Пенополистирол псб с 25ф: Пенопласт ПСБ-С 25Ф: цена от 2900 руб – Продажа пенопласта ПСБ-С 25Ф

Содержание

ПСБ-С 25Ф Фасадный | Цена

Пенополистирол ПСБ-С 25Ф — это утеплитель с пониженным «эффектом усталости» и средней плотностью 16,5 кг/куб. м, которая благодаря мелким гранулам обеспечила ровную поверхность. На высокоадгезивные плиты отлично ложатся любые тонко- и толстодисперсные штукатурные растворы и краски. Этот пенопласт разработан специально для наружной теплоизоляции фасадов. Пенополистирол фасадный, цена на который существенно дешевле прочих утеплителей, является самым экономичным вариантом.

Для утепления фасадов используется и ПСБ-С 35. Это пенополистирол повышенной жёсткости, который обеспечивает отличную ветрозащиту. Он имеет более высокую прочность и применяется при сооружении нагружаемых инверсионных крыш, промышленных полов и фундаментов. Материал хорошо себя зарекомендовал в условиях вечной мерзлоты и районах Крайнего Севера.

Основное назначение ПСБ-С 25Ф — утеплитель для мокрого фасада

В соответствии с основным назначением пенополистирол фасадный можно использовать двумя способами.
Во-первых, его устанавливают в качестве срединного слоя между наружным и внутренним рядами кладки и фиксируют с помощью специального крепежа, клея или мастики. Во-вторых, материал можно крепить к наружной поверхности фасадных стен, когда выполняется утепление штукатурного фасада. Полный перечень свойств этого пенопласта представлен на странице ПСБ-С 25Ф технические характеристики.

Области применения ПСБ С 25Ф

Пенопласт ПСБ-С 25Ф фасадный широко применяется профессиональными строителями в промышленно-гражданском и массовом жилищном строительстве. Ему находят активное применение эксплуатационные службы, включая в муниципальные программы капитального ремонта. Материал используется и как эффективная теплоизоляция, и как хорошая звукоизоляция и ветрозащита. Полный список областей работы ПСБ С 25Ф включает:
  • тепло-, звуко- и шумоизоляция фасадов:
    1. срединный слой в многослойных стенах;
    2. трёхслойные наружные стены без воздушного зазора;
    3. ПСБС 25Ф в штукатурных фасадах;
    4. в навесных фасадах;
  • внутренняя изоляция стен и перегородок;
  • тепло- и звукоизоляция скатных крыш и мансард;
  • потолки, перекрытия и чердаки;
Преимущества ПСБС 25Ф
  • ровная поверхность плит с высокой адгезией;
  • низкая теплопроводность;
  • биостойкость против грызунов и микроорганизмов;
  • высокие жёсткость и прочность;
  • универсальность: тепло-, звуко- и ветрозащита;
  • пенопласт ПСБ-С 25Ф не требует оборудованных мест хранения;
  • влагостойкость не позволяет образовываться плесени;
  • лёгкий и быстрый монтаж;
  • срок годности не лимитирован;
  • экономичный пенопласт ПСБ-С 25Ф фасадный, цена гораздо ниже прочих утеплителей;
  • продажа по всей Российской Федерации.
Если в качестве наружного утеплителя вы планируется использовать пенопласт фасадный (цена его безусловно способствует такому выбору), то необходимо помнить, что этот материал достаточно горюч. Конечно, есть самозатухающий пенопласт с антипиреном, но даже его нельзя использовать без облицовки в виде штукатурки и несгораемых покрытий. По противопожарным нормам на фасаде возможно применять пенополистирол ПСБ-С 25Ф, но только для домов до 3-х этажей. На более высокие строения потребуется спецразрешение.
Пенопласт фасадный — цена за лист лучшая в городе
Наша производственно-строительная база отличается внушительной номенклатурой строительных материалов для профессиональных строителей, строительных бригад и частных застройщиков, многие из которых уже оценили достоинства ПСБ-С 25Ф. Цена является одним из них. Торгуем мы оптом и в розницу, при этом стоимость товара зависит от объёма партии. Пенопласт у нас есть всегда, включая и ПСБ-С 25Ф. Купить его можно даже из другого города, сделав заказ на сайте или по телефону в отделе продаж.
Понравился материал статьи? Расскажите о нём:

Пенополистирол ПСБ-С 25: технические характеристики

Современный рынок теплоизоляционных строительных материалов предлагает вниманию покупателей широкий спектр товаров. Лидирующую позицию среди них занимает пенополистирол. Он может быть нескольких видов в зависимости от способа изготовления и состава сырья. Самым востребованным считается пенополистирол ПСБ-С 25.

Изготовление

Принципиальная особенность получения пенополистирола заключается в воздействии паром на обогащенные газом и помещенные в суспензию гранулы полистирола. При этом наблюдается многократное увеличение частиц, которое сопровождается вытеснением их из формы и спеканием между собой. Таким способом образуется гранулированная масса, объемным компонентом которой является преимущественно газ.

Такая структура и состав материала напрямую влияет на его тепло- и звукоизоляционные характеристики.

Технические характеристики

Технические характеристики пенополистирола соответствуют ГОСТу 15588-86. В нормативном документе расшифровывается аббревиатура изделия, где:

  • ПСБ обозначает метод производства;
  • С указывает на присутствие в составе антипиренов, улучшающих противопожарные показатели;
  • Число 25 обозначает плотность на 1 м3.

Пенополистирол ПСБ-25 обладает несколькими преимущественными характеристиками перед другими материалами. Стоит выделить основные.

  • Теплопроводность. Коэффициент колеблется в интервале 0,038-0,043 Вт/м-К.
  • Паропроницаемость. Этот показатель указывает на вывод влаги из помещения через используемые материалы. В данном случае показатель равен 0,05 Мг/ (м*ч*Па).
  • Водопоглощение. Показатель, характеризующий способность материала впитывать в себя влагу. Измеряется в процентном соотношении к объему за 24 часа. ПСБ-25 имеет показатель не более 2%.
  • Температура деструкции. Показатель разрушающей (деструкционной) температуры равен 160 градусов. Этот материал относится к классу трудновоспламеняемых материалов и обладает способностью к самозатуханию.
  • Долговечность. За счет широкого диапазона температуры деструкции ПСБ-25 не подвергается существенному воздействию разрушительных внешних факторов. В том случае, если он не подвергается прямому воздействию ультрафиолетовых лучей, взаимодействию с растворителями и кислотными концентратами, срок службы составляет не менее 80 лет.
  • Хорошая прочность на сжатие и высокий предел прочности на изгибе. Эти значения у ПСБ-25 равны 160 и 250 кПа.
  • Экологичность и гигиеничность. Данный материал широко используется для создания упаковки пищевых продуктов.

Габариты ПСБ-С 25 прописаны в ГОСТе. Выпускается он в виде плит, стандартное значение длины которых составляет от 900 до 5000 мм. При этом показатель ширины варьируется в диапазоне от 500 до 1300 мм, толщины – от 20 до 500 мм.

Размерные характеристики ПСБ-С 25 производители указывают в следующем формате: 1200х1000х60 мм, где:

  • 1200 и 1000 – это длина и ширина листа;
  • 60 мм – его толщина.

К неоспоримым плюсам полистирола можно отнести низкую стоимость относительно подобных материалов с более высокой плотностью, а также удобство монтажа. Известно, что задействование дополнительной техники и инструментов значительно повышает стоимость готовых объектов. Полистирол легкий и при подъеме на этаж не требует использования крана. Его можно резать обыкновенным ножом, при этом листу довольно просто придать требуемую форму.

К минусам ПСБ-С 25 можно отнести его горючесть, несмотря на быстрое затухание, а также ломкость в процессе работы.

Сфера применения

Преимущества полистирола, его физические показатели позволяют продуктивно использовать этот материал в разных областях. Пенополистирол используют для утепления крыш, чердаков, пола, стен. За счет высоких показателей прочности ПСБ-С 25 великолепно выдерживает нагрузку от крыши, непосредственно опирающуюся на плиту.

Его применяют для создания тепло- и звукоизоляции зданий.

Также пенополистирол ПСБ-С 25 применяют в качестве среднего слоя при производстве сэндвич-панелей. Им утепляют водопроводные трубы от замерзания, используют для упаковки. Для наружной теплоизоляции фасадов лучше подходит аналог с маркировкой ПСБ-С 25 Ф. Он разработан специально для наружных работ с последующей штукатуркой и окрашиванием стен. Этот материал подходит для фигурной резки, создания объемных фасадов.

Финансовая выгода от использования пенополистирола ПСБ-С 25 очевидна. Он позволяет снизить затраты на отопление зданий, создать эффективную и долговечную систему теплоизоляции.

В зданиях, утепляемых при помощи полистирола, создаются максимально комфортные условия проживания и труда.

ППС-25, как и ПСБ-С 25 (М25) применяют для утепления. Отличие заключается в том, что более плотный и прочный ППС-25 лучше подходит для использования в местах со значительными нагрузками (такими как стоянки для автомобилей, подземные площадки, газоны, спортивные площадки, катки). ППС-25 используют и для гидроизоляции подземных коммуникаций. Его легко можно заменять на ПСБ-С 35 без ухудшения технических характеристик производимых работ.

Более подробно о технических свойствах и сфере применения ПСБ-С 25 смотрите в следующем видео.

П: в основе — материал, широко используемый для производства утеплителей, пенополистирол. Гранулы пенополистирола заполнены углекислым газом, пентаном или изопентаном (производные при получении природного газа).

С: эти гранулы получаются в результате суспензионной полимеризации стирола в среде газов.

Б: формирование плиты производится без использования давления. Спекание гранул происходит под влиянием высокой температуры пара. В это же время происходит 50-тикратное увеличение объёма компонента из-за расширения газа внутри гранул.

С: при воздействии открытого огня на пенопласт происходит самопроизвольное затухание материала.

Начнём знакомиться

Свойства материала сохранять тепло предопределено самим составом пенополистирола ПСБ С 25 С. Ведь он на 98% состоит из газов, находящихся в замкнутых объёмах. Эта среда отличается крайней инертностью к передаче тепла. Она же препятствует проникновению через себя звука, имея хорошие звукоизоляционные показатели.

При его получении не используются химические и иные соединения, опасные для здоровья и жизни человека, что позволяет говорить о его экологической безопасности.

Входящие в состав антипирены, а также использование при производстве нейтральных газов определяют низкую пожарную опасность утеплителя. Он не поддерживает горение и не распространяет его по своей поверхности.

 

Следующий привлекательный параметр – это водопоглощение. Остающиеся при спекании промежутки между гранулами теоретически могут быть заполнены влагой. Указанная в характеристиках цифра получена в результате полного погружения плиты в воду. В реальной жизни такое трудно представить, только если ваш утеплённый дом не попал в зону затопления. Если сравнивать это показатель с показателями минеральных утеплителей, то можно смело говорить о том, что пенопласт воду не поглощает. Следовательно, сохраняет свои теплоизоляционные свойства.

Пенопласт ПСБ не взаимодействует со строительными материалами, химическими и иными растворами применяемые в строительстве, за исключение ацетона, ГСМ и масляных красок. При контакте с ними структура материала разрушается.

Беречь его надо и от солнечного света путём оштукатуривания или покраски.

Пенопласт не разлагается, не распространяет грибок, не идёт в пищу насекомым и грызунам.

Пенопласт в цифрах

Устное описание не дает полного понимание характеристик материала. Поэтому обратимся к цифрам.

  • Число в наименовании материала обозначает его плотность. Она равна 25 кг/м3.
  • Пенопласт имеет прочность на сжатие при 10% уплотнении в 0,1 МПа, а при изгибе – 0,18 МПа (0,1 Мпа равен атмосферному давлению).
  • Теплопроводность его 0,039 Вт/мК. Это значит, что метр пенопласта пропускает через себя 0,039 Вт тепла, что в 1000 раз меньше тепла от лампочки в 40 Вт.
  • Температурный диапазон использования от -60 до +80оС. Время горения после удаления источника зажигания 3 с.

Габариты

Плита пенополистирола ПСБ С 25 выпускается длиной от 0,9 м до 5 м при шаге 0,05 м.

Ширина выпускаемой продукции находиться в интервале от 0,5 м до 1,3 м с разбегом 0,05 м. Толщина утеплителя варьируется от 20 до 500 мм с разделением через каждые 10 мм.

Применение

Основное назначение пенопласта ПСБ – утепление и звукоизоляция зданий и сооружений. Использование его в сэндвич-панелях позволяет существенно снизить вес панели, ускорить процесс монтажа меньшими силами. Он применяется для упаковки товаров, при производстве игрушек и рекламной продукции. Использование пенопласта позволяет экономить на толщине ограждающих конструкций (позволяет уменьшить толщину деревянных конструкций в 5 раз и кирпичных – в 10 раз).

В основном он используется для утепления наружных стен под штукатурку, кровель, полов под стяжку. При утеплении помещений изнутри необходимо в обязательном порядке отделить утеплитель от помещения слоем штукатурки в 3 см.

Утепление фундамента, особенно на глубинах промерзания грунта, данным утеплителем проводить не рекомендуется ввиду способности впитывать влагу. Для этого лучше использовать пенополистирольный материал с маркировкой 25ф фасадный утеплитель.

Качественный отбор

Перед приобретением необходимо внимательно рассмотреть покупаемый утеплитель. Гранулы разного размера, наличие промежутков между ними, цвет отличный от белого, разная толщина плит одной партии, свидетельствуют о том, что это не качественный материал.

Монтаж доступен всем

Перед монтажом необходимо провести подготовку поверхности путём очистки до материала несущей конструкции с последующей заделкой имеющихся трещин и неровностей. Выровненную поверхность грунтуют. Затем устанавливаем стартовую планку, на которую будет происходить опирание нижних листов пенопласта.

Закрепление плит производиться в основном комбинированным способом: одновременно применяются клеевые составы и тарельчатые дюбели. В том случае, если применение тарельчатых дюбелей не планируется, вертикальную поверхность необходимо покрыть армирующей сеткой для улучшения сцепления.

В качестве клея возможно применение специально полиуретанового состава в баллонах, либо водорастворимого сухого клеевого состава.

Установка плит производиться снизу вверх. Образовавшиеся промежутки заполняются монтажной пеной. Излишки пены срезаются после застывания. Впоследствии производится установка армирующей сетки и грунтование. По высыханию грунтовки пенополистерол шпаклюется и штукатуриться.

