Температура – плавление – полиуретан
Температура – плавление – полиуретан
Cтраница 1
Температура плавления полиуретанов довольно высока ( не ниже 160 С) вследствие образования водородных связей между макромолекулами за счет амидных групп. При нагревании до температуры выше 220 С полиуретаны начинают, разлагаться. [1]
Температура плавления полиуретанов с увеличением числа уретановых групп вначале снижается, а затем начинает возрастать, но более медленно, чем для полиамидов. Можно предположить, что при введении небольшого числа изоцианатных групп повышение гибкости цепи ( кислород уретановой группы в цепи главных валентностей) компенсирует возрастание когезионной энергии. Начиная с определенного числа уретановых групп в полиуретане, наблюдается обратная зависимость. [2]
Способ получения полиуретановых пластин путем желатиннзацпи поли уретанов хлорированными спиртами при температурах ниже
Хотя концентрация сложноэфирных групп оказывает на температуру плавления сложных полиэфиров сравнительно небольшое влияние, все же температуры плавления полиуретанов и полимочевин на основе сложных полиэфиров могут оказаться различными. [5]
Показано, что наличие в структуре полимера мочевин-ной и уретановой группировок приводит и к увеличению температуры плавления по сравнению с температурами плавления соответствующих полиуретанов. [6]
При замене сложноэфиршх группировок в скелете макромолекулы па амидпые группы гибкость цепи уменьшается н резко возрастает энергия когезии, что приводит к сильному повышению ТШ1 полиамидов по сравнению с температурами плавления полиэфиров – Температуры плавления полиуретанов, в цепи которых присутствуют и амидные и эфирные группы, лежат между температурами плавления полиэфиров и полиамидов. [8]
Температура плавления полиуретанов, как и полиэфиров, зависит от числа метиленовых групп, расположенных между реакционноспособными группами; полиуретаны, в элементарном звене макромолекулы которых содержится четное число СН2 – групп, обладают более высокой температурой плавления, чем ближайшие члены полимергомологического ряда с нечетным числом СН2 – групп. [9]
При замене сложноэфирпых группировок в скелете макромолекулы па амидпые группы гибкость цепи уменьшается н резко возрастает энергия когезии, что приводит к сильному повышению Гпл полиамидов по сравнению с температурами плавления полиэфиров.
При замене сложноэфирных групп в скелете макромолекулы на амидные группы гибкость цепи уменьшается и резко возрастает энергия когезии, что приводит к сильному повышению Гпл полиамидов по сравнению с температурами плавления полиэфиров. Температуры плавления полиуретанов, в цепи которых присутствуют и амидные, и эфирные группы, находятся между температурами плавления полиэфиров и полиамидов. [11]
Можно было ожидать, что температура плавления понизится с уменьшением концентрации полярных групп – это и наблюдается в случае полимочевин, полиамидов и полиуретанов. Температуры плавления сложноэфирных полиуретанов ниже температуры плавления исходного углеводорода, хотя энергия когезии сложноэфирной группы выше, чем группы СН2СН2, которую она заменяет. Предполагалось, что сложноэфирная группа вызывает вращение соседних углеродных связей и, следовательно, увеличивает гибкость цепи. Аналогичное объяснение было выдвинуто и для поли-этиленоксидов ( полимеров окиси этилена), у которых наблюдается такой же эффект в отношении температур плавления. [12]
Полученные полиуретаномочевины представляли собой белые порошки с температурой плавления 200 – 250 С Температура плавления полимеров растет с уменьшением числа метиленовых групп в звене диизоцианатомочевин. Наличие в структуре полимеров мочгвинной и уретановой группировок приводит к увеличению их температуры плавления по сравнению с температурами плавления соответствующих полиуретанов. [13]
При взаимодействии этих диизоцианатов с полиэфирами или диоламя [ 108, ПО ] легко образуются высокомолекулярные полиуретаны. На реакционную способность изоцианат-ных групп наличие полифторалкоксильного радикала влияет незначительно [ 108, ПО ], однако, на способность полиуретанов к образованию водородных связей эти группировки влияют существенным образом. У полиуретанов на основе 2 4 – ПФАФД имеется значительное количество уретановых групп, не связанных водородными связями. Их количество еще больше возрастает при переходе к полимерам на основе 2 6 – ПФАФД, что снижает
Страницы: 1
www.ngpedia.ru
Температуры плавления полиуретанов групп – Справочник химика 21
Температура плавления полиуретанов довольно высока (не ниже 160 °С) вследствие образования водородных связей между макромолекулами за счет амидных групп. При нагревании до температуры выше 220°С полиуретаны начинают, разлагаться. [c.85]Влияние на свойства полимеров жестких ароматических ядер в общем противоположно влиянию простых эфирных групп, что показано на примере температур плавления полиуретанов в табл. 72. [c.336]
Как показал Байер гибкие простые эфирные и тио-эфирные группы оказывают на температуру плавления уретанов такое же действие. Ниже приведены данные о влиянии простых эфирных и тиоэфирных групп на температуру плавления полиуретанов на основе гексаметилендиизоцианата и гликоля [c.336]
Влияние ароматических групп на температуру плавления полиуретанов [c.337]
О—СО—NH) и сходны с полиамидами в том, что способны образовывать водородные связи между полярными группами в то же время, они содержат и типичные для полиэфиров связи О—СНг. Поэтому не удивительно, что температура плавления полиуретанов занимает промежуточное положение между Т л полиэфиров и полиамидов [47]. Для них по-прежнему выполняется правило, согласно которому полимеры, содержащие четное число групп СНз в мономерном звене, плавятся при более высокой температуре, чем полимеры с нечетным числом таких групп.
