Срок службы полистирола – Пенополистирол – основные характеристики, область применения, достоинства и недостатки

Содержание

Срок службы пенополистирола — Penoboard

Сегодня использование пенополистирола для систем теплоизоляции фасадов очень распространено и спрос на подобные услуги быстро растёт. На самом деле по эксплуатационным свойствам ему практически нет достойных альтернатив на рынке, несмотря на большой выбор других материалов. Однако одним из важнейших вопросов для тех, кто уже утеплил им фасад, и тех, кто только собирается это делать, является долговечность пенополистирола. Сколько он может прослужить и возможно ли продлить период эксплуатации за счёт применения специальных ходов?

Долговечность материала

Учитывая факт, что пенополистирол изобрели сравнительно недавно (в 50-х годах прошлого века), громко заявлять о том, что показатель длительности срока службы проверен временем, нельзя. Однако материал заинтересовал учёных, и в ходе современных испытаний лабораторией НИИСФ было выявлено, что плиты в многослойных конструкциях хорошо выдерживают цикличные перепады температуры и режима влажности на протяжении 80 «условных» лет.

При этом на срок службы пенополистирола не оказывают влияния биологические факторы. Материал стойкий к разным негативным и специфическим процессам, что могут влиять на долговечность:

  • гниению;
  • поражению вредителями, микроорганизмами, плесенью;
  • резким перепадам температуры и режима влажности.

За счёт паропроницаемой структуры он пропускает воздух, обеспечивая вентиляцию, что снижает риск образования конденсата и развития сырости на плитах или стене. Что касается процессов разложения, то пластмасса, как исходное сырьё для пенополистирола, является инертным материалом и по времени распада уступает разве что стеклу. Период разрушения пенополистирола (пласта) определяется в каждом конкретном случае самим производителем и указывается в числе основных характеристик на упаковке. Поэтому важно выбирать материал от известных торговых марок, которые следят за своей репутацией на рынке.

Также залогом долговечности многослойной конструкции (при утеплении фасадов) является качество монтажа. В зависимости от того, правильно ли соблюдена технология, использованы ли все этапы, можно существенно продлить или сократить эксплуатационный период плит. Стоит отметить, что факторы, влияющие на срок службы пенополистирола, всё же имеются. Это ультрафиолетовые лучи и механическое воздействие. По этой причине важно обеспечить надёжную защиту листам при организации системы теплоизоляции фасада.

Способы продления срока службы

Учитывая актуальность вопроса, как продлить срок службы пенополистирола, следует отметить, что все меры для осуществления этой задачи являются доступными. Помимо того, что нужно выбирать качественный материал известной фирмы и строго следовать технологии монтажа, существует ещё несколько моментов – нельзя допускать контакта листов с ПВХ-плёнкой и битумом. В последнем случае разрушение пенополистирола наступает быстрее. При контакте с плёнкой ПВХ страдает она. При работе с пенополистиролом используется полимерцементный гидроизоляционный состав. Он защищает плиты материала от влаги, в частности, от климатических факторов.

Также важно не экономить на слое штукатурки и краски. Последняя обязательно должна внимательно выбираться – для наружных работ. В составе красок, что используются для оформления внешних стен, присутствует специальный полимер. За счёт этого она не просто быстро высыхает, а образует эластичное плотное покрытие. При этом наносить краску следует в 2 слоя, так можно исключить и возможные погрешности, сделать цвет фасада более насыщенным, обеспечить надёжную защиту пенополистиролу от влаги.

penoboard.com

Что следует знать про срок службы пенопласта на фасаде?

Оптимальные материалы для утепления фасадов домов

Очень много вопросов у потребителей возникает по поводу строительных материалов, предназначенных для утепления стен домов с внешней стороны (фасада). Это можно сделать с помощью:

  1. Пенопласта.

  2. Экструдированного пенополистирола (близкого родственника пенопласта, но отличающегося своими физическими свойствами и техническими характеристиками).