Использование пенопласта в качестве утеплителя даёт хорошие результаты по сохранению тепла в отапливаемых помещениях. Они сопоставимыми с результатами более дорогих материалов. Этот результат гарантирован многолетним опытом его применения в строительстве. А если не видно разницы, зачем платить больше?

Сравнение 25 и 35

Пенополистирол ПСБ-С-25Ф ДЕКОР | Пенопласт в Ставрополе

В создании рекламных изделий и декоративных элементов для фасадов является незаменимым пенопласт ПСБ-С-25Ф ДЕКОР, который является устойчивым ко многим факторам внешней среды. Компания СтавПолистэр предлагает заказать продукцию собственного производства на максимально выгодных и доступных условиях.
Поскольку элементы из этого материала постоянно подвергаются негативным воздействиям окружающей среды и механическим нагрузкам, их качеству уделяется большое внимание. Наша компания применяет в производстве исключительно надежные материалы и строго следит за соответствием технологии изготовления действующим стандартам и нормам. Наша продукция характеризуется небольшим весом, низкой теплопроводностью, а также устойчивостью при попадании на нее различных агрессивных веществ. Такие изделия не поддерживают процесс горения и полностью отвечают требованиям пожарной безопасности. В составе материала не содержатся вредные или опасные вещества, поэтому они считаются экологически чистыми, в результате чего подходят для отделки жилых зданий.

 

Технические характеристики пенополистирола:

Наименование показателя Норма по ГОСТ 15588-2014
Плотность не менее 14 кг/м3
Прочность на сжатие при 10% линейной деформации не менее 80 кПа
Предел прочности при изгибе не менее 150 кПа
Теплопроводность в сухом состоянии при (10±1)°С не более 0,038 Вт/(м·К)
Теплопроводность в сухом состоянии при (25±5)°С не более 0,040 Вт/(м·К)
Время самостоятельного горения не более 4 с
Влажность, % по массе не более 3,0
Водопоглощение за 24 ч, % по объему не более 3,0

 

Для приобретения пенопласта ПСБ-С-25Ф ДЕКОР или других видов изделия для решения конкретных поставленных задач обращайтесь к нашим сотрудникам по номеру 8 (8652) 56-57-20 и получайте консультации по выбору подходящего материала.

Пенополистирол ППС 25 (ПСБ-С 35), 50мм. V = 0.72м3

Область примененияСкатные кровли и мансарды
Плоские кровли
Вентилируемый фасад
Слоистая/колодцевая кладка
Каркас полы, потолки, стены
Полы под цементную стяжку

Средняя плотность, кг/м325.1-35.0

ТипПенополистирол

Коэффициент теплопроводности при t=25±5°С , λ25, Вт/м°С0.038

Прочночть на сжатие при 10% деформации, МПа0,14

Предел прочности при статическом изгибе, МПа 0,20

Водопоглощение за 24 часа, % по объему, не более2

Стандартные размеры рулона/плиты, мм1200х1000х50

Кромка плитыПрямая

Объем материала в упаковке, м30,72

Способ упаковкиПолиэтилен

Особые свойстваВозможны другие размеры плит под заказ

ПСБ-С 35 – применяется при изготовлении многослойных панелей, в т.ч. железобетонных, устройства обогреваемых дорожек, подъездных площадок, стоянок автомобилей, тепло-гидроизоляции подземных коммуникаций, теплоизоляции труб, утеплении фундаментов, для предотвращения, промерзания и вспучивания грунтов, для отвода стоков, укрепления откосов, при строительстве бассейнов, разбивки газонов, спортивных площадок.

Размеры:

Размер листа (мм) для марок 15, 25, 35, 50

Количество м3 в упаковке

1000 х 1200 х 20, 30, 40, 50, 60, 100, 120, 150, 200 мм

0,72

2000 х 1200 х 50, 100, 120, 150, 200 мм

1,44

3000 х 1200 х 50, 100, 120, 150, 200 мм

2,16

600 х 1200 х 50, 100, 120, 150, 200 мм

0,432

2300 х 1200 х 50 мм

1,656

3000 х 1200 х 50 мм

2,16

Физико-технические характеристики:

Наименование показателей

Норма для плит марок

15

25

35

50

50-D

Плотность, кг/куб. м

10-15

15,1-25

25,1-35

35,1-50

40-55

Прочность на сжатие при 
10% линейной деформации, 
МПа, не менее

0,04

0,08

0,14

0,16

0,5

Предел прочности при изгибе, 
МПа, не менее

0,06

0,16

0,20

0,30

0,7

Теплопроводность в сухом состоянии
при (25±5) С, Вт/(м•К), не более

0,043

0,041

0,038

0,041

0,045

Время самостоятельного горения 
плит типа ПСБ-С, с, не более

4

4

4

4

4

Влажность, %, не более

12

12

12

12

12

Водопоглощение за 24 ч, 
% по объему, не более

4

3

2

2

1,5

Применение:

– Утепление несущих элементов фундаментов.

Фундамент – основа здания. От него зависит долговечность и в значительной мере тепловой комфорт. Поэтому вопрос по теплоизоляции фундаментов, особенно в регионах с суровым климатом, должен ставиться на одно из первых мест. Традиционно пенопласт применяют в качестве средней части трехслойных фундаментных блоков. Однако свойства материала и его качество позволили применять фундамент современной более эффективной конструкции. В современном фундаменте пенополистирол (пенопласт) используют в качестве несъемной опалубки при изготовлении и монолитного фундамента непосредственно на объекте. Это существенно снижает расход бетона, арматуры и трудозатраты. Хорошо зарекомендовал себя пенополистирол (пенопласт) при устройстве бесподвальных строений. В этом случае на подготовленную площадку укладываются плиты утеплителя в один или несколько слоев, заливаются бетоном и далее возводится строение обычным порядком. При такой конструкции бетонная стяжка одновременно является фундаментом и основанием пола. Конечно, это не исключает необходимости устройства точечного фундамента под несущие опоры. Особо отметим возможность применения пенополистирола в целях изоляции фундаментов для предотвращения промерзания. Специалистам строителям и эксплуатационникам хорошо известны последствия этого природного явления. Поэтому в северных регионах защита фундаментов от промерзания, а также возможность строительства на мерзлоте имеет важное значение. Пенополистирольные плиты можно применять для вертикальной и горизонтальной защиты фундаментов от промерзания. Для этой цели вдоль фундамента отрывается траншея шириной порядка 1 м и глубиной, определяемой промерзанием грунта. Плиты теплоизоляции укладываются вдоль фундамента и засыпаются. В некоторых случаях необходимо дополнительное устройство гидроизоляции.

Применение на трубопроводах.

Известно, что теплоизоляции инженерных коммуникаций до последнего времени не придавалось должного значения, хотя доля теплопотерь через них составляет порядка 30%. Для теплоизоляции трубопроводов холодного водоснабжения, вентиляционных каналов, телефонных линий и заглубленных кабелей в последнее время все чаще стали применять пенополистирол. Этот материал также используют для защиты водопроводных и канализационных труб городских магистралей от замерзания. Благодаря этому, трубопроводы можно укладывать на меньшей глубине, намного сокращая объем вынутого грунта. Несомненным достоинством применения пенополистирола для теплоизоляции трубопроводов является возможность придания материалу практически любых форм, что способствует функциональному приспособлению к конструктивным требованиям.

– Опалубка из пенополистирола.

Опалубка из пенополистирола представляет собой конструкцию, состоящую из двух полотен пенополистирола, соединённых при помощи специальных креплений. Внутреннее пространство такой конструкции заполняется раствором бетона с элементами арматуры. Использование пенополистирола в качестве несъёмной опалубки имеет как положительные, так и отрицательные стороны. К положительным сторонам можно отнести способность опалубки из пенополистирола служить одновременно ограждающей конструкцией и обладать при этом теплоизоляционными свойствами. Таким образом, опалубка из пенополистирола является своеобразным «сендвичем», который идеально подходит для быстрого процесса строительства (не требуется создание теплоизоляциооного слоя). Кроме того, такая опалубка из пенополистирола обладает дополнительно и звукоизоляционными свойствами, которые особенно актуальны при строительстве жилых зданий. Отрицательными моментами использования опалубки из пенополистирола является необходимость создания верхнего облицовочного слоя, обладающего повышенными пожаростойкими свойствами (в данном случае пенополистирол обладает горючими свойствами). Причём крепления на такой стене довольно сложно выполнить, так как для достижения прочности требуется применение длинных креплений, которые смогут достать до бетонной поверхности конструкции.

Пенопласт ПСБ-С-25

Пенополистирол ПСБ-С 25 является пенополистиролом средней плотности и одним из самых распространенных в современном строительстве.

Пенополистирол ПСБ-С 25 — это хороший материал для звуко— и теплоизоляции. Он удобен в монтаже и имеет невысокую стоимость.

Основная сфера применения пенопласта пенополистирола ПСБ-С 25 — это теплоизоляция крыш, стен, перекрытий, а также полов.


Технические характеристики Пенопласт ПСБ-С-25

Марка «Стиропен»

Пенопласт ПСБ-С – 25

Физико-механические характеристики

Норма по ТУ

факт

Плотность, кг/м3

от 15,1

15,1–18,5

Прочность на сжатие при 10%-ной линейной деформации, МПа, не менее

0,10

0,10

Предел прочности при изгибе, МПа, не менее

0,18

0,18

Теплопроводность в сухом состоянии, Вт/м*К, не более

0,0390

0,0370 0,0380

Время самостоятельного горения, сек. , не более

4

1–3

Влажность, %, не более

12,0

0,45–1,10

Водопоглощение за 24 часа, % по объёму, не более

2,0

1,0–1,75

Теплоизоляция зданий – одно из важнейших направлений развития современной строительной индустрии.
Применение высококачественных теплоизоляционных материалов Стиропен 25 позволяет снизить массу несущих конструкций, уменьшить потребность в таких строительных материалах как кирпич, бетон, деревянные конструкции. Применение теплоизоляции значительно сокращает энергозатраты при отоплении зданий и позволяет обеспечить максимальный комфорт в жилых помещениях. Кроме того, теплоизоляция высококачественными материалами (пенопласт-пенополистирол) сокращает потребление энергоносителей, то есть различных видов топлива, потребление которых приводит к дополнительным выбросам в атмосферу углекислого газа. Сокращение этих выбросов позволит снизить угрозу глобального потепления.

Пенополистирол – экологически чистый, нетоксичный, тепло и звуко изоляционный материал, применяемый в строительстве более 50-ти лет и зарекомендовавший себя как наиболее экономичный, удобный в применении и обладающий низкой теплопроводностью и паропроницаемостью. Поворот к массовому использованию пенополистирола неизбежен, поскольку в обозримом будущем только такие высокоэффективные материалы способны удовлетворить все возрастающие нормативные строительные требования к конструкциям зданий и сооружений Пенополистирол, благодаря своим свойствам, обеспечивает необходимые теплотехнические характеристики строящихся или реконструируемых объектов. Материал на 98% состоит из воздуха – лучшего природного теплоизолятора. Пенополистирол устойчив к воздействию растворов кислот щелочей, спиртов. Инертен по отношению к неорганическим строительным материалам – бетону извести, цементу, песку и др. Разлагается органическими растворителями, смолами, битумным растворами. Одним из основных преимуществ пенопласта является способность нести относительно высокую механическую нагрузку при минимальной плотности. Продукция фирмы сертифицирована и отвечает высоким требованиям мировых стандартов.

Сегодня предприятие выпускает четыре марки пенополистирола строительного блочного самозатухающего в соответствии с ГОСТ 15588-86, отличающиеся по плотности: ПСБ-С-15, ПСБ-С-25, ПСБ-С-25ф, ПСБ-С-35.

Свойства пенополистирола Стиропен 25


ППС, благодаря своим свойствам, обеспечивает необходимые теплотехнические характеристики строящихся или реконструированных объектов. Материал на 98% состоит из воздуха – лучшего природного теплоизолятора.

ПСБ-С устойчив к воздействию растворов кислот и щелочей, спиртов. Инертен по отношению к неорганическим строительным материалам – бетону, извести, цементу, песку и др. Разлагается органическими растворами.

Одним из преимуществ пенопласта является способность нести относительно высокую механическую нагрузку при минимальной плотности. Это в значительной степени определяет возможности его использования в строительстве.

Экологичность

В соответствии с исследованиями института санитарии и гигиены им. Эрисмана пенополистирол не выделяет вредных веществ, а миграция стирола до 85 0С столь незначительна, что не оказывает влияния на здоровье людей. На основании проведенных испытаний нашему предприятию выдано санитарно-эпидемиологическое заключение об экологической безопасности применения ППС в строительстве.

Долговечность

С целью исследования изменений физико-механических и тепло-физических свойств пенополистирола с течением времени проведены ускоренные ресурсные испытания в научно-исследовательском институте строительной физики (г. Москва) по специальной методике с температурными колебаниями от -40 до +40 0С и выдерживанием в воде. Анализ показал, что срок эксплуатации пенополистирольных плит 80 лет.

Пожарные характеристики

Пожарные характеристики являются одним из немаловажных аспектов применения ПСБ-С в строительстве. Сегодня мы имеем сертификат пожарной безопасности продукции по группе горючести Г-2, причем большинство характеристик нашего пенополистирола перекрывают требования группы Г-1. Пожароопасность пенополистирола невелика: теплота, им выделяемая, составляет меньше 2% от всей теплоты пожара. Поэтому в Европе, начиная от Испании и Португалии и заканчивая Норвегией, Финляндией, пенополистирол очень широко применяется в строительстве.

В строительстве как утеплитель в ограждающих конструкциях пенополистирол применяется различными способами. Самый очевидный, но не самый лучший – это утепление зданий изнутри. Это сравнительно несложно технологически, но при этом появляется «точка росы» на стыке утеплителя и несущей стены, уменьшается эффективная площадь помещения.

Другие способы — «колодцевая кладка», или «трехслойная кладка». При этом несущая стена рассчитывается только на прочность, а пенополистирол закладывается между несущей конструкцией и облицовочным кирпичом, обеспечивая все теплоизолирующие свойства. Такой способ утепления активно применяется в Удмуртской Республике.

При третьем, наиболее эффективном с точки зрения теплозащиты и долговечности способе по фасаду здания монтируется система, состоящая из утеплителя, армирующей сетки, клеев, шпаклевок, грунтов, декоративного слоя. Пенополистирол приклеивается к стене, укрепляется дюбелями, а затем наносится армирующая сетка и декоративное покрытие. Так достигается наилучший теплоизолирующий эффект и появляется возможность получить новые архитектурные и дизайнерские решения с помощью пенополистирола.