Хотя концентрация сложноэфирных групп оказывает на температуру плавления сложных полиэфиров сравнительно небольшое влияние, все же температуры плавления полиуретанов и полимочевин на основе сложных полиэфиров могут оказаться различными. Предполагают, что сложноэфирная группа в таких смешанных полимерах, содержащих группы с очень подвижными атомами водорода, участвует в образовании водородных связей в гораздо большей степени, чем в чистых сложных [c.335]
КИМ методом при определенных условиях (см. раздел 4.2.1). Как н в случае полиамидов и полиэфиров, температуры размягчения алифатических полиуретанов зависят от числа атомов углерода между функциональными группами. Полиуретан, полученный из бутандиола-1,4 и гексаметилен-1,6-диизоцианата, имеет промышленное значение, обусловленное его высокими показателями свойств, например высокой температурой плавления (около 184 °С) и большей, чем у найлона 6,6, стойкостью к гидролизу. Реакцию можно проводить как в расплаве, так и в растворе. [c.227]
При замене сложноэфирных групп в скелете макромолекулы на амидные группы гибкость цепи уменьшается и резко возрастает энергия когезии, что приводит к сильному повышению 7 пл полиамидов по сравнению с температурами плавления полиэфиров. Температуры плавления полиуретанов, в цепи которых присутствуют и амидные, и эфирные группы, находятся между температурами плавления полиэфиров и полиамидов. [c.117]
Рассмотрены различные типы волокнообразующих полимеров с точки зрения их гибкости и когезионной энергии. Благодаря наличию кислорода в молекулярной цепи полиэфиров и полиангидридов возрастание гибкости компенсирует прирост когезионной энергии. У полиамидов при возрастании числа амидных групп, приходящихся на 100 атомов цепи, температура плавления увеличивается. Вследствие наличия кислорода в цепи температура плавления полиуретанов всегда ниже температуры плавления соответствующих полиамидов. Высокая температура плавления терилена объясняется повышением когезионной энергии и понижением гибкости цепи благодаря наличию бензольных колец.
Температура плавления полиуретанов с увеличением числа уретановых групп вначале снижается, а затем начинает возрастать, но более медленно, чем для полиамидов. Можно предположить, что при введении небольшого числа изоцианатных групп повышение гибкости цепи (кислород уретановой группы в цепи главных валентностей) компенсирует возрастание когезионной энергии. Начиная с определенного числа уретановых групп в полиуретане, наблюдается обратная зависимость. [c.14]
Байер синтезировал большое число линейных полиуретанов н исследовал их свойства. Температура плавления полиуретанов, как и полиэфиров, зависит от числа метиленовых групп, расположенных между реакционноспособными группами полиуретаны, в элементарном звене макромолекулы которых содержится четное число СНз Групп, обладают более высокой температурой плавления, чем ближайшие члены полимергомологического ряда с нечетным числом СНг-групп. Температура плавления полиуретанов в среднем на 100° выше, чем температура плавления соответствующих алифатических полиэфиров. [c.45]
Па рис. 228 приведено изменение температур плавления полиуретанов в зависимости от числа атомов углерода в изоцианате. В табл. 152 показано влияние ароматических групп на точки плавления полиуретанов. Ценными свойствами полиуретанов являются хорошая адгезия к металлу, пластмассам, резине и ряду других материалов водо- и атмосферостойкость устойчивость к действию растворов минеральных кислот и щелочей хорошие электроизоляционные свойства.
