняя поверхность имеет также тефлоновое покрытие, уменьшающее образование накипи при эксплуатации на жесткой воде. Конструкция включает в себя два сетчатых фильтра, установленных на входах горячей и холодной воды для предохранения клапана от засорения.
Технические характеристики
- Диапазон регулирования: 25 – 50°C
- Макс. перепад давления между входом горячей воды и холодной: 2 бара
- Точность смешивания клапана: 1-2°C
- Максимальная рабочая температура: 110°C
- Максимально допустимое давление: 10 бар
ХИТ
{{/if}} {{if IsNova}}NEW
{{/if}} {{/if}}${Name}
Товаров ${CountArticul}
Клапан для теплого пола – По полу
Краткое содержание
Благодаря созданию комфортных условий, водяной теплый пол становится уже привычным. Чаще всего он обустраивается в частных владениях. Для регулирования потоков жидкости необходимо включать в систему трехходовой клапан для теплого пола определенного типа.
Особенности трехходового клапана
Смешивание потоков жидкости, которое позволяет выполнять термостатический смесительный кран, дает возможность направлять в систему теплого пола потоки со стабильной, нормативно установленной температурой. Производится эта операция автоматически. Для смешивания, происходящего внутри прибора, к горячей воде добавляется уже остывшая жидкость из «обратки».
Функционирование происходит в следующей последовательности:
- горячая вода поступает к коллектору, входящему в систему теплого пола;
- при проходе термосмесительного клапана происходит определение степени нагрева жидкости;
- если температура воды выше установленной, то открывается проход, куда поступает охлажденная жидкость;
- внутри происходит смешивание двух потоков;
- после достижения нужного значения проход для холодной воды закрывается.
Такой кран, изготавливаемый из латуни, в своей конструкции имеет три хода, обусловливающие применение разных способов смешивания жидкостных потоков, в зависимости от которых выделяются три разновидности трехходовых клапанов.
- Клапан с нужной для теплых полов функцией термостата. Такое устройство не только регулирует интенсивность смешиваемых потоков, но и обеспечивает поддержание в системе заданной температуры. Содействует осуществлению данной функции наличие термочувствительного элемента, который, улавливая степень нагрева обоих потоков, входящих в кран, изменяет сечение отверстий.
- Трехходовой термостатический клапан второй разновидности отличается тем, что обеспечивает регулирование интенсивности подачи только горячего потока. В комплектацию входит термоголовка с выносным датчиком.
- Также можно из ассортимента трехходовых моделей подобрать смесительный кран, который автоматически не поддерживает заданную температуру.
Критерии подбора
Подбирая смесительный клапан, целесообразно ориентироваться на несколько показателей.
- Площадь помещения. Для маленьких комнат — ванной, туалетной не всегда рекомендуется приобретать более дорогой термосмесительный клапан, так как достаточно поставить привычный вентиль. Большие помещения при обустройстве теплых водяных полов потребуют наличия смесителей, автоматически регулирующих температуру обогревающей жидкости.
Трехходовые клапаны Esbe модели VTA320
- Размеры поперечного сечения. Этот показатель обязательно учитывается при подборе термостатического клапана, обеспечивая точное подключение в отопительную систему. Если в ассортименте, предлагаемом в магазине, не нашлось прибора с нужным диаметром, то приобретаются специальные переходники.
- Возможность получения автоматического режима функционирования.
- Пропускная способность. Этот параметр рассчитывается на этапе проектирования теплого пола. Сообразно полученным величинам подбирается смесительный кран, способный выдержать нужную нагрузку.
Характеристики двухходового клапана
Двухходовой кран представляет собой модернизацию вентиля. Вмонтированный в коллектор, он, работая в автоматическом режиме, поддерживает уровень заданной температуры. В отличие от традиционного вентиля, такая модель ориентирована на пропуск жидкостного потока в одном направлении. При обратной установке весь процесс функционирования теплого пола будет нарушен. Для продления эксплуатационного срока перед клапаном монтируется фильтр для задержки механических примесей.
Благодаря подобной схеме, теплый пол не перегревается, следовательно, его эксплуатационный срок удлиняется. Поскольку пропускная способность двухходового клапана сравнительно невысокая, регулирование температуры производится плавно, без скачков. Специалистами рекомендуется применять этот прибор при обустройстве теплых полов на значительной площади, превышающей 200 м2.
Схема подключения трехходового клапана
В зависимости от направления потоков, термостатический клапан представлен двумя моделями.
- Т-образная или симметричная схема.
При таком подключении вода — горячая и холодная входит через боковые отверстия, а после смешивания жидкость вытекает через центральный ход.
- L-образная или асимметричная схема. В таком случае горячая вода поступает с одного бока, а холодная — снизу. Впоследствии смешанный поток выходит из второго бокового хода.
Схема подключения трехходового смесительного клапана
Рассматривая смесительный узел, можно выделить в нем следующие составные части:
- клапан обратный;
- датчик температурный;
- насос циркуляционный;
- смесительный трехходовой клапан.
Схема подключения включает циркуляционный насос, монтируемый на подачу. Затем устанавливается температурный датчик, необходимый для определения степени нагрева поступающей воды. После этого идет термостатический клапан. На «обратку» монтируется обратный клапан с выходом, который присоединяется к трубе с циркулирующей охлажденной жидкостью, направляемой к смесительному клапану.
При подобной схеме подключения теплоноситель движется по следующему маршруту.
- Закачивание горячей воды при помощи циркуляционного насоса в систему оборудуемого теплого пола. Температура теплоносителя может достигать 80°С.
- Смешивание с холодной водой при прохождении трехходового клапана. В результате достигается нужная температура.
- Распределение теплоносителя по трубам теплого пола.
- Возвращение остывшей воды в «обратку», откуда она забирается в трехходовой клапан для последующего смешивания с горячей жидкостью.
При подобном подключении регулирование степени нагрева поступающей в водяной контур воды осуществляет температурный датчик. Есть и другие способы управления. Самый неэффективный — это ручной метод, когда требуется изменять поступление потоков поворотом рукоятки. Есть вариант управления при помощи сервопривода, команды на который поступают от контроллера сообразно сигналам, поступающим от датчиков.
Термостатический кран при оборудовании водяного теплого пола играет важную роль. Не допуская перегревания поступающего в трубы теплоносителя, он позволяет экономить топливо. Кроме этого, обеспечивается безопасность при эксплуатации достаточно сложной системы обогрева и продляется срок безаварийной службы.
Это статья, дополняющая предыдущий материал о смесительных узлах. Здесь мы узнаем о том, что такое термостатический клапан для теплого пола, как он устроен, как работает и как его выбирать… Сразу уточним: данное устройство по-другому называется ещё смесительный клапан, это одно и то же.
Что собой представляет термостатический клапан для теплого пола?
Как видно на фото, данное устройство имеет металлический корпус с некоторым числом входов (выходов), у этой модели их три (следовательно, это трехходовой клапан):
Внутри корпуса есть шток, соединённый с сегментарным (полукруглым) затвором. Снаружи к штоку прикреплена рукоятка (на фото белый «грибок»), с помощью которой шток можно поворачивать, отчего затвор будет открывать или прикрывать протоки теплоносителя, тем самым распределяя их в нужную сторону.
Вместо рукоятки может быть сервопривод, но суть от этого не меняется.
Виды термостатических клапанов…
…по способу управления
Термостатический клапан для теплого пола, применяемый в смесительных узлах, бывает ручного управления и автоматического.
Автоматические клапаны могут быть оснащены сервоприводом. Сервопривод очень удобная, но и довольно дорогая вещь, и не каждому кошелёк позволяет его устанавливать.
Впрочем, клапан с ручной регулировкой также не доставляет никаких проблем.
…по числу проходов
На фото ниже 4-ходовой клапан с ручным управлением:
Такой клапан может и смешивать и разделять потоки. Управляется клапан рукояткой (синяя), рядом с которой есть градуировка, с помощью чего можно установить пропорции смешивания потоков.
Для теплого пола обычно используется трехходовой термостатический клапан. На фото ниже трехходовой клапан ручного управления:
И ещё один трехходовой клапан с ручным управлением:
Хоть клапаны и отличаются внешне, но принцип их работы одинаков.
Как работает термостатический клапан для теплого пола?
На схеме ниже рассмотрен принцип работы термостатического смесительного клапана:
Буквой «А» обозначен входящий поток, стрелка показывает его направление. Буквой «В» обозначен поток из обратки, более холодный; «АВ» — смешанный поток. Полагаю, ничего сложного для понимания здесь нет.