Область применения

Пенополистирол используется при строительстве холодильных помещений, витрин, морозильных установок, холодильников, емкостей для транспортировки сухого льда и замороженных продуктов, складских помещений и т.д. При применении пенополистирола в холодильной технике учитывается такой показатель, как коэффициент теплопроводности и влагопоглощения, и он по этим свойствам превзошел традиционные теплоизоляционные материалы, ранее используемые в холодильном оборудовании. Пенополистирол имеет закрытую ячеистую структуру, что исключает капиллярное водопоглощение. Такое ценное качество предотвращает его промораживание и разрушение. Он не подвержен гниению. Из этого следует, что срок эксплуатации теплоизоляции из пенополистирола составляет более 80 лет, причем его изоляционные свойства не ухудшаются. Использование пенополистирола при строительстве дорог. Пенополистирол может применяться для распределения нагрузки на дороги и подъезды к мостам в районах, где несущая способность грунта низка. Благодаря небольшому весу, такая конструкция предотвращает опускание дороги.


Листовой пенопласт ппс 10 (псб-с-25 ту) купите в Екатеринбурге, Челябинске – цена от 2270 ₽/м3 в розницу

ППС 10

Плиты изготовленные беспрессованным способом из суспензионного вспенивающегося полистирола с добавкой антипрена по ГОСТ 15588-2014. Второе название плит ПСБ-С-25 ТУ по старому ГОСТ 15588-86. Полимерный газонаполненный пенопластовый материал плотностью 10 кг/м3. Наименее плотный среди всех листов ППС. Состоит из газа на 98% и обладает хорошими теплоизоляционными свойствами. Один из эффективных и недорогих теплоизоляторов. Не реагирует на соль и соду, битум, минеральные удобрения, мыло, известь, гипс. Растворяется в скипидаре, азотной и уксусной кислоте, спиртах, олифе, некоторых лаках, отдельных нефтепродуктах.

Используется для утепления конструкций, не подверженных механическим воздействиям и нагрузкам — стены, скатная кровля, пространство между стропилами, бытовки, вагоны, контейнеры, лоджии и балконы. Отлично подходит для упаковки мебели и бытовой техники. Производится по ГОСТ 15588-2014.

Преимущества:

  • легкость;
  • паронепроницаемость;
  • химическая устойчивость;
  • биологическая устойчивость;
  • способен впитывать воду не более 4%;
  • уменьшает расходы на отопление;
  • отлично работает при отрицательных температурах;
  • непригоден для обитания грибков и бактерий.
Важно знать

Материал звукопроницаем. Предназначен для утепления домов ниже 25 м. При горении выделяет токсичные вещества: метиловый спирт, ацетофенон, формальдегид, этилбензол. При +80°С листы разрушаются и начинают выделять фосген, синильную кислоту, бром. Не стоек к ультрафиолету. 

Монтаж

Скатная крыша. Перед началом работ изолируемую поверхность следует тщательно очистить и просушить. Устанавливают гидроизоляционную пленку. Листы укладывают на обрешетку между стропилами. Фиксируют клеем и дюбелями. Щели заполняют герметиком или монтажной пеной. Закрывают утеплитель пароизоляцией для предотвращения скопления конденсата внутри конструкции. 

Стена под сайдинг. Перед началом работ изолируемую поверхность следует тщательно очистить, заштукатурить трещины и впадины, убрать торчащие сколы. Обработать противогрибковыми средствами и тщательно просушить. Установить пароизоляционную пленку и обрешетку. Пенопласт монтируют между рейками, фиксируют пластиковыми дюбелями с широкой шляпкой. Сверху закрепляют гидроизоляционную пленку. Ставят каркас, крепят сайдинг.

технология производства архитектурных элементов из пенополистирола

Полистирол – газонаполненный материал из полистирола и его производных, а также сополимеров стирола.

Технология производства пенополистирола

1) гранулы пенополистирола загружаются в бункер предэкспандера, где они набухают и приобретают сферическую форму.

2) Каждая операция сопровождается вспениванием шариков из пенопласта в специальном бункере, где накачиваются шарики из пенополистирола от 12 до 24 часов.За это время внутри них стабилизируется давление, затем они сушатся.

После завершения заданного количества вспенивания и выдерживания сроков созревания шарики полистирола помещаются в формовочную машину, где под действием горячего пара формируются блоки полистирола. Попав в узкую полость формы, под воздействием пара шарики вспененного пенопласта склеиваются, сохраняя форму после охлаждения и извлечения из формы.

3) На последнем этапе по заданным размерам нарезаются блоки пенополистирола, зачастую внушительных размеров.Но сначала агрегат помещается на промежуточный склад, где он хранится около 24 часов.

Дело в том, что под воздействием пара блоки пенополистирола набирают лишнюю влагу, и невозможно выполнить ровную резку влажного пенополистирола, а также избежать синяков. После высыхания полистирольные блоки разрезаются горизонтально или вертикально с помощью механической пилы.

Архитектурные элементы фасада выполнены ЭКОДЕККО из пенополистирола ПСБ-С25Ф плотностью 17-20 кг / м³.

Эта пена чаще всего используется для внешней теплоизоляции зданий как гражданского, так и промышленного назначения. Средняя плотность по сравнению с другими видами пенополистирольных плит делает ПСБ – С 25 Ф легким в установке – он не крошится при резке, легко режется, не ломается при приклеивании к стенам. Кроме того, эти же свойства – прочность и простота раскроя – делают этот вид популярным при изготовлении фасонных декоративных элементов для фасадов из пенопласта.

Пена ПСБ – С 25 Ф – это пена средней плотности, специально разработанная для утепления фасадов зданий и сооружений.В отличие от материалов с более высокой плотностью (которые дороже), этот пенопласт является идеальным решением по соотношению цены и качества для теплоизоляции зданий и сооружений.

Кроме того, пенополистирол ПСБ – С 25 Ф отличается высокой прочностью, надежностью и прочностью.

Технология изготовления ЭПС

1) Производство пенопласта происходит методом контурной термической резки на промышленном оборудовании, оснащенном ЧПУ (числовое программное управление – компьютеризированная система управления) с использованием горячих нитей.

Этот инновационный метод геометрической резки полимеров позволяет получить изделие с уникальной точностью контура и микроскопической толщиной реза. Края разреза идеально ровные.

Если при ручной работе с сыпучими изделиями без ошибок не обойтись, то с помощью промышленной фигурной резки можно добиться лучшего качества и элегантности форм. Чертежи изделий в электронном виде вводятся в ЧПУ. Горячая нить обрезает изделие.

Архитектурные элементы из пенополистирола могут быть наиболее оптимального размера, только режущий станок ограничивает размер: 420 мм x 250 мм x 2 м (ширина x высота x длина), другие большие детали склеиваются с большим параметром меньшего размера частей.

Оптимальность размеров детали обеспечивает качество нанесения шпатлевочного состава.

В противном случае, если детали по габаритам больше габаритов режущего станка, их заполнение вызовет неравномерность покрытия за счет увеличения давления столба жидкости на поверхность детали.

Резка пенопласта осуществляется с помощью векторного рисунка, для которого можно использовать изображение, выполненного в программе Corel Draw или Auto CAD. Это позволяет вырезать очень сложные изогнутые контуры и помогает добиться высокой воспроизводимости процесса.

2) Затем специальными протяжными станками на изделие наносится защитное покрытие толщиной 2-4 мм, чтобы защитить пену от кислотных красителей и растворителей.

Защитное покрытие производится компанией Ecodeco под торговой маркой «Укрепит» и выпускается в трех формах:

  • Шпатлевка пастообразная – применяется для нанесения на изделия прямоугольной формы в один слой с толщиной слоя 2-4 мм, расходом 4.5 кг на 1 м²;
  • Шпатлевка «FLEX» предназначена для нанесения на радиусные изделия в один слой толщиной 2-4 мм, расход 4,5 кг на 1 м²;
  • Армирующий наполнитель
  • (спрей) – применяется для армирования крупных деталей (например, краеугольного камня) напылением в несколько слоев с толщиной слоя 2-4 мм, расход 4,5 кг на 1 м².

Толщина слоя шпатлевки регулируется по высоте подъемом ножа протяжного станка.

Преимущества такого покрытия.Он обеспечивает долговечность пенополистирола, защищает его от ультрафиолетовых лучей, позволяет формировать различные текстуры на поверхности пенополистирола.

После нанесения слой покрытия должен быть высохшим, затем на изделие наносится (армируется) декоративный слой краски и снова просушивается.

После окрашивания получившееся изделие материал, из которого оно изготовлено, неузнаваем.
Архитектурные элементы из пенополистирола могут быть изготовлены под заказ под покраску или любую фактуру.

Вернуться к списку

Блок пенополистирольный ППС ПСБ-С-25 (ДСТУ) (100 мм)

Годовая экономия

Годовая экономия: 10 900 грн / 8 900 кВтч *

Годовой базовый план энергии для отопления 39,722 кВтч / год

Годовой объем электроэнергии после замены Блок пенополистирольный ПСБ-С-25 (ДСТУ) (100 мм)

Ваша годовая экономия

* Заявление об отказе от ответственности:

1.Включение технологий, оборудования и материалов в Выбор технологий основано исключительно на квалификации в соответствии с «Стандартами минимальных энергетических характеристик» IQ energy ** и не означает одобрения ЕБРР производителей или поставщиков этих продуктов. Несмотря на то, что были приложены все усилия для представления правильных и актуальных данных, ЕБРР не несет ответственности за точность представленных данных.

** Включенные технологии были оценены как обеспечивающие повышение энергоэффективности как минимум на 20% по сравнению со средним рыночным значением

2.Экономия рассчитана на ремонт среднего жилья или замену среднего оборудования в Украине. Фактическая экономия от индивидуальных проектов ремонта / оборудования может отличаться от указанной экономии из-за конкретных климатических условий, размера жилища / оборудования, поведения потребителей и т. Д. Отображаемые меры по энергоэффективности влияют на счета отдельных домохозяйств (экономия) только в том случае, если доступен биллинг на основе потребления.

3. Несмотря на то, что мы предприняли разумные меры для применения актуальных цен на энергию при расчете экономии в гривнах, мы не несем ответственности за точность любых оценок экономии, указанных на этом Сайте.

4. Все цены, указанные в нашем Селекторе технологий, предоставлены поставщиками в качестве ориентировочных розничных цен и должны использоваться только в справочных целях. Фактические цены продавцов / розничных продавцов могут отличаться от цен на нашем веб-сайте по разным причинам, не зависящим от программы IQ energy. Программа IQ energy не несет ответственности за информацию о ценах на какой-либо конкретный продукт. Уточняйте у поставщиков актуальные цены на интересующую вас продукцию и технологии.

Квазихрупкое разрушение пенополистирольных пластин с отверстием

Название выпуска: 11-я Международная конференция по разрушению (ICF11), Турин, Италия, 20–25 марта 2005 г. Мини-симпозиум – «Сложность, масштабирование и нелинейность в механике современных материалов»

Тип статьи: Исследовательская статья

Авторы: Legan, MA | Колодезев, В. | Шеремет, А.

Место работы: Институт гидродинамики им. М.А. Лаврентьева СО РАН, проспект Лаврентьева, 15, Новосибирск 630090, Россия

Примечание: [] Автор, отвечающий за переписку.Тел. / Факс: +7 383 333 27 50; E-mail: [email protected]

Резюме: Проведены эксперименты по определению квазихрупкого разрушения пенополистирольных пластин марки ПСБ-25 с некоторыми отверстиями, надрезами, а также без них. Используются плиты размером 1 × 1 м и толщиной 5 см. Определены предел прочности материала, модуль Юнга, коэффициент Пуассона, деформация до разрушения и критический коэффициент интенсивности напряжений. Все отверстия в пластинах выполнены в виде центральных отверстий круглой, эллиптической и квадратной формы.Большая ось эллиптических отверстий расположена как перпендикулярно направлениям растяжения, так и под углом 45 ° к этому направлению. Для анализа экспериментальных данных используется численный алгоритм, поскольку соотношение между размерами отверстий и пластин не соответствует известным задачам о концентрациях напряжений для бесконечных плоскостей. Используя в качестве основы критерий градиентного разрушения и метод граничных элементов (метод фиктивных напряжений), построен описанный выше алгоритм расчетной прочности. Экспериментальные данные сравниваются с результатами расчета.Применение классического критерия прочности привело к снижению оценок критических напряжений и нагрузок. По сравнению с классическим критерием использование градиентного критерия разрушения приводит к лучшему согласованию численных оценок с экспериментальными данными.

Ключевые слова: разрушение, пенополистирольные плиты, концентрация напряжений, критерий градиентного разрушения, экспериментальные данные, численные оценки, метод граничных элементов.

Журнал: прочность, разрушение и сложность, т.3, вып. 2-4, стр. 217-225, 2005

Цена: 27,50 EUR

Войдите или зарегистрируйтесь, чтобы просмотреть или приобрести мгновенный доступ

Пенополистирол ПСБ-С-25 для утепления домов (от производителя)

Тип предложения: продажаОпубликовано: 27.02.2016

Пена ПСБ-с-25 применяется для наружного утепления фасадов зданий, лоджий, балконов, стен и полов в помещениях под армированной стяжкой, кровли, при изготовлении сэндвич-панелей и т. Д.

Текущая цена за 1 куб.м ТО (плотность 9-12 кг / куб.м) – 599 грн.

Текущая цена за 1 куб.м. ГОСТ (плотность 12-15 кг / куб.м) – 899 грн.

Лист любой толщины (10,20,30,40,50,100 мм)

При значительных объемах – неплохая скидка.
Можно договориться!

Что такое cookie?

Файл cookie – это небольшой текстовый файл, который сохраняется на вашем компьютере / мобильном устройстве при посещении веб-сайта. В этом текстовом файле может храниться информация, которую веб-сайт сможет прочитать, если вы посетите его позже. Некоторые файлы cookie необходимы для правильной работы веб-сайта. Другие файлы cookie полезны для посетителя. Файлы cookie означают, что вам не нужно вводить одну и ту же информацию каждый раз, когда вы повторно посещаете веб-сайт.

Почему мы используем файлы cookie?