Пенопласт

Пенопласт – это самый экономный вариант для «обшивки» здания с внешней стороны. Стоимость материалов утепления фасада будет самой низкой. Кроме того пенопласт очень податлив при резании, чрезвычайно лёгкий и отлично держит форму. При монтировании – наименее финансово и трудозатратный.

Экструдированный пенополистирол

Самый надёжный и качественный из всех современных утеплителей, предназначенный для монтажа и с внешней стороны здания, и с внутренней. Он намного твёрже и прочнее, чем обычный пенопласт, а по другим показателям (теплопроводность, влагопоглощение, износостойкость) ничем ему не уступает.

Также следует принять во внимание, что экструдированный пенополистирол выпускается различных модификаций. Каждый вид имеет свою сферу применения:

  1. Для утепления фундаментов зданий и подвалов.

  2. Для утепления стен и цоколей.

  3. Для термоизоляции кровли.

  4. Использующийся при строительстве автомобильных и железных дорог, а также аэродромов (особо прочный).

  5. Для использования внутри помещений – универсальный. Вполне подойдёт и для других целей (утепление пола, крыши, чердака, бани, сауны и т.д.).

Если стоимость экструдированного пенополистирола в розничной продаже покажется высокой, то приобрести его можно будет непосредственно у производителя. Это существенно сэкономит бюджет энергосбережения дома или квартиры.

Оптимальный вариант

Пенопласт и экструдированный пенополистирол чаще всего предлагают купить в качестве материала для утепления фасадов. Но недорого приобрести в обычных строительных магазинах вряд ли получится. Этому помешает торговая накрутка. Поэтому выгоднее всего будет заказать и купить материалы для утепления фасада непосредственно у производителя.

Такая покупка – финансово выгодна, надёжна, долговечна и экологически безопасна. Ведь вся продукция выпускается в соответствии с нормами и подкреплена необходимыми сертификатами качества.

Оба утеплителя выпускаются производителем с удобными для транспортировки размерами:

  1. Пенопласт: ширина 0,5 – 1 м; длина 1 – 2 м.; толщина от 10 до 100 мм (возможно изготовление плит по индивидуальному заказу толщиной до 500 мм включительно).

  2. Экструдированный пенополистирол: ширина - 0,6 м; длина - 1,2 м или 2,4 м; толщина от 2 до 10 см.

Взвесив все преимущества каждого из предлагаемых материалов, оптимальным выбором видится именно обычный пенопласт. Его низкая стоимость, лёгкость монтажа, обработки, погрузки-разгрузки и доставки компенсирует все преимущества пенополистирола.

dnplast.dp.ua

Срок службы пенопласта как утеплителя: эксплуатационные данные

Одним из универсальных теплоизоляционных материалов можно назвать пенопласт, который применяется для различных видов работ. Некоторые ошибочно считают его недолговечным и вредным, но на деле все оказывается совершенно не так. На срок службы пенопласта оказывают влияние различные параметры, но их воздействие далеко не такое пагубное, как принято считать. Пенопластовые плиты обладают необходимой жесткостью, устойчивостью к влаге, температурам, коррозии. Они не подвержены гниению, что так важно при утеплении деревянных поверхностей. Из минусов надо отметить только хрупкость материала. Во время работы следует соблюдать осторожность, чтобы не повредить плиты. Это обстоятельство не может доказывать тот факт, что срок службы пенопласта мал.

Утепление стен пенопластом убережет их от влаги, холода и коррозии долгое время.

Виды пенопласта и эксплуатационные данные

Для работы применяются утеплители на основе пенопласта, не все они плитные. Сроки и условия эксплуатации у них различные. Известны такие разновидности теплоизоляторов:

Таблица характеристик различных марок пенопласта.