Управление температурой теплоносителя с помощью термостатического клапана
Итак, поворачивая шток клапана в ту или иную сторону, мы смешиваем горячий и прохладный теплоноситель. Тем самым добиваемся нужной его температуры в теплом полу.
В общем-то, можно выделить четыре схемы такого смешивания.
Схема 1: указатель клапана в положении «максимум»
При таком положении затвор перекрывает выход, соединённый с обраткой. Прохладный теплоноситель не будет подмешиваться к горячему, идущему из котла. Т. е. в тёплый пол будет поступать горячий теплоноситель, что допустимо только при первом запуске теплого пола, для прогрева стяжки.
Схема 2: указатель клапана меньше «максимума»
Проход из обратки немного приоткрыт. Прохладный теплоноситель подмешивается к горячему, отчего в тёплый пол пойдёт теплоноситель меньшей температуры, чем пришёл из котла.
Схема 3: указатель клапана в среднем положении
Здесь подмес теплоносителя из обратки ещё больше, чем во втором варианте. И потому температура смеси ещё ниже, как раз такая, которая приемлема для водяного теплого пола.
Схема 4: указатель клапана на «минимуме»
Такое положение затвора бывает только при управлении клапаном сервоприводом. При ручном же управлении такая схема не используется.
Как подобрать термостатический клапан для теплого пола?
Итак, в смесительных узлах обычно используются трёхходовые клапаны. Смесительный узел можно купить готовый: в сборе насос, трёхходовой клапан, расширительный бак и др. А можно собрать самому, купив всё необходимое по отдельности. Второй вариант обойдётся в меньшую сумму, а работать будет не хуже, просто нужно знать, как подобрать оборудование… ну так мы об этом здесь и беседуем.
Смесительный трехходовой клапан в заводских условиях уже настроен на определённую температуру, но можно с помощью «маховичка» настраивать самому.
Такие трёхходовые клапаны:
— имеют невысокую производительность (~2 м3/час.), из-за чего на площади теплого пола, скажем, в 100 м2 он может просто-напросто не обеспечить теплый пол необходимым объёмом теплоносителя. А для площади до 50 м2 — вполне.
Для большей площади лучше ставить такой трёхходовой клапан:
У него расход до 4 м3/час., а регулировка осуществляется как вручную, так и сервоприводом, который ставится вместо «маховичка». Для пола 100…150 м2 он вполне подходит.
Как было сказано, термостатический клапан для теплого пола может управляться автоматически при помощи сервопривода. Так что следующая статья о нём. Если оно вам не надо — пропускайте.
термостатический клапан для теплого пола
Насосно-смесительные узлы TIM | Доставка по России
по порядкупо росту ценыпо снижению ценыпо новизне
- eyJwcm9kdWN0SWQiOjQ0NTE1NTA1MSwiY2F0ZWdvcnlJZCI6MTMyNDAxMzEsImNvbXBhbnlJZCI6Mjk4MDg3Nywic291cmNlIjoicHJvbTpjb21wYW55X3NpdGUiLCJpYXQiOjE2MzkwMTMyMjguNzQzNTE0OCwicGFnZUlkIjoiN2ZlYTRiNjktMWMyNC00ODU0LTkwMDYtMWQ1OTAwNGE0MTQ1IiwicG93IjoidjIifQ.cRt26MH_Pngobl_Bp-tZ6DnnAzENJvALxLgz-JQmq1w” data-advtracking-product-id=”445155051″ data-tg-chain=”{"view_type": "preview"}”>
BL8803
eyJwcm9kdWN0SWQiOjQ0NTE1NjYzMiwiY2F0ZWdvcnlJZCI6MTMxMDA2MjYsImNvbXBhbnlJZCI6Mjk4MDg3Nywic291cmNlIjoicHJvbTpjb21wYW55X3NpdGUiLCJpYXQiOjE2MzkwMTMyMjguNzU1Mzc4NywicGFnZUlkIjoiNzAwN2U5ZmItM2NlYy00YjI3LTk5M2QtMWQzZTk4YmZiODcwIiwicG93IjoidjIifQ.8G1yID9MUF7iyuIe0kBfQqlzX7GjB7VUYDL-mJ3tcU0″ data-advtracking-product-id=”445156632″ data-tg-chain=”{"view_type": "preview"}”>JH-1033
eyJwcm9kdWN0SWQiOjQ0NTE1NTQyNiwiY2F0ZWdvcnlJZCI6MTMxMDA2MjYsImNvbXBhbnlJZCI6Mjk4MDg3Nywic291cmNlIjoicHJvbTpjb21wYW55X3NpdGUiLCJpYXQiOjE2MzkwMTMyMjguNzQ0NTc2LCJwYWdlSWQiOiI2N2MwM2YwMi1jZWQwLTQ4YWEtYWVkNy00NDU3MDM3ZDJiZmUiLCJwb3ciOiJ2MiJ9.r5X8pysUkhwIgryZ7ivtXslPHSWkdVpKTrbVh0vJdF8″ data-advtracking-product-id=”445155426″ data-tg-chain=”{"view_type": "preview"}”>JH-1035
eyJwcm9kdWN0SWQiOjQ0NTE1Njc1MCwiY2F0ZWdvcnlJZCI6MTMxMDA2MjYsImNvbXBhbnlJZCI6Mjk4MDg3Nywic291cmNlIjoicHJvbTpjb21wYW55X3NpdGUiLCJpYXQiOjE2MzkwMTMyMjguNzQ2MzA2NCwicGFnZUlkIjoiNTBkNzAxZmItNDUyMi00ODFjLTkyNmMtMWQ3NWI4NmQ4OGM5IiwicG93IjoidjIifQ.s6Ciu-qE5rCOvRXsDUXiiHbjPPL89Ko9j1gqcKhvmoo” data-advtracking-product-id=”445156750″ data-tg-chain=”{"view_type": "preview"}”>JH-1036
eyJwcm9kdWN0SWQiOjQ0NTE1NTQyNywiY2F0ZWdvcnlJZCI6MTMxMDA2MzMsImNvbXBhbnlJZCI6Mjk4MDg3Nywic291cmNlIjoicHJvbTpjb21wYW55X3NpdGUiLCJpYXQiOjE2MzkwMTMyMjguNzU0NzIxMiwicGFnZUlkIjoiOTg5MzA0YTgtNDY4Zi00MjcyLWI4NDItN2M1OTc0MGEyZGY2IiwicG93IjoidjIifQ.LhbqzvH7Jgrz4rwkj8EYrLJjBqGxd9iCXPzNk_kAcEs” data-advtracking-product-id=”445155427″ data-tg-chain=”{"view_type": "preview"}”>BL8804B
JH-1037
BL8804A
JH-1038
TMV811-02
JH-1039
TMV811-03
FZ035A
BL3110C02
BL3110C03
BL3110C04
BL7661X03
BL7661X04
JH-1032
BL3170C04
BL8804
BL8803B
BL8803A
Четырехходовой смесительный клапан 1″ VALTEC
Четырехходовой смесительный клапан 1″ VALTEC
Предназначен для использования в смесительных и разделительных узлах гидравлических систем. Управление клапаном может осуществляться вручную или с помощью сервопривода с крутящим моментом не менее 5 Н•м (рекомендуется модель VT M 106). Корпус и регулирующий элемент выполнены из латуни, что исключает возможность появления коррозионных отложений в рабочих зазорах. Уплотнение штока достигается с помощью двух колец из синтетического каучука EPDM PEROX. При этом верхнее кольцо легко заменить без полной разборки изделия. Клапан ремонтопригоден и состоит всего из четырех основных деталей, что повышает его надежность. Максимальная рабочая температура теплоносителя – 120 °C, нормативное давление – 10 бар. Резьба присоединений – внутренняя. Условные диаметры предлагаемых моделей – 3/4, 1, 1 1/4″. Ручка управления входит в комплект.
Использование готовых узлов и модулей VALTEC, сконструированных специально для систем напольного отопления, позволяет легко и быстро решить задачи, которые возникают при организации водяного теплого пола. Обеспечить в петлях теплого пола управляемую циркуляцию теплоносителя с температурой, пониженной относительно температуры источника тепла, эффективно отделить друг от друга и гидравлически увязать между собой контуры радиаторного и напольного отопления позволяют насосно-смесительные узлы VALTEC COMBI. В качестве комплектующих для насосно-смесительных узлов VALTEC предлагает термостатические головки с выносным погружным (VT.5011) или накладным (VT.5012) датчиком и рекомендует насосы WILO (Германия) соответствующей монтажной длины. Кроме системы «теплый пол», насосно-смесительные узлы VALTEC используются для организации других видов панельного отопления (настенное, потолочное), обогрева открытых площадок и теплиц. Применение насосно-смесительных узлов VALTEC – это экономия средств и времени, возможность свести к минимуму вероятность проектных и монтажных ошибок. Оборудование компактно, надежно, просто в эксплуатации, его установка не предъявляет завышенных требований к квалификации монтажника.