Мы используем файлы cookie, чтобы предложить вам оптимальный доступ к нашему сайту.Используя файлы cookie, мы можем гарантировать, что одна и та же информация не будет отображаться вам каждый раз, когда вы повторно посещаете веб-сайт. Файлы cookie также могут помочь оптимизировать работу веб-сайта. Они упрощают просмотр нашего веб-сайта.

Соответствующие организационные и технические меры используются для защиты ваших личных данных и предотвращения потери информации или противоправного поведения.

Почему мы используем файлы cookie сторонних поставщиков?

Мы используем файлы cookie от сторонних поставщиков, чтобы иметь возможность оценивать статистическую информацию в коллективных формах с помощью аналитических инструментов, таких как Google Analytics.Для этого используются как постоянные, так и временные файлы cookie. Постоянные файлы cookie будут храниться на вашем компьютере или мобильном устройстве в течение максимум 24 месяцев.

Как отключить файлы cookie?

Вы можете просто изменить настройки своего браузера, чтобы отключить все файлы cookie. Просто нажмите «Справка» и найдите «Блокировать файлы cookie». Обратите внимание: если вы отключите файлы cookie, веб-сайт может отображаться только частично или не отображаться вообще.

Вверх

Границы | Фильтрат из чашек из вспененного полистирола токсичен для водных беспозвоночных (Ceriodaphnia dubia)

Введение

Пластиковый мусор стал проблемой для морских и пресноводных местообитаний во всем мире (Kershaw and Rochman, 2015; Löhr et al., 2017). Пластиковые предметы многих типов, целые и фрагментированные, встречаются на пляжах (Browne et al., 2015), плавают на поверхности океанов (van Sebille et al., 2015) и озер (Eriksen et al., 2013), в глубокое море (Woodall et al., 2014) и большое разнообразие диких животных (Gall and Thompson, 2015). Было предложено множество решений по снижению выбросов пластика в окружающую среду. Некоторые из этих решений применяются в местном масштабе (Xanthos and Walker, 2017), в то время как другие нацелены на решение проблемы на международном уровне (Borrelle et al., 2017; Löhr et al., 2017).

В общем, не существует универсального решения для уменьшения количества пластикового мусора, и поэтому, вероятно, потребуется множество решений, работающих в тандеме. Сюда могут входить инновации в области более экологичных пластиковых изделий, новая и улучшенная инфраструктура управления отходами, глобальный фонд для помощи в оплате разработки новой инфраструктуры и устойчивых технологий, образовательные кампании, очистка и запрет на продукцию (Borrelle et al., 2017) . Запреты на одноразовые пластиковые изделия стали популярным решением, поскольку одноразовые изделия являются одними из наиболее часто встречающихся пластиковых предметов туалета на пляжах (например,g., крышки для бутылок, полиэтиленовые пакеты, пластиковые бутылки, выносные контейнеры из пенополистирола (EPS), соломинки) (Ocean Conservancy, 2017). В отношении некоторых одноразовых пластиковых предметов (например, пластиковых пакетов и микрогранул в средствах личной гигиены) запреты постоянно предлагаются и передаются по всему миру (Xanthos and Walker, 2017). EPS (часто называемый широкой публикой пенополистиролом ™) – это еще один предмет, который сейчас находится на рассмотрении в нескольких муниципалитетах (http://www.surfrider.org/pages/polystyrene-ordinances).Чтобы лучше понять, как научные данные могут использоваться в таком законодательстве, мы изучили доступную научную литературу, чтобы проанализировать доказательства о загрязнении и воздействии. Мы также провели собственные эксперименты по измерению химического выщелачивания продуктов из полистирола, контактирующих с пищевыми продуктами, и измерения токсичности фильтрата.

Что касается загрязнения, EPS обычно считается одним из основных видов мусора, собираемого с берегов и пляжей во всем мире (Garrity and Levings, 1993; Bravo et al., 2009; Ли и др., 2013; Ocean Conservancy, 2017), в том числе в Антарктиде (Convey et al., 2002). Он также был обнаружен на поверхности открытого океана (Morét-Ferguson et al., 2010) и на морском дне (Keller et al., 2010). Широко распространенное загрязнение привело к обнаружению EPS в содержимом кишечника морских беспозвоночных и позвоночных животных (Boerger et al., 2010; Schuyler et al., 2014; Jang et al., 2016). Помимо физического материала EPS, стиролы, мономерные строительные блоки полимера, обнаруживаются в океанской воде и отложениях во всем мире (Kwon et al., 2015, 2017). Поскольку полистироловый пластик считается одним из единственных источников стирола в окружающей среде, ожидается, что загрязнение будет вызвано выветриванием и выщелачиванием полистирола в океанах (Kwon et al., 2017). Кроме того, в некоторых частях мира EPS упоминается как источник других химических веществ для окружающей среды (Rani et al., 2015; Jang et al., 2017) и дикой природы (Jang et al., 2016). В Азии гексабромциклододеканы (ГБЦД) были обнаружены в буях из EPS и других потребительских товарах (Rani et al., 2014). Считается, что это загрязнение происходит из-за переработки материалов EPS с добавлением антипиренов в другие материалы, а именно в материалы, которые не контактируют с пищевыми продуктами. Тем не менее ГБЦД был обнаружен в некоторых продуктах из пенополистирола, используемых для упаковки пищевых продуктов (Rani et al., 2014). Эти результаты могут иметь последствия для людей, когда они используют продукты и / или диких животных, если продукты EPS превратятся в морской мусор и выщелачивают ГБЦД. Та же исследовательская группа обнаружила, что отложения вблизи аквакультурных хозяйств с использованием буев из EPS имеют относительно более высокие концентрации ГБЦД по сравнению с другими участками (Al-Odaini et al., 2015), а у мидий, живущих на буях EPS, есть фрагменты EPS и более высокая концентрация ГБЦД в тканях, чем у мидий, живущих на других материалах (Jang et al., 2016). Эти исследования показывают, что ГБЦД из EPS может проникать в экологические матрицы, в том числе в диких животных. В целом, нет сомнений в том, что полистирол и связанные с ним химические вещества загрязняют океаны (Kwon et al., 2015; Jang et al., 2016).

Есть опасения, что полистирол может быть более вредным, чем другие типы пластмасс, поскольку он состоит из относительно опасных химикатов (Литнер и др., 2011). Поскольку микросферы полистирола являются одним из немногих типов микропластиков, доступных в научных компаниях, в нескольких исследованиях были проведены лабораторные испытания на токсичность полистирола. Эти лабораторные исследования показывают, что микросферы из полистирола могут воздействовать на организмы. Здесь выделены только исследования с использованием более экологически значимых концентраций. Лабораторные исследования показывают, что микропластик полистирола может влиять на пищевое поведение (Besseling et al., 2012; Cole et al., 2015), вызывать потерю веса (Besseling et al., 2012) и влияют на воспроизводство (Cole et al., 2015; Sussarellu et al., 2016) у беспозвоночных. В этих исследованиях использовались микропластические частицы, поэтому неизвестно, связаны ли эти эффекты с физическими пластиковыми частицами или химическим фильтром. В других исследованиях измеряли эффекты, используя только химические вещества, относящиеся к полистиролу. Исследование токсичности фильтрата из нескольких пластиковых материалов при комнатной температуре не показало токсичности при обработке с использованием полистирольной чашки (Bejgarn et al., 2015). В документе Daphnia magna значения LC50 для 48-часовых тестов на токсичность указаны как 23 мг / л для стирола, 75 мг / л для этилбензола, 200 мг / л для бензола и 310 мг / л для толуола (LeBlanc, 1980).Тесты на острую токсичность с использованием толстоголового гольяна определили для стиролов ЛК50 10 мг / л (Cushman et al., 1997). Для стиролов эти концентрации на несколько порядков больше, чем в природе (Kwon et al., 2017).

Выщелачивание стирола и других сопутствующих химикатов является одной из причин, почему люди больше озабочены полистиролом, чем другими типами пластмасс. При определенных условиях EPS выщелачивает стирол и бензол, химические вещества, которые обладают известными токсическими свойствами (Гиббс и Маллиган, 1997; Эриксон, 2011; Андерсен и др., 2017; Ниаз и др., 2017). Есть опасения, что EPS может причинить вред, если он выщелачивает химические вещества в окружающую среду и / или в нашу пищу (Sanagi et al., 2008; Rani et al., 2014). Всемирная организация здравоохранения (ВОЗ) указывает максимально допустимый предел в 20 частей на миллиард (ppb) для стирола (World Health Organization, 2004). Количество выщелачивания стирола из полистирола в продукты питания и напитки варьируется в литературе (от примерно 1 до 300 частей на миллиард), и в нескольких исследованиях проводятся эксперименты по выщелачиванию в различных условиях, с использованием различных пищевых продуктов и / или растворителей (Tawfik and Huyghebaert, 1998), в различных условиях. периоды времени и различные температуры (Ahmad and Bajahlan, 2007; Sanagi et al., 2008). Чтобы попытаться понять концентрации воздействия, которые могут быть реалистичными для воздействия на человека, мы решили провести собственные испытания по выщелачиванию.

Нашей основной целью было лучше понять, как химические вещества выщелачиваются из продуктов из полистирола, которые вступают в контакт с пищевыми продуктами, и есть ли токсичность фильтрата. Мы провели эксперименты по выщелачиванию с обычными пищевыми матрицами, которые потребляются в упаковке из полистирола при соответствующих температурах, чтобы проверить гипотезу о том, что продукты из полистирола выщелачивают стиролы и родственные химические вещества (т.е., этилбензол, толуол, бензол, мета- и пара-ксилол, изопропилбензол и изопропилтолуол) (Ahmad and Bajahlan, 2007) в пищу, потребляемую людьми. Чтобы проверить гипотезу о том, что такие продукты выщелачивания могут быть токсичными, мы провели эксперименты по токсичности, измерив смертность и репродуктивную способность у стандартизированного тестового вида Ceriodaphnia dubia . Помимо того, что C. dubia является стандартизированным подопытным видом, он также играет важную роль в пищевых сетях пресноводных местообитаний во всем мире.

Материалы и методы

Эксперименты по выщелачиванию

Эксперименты по выщелачиванию были проведены с несколькими продуктами, изготовленными из полистирола, три из которых были из пенополистирола, а три из них не вспенивались. В число изделий из полистирола входили крышки для кофейных чашек, палочки для перемешивания, ложки, чашки из пенополистирола, миски из пенополистирола и контейнеры на вынос из пенополистирола. Все продукты были либо куплены в местных продуктовых магазинах в Торонто, Онтарио, либо переданы в дар из местных кафе и ресторанов. Если материал продукта был неопределенным, для подтверждения типа полимера использовали рамановский спектрометр HORIBA XploRA.

Жидкости и пищевые продукты были выбраны таким образом, чтобы они соответствовали тому, что предполагается использовать для каждого продукта. Это включало тесты на выщелачивание водой, растворимым кофе, растворимым кофе со сливками (10% липидов) и сахаром, куриным бульоном быстрого приготовления и быстрорастворимым соусом. Процедуры включали кофе в бумажном стаканчике с крышкой из полистирола, кофе со сливками и сахаром в чистом стеклянном стакане с палочкой из полистирола, суповый бульон в чистом стеклянном стакане с ложкой из полистирола, воду, кофе и кофе со сливками и сахаром в чашка EPS, бульон для супа в миске EPS и подливка быстрого приготовления в контейнере на вынос EPS.Во всех процедурах использовалось 250 мл жидкости, за исключением бумажного стаканчика с крышкой из полистирола (200 мл кофе), выносного контейнера из пенополистирола (50 мл подливки) и стакана из пенополистирола с водой (200 мл). Испытания на выщелачивание длились 30 минут – примерно столько же, сколько мы могли бы ожидать, что человек будет есть или пить в продукте из полистирола. Для бумажного стаканчика с крышкой из полистирола стакан опрокидывали каждые 2 мин, чтобы имитировать питье и позволить жидкости контактировать с крышкой.

Для экспериментов по выщелачиванию мы провели три отдельных испытания, используя температуры, которые реалистичны для горячей еды и напитков – –70 и 95 ° C (Brown and Diller, 2008; Таблица 1).Для испытания 1 все пищевые и жидкие матрицы были приготовлены с водой при температуре 70 ° C и контактировали с полистирольными продуктами в течение 30 мин. Все жидкие и пищевые матрицы были приготовлены, добавлены к полистироловому продукту и оставлены открытыми (за исключением крышки из полистирола) в течение 30 мин. Каждую обработку проводили в трех экземплярах ( n = 3; см. Таблицу 1 для более подробной информации). Для Испытания 2 все обработки были идентичны Испытанию 1, за исключением одной обработки, когда бульон для супа готовили при 95 ° C для чаши из EPS, и другой обработки, когда чашу из EPS нагревали в микроволновой печи в течение 3 минут до температуры 95 ° C, а затем позволяли сидеть вне микроволновой печи без накрытия в течение следующих 27 мин (таблица 1).Каждое лечение проводилось индивидуально ( n = 1). Для испытания 3 все обработки выщелачивали при 95 ° C в течение 30 минут и накрывали чашкой Петри. Чтобы смоделировать «наихудший» сценарий, чашку из пенополистирола разорвали на части и поместили в стеклянную колбу с водой, которую выдерживали при 95 ° C в течение полных 30 минут путем кипячения на горячей плите (таблица 1). Каждую обработку проводили в трех повторностях ( n = 3). В течение 30 минут жидкости с 70 ° C охлаждались примерно до 30, а жидкости с 95 ° C до 55 ° C. Сразу после 30-минутного периода выщелачивания фильтрат из каждого образца переносили в чистый стеклянный флакон без свободного пространства и хранили в течение ночи при 4 ° C.

Таблица 1 . Подробная информация обо всех вариантах обработки в экспериментах по выщелачиванию.

На следующий день были приготовлены продукты выщелачивания и проанализированы на семь летучих соединений (стирол, бензол, толуол, этилбензол, мета- и пара-ксилол, изопропилбензол и изопропилтолуол) с использованием газовой хроматографии в сочетании с масс-спектрометрией (ГХ-МС). Для Испытания 1 все образцы были проанализированы с использованием Headspace, подключенного к ГХ-МС. Для испытаний 2 и 3 все образцы были проанализированы с использованием продувки и ловушки с ГХ-МС.

Химические стандарты, используемые для анализа, были приобретены у Sigma Aldrich. Во все образцы добавляли 5 мкл суррогатного стандарта (фторбензол, d8-толуол, бромфторбензол).