Линейным полиуретанам, как и полиамидам, свойственна высокая прочность, обусловленная большим количеством водородных связей, возникающих между карбонильными и иминными группами соседних макромолекул. По мере увеличения длины углеводородных цепей, разделяющих полярные группы в макромолекулах полиуретана, уменьшаются его жесткость и прочность и понижается температура плавления кристаллитов. Температура плавления полиуретанов с нечетным числом метиленовых групп между полярными звеньями ниже, чем у их полимергомологов, содержащих четное число метилено
www.chem21.info
Полиуретаны плавления – Справочник химика 21
Температура плавления полиуретанов довольно высока (не ниже 160 °С) вследствие образования водородных связей между макромолекулами за счет амидных групп. При нагревании до температуры выше 220°С полиуретаны начинают, разлагаться. [c.85]
Влияние на свойства полимеров жестких ароматических ядер в общем противоположно влиянию простых эфирных групп, что показано на примере температур плавления полиуретанов в табл. 72. [c.336]
Полиуретаны имеют более низкую температуру плавления, чем полиамиды, но обладают другими ценными физико-механическими свойствами. Первой областью применения полиуретанов было изготовление щетины. В дальнейшем они стали применяться также для производства пластмассовых изделий и особенно успешно — для лаков и клеев. [c.855]
КИМ методом при определенных условиях (см. раздел 4.2.1). Как н в случае полиамидов и полиэфиров, температуры размягчения алифатических полиуретанов зависят от числа атомов углерода между функциональными группами. Полиуретан, полученный из бутандиола-1,4 и гексаметилен-1,6-диизоцианата, имеет промышленное значение, обусловленное его высокими показателями свойств, например высокой температурой плавления (около 184 °С) и большей, чем у найлона 6,6, стойкостью к гидролизу. Реакцию можно проводить как в расплаве, так и в растворе. [c.227]
О—СО—NH) и сходны с полиамидами в том, что способны образовывать водородные связи между полярными группами в то же время, они содержат и типичные для полиэфиров связи О—СНг. Поэтому не удивительно, что температура плавления полиуретанов занимает промежуточное положение между Т л полиэфиров и полиамидов [47]. Для них по-прежнему выполняется правило, согласно которому полимеры, содержащие четное число групп СНз в мономерном звене, плавятся при более высокой температуре, чем полимеры с нечетным числом таких групп. [c.131]С увеличением длины метиленовой цепочки в полиуретанах и повышением нерегулярности строения цепи понижается их температура плавления, улучшается водостойкость и растворимость, увеличивается эластичность, но снижается химическая стойкость. [c.85]
Эта же закономерность наблюдается для полиэфиров и полиуретанов, только разница в температурах плавления там значительно меньше. [c.382]
Как показал Байер гибкие простые эфирные и тио-эфирные группы оказывают на температуру плавления уретанов такое же действие. Ниже приведены данные о влиянии простых эфирных и тиоэфирных групп на температуру плавления полиуретанов на основе гексаметилендиизоцианата и гликоля [c.336]
Линейные полиуретаны имеют достаточно высокую температуру плавления вследствие образования водородных связей между карбонильными и амидными группами макромолекул. С увеличением числа метиленовых связей в полиуретанах понижается температура размягчения и улучшается растворимость полимера, а также увеличивается гибкость пленок и волокон из него. Присутствие фениленовых групп в макромолекуле способствует повышению жесткости и температуры плавления полимера. Полиуретаны имеют незначительную гигроскопичность, что объясняется присутствием сложноэфирных фупп в алифатической цепи полимера. Они отличаются высокой атмосферостойкостью, устойчивостью к воздействию кислорода воздуха и озона, кислот и щелочей. [c.93]
Влияние ароматических групп на температуру плавления полиуретанов [c.337]
www.chem21.info
Полиуретаны зависимость температуры плавления – Справочник химика 21
Из рис. 9, отображающего зависимость температур плавления ПАУ от я, а также термограмм видно, что увеличение я приводит к понижению температур плавления ПАУ. При этом можно предположить, что кривая 1 характеризует кристаллическую структуру, образованную участками с уретановыми группами, а кривая 2 — полиамидными. Однако переход от четных я к нечетным не сопровождается скачкообразным, как это наблюдается для полиамидов, изменением температуры плавления, а носит плавный характер. Возможно, такое явление обусловлено более сложной, чем у полиамидов и полиуретанов, химической структурой ПАУ, где два вида полярных групп сочетаются с метиленовыми цепочками трех длин. [c.129]