  1. ПСБ-С-15 – это материал с низкой плотностью, который может использовать для утепления крыш между стропилами, где высокие показатели механической прочности не требуются.
  2. ПСБ-С-25 – это универсальный пенопласт, который используется для работ чаще всего. Он отличается устойчивостью к влаге, его используют для утепления фасадов, полов, стен внутренних помещений, мансард, балконов, т.е. область применения обширная. Срок службы этого материала высок, а условия эксплуатации не столь требовательные.
  3. ПСБ-С-35 – прочный материал, который применяется для выполнения гидрозащиты и утепления фундаментов, когда требуется предотвращение вспучивания грунта. Применяется при самых неблагоприятных условиях, срок службы значительный, как и устойчивость.
  4. ПСБ-С-50 – механическая прочность высокая, устойчивость утеплителя к различного рода воздействиям является лучшей. Уровень старения низкий.

Пенопласт выпускается таких видов:

Сравнительная таблица пенопласта и пенополистерола.

  1. Полистирол, т.е. беспрессованный и прессованный материал, который отличается высокими эксплуатационными характеристиками. Выпускается в виде плит удобных для работы.
    Полиуретановый материал в виде поролона позволяет выполнить работы по теплозащите, которая необходима для внутренних стен, для обшивки конструкций, где жесткость не имеет значения.
  2. Полиэтилен – это эластичный материал, который представляет собой пленку с воздушными пузырьками. Применяется только для упаковки, в строительстве его почти не используют, так как сроки службы небольшие.
  3. Поливинилхлоридные изделия схожи с экструзионными материалами, эластичность тут большая, но сроки эксплуатации и условия использования достаточные для утепления стен.
  4. Пенополиуретан является самым качественным и долговечным среди пенопластов. Наносится он только в жидком виде методом напыления, застывает быстро, после чего образует прочнейшую пленку, которая выдерживает практически любые воздействия. Качество этого материала высокое, срок эксплуатации большой.

Гниение и усадка

Схема теплопроводности и толщины материалов.

Для утепления рекомендуется применять именно пенопласт, так как он не подвержен гниению. Ему нестрашна плесень, грибки и прочее, насекомые не могут повредить поверхность утеплителя. Пенопласт даже при длительном воздействии воды не набирает ее, на нем не образуются пятна сырости, а это означает, что и плесени не будет. Все это важно для утепления дома, так как сроки службы изоляторов сильно увеличиваются, значит, ремонта не потребуется.

Любой строительный материал со временем поддается так называемой усадке, от этого не застрахован даже металл. Происходит это под воздействием периодически или постоянно повторяющихся различных нагрузок, из-за которых утеплитель или другой материал начинает прогибаться, терять форму.

Проводимые специальные тесты Велера показывают, что именно пенопластовый теплоизолятор подвержен усадке меньше других материалов. Он не теряет свою форму, не слеживается, не прогибается. Это важно учесть, так как полости и другие дефекты открывают путь потерям тепла. Например, минеральная вата со временем слеживается, появляются воздушные полости, что отрицательно влияет на теплоизоляционные характеристики.

Предельные параметры

Характеристики теплоизоляционных материалов.

Срок службы во многом зависит от того, какие условия материал способен выдержать во время использования. Такие показатели определяются физическими свойствами, химическими, устойчивостью к механическим нагрузкам. Необходимо отметить то, что пенопласт совершенно не подвержен влиянию агрессивной среды бетона, штукатурки, гипса, извести и других строительных растворов, которые применяются во время работ. А механическую прочность обычно усиливают специальной обшивкой, срок службы увеличивается благодаря защите таких плит фанерой, ДСП. Материал получается заключенным в оболочку, где он может отлично выполнять свои свойства, совершенно не подвергаясь негативным нагрузкам. Это важно, так как для пенопласта могут быть критическими ударные нагрузки. Не каждый его вид им подвержен, но обычные плитные материалы могут разрушиться.