Для анализа всех образцов в Испытании 1 мы использовали пробоотборник Tekmar HT3 Headspace, соединенный с газовым хроматографом Agilent 7890A с масс-спектрометром Agilent 5975C (MSD) с газом-носителем сверхчистой чистоты (гелий). 10 мл образца вводили в Tekmar HT3, а образец объемом 2 мл из свободного пространства вводили в J&W DB-VRX 20 м × 0.Пленочная колонка 18 мм × 1,0 мкм в режиме разделения (50: 1). Программа печи началась при 35 ° C, выдерживалась в течение 4 минут, увеличивалась на 14 ° C в минуту до 100 ° C, увеличивалась на 20 ° C в минуту до 220 ° C, а затем поддерживалась в течение 2,72 минуты. Agilent 5975 (МСД) работал в режиме полного сканирования (диапазон масс 34–350). Целевые аналиты были количественно определены с использованием экстрагированного иона и подтверждены с использованием времени удерживания и соотношения подтверждающих ионов. Концентрации определялись с помощью внешней калибровки с использованием суррогатных стандартов. Предел обнаружения для этого анализа составил 25 нг / мл.

Для анализа всех образцов в Испытаниях 2 и 3 использовалась система очистки и улавливания Tekmar Atomx с Vocarb 3000, соединенная с газовым хроматографом Thermo Trace и масс-спектрометром DSQII с газом-носителем сверхчистой чистоты (гелий). 20 мл образца продували непосредственно в режиме загрязнения на концентраторе продувки и ловушки Atomx, а затем вводили в пленочную колонку J&W DB-VRX 20 м × 0,18 мм × 1,0 мкм в режиме разделения (60: 1). Программа печи была такой же, как описано выше для Испытания 1. Thermo DSQII (MSD) работал в режиме полного сканирования (диапазон масс 34–350).Целевые аналиты были количественно определены с использованием экстрагированного иона и подтверждены с использованием времени удерживания. Соотношение подтверждающих ионов и концентраций определяли с помощью внешней калибровки с использованием суррогатных стандартов. Предел обнаружения для анализа с продувкой и ловушкой составлял приблизительно 1,25 нг / мл.

Вся стеклянная посуда была очищена и запечена при 250 ° C в течение 12 часов перед использованием. Лабораторные заготовки готовили для каждой матрицы образца (например, горячей воды, кофе и бульона) с использованием чистого стеклянного стакана и без продукта из полистирола.Целевые аналиты, обнаруженные в лабораторных пробах, не вычитались из концентраций, обнаруженных во всех образцах. См. Таблицы S1 и S2, где указаны концентрации всех целевых аналитов в лабораторных бланках испытаний 2 и 3, соответственно. Концентрации в лабораторных пробах для Испытания 1 не указаны, потому что все образцы были ниже предела обнаружения. Заготовки матрицы с добавками также были извлечены и обработаны с каждой последовательностью образцов для определения восстановления. В холостых пробах с добавленными матрицами извлечение семи целевых аналитов составляло от 29 до 120% для всех матриц для ГХ-МС и 67–154% для всех матриц для продувки и улавливания с помощью ГХ-МС (см. Таблицы S3 – S5 для подробные восстановления).

Испытания на токсичность фильтрата с использованием

C. dubia

Тестирование проводилось в соответствии со стандартным методом оценки выживаемости и воспроизводства пресноводных кладоцеровых C. dubia в соответствии со стандартным методом «Environment Canada and Climate Change» (EPS 1 / RM / 21; ECCC, 2007). Тестовые растворы включали разные концентрации этилбензола и фильтрата из тех же чашек из пенополистирола, которые использовались в экспериментах по выщелачиванию, описанных выше.

Этилбензол был приобретен у BDH Ltd. (чистота 99%) и использовался для приготовления исходных растворов.Исходные растворы для чашек из пенополистирола готовили путем помещения 20 разорванных чашек в 5 л лабораторной воды для разбавления (дехлорированная водопроводная вода города Торонто) в кастрюлю из нержавеющей стали и кипячения в течение 30 мин. Фильтрат готовили в день 0 (начало испытания) и хранили в бутылях из желтого стекла с минимальным свободным пространством для использования при подменах воды в каждый день испытаний на токсичность. Исходные растворы этилбензола готовили каждый день теста путем добавления 6 мкл в 1 л воды для лабораторных разбавлений и использовали для разбавлений для получения тестовых концентраций.Поскольку растворимость этилбензола в воде составляет 0,015 г / 100 мл (20 ° C), растворитель-носитель не использовался. Исходные растворы хранили в стеклянных флаконах с минимальным свободным пространством и использовали для разбавлений для получения тестовых концентраций. Номинальные испытательные концентрации этилбензола включали 5,2, 2,6, 1,3, 0,7, 0,32, 0,16 и 0,08 мг / л. Для раствора этилбензола 5,2 мг / л и фильтрата из чашки EPS фактические концентрации были измерены в растворе в начале (день 0) и в день 8 с использованием тех же методов, что и выше для продуктов выщелачивания в испытаниях 2 и 3 (i.е., используя продувку и ловушку с ГХ-МС), за исключением водного режима с продувкой 10 мл. Поскольку этот метод немного более чувствителен, предел обнаружения составляет 0,2 мкг / л. На 8-й день растворы измеряли в начале и в конце 24-часового периода (т. Е. Для измерения уменьшившейся концентрации). Измеренные концентрации этилбензола в исходном растворе 5,2 мг / л составляли 2,3 мг / л в день 0 и 4,8 мг / л в день 8. Мы отмечаем, что концентрация в день 0 была намного ниже, чем ожидалось. Только в этот день потребовалось несколько часов, прежде чем подопытных животных погрузили в раствор.Во все остальные дни это занимало всего несколько минут. Поскольку концентрация, измеренная на 8-й день, была той, которую мы ожидали, мы вполне уверены, что концентрации воздействия в тесте на токсичность были аналогичны тем, которые мы ожидали во все другие дни процедуры. Измеренная концентрация разложившегося раствора составляла 0,2 мг / л, распадаясь на 96% за 24-часовой период между обновлением тестового раствора. Вероятно, это связано с летучестью этилбензола, что помогает объяснить более низкую концентрацию исходного раствора в день 0.Измеренные концентрации в фильтрате из чашки EPS были постоянно ниже предела обнаружения для толуола, мета- и пара-ксилола, изопропилбензола и изопропилтолуола. Для стирола концентрации в исходном растворе составляли 0,6 мкг / л в день 0 и 0,8 мкг / л в день 8. Измеренная концентрация стирола в разложившемся растворе была ниже уровня обнаружения. Для бензола концентрации составляли 0,2 мкг / л (на пределе обнаружения) на 0 день и ниже предела обнаружения на 8 день. Измеренная концентрация бензола в разложившемся растворе также была ниже предела обнаружения.Для этилбензола концентрации составляли 2,4 мкг / л в день 0 и 2,1 мкг / л в день 8. Измеренная концентрация этилбензола в разложившемся растворе была ниже предела обнаружения.

C. dubia представляли собой единый генетический фонд, выращенный в Министерстве окружающей среды и изменения климата Онтарио. C. dubia культивируют при температуре 25 ± 2 ° C в течение 16 часов света / 8 часов темноты. Людей кормят ежедневно 0,5 мл одноклеточных зеленых водорослей (Pseudokirchneriella subcapitata) и 0 мл.01 мл YCT (смесь дрожжей / церофилла / форели) (ECCC, 2007). Организмы, использованные для тестирования, соответствовали критериям здоровья культуры (отсутствие эфипии), смертность расплода не превышала 20%, и в течение 7 дней до начала теста были получены выводки по крайней мере из 15 новорожденных на самку. Вода, используемая для культивирования и тестирования, представляла собой водопроводную воду города Торонто, дехлорированную слоями активированного угля, с добавлением селена (3 мкг / л) (Winner, 1989).

Для каждой из девяти обработок (т.е. семи концентраций этилбензола, выщелачивания из чашки EPS и отрицательного контроля) было десять повторов ( n = 10).Воздействие на животных длилось 8 дней. Каждая отдельная повторность состояла из тестового объема 15 мл и одной самки дафнии. Решения обновлялись ежедневно. C. dubia скармливали ежедневно во время теста, соблюдая ту же диету и рацион, что и выше. Параметры качества воды pH, проводимость, растворенный кислород (DO) и температура измерялись ежедневно. Во всех вариантах обработки, кроме выщелачивания EPS, pH составлял от 8,2 до 8,5, проводимость от 270 до 353 мкСм / см, DO от 7,6 до 9 мг / л и температура от 21.От 5 до 22,8 ° C. В фильтрате выщелачивания EPS pH составлял от 8,1 до 9,9, проводимость от 229 до 305 мкСм / см, DO от 4,6 до 8,5 мг / л и температура от 21,7 до 22,6 ° C. Животных акклиматизировали к экспериментальной системе в течение 24 часов перед началом эксперимента. Ежедневно регистрировали смертность отдельных дафний в первом поколении и количество живых новорожденных, рожденных каждый день. В целом измеряли смертность, общий размер выводка на особь и время появления первого выводка. Чтобы тест был действительным, нам требовалось 80% выживаемости и не менее 15 детенышей на самку в среднем для контрольных животных в течение 8-дневного периода тестирования.

Результаты испытаний были проанализированы статистически для определения LC50 и LC20 для этилбензола и для проверки гипотезы о том, что этилбензол и выщелачивание из чашки EPS изменят общий размер расплода. Значения LC50 и LC20 и их 95% доверительный интервал были определены с использованием метода пробит-анализа и рассчитаны с помощью калькулятора пробит-анализа, разработанного доктором Альфа Раджем (Finney, 1952). Используя GMAV (EICC, Университет Сиднея), однофакторный дисперсионный анализ ANOVA проверял различия в общем размере расплода при обработке этилбензолом ( n = 10, α = 0.05) с использованием фиксированного фактора (восемь уровней: 5,2, 2,6, 1,3, 0,7, 0,32, 0,16, 0,08 и 0 мг / л). Мы заверили, что наши данные нормально распределены через гистограммы. Мы не проводили статистические тесты на нормальность, потому что ANOVA не очень чувствительны к умеренным отклонениям от нормальности (Underwood, 1997). C-тест Кохрана (1951) показал однородность дисперсий (α = 0,05). Двухсторонний тест равных дисперсий t проанализировал различия в общем размере расплода между контролем и обработкой выщелачиванием чашки EPS ( n = 10, α = 0.05) с помощью SYSTAT 12 (SYSTAT Software, Чикаго, Иллинойс).

Результаты

Фильтры продуктов из полистирола

Для экспериментов по выщелачиванию в Испытании 1 (Таблица 1) все продукты подвергались воздействию пищевых матриц при 70 ° C без крышки в течение 30 мин. После экспериментов по выщелачиванию все матрицы анализировали с помощью газовой хроматографии-масс-спектрометрии. Для всех семи целевых аналитов концентрации были ниже предела обнаружения (25 мкг / л). Поскольку этот предел обнаружения относительно высок, мы решили повторить эксперименты и проанализировать фильтрат с помощью более чувствительного прибора с более низким пределом обнаружения (1.25 мкг / л).

Для экспериментов по выщелачиванию в Испытаниях 2 и 3 (Таблица 1) мы проанализировали все образцы, используя продувку и ловушку с помощью ГХ-МС. Эксперименты в Испытании 2 проводились без репликации, чтобы увидеть, может ли быть обнаружен какой-либо из целевых аналитов. Из-за чувствительности этого инструмента мы исключили образцы со сливками или соусом (то есть с относительно высоким содержанием липидов), чтобы не допустить чрезмерного загрязнения инструмента. Помимо обработки каждого продукта из полистирола с кофе или суповым бульоном при температуре 70 ° C, мы включили два образца с суповым бульоном при более высокой температуре в чашу из пенополистирола.Один образец нагревали в микроволновой печи в чаше из пенополистирола в течение 3 минут при температуре 95 ° C и оставляли на 27 минут. Другой кипятили до 95 ° C, горячий бульон выливали в чашу из пенополистирола и оставляли на 30 минут. Во всех пробах, обработанных при 70 ° C, все целевые аналиты были ниже предела обнаружения или на следовых уровнях, которые были аналогичны концентрации в холостом опыте (см. Таблицу S1 для всех данных из Испытания 2). Для двух образцов, прогонированных при 95 ° C, этилбензол был единственным целевым аналитом, превышающим предел обнаружения, и он не был обнаружен в холостых пробах.Концентрации этилбензола были одинаковыми в двух горячих образцах: 3,2 мкг / л в емкости из пенополистирола, обработанной в микроволновой печи, и 3,4 мкг / л в емкости из пенополистирола, не нагреваемой в микроволновой печи. Это говорит о том, что более высокая температура является причиной более высоких концентраций этилбензола в фильтрате.

Испытание 3 было проведено для повторения нашего испытания в Испытании 2 с повторением ( n = 3) и для проведения всех испытаний по выщелачиванию при более высокой температуре -95 ° C (Таблица 1). Все те же обработки в Испытании 2, за исключением чаши из EPS, нагретой в микроволновой печи, были воспроизведены в Испытании 3 при 95 ° C.Кроме того, мы добавили еще одну обработку EPS в воде, поддерживаемой при 95 ° C в течение полных 30 минут, путем кипячения на горячей плите. Для этой обработки одну чашку из EPS на реплику разорвали на части и поместили в колбу с кипящей водой на полные 30 мин. Опять же, некоторые целевые аналиты были обнаружены на следовых уровнях в некоторых образцах, но были аналогичны концентрации в холостом опыте (см. Таблицу S2 для всех данных из Испытания 3). Как и в опыте 2, этилбензол был единственным целевым аналитом, который превышал предел обнаружения и не обнаруживался в холостых пробах.Этилбензол был обнаружен во всех трех повторностях кипящей воды с EPS в концентрациях 1,5, 1,6 и 1,5 мкг / л, кофе с EPS в 1,3, 1,4 и 1,4 мкг / л и бульона с EPS в концентрациях 1,6, 1,8, и 2,6 мкг / л. В целом, EPS выщелачивает больше, чем другие протестированные продукты из полистирола, а суповой бульон вызывает большее выщелачивание, чем горячий кофе или вода.