в гидронике: несколько режимов или несколько проблем?
Как никогда ранее, наличие большого количества излучателей тепла в современных системах водяного отопления стало обычным явлением. При правильном размере, проектировании и установке комфорт может проявляться в виде фанкойла, панельного радиатора или приложения, которое стало синонимом комфорта – излучающего теплого пола.
Для этих различных излучателей тепла, вероятно, потребуется диапазон температур для удовлетворения требований приложения.Также вероятно, что в процессе проектирования у вас будут одинаковые излучатели тепла, требующие разной температуры в зависимости от их размера или тепловых потерь в помещении. Поскольку ваш источник тепла способен обеспечивать только одну температуру за раз, а ваши потребности в отоплении поступают сразу, независимый контроль температуры становится необходимостью.
Взять нужное количество высокотемпературной подаваемой жидкости и точно подмешать ее в контур для создания нужной температуры можно разными способами.Четырехходовые смесительные клапаны и смесительные системы впрыска могут выполнить свою работу. Если вы чувствуете себя резвым, я бы посоветовал поискать системы распределения мини-трубок.
Это некоторые из ваших более сложных вариантов, но давайте остановимся на трехходовых термостатических смесительных клапанах. Несмотря на простую конструкцию, термостатические смесительные клапаны обычно используются неправильно и могут вызвать больше проблем, чем решений.
Расположение, расположение, расположение
Одна из возможных проблем связана с расположением циркуляционного насоса по отношению к смесительному клапану.При циркуляции через один для обогрева помещения важно понимать, что вы имеете дело с устройством с термостатическим элементом управления, двумя входами, одним выходом и твердой решимостью обеспечить правильные пропорции горячей и холодной жидкости для создания та самая подходящая температура.
С таким однонаправленным мышлением клапану все равно, где находится ваш циркуляционный насос. Итак, если вы накачиваете горячую сторону смесительного клапана с помощью циркуляционного насоса (см. Рисунок 1), ваш горячий вход по-прежнему остается входом, а ваш смешанный выход по-прежнему является выходом, но теперь вы непреднамеренно повернули вход холодной воды. в розетку.
На этом этапе вы больше не сможете втягивать более холодную жидкость для создания идеальной температуры смешивания. Вы также сделали короткое замыкание непосредственно от источника питания к возврату, что не дало вашим БТЕ необходимости идти туда, где они нужны.
В одном конкретном случае неправильного суждения, о котором я читал, исправление заключалось в установке обратного клапана на холодном впускном патрубке, который теперь уже подвергся перелому. Это решило эту досадную проблему короткого замыкания и вытащило несколько БТЕ в пространство, но вместо того, чтобы контролировать температуру, смесительный клапан превратился в устройство ограничения потока.Он перекрыл горячий вход, когда температура жидкости достигла и превысила заданное значение.
Циркуляционный насос должен быть расположен так, чтобы откачка находилась в стороне от выхода смешанной смеси смесительного клапана (см. Рисунок 2). Это обеспечит поддержание правильного потока, а смесительный клапан поддерживает правильную температуру, определяя, с какой стороны тянется циркуляционный насос.
Размер имеет значение
Следуя за выбором места циркуляции, нашим следующим потенциальным нарушением является занижение размеров смесительных клапанов.Это нарушение обычно прямо противоположно в приложениях со смесительным клапаном ГВС, где довольно часто бывает слишком большой размер. Но я понимаю, что вполне логично, что вам понадобится 1-дюймовый смесительный клапан, когда у вас есть 1-дюймовая труба, размер которой соответствует движению 8 галлонов в минуту. Вы даже изо всех сил старались убедиться, что ваш циркулятор может двигаться на 8 галлонов в минуту.
Проблема в том, что большинство 1-дюймовых смесительных клапанов, которые вы увидите на местном оптовом прилавке, имеют низкое содержание свинца и подходят как для гидравлических систем, так и для ГВС.Эти двухсторонние смесительные клапаны часто имеют перепад давления 10 фунтов / квадратный дюйм ( или более !) При 8 галлонах в минуту. Хотя это может быть подходящим для систем ГВС, это гарантированный ограничитель потока для циркуляционного насоса, который вы только что выбрали.
Это падение на 10 фунтов на квадратный дюйм – это колоссальные 23 фута потери напора; когда ваш циркулятор может достигать максимального напора 17 футов, у вас мало шансов, что он выполнит свою работу. Итак, вы оказались на развилке дорог; Вам нужно будет решить, нужен ли вам более мощный циркуляционный насос или смесительный клапан с меньшим перепадом давления.
Надеюсь, вы внимательно взвесите свои варианты. Учтите, что вы, безусловно, заплатите больше за любой подход заранее, но с большим циркуляционным насосом вы будете платить больше за потребление электроэнергии в течение срока службы системы.
Также разумно иметь в виду, насколько излишне сложными могут быть эти системы при различных требованиях к температуре подаваемого теплоносителя. Представим, что вам только что вернули дизайнерскую работу на предстоящей работе; вы заметили, что он требует температуры подаваемой жидкости 108 F, 111 F, 116 F, 120 F, 127 F и 132 F.Это не значит, что у вас будет источник тепла, обеспечивающий 132 F, а затем полагаться на пять различных смесительных клапанов. Это легко упростить.
Может быть, добавление немного эмиттера в зону, требующую 132 F, может снизить его на несколько градусов. У вас будет три зоны в пределах 8–10 градусов друг от друга, которые можно легко объединить в одну температурную зону подачи, работающую при наивысшей требуемой температуре. Последние три зоны уже довольно близки; то же самое можно было сделать и здесь. Итак, теперь вместо шести разных температурных зон у вас есть две.
Верхний из двух может питаться напрямую от источника тепла, а два нижних – с помощью смесительного клапана. Вы обеспечите немного больше, чем требуется, в двух областях в каждой температурной зоне подачи, но это будет с очень небольшим ущербом для системы. Это также значительно снизит сложность системы и, вероятно, также снизит стоимость работы (см. Рисунок 3).
При правильном применении смесительные клапаны могут стать отличным вариантом для эффективного контроля температуры в ваших отопительных контурах и поддержания оптимального комфорта.Я надеюсь, что эти советы помогут вам избежать головной боли в будущем и стать героем для своих клиентов.
Вопрос о расположении насоса со смесительным клапаном в системе водяного теплого пола
У нас идет замена котла. В нашей 21-летней системе был чугунный котел, питающий 4 зоны, и резервуар для горячей воды для бытового потребления. Он использовал байпасный контур котла, чтобы поддерживать более высокую температуру возврата котла. Насос для бытовой воды имеет специальный насос. 3 зоны были отключены от одного насоса, снабженного зоной смешивания (taco 5000-2). 4-я зона имела собственный насос / смесительный клапан.
Поскольку у нас есть проницаемые для кислорода трубы в излучающих полах, мы используем новый чугунный котел, изолированный пластинчатым теплообменником. Мы также добавляем таяние снега и отопление гаража, которое мы используем от второго пластинчатого теплообменника, потому что он будет работать на гликоле.
К сожалению, команда, которую я нанял, не знакома с компонентами и системой, если она плохо спроектирована.
Новые смесительные клапаны не работают. Они разместили насос для перекачивания на сторону горячей воды смесительного клапана.Раньше насос тянул из смесительного клапана на выходе. Я всегда вижу на схемах выдергивание из розетки. В руководстве по смесительному клапану Honeywell указано, что они не будут работать, если насос перекачивает во вход горячей воды. Это относится ко всем смесительным клапанам?
Причина, по которой я не уверен в этом, заключается в том, что они также потели в смесительных клапанах, когда они были прикреплены, что, как указано в руководстве, приведет к их выходу из строя. Они также не удаляли воздух из системы снизу вверх (сначала подвал, затем основной этаж и затем последний уровень), и насос может быть заблокирован.