Данные по зависимости температур плавления и размягчения фторированных полиуретанов от молекулярной структуры очень немногочисленны. Большая часть полученных полиуретанов были сшитыми и вследствие этого нерастворимыми. Поэтому лишь для немногих из них оказалось возможным определение молекулярного веса. Температуры плавления и размягчения нескольких полиуретанов приведены в табл. 3. [c.181]
Температура плавления различных полиуретанов в зависимости от числа углеродных атомов в исходных молекулах [c.609]Температура плавления полиуретанов с увеличением числа уретановых групп вначале снижается, а затем начинает возрастать, но более медленно, чем для полиамидов. Можно предположить, что при введении небольшого числа изоцианатных групп повышение гибкости цепи (кислород уретановой группы в цепи главных валентностей) компенсирует возрастание когезионной энергии. Начиная с определенного числа уретановых групп в полиуретане, наблюдается обратная зависимость. [c.14]
Изучение динамических механических свойств полиуретанов показывает, что наибольшей склонностью к кристаллизации обладают образцы на основе ТДИ, удлиненные гликолем, вследствие низкого молекулярного веса и отсутствия достаточно развитой пространственной структуры. На температурной зависимости динамических показателей это проявляется в высоком значении эластичности по отскоку в области минимума (рис. 1, а, кривая 1) к повышенных значениях динамического модуля в высокоэластической области (рис. 1, б, кривая 1). Полимер плавится при 60° С, примерно на 10° выше температуры плавления полиэтиленадипината, образующего гибкий сегмент полиуретана. Из рис. 1 очевидно, что полиуретаны на основе ФДИ имеют более высокий молекулярный вес, по сравнению с эластомерами на основе ТДИ (об этом свидетельствует высокий максимум на кривых эластичности этих полимеров), по-видимому, из-за одинаковой реакционной способности НСО-групп этого диизоцианата. [c.79]
Полимочевины — белые твердые кристаллические или аморфные продукты, почти нерастворимые в органических растворителях. Температура плавления — более 200°С, а ряд ароматических полимочевин— выше ЗОО С. Свойства полимочевины находятся в такой же зависимости от их химического строения, как и у полиуретанов. Так, алифатические полимочевины, содерн[c.227]
Пластмассы на основе полиамидов и полиуретанов и их применение. В термическом отношении полиамиды отличаются от большинства термопластических пластиков тем, что плавятся в узком пределе температур. В зависимости от химического состава их температуры плавления лежат в пределах от 140 до 280°С. Температуры плавления полиуретанов ниже, чем у соответствующих полиамидов. [c.345]
Па рис. 228 приведено изменение температур плавления полиуретанов в зависимости от числа атомов углерода в изоцианате. В табл. 152 показано влияние ароматических групп на точки плавления полиуретанов. Ценными свойствами полиуретанов являются хорошая адгезия к металлу, пластмассам, резине и ряду других материалов водо- и атмосферостойкость устойчивость к действию растворов минеральных кислот и щелочей х
www.chem21.info
Полиуретаны – Энциклопедия MPlast.by
Полиуретан — это гетероцепный полимер, в макромолекуле которого присутствует уретановая группа —N(R)—C(O)O—, где R = Н, алкилы (-СН3,-С2Н5 и т.д.), арил (-С6Н5) или ацил. Кроме того, в макромолекулах полиуретанов могут содержаться простые и сложноэфирные функциональные группы, мочевинная, амидная группы. Полиуретаны относятся к синтетическим эластомерам.
Полиуретанами называют высокомолекулярные соединения, содержащие в основной цепи макромолекулы уретановые группировки:
Наиболее распространенным методом синтеза полиуретанов является ступенчатая (миграционная) полимеризация ди- или полиизоцианатов с соединениями, содержащими две или несколько гидроксильных групп. В качестве таких гидроксилсодержащих соединений чаще всего используют простые или сложные полиэфиры. Получаемые в этом случае полиуретаны называют полиэфируретанами.
В настоящее время производство полиуретанов растет очень быстрыми темпами и достигло значительных масштабов, особенно в технически развитых странах.