Токсичность в

C. dubia

При всех обработках не было явной кривой ответа. Это может быть связано с высокой летучестью этилбензола.Более высокие концентрации не всегда приводили к большему отклику. Общая смертность колебалась от 10 до 70% (таблица 2; данные о смертности см. В таблице S6). Не было разницы в смертности между контролем и двумя самыми низкими концентрациями этилбензола (0,16 и 0,08 мг / л), при этом смертность всех трех составляла 10%. Одна обработка этилбензолом, 0,65 мг / л, привела к 20% летальности. Смертность в фильтрате из чашки EPS и в обработках этилбензолом 0,325, 1,3 и 5,2 мг / л составила 40% смертности – в четыре раза больше, чем в контроле, и в два раза выше критериев приемлемости в этом хроническом тесте.Самая высокая смертность была при обработке этилбензолом 2,6 мг / л, при 70% смертности. Для этилбензола расчетная ЛК50 составляла 14 мг / л (95% доверительный интервал 3,5–61 мг / л), а расчетная ЛК20 составляла 0,21 мг / л (95% доверительный интервал 0,05–0,9 мг / л).

Таблица 2 . Данные о хронической токсичности этилбензола и фильтрата EPS в C. dubia .

Для всех обработок среднее время появления первого выводка варьировалось от 4,2 до 5,9 дней (таблица 2; все репродуктивные данные см. В таблице S7).Время появления первого выводка составляло от 4,2 до 4,9 дня для всех обработок, за исключением обработок фильтрата 0,325 мг / л и чашки EPS. Для этих двух обработок время появления первого выводка составило 5,7 ± 1,4 и 5,9 ± 1,2 дня соответственно – примерно на целый день позже контрольной обработки (4,8 ± 1 дня).

По всем обработкам средний общий размер выводка составлял от 5 до 15 потомков. Для общего числа потомков не было существенной разницы между обработками этилбензолом ( p = 0,17; Рисунок 1).Наблюдалась значительная разница в общем количестве потомства между фильтратом из чашки EPS и контрольной обработкой ( p = 0,01), при этом общий размер выводка C. dubia , подвергнутый выщелачиванию из чашки EPS, был значительно меньше, чем у C. .. dubia в контрольной обработке (фиг. 2). Общий средний размер выводка для C. dubia в контрольной обработке составлял 15 ± 9 потомков, тогда как общий средний размер выводка для C. dubia при обработке фильтрата из чашки EPS составлял 5 ± 5 потомков.

Рисунок 1 . Общий размер выводка C. dubia , подвергнутых воздействию различных концентраций этилбензола и отрицательного контроля. График в виде прямоугольников и усов отображает пятизначную сводку данных об общем размере выводка для каждой обработки этилбензолом от наименьшей до наибольшей концентрации (мг / л) с отрицательным контролем справа. Полоса в середине каждого прямоугольника представляет собой медианное значение, верх и низ прямоугольника – нижний и верхний квартили (25 и 75%), а усы – минимальное и максимальное значения.

Рисунок 2 . Общий размер выводка C. dubia , подвергнутых выщелачиванию из чашки EPS и отрицательному контролю. Каждая полоса представляет собой средний общий размер выводка каждой обработки, а столбцы ошибок представляют собой стандартное отклонение.

Обсуждение

Здесь мы проверили, выщелачивают ли продукты из полистирола химические вещества в матрицы пищевых продуктов и напитков при реалистичных сценариях воздействия и приводят ли их выщелачивание к токсичности для пресноводного зоопланктона.

Низкие уровни выщелачивания летучих соединений из продуктов из полистирола во время использования

Мы обнаружили химические продукты выщелачивания только в ходе испытаний, проведенных при 95 ° C, и единственным химическим веществом, которое было достоверно обнаружено в фильтрах, был этилбензол. Этилбензол присутствовал в концентрациях от 1,3 до 3,4 мкг / л. При испытаниях по выщелачиванию самые высокие концентрации были в суповом бульоне. В целом это говорит о том, что температура оказывает значительное влияние на количество химических веществ, выщелачиваемых из полистирольных продуктов, и эта тенденция была продемонстрирована в других исследованиях (Tawfik and Huyghebaert, 1998; Ahmad and Bajahlan, 2007; Sanagi et al., 2008). Это также предполагает, что матрицы с липидами (бульон из куриного супа) вызывают большее вымывание или лучше удерживают летучие продукты выщелачивания, чем матрицы без липидов (вода и кофе). Эта тенденция также была обнаружена в предыдущем исследовании (Tawfik and Huyghebaert, 1998). Кроме того, наши результаты показывают, что пенополистирол выщелачивает больше, чем продукты из невспененного полистирола, такие как столовые приборы из полистирола и крышки для кофейных чашек.

Здесь мы стремились провести эксперименты по выщелачиванию в сценариях, которые реалистичны для того, как каждый продукт используется для еды и питья.Температуры, использованные в этом исследовании, варьировались от 70 до 95 ° C (Brown and Diller, 2008), и продукты не подвергались воздействию фильтрата более 30 минут. В этих условиях концентрации фильтрата для стирола и этилбензола были ниже пределов, принятых ВОЗ: 20 частей на миллиард для стирола и 300 частей на миллиард для этилбензола (Всемирная организация здравоохранения, 2004). Концентрации этилбензола в наших экспериментах были на два порядка ниже предела, признанного приемлемым Всемирной организацией здравоохранения (2004 г.).Другие исследования, в которых используются реалистичные условия выщелачивания, обнаружили концентрации, которые действительно вызывают опасения для здоровья человека. Sanagi et al. (2008) обнаружили концентрации стирола в диапазоне от 45 до 293 частей на миллиард в воде при условиях выщелачивания при 24–80 ° C в течение 30 минут в чашке из полистирола. Tawfik и Huyghebaert (1998) обнаружили концентрацию стирола 24 частей на миллиард в цельном молоке при температуре 40 ° C в течение 24 часов и в мороженом при температуре -10 ° C в течение 30 дней в полистирольных стаканчиках.

В этом исследовании мы нацелены на ряд летучих химикатов, связь которых с полистиролом и / или EPS в предыдущих исследованиях была подтверждена.Как и в случае любого химического анализа, в этих полистирольных продуктах могут присутствовать другие химические вещества, которые мы не исследовали. Например, Rani et al. (2014) обнаружили антипирены в продуктах из полистирола в концентрациях от 24 до 199 нг / г (Rani et al., 2014).

Токсичность фильтрата из пищевых контейнеров из пенополистирола

Поскольку этилбензол был единственным химическим веществом, которое было обнаружено в количественных количествах в наших экспериментах по выщелачиванию, мы сосредоточились на этилбензоле в наших тестах на токсичность.Кроме того, поскольку казалось, что пенополистирол выщелачивает больше, чем другие продукты, мы включили обработку, которая состояла из всего фильтрата из чашки пенополистирола. Эта обработка была включена, чтобы определить, может ли быть какая-либо токсичность из-за химикатов, которые мы не выбрали для анализа.

Для тестов на токсичность с использованием нескольких концентраций этилбензола более высокие концентрации не всегда приводили к более сильным эффектам (таблица 2). Это могло быть связано с тем, что этилбензол является летучим химическим веществом, и поэтому концентрации во флаконах варьировались в зависимости от наблюдаемых нами быстрых скоростей распада.Здесь расчетная LC50 составляла 14 мг / л, а расчетная LC20 составляла 210 мкг / л. Эти концентрации на несколько порядков превышают этилбензол, измеренные в наших испытаниях по выщелачиванию. Мы также не наблюдали значительных различий в репродуктивной продукции среди всех обработок этилбензолом. Эти результаты предполагают, что продукты выщелачивания из всех наших испытаний по выщелачиванию не токсичны. Однако результаты лечения чашкой из пенополистирола свидетельствуют об обратном.

Смертность, наблюдаемая при обработке с выщелачиванием из чашки EPS, составила 40%, что в четыре раза больше, чем в отрицательном контроле.Более того, время появления первого выводка было более чем на 1 день позже, чем в контроле, и мы наблюдали значительное снижение репродуктивной продукции. Средний общий выводок при обработке EPS был в три раза меньше, чем в контроле. Такие репродуктивные эффекты могут привести к эффектам на уровне популяции. Аналогичные эффекты, демонстрирующие снижение воспроизводства у устриц (Sussarellu et al., 2016) и морских видов зоопланктона (Cole et al., 2015), подверженных воздействию полистирола, также наблюдались.

Хотя мы наблюдали значительную токсичность у C. dubia , которые подвергались воздействию выщелачивания EPS, мы не знаем, что привело к наблюдаемым эффектам. Одно из возможных объяснений – это высокий pH, измеренный в тестовом растворе в различные моменты времени. Другое возможное объяснение – химическое вещество или комбинация химикатов, на которые мы не нацелены в наших анализах. Наши результаты подчеркивают важность измерения токсичности всего образца по сравнению с простым измерением токсичности по одному целевому химическому веществу за раз.Весь образец дает более целостное представление о том, какие типы эффектов мы можем наблюдать в реальном мире. Будущие исследования должны быть нацелены на проведение тестов на токсичность всего фильтрата с использованием большего количества продуктов, при различных сценариях и измерения более разнообразных эффектов. Различные сценарии могут включать сравнение фильтрата при разных температурах и в морской и пресной воде.

Последствия для политики

При планировании законодательства необходимо учитывать множество факторов, и все они должны быть подкреплены научными данными.Важно учитывать последствия для здоровья человека, дикой природы и устойчивости. Здесь мы сосредоточились на последствиях для здоровья человека путем измерения выщелачивания и последствий для дикой природы путем измерения токсичности для пресноводных беспозвоночных. Что касается здоровья человека, результаты наших экспериментов по выщелачиванию не предполагают, что полистирол небезопасен для человека. Однако наши результаты противоречат результатам других исследований, в которых содержание химических продуктов выщелачивания действительно превышает безопасные пределы (Tawfik and Huyghebaert, 1998; Sanagi et al., 2008). Таким образом, необходимо больше доказательств. В отношении дикой природы наши и другие результаты (Cole et al., 2015; Sussarellu et al., 2016) предполагают, что увеличение накопления полистирола в морской и пресноводной среде может привести к эффектам на уровне популяции у беспозвоночных. Что касается устойчивости, данные должны собираться от колыбели до могилы, чтобы определить, как показатели устойчивости для полистирола и пенополистирола сравниваются с другими типами материалов.

Взносы авторов

CR, CT и RR разработали эксперименты по выщелачиванию.CR, DP и KS разработали эксперименты на токсичность. CT провел эксперименты по выщелачиванию. KS, DP и HD провели эксперименты на токсичность. Химический анализ проводился и анализировался RR, CT, JD и GS. Данные были статистически проанализированы CR. Первоначальный черновик рукописи был написан CR и CT. Все авторы участвовали во всех проектах рукописи.

Заявление о конфликте интересов

Авторы заявляют, что исследование проводилось при отсутствии каких-либо коммерческих или финансовых отношений, которые могут быть истолкованы как потенциальный конфликт интересов.

Благодарности

Грант от 5Gyres поддержал эту работу. Сертификат NSERC USRA был присужден CT и Дону Джексону во время эксперимента. Мы благодарим Xianming Zhang за помощь в проведении химического анализа, а также E. Reiner и P. Helm за советы относительно дизайна эксперимента, все из Министерства окружающей среды и изменения климата Онтарио. Благодарим Э. Го за помощь в лаборатории.

Дополнительные материалы

Дополнительные материалы к этой статье можно найти в Интернете по адресу: https: // www.frontiersin.org/articles/10.3389/fmars.2018.00071/full#supplementary-material

Список литературы

Ахмад, М., и Баджахлан, А.С. (2007). Выщелачивание стирола и других ароматических соединений в питьевой воде из бутылок из полистирола. J. Environ. Sci . 19, 421–426. DOI: 10.1016 / S1001-0742 (07) 60070-9

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Аль-Одаини, Н. А., Шим, В. Дж., Хан, Г. М., Янг, М., и Хонг, С. Х. (2015). Обогащение гексабромциклододеканом прибрежных отложений вблизи аквакультуры и очистных сооружений в полузамкнутом заливе в Южной Корее. Sci. Tot. Окружающая среда . 505, 290–298. DOI: 10.1016 / j.scitotenv.2014.10.019

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Андерсен, М. Е., Крузан, Г., Блэк, М. Б., Пендсе, С. Н., Додд, Д., Бас, Дж. С. и др. (2017). Оценка молекулярных инициирующих событий (MIEs), ключевых событий (KEs) и модулирующих факторов (MFs) для стирольных реакций в легких мышей с использованием профилей экспрессии полногеномных генов после однодневных и многонедельных воздействий. Toxicol. Прил.Pharmacol. 335, 28–40. DOI: 10.1016 / j.taap.2017.09.015

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Бейгарн, С., Маклауд, М., Богдал, К., и Брейтхольц, М. (2015). Токсичность фильтрата от выветривания пластмасс: предварительное скрининговое исследование с использованием Nitocra spinipes. Chemosphere 132, 114–119. DOI: 10.1016 / j.chemosphere.2015.03.010

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Бесселинг, Э., Вегнер, А., Фоекема, Э. М., ван ден Хевель-Грев, М. Дж., И Кельманс, А. А. (2012). Влияние микропластика на приспособленность и биоаккумуляцию ПХБ бородавчатым червем Arenicola marina (L.). Environ. Sci. Technol. 47, 593–600. DOI: 10.1021 / es302763x

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Бургер, К. М., Латтин, Г. Л., Мур, С. Л., и Мур, К. Дж. (2010). Проглатывание пластика планктонными рыбами в Центральном круговороте северной части Тихого океана. мар.Загрязнение. Бык. 60, 2275–2278. DOI: 10.1016 / j.marpolbul.2010.08.007

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Боррелл С. Б., Рохман К. М., Либуарон М., Бонд А. Л., Люшер А., Брэдшоу Х. и др. (2017). Мнение: зачем нам международное соглашение о загрязнении морской среды пластиком. Proc. Natl. Акад. Sci. США . 114, 9994–9997. DOI: 10.1073 / pnas.1714450114

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Браво, М., де лос Анхелес Гальярдо, М., Луна-Хоркера, Г., Нуньес, П., Васкес, Н., и Тиль, М. (2009). Антропогенный мусор на пляжах в юго-восточной части Тихого океана (Чили): результаты национального исследования при поддержке добровольцев. Мар. Загрязнение. Бык . 58, 1718–1726. DOI: 10.1016 / j.marpolbul.2009.06.017

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Браун, М. А., Чепмен, М. Г., Томпсон, Р. К., Амарал Зеттлер, Л. А., Джамбек, Дж., И Маллос, Н. Дж. (2015). Пространственные и временные модели выброшенных на берег морских отбросов в приливной зоне: есть ли картина глобальных изменений? Environ.Sci. Технол . 49, 7082–7094. DOI: 10.1021 / es5060572

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Коул, М., Линдек, П., Филман, Э., Холсбанд, К., и Галлоуэй, Т. С. (2015). Влияние микропластиков из полистирола на питание, функцию и плодовитость морской копеподы Calanus helgolandicus. Environ. Sci. Technol. 49, 1130–1137. DOI: 10.1021 / es504525u

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Конвей, П., Барнс, Д., Мортон, А. (2002). Накопление мусора на берегах океанических островов дуги Скотия в Антарктиде. Полярная биол . 25, 612–617. DOI: 10.1007 / s00300-002-0391-x

CrossRef Полный текст | Google Scholar

Кушман, Дж. Р., Раусина, Г. А., Крузан, Г., Гилберт, Дж., Уильямс, Э. и Харрасс, М. К. (1997). Оценка опасности экотоксичности стирола. Экотокс. Environ. Saf. 37, 173–180. DOI: 10.1006 / eesa.1997.1540

PubMed Аннотация | CrossRef Полный текст | Google Scholar

ECCC (2007). Биологический метод испытаний: испытание на воспроизводство и выживаемость с использованием кладоцера Ceriodaphnia dubia. Отчет EPS / RM / 21, 2-е издание. ECCC.