Если кто знает об этом, у меня тоже есть второй вопрос. В исходной системе использовался байпасный трубопровод, чтобы не попадать в котел слишком холодная для нормальной работы вода. В настоящее время в новом котле установлено подключение двух плоских пластинчатых теплообменников без байпаса котла. Учитывая, что нагрузка увеличилась с добавлением гаража и таянием снега, я обеспокоен тем, что температура, возвращаемая в котел, будет слишком низкой. Стоит ли настаивать на байпасе котла? Как они рассчитывают размеры труб, чтобы система работала правильно и продолжала нагревать плоские пластинчатые теплообменники.От котла есть только один насос, питающий оба плоских пластинчатых теплообменника параллельно. Из котла тянется второй насос для подачи горячей воды. На котле нет циркуляционного насоса.
Спасибо за любую помощь.
Методы смешивания с системами лучистого отопления
Написано: 1 сентября 2019 г. Джорджем Кэри
При проектировании системы лучистого отопления становится очевидным, что эта система имеет характеристики, отличные от обычных отопительных систем типа плинтусов.Одно быстрое отличие – это температура воды, циркулирующей по трубке. Большинство излучающих систем можно разделить на два типа.
Первая – это «мокрая система», в которой трубы устанавливаются в бетон. Второй тип – это «сухая система», при которой трубы либо скрепляются скобами из-под пола, либо укладываются на черный пол, а последний настил укладывается поверх него.
Средняя температура воды составляет 110–120 ° F для бетона и 130–140 ° F для скрепления; конечно, есть исключения, когда может потребоваться более горячая или более холодная вода.К сожалению, большинство котлов, работающих на жидком топливе, не могут работать при таких низких температурах без проблем с дымовыми газами. Лучший способ преодолеть эту проблему – использовать смесительное устройство определенного типа, которое снижает температуру подачи в излучающую зону (зоны), позволяя контуру котла поддерживать температуру, достаточно высокую для удовлетворения его требований. Доступны многочисленные методы смешивания.
Проблемы смешиванияВот некоторые общие проблемы, связанные с предметом
смешивания:
Смешивание – это когда вы берете более холодную возвратную воду и «смешиваете» ее с некоторым количеством горячей котловой воды для получения воды с температурой ниже температуры бойлера, но более теплой, чем возвратная вода. Существуют ли различные методы смешивания ?
Вы можете использовать двухходовой клапан, трехходовой клапан, четырехходовой клапан или циркуляционный насос. Все четыре устройства могут использоваться для подачи воды смешанной температуры. Как работает каждый из этих методов?
1. Двухходовой клапан работает по принципу впрыска. Есть котловой контур с циркуляционным насосом и радиантный контур с собственным циркуляционным насосом. Эти два контура связаны между собой подающей и обратной трубой, которые расположены близко друг к другу.Двухходовой клапан расположен на подающей трубе и имеет контроллер, который измеряет температуру подаваемой воды в радиационном контуре. Контроллер будет циклически открывать и закрывать клапан в зависимости от температуры воды в зоне излучения. Когда клапан открывается, он нагнетает горячую воду в излучающий контур. Там он смешивается с прохладной возвратной водой из лучистой зоны. 2. Трехходовой клапан смешивает холодную возвратную воду с горячей котловой водой для обеспечения «смешанной» температуры.Он имеет три порта: один для возврата воды из излучающей зоны, один для горячей воды из контура котла и смешанный порт для подачи в излучающую зону. Эти клапаны можно настроить вручную на поддержание фиксированной температуры или они могут иметь привод, который изменяет положение клапана в соответствии с нагрузкой. 3. Четырехходовой клапан очень похож на трехходовой, за исключением того, что у него четыре порта вместо трех. Два порта идут в котел, а два порта – в зону излучения. Этот клапан можно настроить вручную или использовать с приводом для регулирования температуры воды в зависимости от нагрузки зоны. 4. Последний способ – с ТНВД. Этот метод используется с начала 1960-х годов. Тогда контроллер включал и выключал насос, чтобы нагнетать горячую воду в зону излучения. Сегодня существуют управляющие компании, которые будут контролировать скорость насоса с мокрым ротором с водяной смазкой и защитой по сопротивлению. Вместо включения и выключения насоса система управления увеличивает или уменьшает скорость насоса. Как выбрать
Вот некоторые общие рекомендации по смешиванию: Один метод смешивания предпочтительнее других?
Не совсем, все эти методы работают, но каждый метод имеет свои преимущества, а также свои ограничения.
1. Например, двухходовые клапаны следует использовать только для небольших нагрузок, когда количество нагнетаемого потока составляет небольшой процент от общего расхода излучающей зоны, обычно менее 25%.
2. Трехходовые автономные термостатические клапаны относительно недороги, но могут обеспечивать только одну фиксированную температуру. Это заставляет термостат зоны включать и выключать насос зоны. Этот тип работы подходит для небольшой зоны излучения, но не рекомендуется, когда зоны становятся больше.
3. Впрыскивание с регулятором скорости стало популярным в последние несколько лет. Этот метод смешивания, в котором используются обычные циркуляционные насосы с мокрым ротором, обеспечивает множество преимуществ для излучающих систем, таких как полная модуляция температуры и защита возврата котла от холодной воды. Она ограничена только мощностью насоса с мокрым ротором, которая обычно составляет около 35–40 галлонов в минуту. В типичной излучающей системе этот расход составляет приблизительно 1 000 000 БТЕ / ч.
4. Трехходовые и четырехходовые клапаны, при использовании с приводными двигателями, в течение многих лет очень успешно устанавливались во многих излучающих системах. Привод регулирует положение клапана для подачи соответствующей температуры смешанной воды в зависимости от тепловой нагрузки зоны. Единственное реальное ограничение этого метода – по сравнению со стоимостью циркуляционного насоса с мокрым ротором – состоит в том, что клапан и привод более дороги, чем нагнетательный насос. Что произойдет, если я использую только один насос со смесительным устройством?
Будет только одна точка смешивания, которая будет контролировать температуру подаваемой воды в излучающую зону, но не температуру воды, возвращающейся в котел.Кроме того, скорость потока через котел будет изменяться, что снизит эффективность котла. Почему я должен использовать два насоса?
Используя два насоса и смесительное устройство, вы создаете две точки смешивания. Это позволяет вам контролировать температуру воды, возвращающейся в котел, а также в излучающую зону. Кроме того, второй насос обеспечивает постоянный поток через котел, повышая его эффективность. Почему я должен беспокоиться о температуре воды, возвращающейся в котел?
Большинство котлов, работающих на жидком топливе, относятся к неконденсатному типу.Это означает, что важно, чтобы дымовые газы, выделяемые в процессе сгорания, выводились из котла. Когда вода в котле имеет температуру ниже точки росы этих дымовых газов, газы снова конденсируются в воду внутри котла. Результаты могут быть очень разрушительными. В коммерческих применениях тепловой удар котла – еще одна важная причина для контроля температуры обратной воды. Есть ли предпочтительный способ прокладки смесительных устройств и двух насосов?
Предпочтительный метод – использовать первично-вторичную перекачку.Этот метод, применяемый с 1950-х годов, предотвращает последовательную перекачку насосов друг с другом и предотвращает затруднения при открытии или закрытии клапанов по сравнению с насосами с высоким напором. Эта технология трубопроводов также позволяет правильно подбирать клапаны и нагнетательные насосы в соответствии с нагрузками, которые они предназначены для управления. Что такое первичная-вторичная перекачка?
Это метод перекачки, который прост как в теории, так и в применении. Он основан на простом правиле, которое гласит: когда два контура соединены между собой, поток в одном не вызовет потока в другом, если устранено падение давления в трубопроводе, общем для обоих. Как устранить падение давления в общем трубопроводе?
Это достигается за счет очень близкого расположения подающего и обратного тройников вторичного контура! (Максимум четыре диаметра трубы). Это означает, что вы можете соединить два контура между собой (например, контур котла и контур излучающего тепла, каждый со своим собственным насосом), но насосы из каждого контура не будут вызывать поток в другом контуре. Как правильно выбрать размер смесительного устройства?
Размер насоса или клапана зависит от требуемого расхода из высокотемпературного контура.Затем этот расход будет смешиваться с частью более холодной возвратной воды, чтобы обеспечить желаемую температуру «смешанной» воды. Это пример расчета необходимого расхода:
1. Нагрузка в излучающей зоне = 100 000 БТЕ / ч, рассчитанная с перепадом температуры 20 ° F.
2. Расчетная скорость потока излучающей зоны = 10 галлонов в минуту
3. Расчетная температура теплоносителя в подающей линии = 120 ° F
4. Температура обратной линии = 100 ° F.