Сырье для получения полиуретанов
Изоцианаты
Промышленные способы получения алифатических и ароматических ди- и триизоцианатов основаны на фосгенировании соответствующих ди- и триаминов:
Наиболее широкое применение в производстве полиуретанов находят толуилен-2,4-диизоцианат (I), гексаметилендиизоцианат (II) и 4,4′-дифенилметандиизоцианат (III):
Иногда изоцианаты переводят в «скрытую» форму. Такие «скрытые», или «блокированные», изоцианаты получаются, например, при взаимодействии изоцианатов с фенолами:
При нагревании до температуры выше 100 °С эти соединения распадаются на исходные компоненты. В качестве нелетучих «скрытых» полиизоцианатов применяют также продукты взаимодействия изоцианатов с триметилолпропаном, капролактамом, фталамидом, 2-меркаптобензтиазолом и др.
В качестве исходных соединений с изоцианатными группами в последнее время используют продукты олиго- и циклотримеризации диизоцианатов. Например, олигомеры и тримеры изоцианатов при реакции с гликолями, простыми и сложными полиэфирами образуют полиуретаны сетчатого строения. Использование олигомеров и тримеров изоцианатов имеет ряд технологических преимуществ, обусловленных их пониженной летучестью (меньшей, чем у диизоцианатов). При этом получают полиуретаны с более высокой теплостойкостью.
Гидроксилсодержание соединения
В качестве гидроксилсодержащих соединений используют простые и сложные полиэфиры, простые политиоэфиры, полиацетали, касторовое масло и его производные, а также низкомолекулярные гликоли.
Полиоксипропилендиол — простой полиэфир с концевыми гидроксильными группами — получают полимеризацией пропиленоксида в присутствии щелочей или алкоголятов щелочных металлов. В качестве исходного гидррксилсодержащего соединения используют пропиленгликоль или дипропиленгликоль. Полимеризация протекает по схеме
где В–—гидроксил– или алкоголят-ион.
Полиоксипропилентриолы получают из пропиленоксида и низкомолекулярных трехатомных спиртов — триметилолпропана, глицерина и гексантриола-1,2,6— в присутствии щелочи или алкоголята соответствующего спирта. На основе пропиленоксида или смеси этиленоксида и пропиленоксида и многоатомных спиртов (пентаэритрита, сорбита, маннита, левоглюкозана, дульцита и др.) получают полифункциональные простые полиэфиры, содержащие более трех гидроксильных групп. В качестве гидроксилсодержащих соединений используют также простые полиэфиры, получаемые путем полимеризации тетрагидрофурана, совместной полимеризацией тетрагидрофурана с пропиленоксидом и продукты типа О-пропилглицерина.
Для синтеза сложных полиэфиров обычно используют адипиновую и себациновую кислоты, фталевую кислоту и ее ангидрид, а из многоатомных спиртов — диолы (этилен-, пропилен- и диэтиленгликоли) и триолы (глицерин, гексантриол-1,6,6 и триметилолпропан). Введение избытка многоатомного спирта приводит к обрыву цепи и получению низкомолекулярного полиэфира с высоким содержанием гидроксильных групп. При небольшом избытке многоатомного спирта получаются продукты более высокой молекулярной массы с уменьшенным содержанием гидроксильных групп. В производстве полиуретанов применяют в основном сложные полиэфиры молекулярной массы 800—2100.
Из низкомолекулярных гликолей наибольшее применение в производстве полиуретанов нашел бутиленгликоль. На основе гликолей, содержащих n-фениленовые и 1,4-циклогексиленовые группы, можно получать полиуретаны с повышенной температурой плавления и большей водостойкостью, но они не нашли широкого применения в технике.
В промышленности бутиленгликоль (бутандиол-1,4) получают гидрированием бутиндиола-1,4, в водном растворе при 20—30 МПа и 110—130 °С над катализатором Ni/Cu/Mg/Si02:
Процесс образования полиуретанов может протекать как в массе, так и в среде растворителей (хлорбензол, толуол, диметилформамид и др.)
При взаимодействии бифункциональных мономеров, например, диизоцианатов и гликолей, образуются полимеры линейного строения:
При взаимодействии мономеров с функциональностью больше двух образуются полимеры разветвленного или пространственного строения.
Синтез полимера на основе гексаметилендиизоцианата и бутиленгликоля проводят следующим образом. В реактор, снабженный рубашкой и мешалкой, загружают бутиленгликоль, нагревают его до 85—90 °С в атмосфере азота при интенсивном перемешивании и затем добавляют небольшими порциями в течение 30—60 мин гексаметилендиизоцианат.
После окончания экзотермической реакции температуру повышают и образовавшийся полимер выдерживают при 190—210 °С до полного завершения реакции. Процесс контролируют по вязкости расплава или раствора пробы в м-крезоле.