Эриксон Б. Э. (2011). Формальдегид, предупреждение рака стирола. Chem. Англ. Новости 89:11. DOI: 10.1021 / cen-v089n025.p011

CrossRef Полный текст

Эриксен, М., Мейсон, С., Уилсон, С., Бокс, К., Зеллерс, А., Эдвардс, В. и др. (2013). Загрязнение микропластиком поверхностных вод Великих Лаврентийских озер. Мар. Загрязнение. Бык . 77, 177–182. DOI: 10.1016 / j.marpolbul.2013.10.007

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Финни, Д. Дж. (1952). Пробит-анализ, 2-е изд. Кембридж, Великобритания: Издательство Кембриджского университета.

Гаррити, С. Д., и Левингс, С. К. (1993). Морской мусор вдоль Карибского побережья Панамы. Мар. Загрязнение. Бык . 26, 317–324. DOI: 10.1016 / 0025-326X (93)
-4

CrossRef Полный текст | Google Scholar

Янг, М., Шим, В. Дж., Хан, Г. М., Рани, М., Сонг, Ю. К., и Хонг, С. Х. (2016). Обломки пенополистирола как источник опасных добавок для морских организмов. Environ. Sci. Technol. 50, 4951–4960. DOI: 10.1021 / acs.est.5b05485

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Янг, М., Шим, В. Дж., Хан, Г. М., Рани, М., Сонг, Ю. К., и Хонг, С. Х. (2017). Широко распространенное обнаружение бромированного антипирена, гексабромциклододекана, в морском мусоре и микропластиках из вспененного полистирола из Южной Кореи и прибрежных регионов Азиатско-Тихоокеанского региона. Environ. Загрязнение. 231, 785–794. DOI: 10.1016 / j.envpol.2017.08.066

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Келлер, А. А., Фру, Э. Л., Джонсон, М. М., Саймон, В., и МакГурти, К. (2010). Распределение и численность антропогенного морского мусора вдоль шельфа и склона западного побережья США. Мар. Загрязнение. Бык . 60, 692–700. DOI: 10.1016 / j.marpolbul.2009.12.006

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Кершоу, П.Дж. И Рохман К. М. (2015). Источники, судьба и влияние микропластиков в морской среде: часть 2 глобальной оценки . Отчеты и исследования-ИМО / ФАО / ЮНЕСКО-МОК / ВМО / МАГАТЭ / Объединенная группа экспертов ООН / ЮНЕП по научным аспектам защиты морской среды (ГЕСАМП) англ. 93.

Google Scholar

Квон, Б. Г., Амамия, К., Сато, Х., Чунг, С. Ю., Кодера, Ю., Ким, С. К. и др. (2017). Мониторинг олигомеров стирола как индикатора загрязнения полистирола пластмассой в северо-западной части Тихого океана. Химия 180, 500–505. DOI: 10.1016 / j.chemosphere.2017.04.060

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Квон, Б. Г., Коидзуми, К., Чунг, С. Ю., Кодера, Ю., Ким, Дж. О., и Сайдо, К. (2015). Глобальный мониторинг олигомеров стирола как нового химического загрязнения в результате загрязнения морской среды полистиролом. J. Hazard. Матер. 300, 359–367. DOI: 10.1016 / j.jhazmat.2015.07.039

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Ли, Дж., Hong, S., Song, Y.K, Hong, S.H., Jang, Y.C., Jang, M., et al. (2013). Взаимосвязи между обилием пластикового мусора разного размера на пляжах Южной Кореи. Мар. Загрязнение. Бык . 77, 349–354. DOI: 10.1016 / j.marpolbul.2013.08.013

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Литнер Д., Ларссон А. и Дэйв Г. (2011). Ранжирование и оценка опасности для окружающей среды и здоровья пластиковых полимеров по химическому составу. Sci. Тотал Энвирон . 409, 3309–3324. DOI: 10.1016 / j.scitotenv.2011.04.038

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Лёр, А., Савелли, Х., Бунен, Р., Кальц, М., Рагас, А., и Ван Беллегхем, Ф. (2017). Решения для глобального загрязнения морского мусора. Curr. Opin. Environ. Суст . 28, 90–99. DOI: 10.1016 / j.cosust.2017.08.009

CrossRef Полный текст | Google Scholar

Море-Фергюсон, С., Лоу, К. Л., Проскуровски, Г., Мерфи, Э. К., Пикок, Э. Э. и Редди, К. М. (2010). Размер, масса и состав пластикового мусора в западной части Северной Атлантики. Мар. Загрязнение. Бык . 60, 1873–1878. DOI: 10.1016 / j.marpolbul.2010.07.020

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Niaz, K., Hassan, F. I., Mabqool, F., Khan, F., Momtaz, S., Baeeri, M., et al. (2017). Влияние воздействия стирола на параметры плазмы, молекулярные механизмы и экспрессию генов в островковых клетках модели крысы. Environ. Toxicol. Pharmacol. 54, 62–73. DOI: 10.1016 / j.etap.2017.06.020

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Рани М., Шим В. Дж., Хан Г. М., Джанг М., Аль-Одаини Н. А., Сонг Ю. К. и др. (2015). Качественный анализ добавок в пластиковый морской мусор и его новые продукты. Arch. Environ. Против. Токсикол . 69, 352–366. DOI: 10.1007 / s00244-015-0224-x

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Рани, М., Шим, В. Дж., Хан, Г. М., Янг, М., Сонг, Ю. К., и Хонг, С. Х. (2014). Гексабромциклододекан в потребительских товарах на основе полистирола: свидетельство нерегулируемого использования. Химия 110, 111–119. DOI: 10.1016 / j.chemosphere.2014.02.022

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Санаги, М. М., Линг, С. Л., Насир, З., Ибрагим, В. А. У., и Абу Наим, А. (2008). Определение остаточных летучих органических соединений, мигрировавших из упаковки пищевых продуктов из полистирола в имитатор пищевых продуктов, методом твердофазной микроэкстракции с газовой хроматографией в свободном пространстве. Malays. J. Anal. Sci. 12, 542–551.

Google Scholar

Шайлер, К., Хардести, Б. Д., Уилкокс, К., и Таунсенд, К. (2014). Глобальный анализ антропогенного попадания мусора морскими черепахами. Conser. Биол . 28, 129–139. DOI: 10.1111 / cobi.12126

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Sussarellu, R., Suquet, M., Thomas, Y., Lambert, C., Fabioux, C., Pernet, M. E., et al. (2016). На воспроизводство устриц влияет воздействие микропластиков из полистирола. Proc. Natl. Акад. Sci. США . 113, 2430–2435. DOI: 10.1073 / pnas.151

13

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Андервуд, А. Дж. (1997). Эксперименты в области экологии: их логический план и интерпретация с использованием дисперсионного анализа . Кембридж, Великобритания: Издательство Кембриджского университета.

Google Scholar

van Sebille, E., Wilcox, C., Lebreton, L., Maximenko, N., Hardesty, B.D., Van Franeker, J.A., et al. (2015).Глобальный перечень небольшого плавающего пластикового мусора. Environ. Res. Lett. 10: 124006. DOI: 10.1088 / 1748-9326 / 10/12/124006

CrossRef Полный текст | Google Scholar

Победитель, Р. У. (1989). Множественные тесты продолжительности жизни для определения питательной ценности нескольких диет и вод для выращивания Ceriodaphnia dubia . Environ. Toxicol. Chem. 8, 513–520. DOI: 10.1002 / etc.5620080608

CrossRef Полный текст | Google Scholar

Вудалл, Л.К., Санчес-Видаль, А., Каналс, М., Патерсон, Г. Л., Коппок, Р., Слейт, В. и др. (2014). Глубокое море является основным стоком для микропластикового мусора. R. Soc. Откройте Sci . 1: 140317. DOI: 10.1098 / RSOS.140317

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Всемирная организация здравоохранения (2004 г.). Руководство по качеству питьевой воды [M], 3-е изд. Всемирная организация здравоохранения.

Ксантос, Д., Уокер, Т. Р. (2017). Международная политика по сокращению загрязнения морской среды пластиком от одноразового пластика (пластиковые пакеты и микрошарики): обзор. Мар. Загрязнение. Бык . 118, 17–26. DOI: 10.1016 / j.marpolbul.2017.02.048

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Положение об использовании пенополистирола | Эйвон, CO

28 января городской совет Эйвона единогласно принял Постановление № 19-11, запрещающее вынос пищевых контейнеров из пенополистирола (т. Е. Пенополистирола) для готовых продуктов. Дата вступления в силу Постановления № 19-11 – 1 января 2021 года. Постановление

№ 19-11 обусловлено отменой Пересмотренного Закона штата Колорадо № 25-17-104, запрещающего регулирование пластмассовых изделий местными органами власти.Законопроект Сената 20-010 об отмене запрета на регулирование местными органами власти пластмасс был внесен 8 января. Сенатор Керри Донован и представители Мэг Фройлич и Алекс Вальдес спонсировали законопроект Сената 20-010.

Постановление № 19-11 было первоначально предложено в 2017 году, затем было отложено, пока городские власти сосредоточились на введении запрета на использование пластиковых пакетов и сбора за бумажные пакеты в размере 0,10 доллара США. Запрет на контейнеры для пищевых продуктов из вспененного полистирола был конкретной рекомендацией в Плане действий по борьбе с изменением климата на 2016 год, принятом муниципалитетом Эйвон, округ Игл, и другими участниками Совместной инициативы по борьбе с изменением климата.

Законодательное собрание штата Колорадо также рассматривает запрет на использование контейнеров из пенополистирола для приготовления пищи. 21 января 2020 года был внесен законопроект № 20-1162 «О запрете пищевых предприятий на использование полистирола».

Если у вас есть какие-либо вопросы, вы можете связаться с городским менеджером Эриком Хейлом.


Резюме

19 ноября городской совет Эйвона принял в первом чтении постановление, которое, если оно будет одобрено во втором чтении 28 января, будет запрещать поставщикам продуктов питания использовать одноразовую посуду из пенополистирола (т.е. Пенополистирол) при предоставлении готовой еды своим покровителям. Общественные слушания и второе чтение этого постановления назначены на заседание городского совета 28 января.

Эта последняя инициатива связана с принятием городским советом Плана действий по борьбе с изменением климата для сообщества округа Игл, который отражает твердую приверженность сокращению выбросов парниковых газов в сообществе и даже говорит о сокращении использования пенополистирола. Пенополистирол, также известный как EPS или пенополистирол, является обычным загрязнителем и угрозой для природных экосистем, который распадается на более мелкие, не поддающиеся биологическому разложению куски, которые трудно очистить и которые могут нанести вред морской жизни и другим животным.Целью предложенного постановления является уменьшение количества мусора из пенополистирола, содержащегося в кухонной посуде, в окружающей среде и достижение экологических целей города. Городскому совету важно, чтобы вы знали о предложении и имели возможность узнать о предлагаемых изменениях и принять участие в обсуждении. Следующая информация предназначена для достижения этих целей.


8 января 2020 года сенатор Керри Донован и представители Мэг Фройлих и Алекс Вальдес внесли в Сенат закон 20-010 об отмене запрета на регулирование пластмассовых изделий местными органами власти.В случае принятия этот законопроект Сената разъяснит, что местные органы власти имеют законные полномочия регулировать пластмассы, включая пенополистирол. В Постановлении № 19-11 прямо указано, что оно не вступит в силу до тех пор, пока Устав Колорадо не будет пересмотрен, чтобы уточнить, что местные органы власти имеют право регулировать пластмассы. Как предлагается в настоящее время, постановление вступит в силу только в том случае, если пересмотренный статут штата Колорадо 25-17-104 будет отменен Генеральной ассамблеей штата Колорадо во время законодательной сессии 2020 года.Этот статут штата запрещает местным органам власти требовать или запрещать «использование или продажу определенных типов пластмассовых материалов или продуктов», а также ограничивать или предписывать «контейнеры, упаковку или маркировку любых потребительских товаров». Персоналу было поручено уведомить законодателей нашего штата, Муниципальную лигу Колорадо, Ассоциацию лыжных городов Колорадо и других партнеров о координации действий по отмене закона. Городской совет единогласно проголосовал за немедленное запрещение использования пенополистирола и других одноразовых пластиковых изделий на территории города.Этот запрет распространяется на все специальные мероприятия, проводимые на территории города.