5. Температура подачи котлового контура = 180 ° F
6. Разница температур между подачей котлового контура и излучающим обратным контуром составляет 80 ° F.Для расчета необходимого расхода; разделите нагрузку в БТЕ / час излучающей зоны на разницу температур (дельта Т) x 500. 100 000/80 x 500 = 2,5 галлона в минуту.
7. Требуемый расход составляет всего 2,5 галлона в минуту для котловой воды 180 ° F. Эта вода будет смешиваться с 7,5 галлонами в минуту (10–2,5 галлона в минуту) излучаемой возвратной воды 100 ° F для обеспечения расчетной температуры воды 120 ° F или 10 галлонов в минуту. Следовательно, регулирующий клапан или впрыскивающий насос должен быть рассчитан на расход 2,5 галлона в минуту.
Если у вас есть какие-либо вопросы или комментарии, напишите мне по адресу [адрес электронной почты защищен], позвоните мне по телефону FIA 1-800-423-7187 или подпишитесь на меня в Twitter по адресу @Ask_Gcarey.
ICMРегулятор смешивания впрыска для водяных систем водяного отопления
Регулятор смешивания впрыска для водяных систем водяного отопления
2019-08-02 07:20:18
Гидравлические системы водяного отопления пола обычно требуют температуры воды ниже, чем могут подавать обычные газовые или мазутные котлы без конденсации дымовых газов.Было разработано несколько методов работы таких котлов при температурах без конденсации с одновременным смешиванием их выхода горячей воды с обратной водой с более низкой температурой из контуров пола для достижения надлежащих температур подачи. К ним относятся регулируемые вручную шаровые клапаны, 3-ходовые и 4-ходовые смесительные клапаны с электроприводом, теплообменники, буферные резервуары и группа методов, известных как смешивание с помощью инъекций. В этой статье обсуждаются пять подходов к инжекционному смешиванию, которые становятся все более популярными и экономически эффективными для систем водяного отопления.
Чтобы понять, как работает инъекционное смешивание, представьте контур напольного распределения как постоянно циркулирующую «конвейерную ленту» для тепла. Когда необходимо отвести тепло в помещение, небольшой поток горячей воды «проталкивается» в напольный распределительный контур через устройство управления впрыском, такое как клапан или насос. Закачиваемая вода смешивается с более холодной водой, возвращающейся из контуров пола в тройнике. Комбинированный поток теперь (в идеале) имеет требуемую температуру подачи, поскольку он возвращается в контуры пола.Поскольку распределительная система полностью заполнена жидкостью, нагнетаемый поток горячей жидкости должен сопровождаться равным, но выходящим потоком холодной возвратной воды из распределительной системы. Большая разница температур между нагнетаемой горячей водой и холодной водой, возвращающейся из контуров пола, обеспечивает высокую скорость передачи тепла при относительно небольшом расходе. Например: Предположим, что в систему распределения теплого пола необходимо подавать 2000 000 БТЕ / ч с использованием нагнетаемой воды при температуре 180 ° F.Предполагается, что вода, возвращающаяся из контура пола, составляет 95 °. Необходимый расход закачиваемой воды можно рассчитать по формуле 1:
.Где:
f = расход нагнетаемой горячей воды (в галлонах в минуту).
Q = Требуемый расход тепла (в британских тепловых единицах в час).
T i = Температура входящей воды для закачки (в i ° F).
T R = Температура воды на выходе из возвратной стороны R распределительной системы (в ° F).
490 = Константа, основанная на свойствах воды.Это значение изменится для других жидкостей.
Для предполагаемых условий:
Такой небольшой расход обеспечивается за счет клапана 3/4 дюйма и трубопровода 3/4 дюйма. В общем, любая гидравлическая система с большой разницей температур между нагнетаемой водой и возвратной водой может использовать небольшое оборудование для впрыска и при этом обеспечивать высокую скорость переноса тепла. Эта характеристика может значительно снизить затраты на управление в более крупных системах водяного отопления.
Инжекционное смешивание с 2-ходовыми клапанами
Существует три метода смешивания при впрыске, в которых 2-ходовые клапаны используются в качестве устройства управления впрыском.Все используют небольшие вариации общей системы трубопроводов, показанной на рисунке 2. Эту общую систему трубопроводов можно представить как три подузла; контур котла, напольный распределительный контур и «мостовые трубы», соединяющие эти контуры.
Котловой контур необходим для предотвращения конденсации дымовых газов внутри котла. Его следует использовать в любой системе впрыска, которая объединяет низкотемпературный распределительный контур с обычным газовым или масляным котлом. Контур котла работает путем подачи горячей воды к тройнику, ведущему к впрыскивающему клапану, но со скоростью потока, значительно превышающей требуемую скорость потока впрыска.Это заставляет большую часть горячей воды обходить тройник № 1 и продолжать дальше по потоку, где она смешивается с холодной возвратной водой, поступающей в тройник № 2. В результате получается смесь, которая может быть только на 10-20 ° ниже температуры на выходе из котла. , возвращается в котел достаточно горячим, чтобы предотвратить конденсацию дымовых газов. Для газового котла без конденсации температура возврата должна быть не ниже 140 ° F. Температуру возврата котла можно рассчитать по формуле 2:
.где:
T обратка котла = температура воды на входе в котел (в ° F).
T подача котла = температура воды на выходе из котла (в ° F).
Q design = тепловая нагрузка, которую котел должен обеспечивать при расчетных условиях (в британских тепловых единицах в час).
f котловой контур = расход в котловом контуре (в галлонах в минуту).
490 = постоянная, основанная на свойствах воды. Это значение изменится для других жидкостей.
Относительно короткие контуры котла, состоящие из труб большего диаметра, позволяют достичь значительных расходов при использовании небольших циркуляционных насосов с мокрым ротором.Котловой контур также может служить в качестве первичного контура, который питает несколько других вторичных отопительных контуров, например, для нагрева воды для бытового потребления или зон плинтусных конвекторов.
Метод № 1. Неэлектрические двухходовые клапаны впрыска
В первом методе впрыска, который мы рассмотрим, используется неэлектрический клапан с термостатическим управлением для поддержания определенной температуры подачи в контуры пола всякий раз, когда требуется тепло. Чувствительная груша для привода клапана расположена на подающей трубе, ведущей к напольным контурам, предпочтительно после распределительного циркуляционного насоса (см. Рисунок 3).Когда в распределительном контуре начинается охлаждение ниже желаемой температуры подачи, клапан постепенно открывается, позволяя большему количеству горячей котловой воды проходить в распределительный контур. При правильном размере клапана изменение температуры подачи должно быть в пределах +/- ° F. желаемой уставки.
Чтобы обеспечить «стимул» протеканию воды через мостовой трубопровод между контуром котла и распределительным контуром, необходим ограничитель расхода определенного типа для создания перепада давления между тройниками в одном из контуров.Контур с наиболее постоянной скоростью потока является предпочтительным местом для ограничителя потока. Если котловой контур обслуживает только нагрузку на систему обогрева пола, его расход будет постоянным при каждой подаче тепла. Если контур котла является первичным контуром настоящей первичной / вторичной системы, обслуживающей несколько вторичных нагрузок, его расход также должен быть постоянным. Напольный распределительный контур может иметь или не иметь постоянный расход в зависимости от того, включены или выключены отдельные контуры этажа с помощью средств управления зонированием.
Ограничитель потока может быть шаровым клапаном, отводным тройником или, возможно, просто сопротивлением потоку трубы и фитингов между тройниками, соединяющими мостовые трубы с петлей. Он должен обеспечивать падение давления не менее 1 фунта на кв. Дюйм при расчетной скорости потока контура, в котором оно установлено.
Груша датчика для термостатического 2-ходового клапана (в идеале) должна быть установлена в тройник в непосредственном контакте с приточной водой, протекающей в контуры пола. Если это невозможно, грушу датчика можно плотно зажать снаружи подающей трубы, а этот участок трубы осторожно обернуть изоляцией.Лучше всего расположить грушу датчика после распределительного циркуляционного насоса, чтобы обеспечить тщательное перемешивание до измерения температуры подачи.
Привод клапана обычно настраивается на поддержание номинальной расчетной температуры подачи в контуры пола всякий раз, когда требуется тепло. В условиях частичной нагрузки здание быстро перегреется, если поток не будет включен и выключен по мере необходимости. Один из подходов состоит в том, чтобы расположить напольные контуры для каждой комнаты, установить отдельные термостаты в каждой комнате, подключив их к отдельным операторам «телестатического» клапана на распределительном клапане каждого напольного контура.Для больших «многоконтурных зон» можно использовать один термостат для управления зонным клапаном или зональной циркуляцией. Если в контурах пола должен поддерживаться непрерывный поток, можно использовать термостат (ы) для включения и выключения циркуляции котла и контура котла.