По окончании реакции полимер вакуумируют (остаточное давление 2,6—5,2 кПа) для удаления пузырьков газа, выдавливают из реактора сжатым азотом в виде ленты, охлаждают, дробят на куски и высушивают.
Синтез линейного полиуретана в смеси растворителей (хлорбензола и дихлорбензола) проводят следующим образом.
Раствор бутиленгликоля нагревают до 60 °С, после чего постепенно добавляют эквимольное количество гексаметилендиизоцианата и нагревают реакционную смесь до кипения. Затем смесь выдерживают в течение 4—5 ч при температуре кипения. Образовавшийся полимер выпадает в осадок в виде порошка или хлопьев; его отфильтровывают, обрабатывают острым паром для удаления остатков растворителей и высушивают в вакууме при 65 °С.
Свойства и применение полиуретанов
В зависимости от природы исходных компонентов и строения макромолекул полиуретаны могут быть термопластичными и термореактивными, а изделия — пластичными и хрупкими, мягкими и твёрдыми.
Линейные полиуретаны на основе низкомолекулярных гликолей обладают способностью к волокнообразованию; при вытяжке за счет ориентации макромолекул и увеличения степени кристалличности полимера происходит упрочнение волокон.
Прочность линейных полиуретанов обусловлена в значительной степени наличием водородных связей, возникающих между полярными карбонильными и иминными группами соседних макромолекул. Уменьшение количества таких межмолекулярных водородных связей способствует снижению степени кристалличности полимера, а следовательно, и снижению его температуры размягчения и механической прочности.
Атомы кислорода в главных цепях полиуретанов вызывают снижение температуры плавления (размягчения) линейных полиуретанов и улучшают их растворимость в органических растворителях. Присутствие атомов кислорода в цепи придает полиуретанам эластичность (гибкость) и, следовательно, улучшает перерабатываемость в изделия. Полиуретаны имеют низкое влагопоглощение, достаточную морозостойкость, хорошие адгезионные свойства и высокую износостойкость. Все эти свойства обусловили широкое применение полиуретанов в народном хозяйстве.
Из полиуретанов изготовляют эластичные, стойкие к старению волокна и пленки. Для получения защитных покрытий и эмалирования проводов, в производстве мебели и обуви используют полиуретановые клеи и лаки, обладающие высокой теплостойкостью, водо- и атмосферостойкостью. Находят применение полиуретановые компаунды — многокомпонентные системы, наполненные минеральными или органическими наполнителями, перерабатываемые методом свободной заливки и не требующие обычно для отверждения дополнительного нагрева. Полиуретановые эластомеры на основе олигомерных простых и сложных полиэфирполиолов с молекулярной массой 1000—3000 обладают масло- и бензостойкостью, высокой эластичностью, сочетающейся с довольно большой прочностью (относительное удлинение при разрыве 500—1000%, разрушающее напряжение при растяжении 19,6—49,0 МПа). Полиуретановые эластомеры отличаются высокой стойкостью к истиранию, что очень важно при эксплуатации таких изделий, как шины, конвейерные ленты для горнодобывающей промышленности и т. п.
Однако основное применение полиуретаны находят в производстве пенополиуретанов.
Литьевые изделия из полиуретанов
Для получения литьевых изделий используют линейные полиуретаны на основе гексаметилендиизоцианата и бутиленгликоля. Из полиуретанов с молекулярной массой 13 000—15 000 вырабатывают волокна. Из более высокомолекулярных продуктов литьем под давлением изготовляются различные детали.
Физико-механические показатели изделий из литьевых полиуретанов приведены ниже:
- Кажущаяся плотность: 1210 кг/м3;
- Разрушающее напряжение при растяжении: 49,0—58,7 Мпа;
- Разрушающее напряжение при сжатии: 78,4—83,2 Мпа;
- Разрушающее напряжение при изгибе: 69,0—78,4 Мпа;
- Ударная вязкость: 49,4 кДж/м2;
- Температура плавления: 176—180 °С;
- Теплостойкость по Мартенсу: 60 °С;
- Коэффициент теплопроводности: 0,31 Вт/м·К;
- Удельное объемное электрическое сопротивление: 1·1014—2·1014 Ом·см;
- Тангенс угла диэлектрических потерь при 106 Гц: 0,014—0,020;
- Диэлектрическая проницаемость при 106 Гц: 4,5—4,8;
- Электрическая прочность: 20—25 кВ/мм;
- Усадка при литье: 1,0—1,2 %;
- Водопоглощение (максимальное): 2 %.