Сопротивляемость износу

Необходимо внимание уделять тому, насколько материал сопротивляется износу. Обычно производители самостоятельно проводят необходимые исследования, которые включают в себя тесты на устойчивость определенным типам нагрузок. Такой износ может быть связан с различными параметрами. Чаще всего оказываются температурные воздействия, влияние влаги и агрессивных веществ. Полученные результаты дают возможность вынести заключение, что в течение всего срока службы и даже больше на пенопластовых плитах не появляются признаки износа. Эти сроки составляют 20-50 лет в зависимости от вида и типа материала. Таких условий вполне достаточно, чтобы выполнить качественную обшивку наружных, внутренних стен дома, кровли, мансарды и фундамента, где пенопласт может использоваться в качестве гидрозащиты.

Сравнительные характеристики сроков службы утеплителей

Чтобы выбрать самый долговечный материал, необходимо сначала сравнить сроки службы, которые отличают пенопласт и другие виды популярных теплоизоляторов. Сделать это можно на примере утепления фасадной части здания.

Экструзионный пенополистирол:

Характеристики минераловатных утеплителей.

  1. Состояние слоя штукатурки, наносимой сверху, разрушается примерно через 400 циклов.
  2. Снижение показателей теплозащиты после 700 циклов. Через этот промежуток времени штукатурка полностью осыпается, защитного слоя нет.

Блочный пенополистирол:

  1. Состояние слоя штукатурки, наносимой сверху, разрушается примерно через 700 циклов, наблюдается расслоение, сетка сгнивает.
  2. Снижение показателей теплозащиты после 700 циклов.
  3. Срок службы до проведения капитального ремонта поверхности около 20 лет.

Минераловатные плиты и их служба:

  1. Состояние слоя штукатурки, наносимой сверху, разрушается примерно через 500 циклов.
  2. Снижение показателей теплозащиты после 700 циклов.
  3. Срок службы до проведения капитального ремонта поверхности около 20 лет.

Какой можно сделать вывод из приведенных данных? Все зависит от того, какой именно вид пенопласта используется для работы. Долговечность зависит от типа материала, насколько он соответствует всем требованиям проведения определенных работ. Надо помнить, что указываемые 700 циклов оттаивания при эксплуатации соответствуют примерно 50 годам.

Даже самый дешевый пенопласт обладает отличными показателями по сохранности.

Пенопласт от неизвестного производителя прослужит намного меньше, это необходимо помнить при выборе.

Сколько служит пенопласт? Многие ошибочно полагают, что теплоизолятор такого типа слабый, легко разрушается. На самом деле это не так, пенопласты отлично сопротивляются многим видам воздействий. Они устойчивы к влаге, оттаиванию и замерзанию в зимнее время, хотя сильный удар и может пробить плиту. Но для этого выполняется защитная обшивка, которая и не дает плите легко разрушиться, обеспечивая длительный период эксплуатации.

opt-stroy.net

Долговечность пенопласта как утеплителя

Компания «Евробуд»тм в 2013 году на базе Государственного научно-исследовательского института строительных конструкций провела испытания собственной продукции. Для проверки были предоставлены образцы вспененного полистирола EPS-EN13163-CS(10)100  EPS (ПСБ-С-25). В ходе исследований было установлено, что теплопроводность продукции практически не меняется от количества цикличных влияний. На практике это означает, что пенопласт производства «Евробуд» сохраняет свои свойства после воздействия на него циклических климатических воздействий: нагрев – охлаждение (аналог - смена времён года). Обобщенные результаты испытаний срока эффективной эксплуатации материала представлены в таблице ниже:

Марка

Средняя плотность, кг/м3

Нормативная характеристика плотности согласно ДСТУ Б В.2.7-8-94, кг/м3

Соответствие требованиям

Коэффициент учета влияния климатической деструкции, кк

Срок эффективной эксплуатации

EPS-EN13163-CS(10)100 EPS (ПСБ-С-25)

22

От 15,1 до 25

+

1,02

не менее 50 лет

 

Само исследование проходило в несколько этапов — замораживание, оттаивание, нагревание. Увлажненные до значений влажности в условиях эксплуатации и герметично запаянные в специальных полиэтиленовых пакетах образцы поддавались воздействию различных температур. Так, на первом этапе испытаний образцы поддавались замораживанию при температуре -22 С°. Затем образцы поддавались оттаиванию при температуре +20 С°, после чего на третьем этапе они нагревались до температуры +60 С°. После каждого десятого цикла проводился отбор образцов с целью определения их теплопроводности в стандартных условиях и фиксации изменения внешнего вида материала.