Следующая процедура выбора клапана впрыска предлагается крупным производителем термостатических 2-ходовых клапанов:
- Рассчитайте требуемый расход впрыска по следующей формуле:
Где:
fi = расход нагнетаемой горячей воды при расчетных условиях (в галлонах в минуту).
фс = расход в распределительном контуре при расчетных условиях (в галлонах в минуту).
Ts = температура подачи в контуры пола при расчетных условиях (в ° F).
TR = температура возврата из контуров пола при расчетных условиях (в ° F).
Ti = температура доступной воды для закачки (в ° F).
«Уменьшите номинальные характеристики» перечисленных значений Cv рассматриваемых клапанов, умножив их перечисленные значения Cv на 0,6. (Это сужает пропорциональный диапазон значения и снижает колебания температуры подачи выше и ниже заданного значения).
Выбор клапана с «пониженным» значением Dv, равным или немного превышающим требуемый расход впрыска.
Метод № 2: Регулирующий клапан с управлением сбросом
Другой метод инъекционного смешивания использует модулирующий 2-ходовой клапан, электрически регулируемый регулятором резервуара. Необходимая температура подачи постоянно рассчитывается регулятором сброса на основе наружной температуры и настроек кривой нагрева. На привод клапана отправляется сигнал, который регулирует расход впрыска, необходимый для поддержания этой температуры.Датчик температуры на подающей трубе, ведущей к контурам пола, обеспечивает постоянную обратную связь с системой управления, позволяя при необходимости постоянно регулировать расход впрыска. Ограничитель потока снова используется либо в контуре котла, либо в контуре распределения для создания перепада давления, необходимого для проталкивания горячей воды через мостовой трубопровод при открытии впрыскивающего клапана.
Метод № 3: Управление клапаном впрыска вкл. / Выкл.
Третий способ использования 2-ходового клапана для инъекционного смешивания показан на Рисунке 4.Когда комнатный термостат требует тепла, стандартный клапан гидравлической зоны в трубопроводе перемычки впрыска срабатывает. Также включаются котел и циркуляционный насос котлового контура. Распределительный циркуляционный насос либо работает непрерывно, либо включается, когда требуется тепло. Балансировочный (шаровой) клапан, на этот раз показанный в распределительном контуре, был предварительно настроен на перепад давления, необходимый для принудительного нагнетания требуемого потока через клапан открытой зоны.
Для защиты от чрезмерно высокой температуры подачи после точки впрыска устанавливается аквастат.Если температура подачи должна подняться выше заданного максимального значения (например, если балансировочный клапан установлен неправильно), аквастат прерывает сигнал термостата и закрывает клапан впрыска, защищая пол от перегрева. Распределительный термостат должен продолжать работать в этих условиях, позволяя контурам пола постепенно остыть до точки, при которой аквастат снова открывает зональный клапан.
Этот подход требует тщательной настройки балансировочного клапана, чтобы предотвратить чрезмерное срабатывание аквастата.Существует соблазн, особенно при запуске в холодную погоду, состоит в том, чтобы настроить балансировочный клапан на подачу относительно теплой воды в контуры пола, даже если температура обратного потока из этих контуров довольно низкая. Это нормально в течение нескольких часов, чтобы разогнать плиту до нормальной температуры, но если балансировочный клапан оставить на этой настройке, аквастат в конечном итоге начнет короткий цикл включения и выключения, потому что по мере того, как плита достигает температуры, а температура в обратной линии повышается. , так же как и температура подачи.Чтобы предотвратить это, используйте формулы 4 и 5 для расчета необходимого повышения температуры на тройнике впрыска при запуске, а затем используйте точные термометры, чтобы аккуратно настроить балансировочный клапан для получения этого повышения. Обратите внимание, что для этого требуется точная оценка падения температуры системы теплого пола в расчетных условиях. Это достигается путем точных расчетов конструкции.
Где:
Ti = Температура доступной воды для закачки (в ° F). TR = Температура обратки из контуров пола (в ° F).
Ts = Температура подачи в контуры пола (в ° F).
Qdesign = Тепловая мощность коллектора, зоны теплого пола и т. Д. При расчетных условиях (в британских тепловых единицах в час).
fdist = Расход в системе распределения (в галлонах в минуту).
490 = Константа, основанная на свойствах воды. Это значение изменится для других жидкостей.
Например: Предположим, что для системы теплого пола требуется температура воды 110 ° F при расчетных условиях. Во время пуска возвратная вода возвращается из контуров пола при температуре 60 °, а нагнетаемая вода из контура котла доступна при температуре 170 °.Повышение температуры, необходимое для системы теплого пола при расчетных условиях, было рассчитано на 10 °, таким образом, температура обратного потока от пола при расчетных условиях составляет 110-10 = 100 °. * T на тройнике впрыска при запуске рассчитывается по формуле 4:
.Уставка аквастата должна быть на два-четыре градуса выше расчетной температуры подаваемой воды. Его перепад должен быть на несколько градусов «шире», чем расчетное превышение температуры на тройнике впрыска. Это помогает избежать коротких циклов, если и когда аквастат прерывает нагнетание горячей воды.
Поскольку расход впрыска установлен на фиксированное значение (например, расход, требуемый в условиях проектной нагрузки), этот тип системы медленнее реагирует на переходные условия, такие как большое увеличение настройки термостата. Напротив, два предыдущих метода закачки могут регулировать свои скорости потока закачки – в некоторых случаях даже выше, чем требуется в проектных условиях – для сокращения переходного времени восстановления.
Также доступны элементы управления, которые позволяют использовать клапаны зоны включения / выключения в сочетании со стратегией управления сбросом.В таких системах датчик температуры подачи регулятора сброса заменяет аквастат, показанный на Рисунке 4. Эти регуляторы работают, регулируя время включения клапана впрыска в зависимости от температуры наружного воздуха. Хотя подвод тепла не такой постоянный, как в способах 1 и 2, масса системы теплого пола плитного типа имеет тенденцию сглаживать колебания температуры подачи и плавно подавать тепло в здание.
Инжекционное смешивание с помощью насосов с регулируемой скоростью
Инъекционное смешивание с регулируемой скоростью – еще один метод контроля температуры воды, применяемый в системах теплого пола.Хотя насосы с регулируемой скоростью использовались в крупных гидравлических системах в течение некоторого времени, их адаптация к управлению впрыском в жилых и легких коммерческих системах относительно нова. В системе этого типа небольшой насос заменяет двухходовые клапаны, показанные на предыдущих схемах. При работе этот насос выталкивает горячую воду из контура котла в контур распределения с более низкой температурой. Чем быстрее работает насос, тем быстрее нагнетается горячая вода в распределительный контур и тем выше становится температура подачи.
В некоторых системах в качестве впрыскивающего насоса используется небольшой гидравлический циркуляционный насос с мокрым ротором и электродвигателем с защитным сопротивлением PSC. В этом случае скорость насоса регулируется электронно с помощью симистора для управления формой волны переменного напряжения, подаваемой на двигатель. В других системах в качестве устройства переменной скорости используется небольшой насос с приводом от постоянного тока.
Существуют две основные схемы трубопроводов для систем впрыскивающих насосов с регулируемой скоростью. У каждого есть свои преимущества и недостатки в зависимости от типа проектируемой системы.
Метод №4: Трубопровод прямого впрыска
Первый метод управления впрыском с регулируемой скоростью называется прямым впрыском. Схема трубопроводов показана на рисунке 5. Направленный впрыск обеспечивает максимальную скорость теплопередачи в систему распределения для данной скорости нагнетаемого потока и температуры. Он хорошо подходит для больших жилых и легких коммерческих систем. Его недостаток заключается в том, что даже небольшой гидравлический циркуляционный насос (например, типичный циркуляционный насос с мокрым ротором мощностью 1/25 л.с.) при использовании в сочетании с первичным / вторичным трубопроводом, высокотемпературной нагнетаемой водой и низкотемпературной возвратной водой может легко нагнетать несколько сотен тысяч БТЕ / ч тепла в систему распределения.