Линейные полиуретаны перерабатывают в изделия (пленки, листовые материалы, тонкие пластины) при 180—185 °С. Изделия могут работать длительное время при 100—110 °С и высокой влажности; их применяют в радио- и электротехнической промышленности.
Техника безопасности при производстве полиуретанов и защита окружающей среды
При производстве пенополиуретанов воздух может быть загрязнен толуилендиизоцианатом, особенно при получении пенополиуретанов методом напыления. Толуилендиизоцианат является токсичным веществом, оказывающим раздражающее действие на кожу, слизистые оболочки дыхательных путей и глаз. Толуилендиизоцианат — аллерген, который может вызывать бронхиальную астму и экземы. Симптомы отравления проявляются в кашле, загрудинных болях и хрипах в легких. Процессы приготовления смесей, получения и вызревания блоков полиуретанов должны проводиться в вентилируемых помещениях.
Мировой рынок полиуретанов
По данным информационно-аналитической компании Ceresana, объем мирового рынка полиуретанов составлял в 2014 году порядка $50 млрд.
Ожидается, что в период с 2015 по 2022 год среднегодовой темп прироста данного рынка будет составлять 4,8%, что (в конечном итоге) позволит достигнуть отметки в $74 млрд.
Как и в случае с большинством полимерных материалов, ключевыми потребителями полиуретна являются: автомобильная промышленность, строительная индустрия, а также производство мебели и постельных принадлежностей.
mplast.by
Температуры плавления полиуретанов влияние ароматических
Влияние на свойства полимеров жестких ароматических ядер в общем противоположно влиянию простых эфирных групп, что показано на примере температур плавления полиуретанов в табл. 72. [c.336]Влияние ароматических групп на температуру плавления полиуретанов [c.337]
Па рис. 228 приведено изменение температур плавления полиуретанов в зависимости от числа атомов углерода в изоцианате. В табл. 152 показано влияние ароматических групп на точки плавления полиуретанов. Ценными свойствами полиуретанов являются хорошая адгезия к металлу, пластмассам, резине и ряду других материалов водо- и атмосферостойкость устойчивость к действию растворов минеральных кислот и щелочей хорошие электроизоляционные свойства. [c.487]
Гибкость, или свободное вращение, высокомолекулярной цепи оказывает решающее влияние как на растворимость полимера, так и на температуру плавления. Например, применяя для конденсации с этиленгликолем терефталевую кислоту вместо адипиновой, можно получить полиэфир, плавящийся при температуре 256°. При синтезе лолиамидов поликоиденсация той же двухосновной кислоты с гексаметилендиамином приводила к получению полимера, плавящегося при 80°, т. е. при более высокой температуре, чем полигексаметиленадипамид. Полимерам этого типа можно придать хорошую растворимость-путем введения в ароматическое ядро функциональных групп,, имеющих сродство к растворителям. Поскольку синтез ароматических полиамидов затруднен, главное внимание было уделено полиуретанам. Действительно, ароматические диизоцианаты сравнительно просто синтезируются и благодаря невысокому давлению паров не оказывают токсического действия. Большоё число диизоцианатов выпускается в продажу под названием десмодуров. Например, десмодур Т является смесью 60% [c.275]
К получению полимеров игамид иМ и иЬ. Эти полимеры более растворимы, чем игамид и, и более пригодны для изготовления лаков и смесей для покрытий, а в пластифицированном виде (игамид 11Ь У)—для получения заменителей кожи. Растворимость таких полимеров еще больше увеличивается, если некоторую часть гексаметилендиизоцианата заменить на ароматический диизоцианат. Брюстер [531 применял для получения полиуретанов триметилен-, 2-метил-триметилен- и 2,2-диметилтриметиленгликоли и гексаметилендиизоцианат он указывает, что симметричные полимеры более кристалличны, чем полимеры, содержащие группы —ОСН2СНСН3СН2О—Марвел с сотрудниками [131, 1321 получили полиуретаны и их сополимеры, содержащие ацетиленовые и олефиновые группы, при взаимодействии бутиндиола-1,4 и цис- и транс-бутендиолов-1,4 с гексаметилендиизоцианатом и установили влияние ненасыщенных связей на некоторые физические свойства, в том числе на температуру плавления и температуру перехода второго рода. [c.157]
www.chem21.info
Полиуретан или фторопласт: что лучше выбрать
В отношении фторопласта и полиуретана вопрос, что лучше – не совсем корректен. Первый вид материала имеет обширную историю применения, однако сегодня повсеместно заменяется современными композитами. Чтобы более подробно разобраться в теме, рассмотрим структуру и свойства данных полимеров с точки зрения промышленного использования.