Предлагаемое постановление

Предлагаемое постановление запрещает поставщикам продуктов питания в городе Эйвон использовать одноразовую посуду из EPS при предоставлении «готовой еды». Наиболее важные моменты постановления, заслуживающие особого внимания, следующие:

  • Это постановление вступает в силу с даты вступления в силу любого законопроекта, отменяющего Раздел 25-17-104, C.R.S. или иным образом изменяя Раздел 25-17-104 C.Р.С. таким образом, чтобы город имел право ограничивать использование поставщиками продуктов питания одноразовой посуды из пенополистирола.
  • «Готовая пища» означает пищу или напитки, которые обслуживаются, упаковываются, готовятся, нарезаны, нарезаны, смешаны, сварены, заморожены, отжаты или приготовлены иным образом.
  • Поставщик продуктов питания определяется как «любой продавец, предприятие, организация, юридическое лицо, группа или отдельное лицо, включая лицензированные предприятия розничной торговли продуктами питания, которые предоставляют готовую пищу на уровне розничной торговли.«Это включает в себя все типы заведений общественного питания, рестораны с полным спектром услуг, а также рестораны быстрого питания.
  • Продавцам продуктов питания будет запрещено использовать одноразовую посуду для общественного питания, включая, помимо прочего, тарелки, чашки, миски, подносы и откидные или закрытые контейнеры, также известные как раскладушки, сделанные из пенополистирола. Это не касается соломинок, посуды или крышек для чашек, а также одноразовой упаковки для неприготовленных продуктов.
  • Предлагаемое постановление не распространяется на расфасованные пищевые продукты, то есть на любые обработанные пищевые продукты с надлежащей маркировкой, расфасованные для предотвращения любого прямого контакта человека с пищевыми продуктами при распространении их производителем.

    Альтернативные контейнеры


    Альтернативы одноразовой посуде из пенополистирола, которая менее вредна для окружающей среды, включают многоразовые контейнеры и компостируемые предметы. Эти альтернативы иногда можно купить по конкурентоспособным ценам, но обычно они в 2-4 раза дороже за единицу по сравнению с продуктами из пенополистирола. Щелкните ЗДЕСЬ, чтобы просмотреть сравнение цен на различную посуду из пенополистирола и из ориентированного полистирола и компостируемых / биоразлагаемых материалов.Хорошо работающая компостируемая посуда для общественного питания доступна от множества производителей, обычно через поставщиков, которые предлагают широкий спектр продуктов для общественного питания. Щелкните ЗДЕСЬ, чтобы просмотреть список поставщиков, которые продают перерабатываемую и компостируемую посуду для общественного питания. Если предложенное постановление будет принято, список предназначен для помощи поставщикам продуктов питания Avon, которые в настоящее время не соблюдают предложенное постановление.

    Furo mberi: tsananguro, kupatsanura, kugadzwa

    Тарифы, нокути пекугара кудзииса кунорамба кукура, уйе муньяя ино, ванху вакатанга куфунга симба-купонеса немикана.Вакаванда изолировал дзаво дзокугара уе дзимба. Kushandiswa ichi furo mberi, izvo vaiona imwe zvakanakisisa mabasa aya. Изви звинху анонзиво полистирол фуро. Его кугадзирва квачо яказокудзиридзва муна 1928, аси муна вакаванда кугадзирва чигадзирва ичи акапинда 1937. Уэ чии чимве чинозивиканва памусоро чинобудирира купутира звинху?

    Nhoroondo furo pakati nokugadzirwa

    Muna 1839, yokuGermany vemishonga anokwanisa ari muitiro kuedza zvinonhuwira, случайно вакагамучира стирол.Zvadaro, pashure pokudzidza akanga awana nefuma, Эдвард Саймон акачеречедза кути jikichira fuma papera nguva pachavo var chisimbiso uye kukava chinhu chakafanana mondo. Черо кукоша хуношанда памусоро мишонга ири йокутанга кваке акаона. Fuma pakuzivikanwa se оксид стирола, uye zvakawanda vakanga kumbobvira kuroorana.

    To ichi akanga adzoka 1845. Styrene vanofarira mishonga Blyth uye Hoffman.

    Somuenzaniso, nyanzvi yokuGermany uye England ambopedza pachake kuedza kwavo uye kutsvakurudza uye pakuitika akawana kuti styrene iri dzikwanise mondo pasinaxygen.Блит уе фон Хоффманн акаритумидза метастиролом. Zvadaro, makore 21 gare gare, Simbiso muitiro anonzi “полимеризация”.

    Муна 20-х годов wekupedzisira remakore, мишонга немецкий Герман Штаудингер akaita rinokosha zvinoshamisa. Panguva muchidziisa цепи стирола rinotanga maitiro umo макромолекулярные ngetani разновидности aumba. Izvi zvakawanikwa ipapo raishandiswa zvaAtemisi Polymers siyana uye mapurasitiki.

    Пена maindasitiri kugadzira

    Происхождение использования стирола muitiro anoitwa vatsvakurudzi Компания Dow Chemical.Коммерческий полистирол kweShanduro zvakatangwa Basf. Mumakore 30 mainjiniya zvave uye yakasimbiswa kugadzirwa полимеризованный стирол мичина. Muna 1949 iye akatambira mvumo nokuda kwezvifananidzo zvaAtemisi pellets, вспененный пентан pamwe. Zvadaro, pahwaro mukutanga ezvokutengeserana kugadzirwa ane zvinhu zvakadai полистирол фуро Франция.

    Sei kubereka nayo?

    Мбиши звакашандисва ари полистирол марозари. Кути проложить масеро вачишандиса анокоша реагенты кути вспенить звинху.

    В гранулы падариро вокутанга окувана акадурура кува Хоппер, умо пре-куведзера. В гранулах кува идентифицирована химиро. Kuti tiwane zvinobudirira nokupisa изоляция zvinhu pamwe yakaderera arambe achirema, izvi inodzokorwa kakawanda.

    Поза шариков вари кунгорамба. Между matanho anopupuma marozari vakaiswa chaiyo Hopper, apo kwemaawa 12-24 kudzikamisa kumanikidzwa mukati granules uye nokuomesa kunoitika.

    The chigadzirwa iri ipapo raizoiswa chaiyo Kuumbwa muchina, apo pasi pokudzora yakakwirira tembiricha hwemvura chokubuda kunotangira.Гранулы вари zvakakwana yakatetepa ari chakuvhuvhu, panguva yakakwirira tembiricha akanamatirana pamwe chete apo ukaramba chimiro chayo pashure kutonhora.

    Блокирует кути кунокоша сайзи, акатема мутемо хукуру. Звисиней, асати звинху изви акаиса звенгува окученгетера. In kugadzirwa furo France ndiyo kuwana mwando, uye kunyange kugura chete hazvishandi. Пане вавири якакурумбира мабикирво купутира. суспензия ichi, uyewo поляризация yairema. Munguva Kishi nyika, Европа и Америка vakabudirira kushandiswa zvose wokutanga nzira yechipiri.

    пенополистирол купатсанура пакати ракаведзерва

    Нхаси, купутира ичи чакагадзирва звакаванда йепамусоро рузиво, изво акабвумира кувандудза звикуру эхупфуми квемашоко ачо. Полистирол Saka, nhasi, berekai kuwedzerwa. anopupuma muitiro iri rakatanga achishandisa yeHydrocarbon. Это anova kugadzikana pamusoro kudziyisa, uye полистирол marozari achazvimba uye kuramba pamwechete.

    фуро мбери вари кусиянисва кугадзира мичина уйе вакаговерана немапока. kuputira ichi icho zvinoberekwa sintering ano, uye ndiro yaunganidzwa anopupuma pamusoro granules.

    Uyewo, mashoko acho anosiyana-siyana zvichienderana chitaridzi.

    • PS – rakaumbwa furo.
    • JLS – беспрессовый кутурика.
    • ПСБ-С – указка беспрессовый кутурика.
    • Экструдированный пенополистирол – EPS.

    Продукт muchiso DPM ane yunifomu batana marongerwo. маитиро ая уе vakatsunga kukura kwebasa kushandiswa kwayo. Укомба нокути Франция кути чидиндо ичи вангава арамбе ачирема 50 макирогираму / м 3.

    Экструдированный фуро – mumwe yakanakisisa zvinhu.Panguva kugadzira muitiro kushandiswa экструзия. EPS iri zvakakwana husingakwanisi ose zvemaziso zvinofurira, ane yakakwirira azvipire arambe achirema uye ane kwazvo chisimbiso unhu.

    Rakajairika, kutengeka uye akakurumbira pakati vatengi anonzi полистирол PSB. Риношандисва невакаванда сензира хита. Звисиней, кана звичиензанисва экструдированная звокуняма, ПСБ йекудйидзана анорасикирва симба.

    Kusiyana ukobvu uye arambe achirema

    Energy-okuponesa zvatariswa ane mashoko acho, nokuda low kupisa conduction pamwero.Кана Ису анофананидза фуро камбери памве звимве звинованиква памусоро купутира пакувака памушика, симба-рокупонеса фуро ванокваниса ачава йекудйидзана квирирей. Saka, somuenzaniso ndiro Ukobvu 12 mm anoenderana kumadziro pakukora pezvitina 2.1M (kana huni – 0,45 м).

    Features dzakakurumbira mavanga epurasitiki furo

    Saka, PSB-S-15 ane arambe achirema pamusoro 10-11 makirogiramu / m 3, PSB-25 – 15-16 makirogiramu / m 3. Foam MOBER-25 16-17 макирогираму / м. 3. Плотность DPM C35 ndiyo 25-27 makirogiramu / m 3, uye PSB-C50 – 35-37 makirogiramu / m 3.

    Yakakwana arambe achirema nokuti France kuputira

    A anonzwisisa mhinduro yaizova kushandisa zvinhu DPM-35 vane arambe achirema 25 makirogiramu / m 3. Unogona kusarudza nhambura nhambura. Аси ичи звзвингава, изолирующий эхупфуми ари курукутика. Кана укашандиса ПСБ-С-25, ichi zvinhu hakuzopedzi Rigidity kuti France. В muitiro ndakapedza basa rine zvose zvakakanganisika ngozi bwendefa.

    mucherechedzo ndiro PSB-15 kunogonawo kushanda kuputira uye nokudaro haangarevi kuchikosha mutoro pamusoro peimba pamadziro. Zvisinei, furo racho rinenge harimboshandiswi nokuda France – vose mhosva simba shoma.

    мучисо ири звинованзошандисва кути купутира якабатана пакувака чиваква. Звиногона русвинго веранды сияна кана балконы. Uyewo, muchiso uyu zvinowanzoshandiswa ndakapedza basa iri pamakona kana hwindo mawindo.

    A ukobvu zvakakwanira furo

    Inowanzoshandiswa Плиты ane Ukobvu 5 kusvika 7 см.Chisarudzo Izvi yakanaka nezvivakwa dzakawanda. Пластины 150 мм anoshandiswa apo zvakakodzera kuti putira rusvingo rakaoma. Somuenzaniso, unogona icharidzwa rusvingo zvakasimba.

    Usashandisa ndiro rakawandisa ukobvu. Изви звиногона куумба мамве матамбудзико, уево мусоро мари. Панель Кажинджи зваканака кусандиса, мумве арамбе ачирема кг 35 / м 3 пангува Укобву масендимита 15, панель PSB-C-25 масендимита 100 гобву уе арамбе ачирема 25 макирогираму / м 3.

    Kugarisana pamadziro uye furo

    Zvichienderana zvokuvakisa, iyo imba inovakwa, pane zvakakodzera kana kukodzera nokuda Обогреватели дзаво.Сака, нокути мудзимба матанда зваканакишиша кусандиса чичерва шинда.

    Аси нокуда конгири Кана чидхинха звивако рикурумидзе фуро. Экструдированный пенополистирол asati kushandisa zvakaitika moto retardant kurapwa, sezvo ari senguva chimiro kwazvo, zvinobata moto chaizvo.

    pagomo Michina

    Nhasi kune makambani akawanda kuti pave kuputira pacharo uye zvose zvine zvokuvakisa installation. Ну некусимба Ceresit zvigadzirwa. Зваканака кути баса роза рири куитва норуоко.Квачо куносанганисира матанхо акаванда.

    кудзидза

    Поза йосе русвинго анофанира кугадзирира. Сака, марара осе чинобвисва, черо якабудикира звинху. Пемвура ири вакаченеса кубва звосе кути хаусисина. Somunhu regadziriro Danho anosanganisira kugadziriswa mapfundo pakati zvidhinha.

    Кана русвинго конгири вакатсемука, ванофанира игадзирисве. Iva nechokwadi kuti soka Кепка “Аквастоп”. Для куноньяйса звазвири, воосе некубата кубатва лахикува ракадзика купинда.

    куиса вешалка

    Русвинго звинофанира Максимально сандара. Muchiitiko ichi achasimbisa uye vakachengetwa vachikoshesa ukomba kuti France uye Gadzirira kuzombotaurazve pamusoro kurapwa. Йосе русвинго купа чьедза урему чайо тамбо кузива хадзина куфамбисва зваканака уе ипапо кувабвиса.

    guruu ukomba

    Nokuti vanomhanyisa ndiro rakashandiswa iyi Ceresit guruu.

    Asi zvinokwanisika kushandisa zvimwe zvinhu. Гуру ичи чинху чинокоша.Mukanyiwa rinofanira kuiswa pakarepo pashure gadziriro. An awa Papera, chete micheto yekapepa katsva aka Dries haisi akakodzera kushandiswa. Намира мувхенганисва риношандисирва памусоро мунхараунда йосе джира кана кунзвимбо шану купарадзира намира ячо куноньяйиса нзвимбо.

    Machira kushanda zvakanaka kusarudza imwe ine penyika. Кана квайо кваканака памусоро (шероховатость) кузадзиса вручную. Mukuita wokunamatira semucheka iri dzichienderana nomumwe chechetere.

    Пфунгва вязание

    Ukomba mumutsara mumwe nomumwe var vakadzungairira.Сомуэнзанисо, мисара ачитанга укомба кучека непакати. Кана machira regai uwirirane mumwe uye chimiro nemaburi machira furo uchidururwa iri mvura. Кана фуро уку звайсамбобвумирва.

    zvokuimba kugadzwa

    Siya emadziro pamusoro guruu asingagoni. Звинху иногона куридза куре немхепо якасимба. Zvinogona kuva chinodhura zvikuru kana uchiziva furo zvakadini mberi. Цена звичиендерана мугадзири уйе унху ринотанга кубва 700 рублей паминити ронгедза, уе ануйя 6000 рублей.Дюбели Pepa roga wanamatira kushandisa. На remadziro rimwe vachishandisa zvimiso shanu. Paizopera iyi, mumwe nomumwe dowels anofanira kubatwa guruu.

    Uyezve chisimbiso rinoitwa, uyewo nesuko. Нокути кутанга Вашингтон Сити Офисы кушандисва. Ванода мхандо мбири – кусандиса звакаома уйе ньоро паджира рийа. Мягкие аноэнда кумакона уйе ваначандагвинира иношандисва памадзиро. Далее, unogona kana kutenga decoration varinamire France furo ane zvakasiyana unhani zvinhu.

Добавить комментарий

Ваш адрес email не будет опубликован.