В небольших жилых системах это означает, что скорость насоса может быть ограничена до небольшой части своей нормальной скорости даже в проектных условиях. По этой причине в трубопроводе обратного моста установлен шаровой клапан (см. Рисунок 5), чтобы преднамеренно дросселировать поток впрыска и, таким образом, вынудить циркуляционный насос работать в более широкой части своего диапазона скоростей, поскольку мощность нагрева изменяется от нуля до полной расчетной. нагрузка. Небольшие «микронасосы» с приводом от постоянного тока, которые работают от нескольких ватт мощности, не нуждаются в ограничении потока впрыска таким образом.
Две детали трубопровода, которые имеют решающее значение для успеха систем прямого впрыска, – это расстояние между тройниками первичного и вторичного контуров и образование «тепловой ловушки».
Расстояние между тройниками первичного вторичного контура как в котле, так и в распределительном контуре должно быть как можно меньше (ни в коем случае не более четырех диаметров трубы). Трубопровод, соединяющий эти тройники, следует тщательно развернуть и аккуратно припаять, чтобы свести к минимуму любые потери давления между боковыми портами тройников.Любая возникающая потеря давления способствует перемещению горячей воды из контура котла в контур распределения, даже когда нагнетательный насос полностью отключен. Поскольку многие системы излучающего пола поддерживают непрерывную циркуляцию через контуры пола, эта слабая, но постоянная струйка горячей воды может постоянно нагнетать тепло (хотя и с небольшой скоростью) в контуры пола, даже когда здание не нуждается в этом. Это может привести к перегреву в мягкую погоду, особенно в небольших системах.
Деталь трубопровода теплового уловителя также помогает предотвратить тепловую миграцию, когда нагнетательный насос выключен.Обе мостовые трубы, соединяющие котел и распределительные петли, должны иметь минимальный перепад высот в 1 фут, а лучше 2 с лишним фута, чтобы предотвратить миграцию горячей воды вниз в распределительную систему.
Требуемый расход впрыска можно рассчитать по формуле 3. Использование взвешенных (контроль расхода) или подпружиненных обратных клапанов в мостовых трубопроводах систем прямого впрыска не рекомендуется, поскольку это приводит к нестабильной работе впрыскивающего насоса в условиях низкой нагрузки.
Метод №5: Трубопровод обратного впрыска
Альтернативная конструкция трубопровода для смешивания с впрыском с регулируемой скоростью показана на рисунке 6. В этой так называемой системе обратного впрыска вода выходит из распределительного контура при температуре подачи контура пола, а не при температуре возврата, как в предыдущих системах. Такое расположение трубопроводов сводит к минимуму или устраняет некоторые недостатки систем прямого впрыска.
Поскольку разница температур между входящим и выходящим водяными потоками меньше в системе реверсивного впрыска, скорость впрыска, необходимая для обеспечения того же теплопереноса, больше, чем в системах с прямым впрыском.Этот расход можно рассчитать по формуле 6.
Где:
fi = скорость нагнетания горячей воды при расчетных условиях (в галлонах в минуту). fs = расход в распределительных системах (в галлонах в минуту).
Ts = температура подачи в контуры пола при расчетных условиях (в ° F).
TR = температура возврата из контуров пола при расчетных условиях (в ° F).
Ti = температура доступной воды для закачки (в ° F).
Более высокий расход впрыска заставляет циркуляционный насос впрыска работать в большей части своего диапазона скоростей в небольших системах.Системы обратного впрыска также лучше защищены от миграции тепла вне цикла, чем системы прямого впрыска. Эта защита является результатом использования нескольких деталей трубопроводов. Во-первых, давление застоя жидкости в точке впрыска заставляет поворотный обратный клапан после впрыскивающего насоса закрываться, когда впрыскивающий насос не работает. Во-вторых, потеря напора в трубопроводе между входным и выходным тройниками распределительного контура дополнительно способствует удержанию этого обратного клапана закрытым в условиях нулевого тепловложения.Наконец, тепловая ловушка в обратном трубопроводе помогает минимизировать любую тепловую миграцию. Снова важно подчеркнуть, что эти детали, ориентация труб и т. Д. Имеют решающее значение для управления подводом тепла при низкой нагрузке.
Из-за их способности останавливать миграцию горячей воды и высоких требований к скорости нагнетания системы обратного впрыска обычно считаются более подходящими для систем обогрева полов в жилых домах, где в качестве нагнетательного устройства используются небольшие циркуляционные насосы с мокрым ротором, работающие на переменном токе.Однако эти преимущества достигаются за счет более сложной компоновки трубопроводов.
Методы смешивания с прямым и обратным впрыском могут использоваться в сочетании со стратегиями управления сбросом уставки или наружного блока. В последнем случае температуру котла также можно контролировать с помощью отдельной кривой сброса, если этого требуют другие нагрузки в системе.
Сводка
Все пять представленных методов инъекционного смешивания успешно используются в водяных системах водяного отопления.Окончательный выбор зависит от нескольких факторов, включая:
• Будет ли система использовать постоянную температуру подачи или контроль сброса наружного воздуха?
• Будет ли в здании использоваться покомнатное зонирование или «зонирование площади»?
• Будут ли напольные контуры работать с непрерывной циркуляцией или циркуляцией «по требованию»?
• Какая необходимая скорость транспортировки тепла в систему распределения?
• Какова температура как нагнетаемой воды, так и возвратной воды системы?
• Какие расходы были сделаны на систему управления?
• Какое количество переходных режимов будет испытывать система?
Возможно, самым большим преимуществом каждого типа управления впрыском является возможность использования относительно небольших труб, клапанов и насосов для обеспечения высокой скорости передачи тепла от контура котла к контуру распределения.Это помогает минимизировать затраты на управление, сохраняя при этом тот же комфорт, которым известны системы водяного отопления.
© Сантехника и механика. Просмотреть все статьи.
Инъекционное управление смешиванием для водяных систем водяного отопления
/article/Injection+mixing+control+for+hydronic+radiant+floor+heating+systems/3444719/606629/article.html
Список проблем
Radiant Comfort Report Winter Edition 2021
Отчет Radiant Comfort Весна 2021 г.
Январь 2021 г.
Декабрь 2020
Ноябрь 2020
Отчет Radiant Comfort Осень 2020
Октябрь 2020
Сентябрь 2020
Август 2020
июль 2020
июнь 2020
Отчет Radiant Comfort 2020
мая 2020
Апрель 2020
Март 2020
Февраль 2020
Январь 2020
Декабрь 2019
Современная гидроника об.5 2019
Ноябрь 2019
Radiant Comfort Ноябрь 2019
Октябрь 2019
Сентябрь 2019
Август 2019
Современная гидроника, том 4 2019
июль 2019
Radiant Comfort Report 2019 Spring Edition
июнь 2019
мая 2019
Современная гидроника 2019 Том 3
Апрель 2019
Март 2019
Февраль 2019
Современная гидроника 2019 Том 2
Январь 2019
Декабрь 2018
Ноябрь 2018
Современная гидроника 2018
Октябрь 2018
Сентябрь 2018
Август 2018
ОтчетRadiant & Hydronics, 2018 г.
июль 2018
июнь 2018
мая 2018
Апрель 2018
Март 2018
Февраль 2018
Январь 2018
Library
Смесительный клапан для водяного отопления
Смесительные клапаны – Argus Control Systems Ltd.