Особенности и свойства фторопласта
Это категория фторополимеров, получаемых в результате многократной полимеризации низкомолекулярного тетрафторэтилена с добавлением различных модификаторов для обеспечения определенных свойств. Полимерные материалы с высоким содержанием фтора применяются в различных сферах промышленности, включая электронику, машиностроение, энергетику, атомную и химическую отрасли. В том числе используют при изготовлении уплотнительных колец, направляющих, опоров скольжения и других изделий.
Полезные свойства:
- стойкость к химически агрессивным реагентам;
- низкие коэффициенты трения;
- негорючесть;
- устойчивость к воздействию температурных перепадов;
- отсутствие токсичных выделений при нагреве.
Недостатки:
- плохо поддается склеиванию;
- высокая температура плавления;
- интенсивный износ и низкая ползучесть при работе под нагрузкой;
- необратимые деформации при механических воздействиях;
- значительная рекристаллизация и деформация под нагрузкой как при повышенных, так и при низких температурах.
Особенности и свойства полиуретана
Полиуретаны — категория гетероцепных полимеров, получаемых путем взаимодействия особых соединений на основе замещенных либо не замещенных изоцианатных групп и полифункциональных гидроксилсодержащих производных. Благодаря уникальным механическим свойствам эти универсальные материалы широко востребованы во всех отраслях промышленности в качестве различных уплотнителей, и деталей, предназначенных для работы в условиях интенсивных нагрузок: втулок, сайлентблоков и других.
Полезные свойства:
- высокие эластичность и плотность;
- стойкость к воздействию ультрафиолета и химически агрессивных реагентов;
- сопротивляемость обледенению;
- высокие показатели адгезии к различным материалам;
- низкий уровень истираемости и износа независимо от температуры эксплуатации;
- высокие диэлектрические показатели;
- вибростойкость;
- возможность работы в условиях повышенного давления.
Недостатки:
- низкая стойкость к воздействию щелочей при температурах выше +75 0С;
- зависимость физико-механических свойств от резких температурных перепадов;
- накопление остаточных деформаций при длительном воздействии предельных нагрузок.
Сравнительные характеристики
Параметры | Полиуретан | Фторопласт |
Средний уровень плотности, г/см3 | 1,8–2,4 | 2,2 |
Жесткость (упругость при растяжении), Мпа | 300 | 500 |
Степень твердости поп шкале Шора, МПа | 75-96 | 35 |
Стойкость к деформации | 30 | 26 |
Температура начала плавления, 0С | +100 | +325 |
Сравнительный анализ
Сравнив эксплуатационные и физико-механические показатели исследуемых материалов в контексте темы статьи, можно с уверенностью утверждать, что полезные свойства, как и область применения, гетероцепных полимеров по сравнению с фторополимерами значительно шире. Также полиуретан часто демонстрирует лучшие по сравнению с фторопластом показатели благодаря тому, что он имеет:
- Широкий диапазон применения
Технология производства полиуретанов предполагает больший диапазон возможных модификации тех или иных свойств материала. Это позволяет получать полимеры с параметрами пластичности и вязкости от близких к характеристикам каучука (резины) до уровня твердости, превышающего аналогичные показатели фторопластов в 1,5–2,5 раза. - Значительный ресурс.
Благодаря более высокому уровню стойкости к накоплению остаточных деформаций полиуретановые изделия могут использоваться в условиях длительных интенсивных нагрузок в 1,2–1,5 раза дольше по сравнению с фторопластовыми аналогами. - Высокую пластичность.
Полиуретан более пластичен, обладает в 1,5–1,7 раза лучшими показателями в отношении упругости при растяжении, что обеспечивает меньший износ при работе под высокими нагрузками. - Стойкость к износу.
После механических воздействий в допустимых пределах изделия из полиуретана, в отличие от фторопластовых аналогов, быстро восстанавливают исходную форму без остаточных деформаций.
Именно это сочетание свойств дает ответ на вопрос, что лучше – фторопласт или полиуретан. Ранее фторопласты имели преимущество в виде меньшей стоимости, но современные производства, развернутые на территории России, устранили это отличие. Так, полный цикл изготовления полиуретановых изделий и заготовок реализован на базе предприятия «Полимертехпром». Получить подробную информацию о сроках и порядке заказ этой продукции можно у наших менеджеров.
polimertechprom.com