Большинство систем лучистого водяного отопления в теплицах используют смесительные клапаны для управления. Датчики температуры труб используются для обеспечения коррекции обратной связи для позиционирования клапана. Смесительные клапаны Указание по применению Смесительные клапаны Указание по применению Управление смесительным клапаном … Загрузить полный исходный код
Тепловой насос – Википедия
Реверсивный клапан переключает направление хладагента в цикле, и поэтому тепловой насос может подавать либо СОР для теплового насоса в системах отопления или охлаждения, и поэтому они часто являются лучшим выбором для обеспечения тепла для теплого пола и горячего водоснабжения… Прочтите статью
Канал (поток) – Википедия
Каналы – это каналы или проходы, используемые в продуктах отопления, вентиляции и кондиционирования (HVAC) для использования в фальшполах. (одинарный или двухканальный), смесительные камеры с приводом от вентилятора (параллельное или последовательное расположение), … Читать статью
Смесительные клапаны AllTemp – Watts Water Technologies
Трехходовой смесительный клапан для использования в системах водяного отопления. Гидравлический смесительный клапан должен иметь трехходовой смесительный клапан Hydronic. Смесительные клапаны AllTemp доступны в размерах 1-1 / 4 дюйма, 1-1 / 2 дюйма. Надстройка излучающего пола с более низкой температурой подключается к существующему трубопроводу… Доступ к документу
Пол отопление Коллектор – Dynacon – YouTube
Остановка смесительного клапана Bradley 2. MPG – Продолжительность: 28:42. ProTechPlumbing 574 просмотра. Балансировка коллектора для лучистого отопления и охлаждения – Продолжительность: 1:57. Uponor North America 201,998 Система управления отоплением и охлаждением полов Roth Energylogic Touchline – Установка … Просмотр видео
Для регулировки температуры смесительного клапана. Ослабьте винт маховика, поднимите маховик и поверните его на желаемое значение “Теплый пол”.СИМВОЛЫ 1 = обратный клапан / проверка потока AM-1 СЕРИЯ «Модель R» – только для обогрева Автор: Honeywell Technical Communications … Получить содержание здесь
РУКОВОДСТВО ПО ПРОЕКТИРОВАНИЮ И УСТАНОВКЕ
РУКОВОДСТВО ПО КОНСТРУКЦИИ И УСТАНОВКЕ Мульти-зона с 4-ходовым смешиванием Клапан, MultiZone – с системой лучистого обогрева с регулируемой скоростью впрыска. Жилые / легкие коммерческие системы компании I oor включают медные коллекторы, латунные коллекторы, смесительные клапаны … Поиск содержимого
ProRadiant Systems – TJ’s Plumbing And Heating Inc.
Мировой лидер в производстве систем водоснабжения и отопления. Системы Viega ProRadiant. Наше наследие инноваций и качества началось в Аттендорне, устройстве со встроенным смесительным клапаном и приводом. Учебный центр Viega. система водяного водяного теплого пола Наша система климатических панелей может … Получить документ Doc
Вопросы и ответы: Сочетание лучистого тепла и тепла плинтуса
A. Джон Зигенталер отвечает: Существует несколько способов комбинировать низкотемпературные лучистые полы с подогревом полов с более высокотемпературными системами распределения, такими как конвекторы с ребристыми трубами для плинтусов.Прежде всего, система должна быть спроектирована 1) для предотвращения конденсации внутри котла и 2) с системой управления определенного типа.
Обычные котлы должны иметь достаточно высокую температуру обратной воды, чтобы предотвратить устойчивую конденсацию на стороне огня котла или в дымовой трубе. Водяной пар является побочным продуктом горения, и если ему дать конденсироваться, он может вызвать сильную коррозию. Дымоходы особенно уязвимы и могут выйти из строя в течение нескольких недель при наличии конденсата.Это может привести к выбросу токсичных газов в здание.
Обычно температура обратной воды для газового или жидкого котла должна быть 140 ° F или выше, чтобы предотвратить конденсацию. Поскольку излучающие системы работают с температурой возвратной воды в диапазоне от 80 ° до 100 ° F, их возвратная вода должна быть смешана с более горячей водой, прежде чем она будет отправлена обратно в котел. Это можно сделать двумя простыми способами – с помощью четырехходового клапана или с помощью инъекционного перемешивания.
Четырехходовой смесительный клапан снижает температуру воды, подаваемой в систему теплого пола, за счет подмешивания возвратной воды в водяной контур, как показано на рисунке A.Чтобы избежать конденсации в котле, четырехходовой смесительный клапан поддерживает относительно высокую температуру возвратной воды, подмешивая немного горячей воды в обратный поток.
Для управления четырехходовым клапаном в идеале вам понадобится моторный привод, управляемый внешним устройством сброса. Он измеряет температуру наружного воздуха и автоматически регулирует клапан для поддержания подходящей температуры воды в теплом полу, соответствующей требуемой тепловой нагрузке. Менее дорогая (и менее точная) система управления четырехходовым клапаном – это управление циркуляционным насосом в контуре теплого пола с помощью комнатного термостата.Таким образом, четырехходовой клапан устанавливается на расчетную температуру нагрузки системы теплого пола и остается на этом уровне. Когда требуется тепло, включается циркуляционный насос, чтобы подать горячую воду в помещение. Термостат должен иметь низкий дифференциал (один или два градуса), чтобы минимизировать колебания комнатной температуры.
Еще один способ снизить температуру воды в теплом полу – это смешивание методом впрыска (Иллюстрация B). В этой системе высокотемпературные зоны имеют отдельные циркуляторы (C1), которые управляются комнатными термостатами, как и в стандартной многозонной системе.Вода непрерывно циркулирует (с использованием циркуляционного насоса C2) через контур излучающего пола в течение отопительного сезона, и открывается зональный клапан, позволяя горячей воде течь в контур, когда необходимо тепло. Этим зональным клапаном можно управлять с помощью термостата или, для более точного управления, с помощью регулятора сброса.
Горячая вода из зонального клапана смешивается с холодной возвратной водой в тройнике после клапана. Балансировочный клапан определяет, сколько горячей воды поступает в излучающий контур при открытом зональном клапане.Чтобы предотвратить конденсацию, циркуляционный насос в основном контуре системы (C3) должен работать, когда клапан зоны открыт, чтобы отводить значительную часть горячей воды обратно в котел.
Оборудование для смешивания впрыска (зонный клапан плюс регулятор сброса) значительно дешевле, чем система с четырехходовым клапаном с регулятором сброса (около 300 долларов против 800 долларов). Подробную информацию об обоих подходах можно получить в Tekmar Control, 4611 23rd St., Vernon, BC V1T 4K7, Canada; 604 / 545-7749.
Джон Зигенталер, П.Е., владеет компанией по проектированию строительных систем Appgotiated Designs в Holland Patent, Нью-Йорк.
Руководство по применению | Проектирование водяного теплого пола – оптимальные результаты | финский | Финляндия | 06 октября, 2015 | 5.1 МБ | |
Руководство по применению | Проектирование водяного теплого пола – оптимальные результаты | Литовский | Литва | 4 декабря, 2015 | 5.0 МБ | |
Руководство по применению | Проектирование водяного теплого пола – оптимальные результаты | Русский | Россия | 4 декабря, 2015 | 5.2 МБ | |
Руководство по применению | Проектирование водяного теплого пола – оптимальные результаты | Датский | Дания | 19 сен, 2019 | 2.8 МБ | |
Руководство по применению | Проектирование водяного теплого пола – оптимальные результаты | Немецкий | Несколько | 19 мая, 2017 | 2.7 МБ | |
Руководство по применению | Проектирование водяного теплого пола – оптимальные результаты | китайский (CN) | Китай | 4 декабря, 2015 | 5.2 МБ | |
Руководство по применению | Проектирование водяного теплого пола – оптимальные результаты | Турецкий | Турция | 4 декабря, 2015 | 3.6 МБ | |
Руководство по применению | Проектирование водяного теплого пола – оптимальные результаты | Польский | Польша | 06 октября, 2015 | 5.1 МБ | |
Руководство по применению | Проектирование водяного теплого пола (Руководство по применению) | Английский | Несколько | 06 июл, 2021 | 8.1 МБ | |
Каталог | Гидравлический теплый пол – просто, проверено и выгодно | Немецкий | Австрия | 29 октября, 2014 | 4.2 МБ | |
Каталог | Гидравлический теплый пол – просто, проверено и выгодно | Шведский | Швеция | 10 марта, 2015 | 5.8 МБ | |
Каталог | Гидравлический теплый пол – просто, проверено и выгодно | Турецкий | Турция | 01 декабря, 2015 | 5.4 МБ | |
Каталог | Гидравлический теплый пол – просто, проверено и выгодно | Русский | Россия | 01 декабря, 2015 | 5.8 МБ | |
Каталог | Гидравлический теплый пол – просто, проверено и выгодно | Польский | Польша | 16 марта, 2016 | 5.7 МБ | |
Каталог | Гидравлический теплый пол – просто, проверено и выгодно | китайский (CN) | Китай | 01 декабря, 2015 | 5.9 МБ | |
Каталог | Гидравлический теплый пол – просто, проверено и выгодно | Чешский | Чешская Республика | 24 октября, 2014 | 5.8 МБ | |
Каталог | Гидравлический теплый пол – просто, проверено и выгодно | Литовский | Литва | 4 декабря, 2015 | 5.6 МБ | |
Каталог | Гидравлический теплый пол – просто, проверено и выгодно | Французский | Франция | 19 октября 2015 | 7.5 МБ | |
Каталог | Гидравлический теплый пол – гид по продукции | Датский | Дания | 14 августа, 2017 | 5.0 МБ | |
Каталог | Водяной теплый пол (руководство по продукту) | Английский | Несколько | ➤
|