Важно отметить, что результаты испытаний учитывали влияние качества исполнения монтажных работ по теплоизоляции здания на этапе строительства на изменение теплопроводности материала.

Испытания при полном соблюдении ДСТУ Б В.2.7-182-2009 длились на протяжении более четырех месяцев. В результате было определено, что срок эффективной эксплуатации пенопласта для теплоизоляции зданий производства «Евробуд»тм составляет не менее 50 лет. Данный показатель не только полностью соответствует нормам ДБН В.2.6-31:2006, но и превышает его в 2 раза, а компания «Евробуд»тм является единственной в Украине компанией- производителем теплоизоляционных материалов на основе пенополистирола, успешно прошедшей подобные исследования. Полный протокол испытаний доступен по ссылке 

Одной из наиболее важных характеристик теплоизоляционного материала является срок эффективной эксплуатации. Этот показатель указывает на срок, в течение которого теплоизоляционный материал гарантированно не утратит своих качеств в ограждающей конструкции здания. Данная характеристика выводится на основе длительных испытаний, которые имитируют старение материала, при моделировании смены времени года, влиянии температуры и влажности. Согласно действующим нормативным документам Украины, срок эксплуатации теплоизоляционных материалов должен составлять не менее 25 лет (ДБН В.2.6-31:2006). При этом данный материал должен иметь подтверждение, указывающее на такое время использования. В роли подобных подтверждений выступают протоколы исследований от независимых лабораторий. В противном случае нет никаких гарантий того, что материал не утратит своих свойств уже через год после введения дома в эксплуатацию. Впоследствии это может стать причиной отказа работы теплоизоляционного слоя и возникновения огромного числа проблем для жителей дома, что, в свою очередь, приведет к значительным материальным потерям застройщика.

Однако перед тем, как выбрать материал для теплоизоляции дома, многих хозяев интересует его долговечность. Ведь ремонт, а уж тем более стройка, проводится «на века», и очень не хочется в ближайшие несколько десятилетий возвращаться к этому вопросу. Срок службы пенопласта и утепления, сделанного на его основе, зависит от двух вещей:

  • добросовестности производителя материала;
  • качества проведенных работ.

Если горючесть пенополистирола еще можно определить опытным путем «на глаз», то его долговечность ложится на совесть продавца. Покупатель может обезопасить себя, затребовав протоколы испытаний материала. Отсутствие таких протоколов уже должно стать тревожным сигналом.

Вместе с тем заметим, что на долговечность вашей теплоизоляции влияет и качество ее монтажа. Для работ данного типа используется специальный клей для пенопласта. В теории клей для плитки также удержит материал на месте, но ненадолго. Зато он дешевле при покупке. Недобросовестные строители часто этим пользуются ради собственной наживы. Немаловажное значение имеет и фасадная сетка, укладывающаяся под теплоизоляционное покрытие. От ее качества зависит стойкость последнего и прочность его крепления к стене. Экономия происходит и за счет дюбелей. По технологии на квадратный метр их должно приходиться 5-6 штук, на практике часто устанавливают 2-3. Перед инсталляцией теплоизоляционного материала обязательно стоит прогрунтовать стены. Несоблюдение всех перечисленных норм сократит срок службы вашего «теплого» фасада в разы.

Решив сделать утепление дома пенопластом, позаботьтесь о грамотном выборе производителя утеплителя и строителей, который будут этот материал монтировать. И тогда вам гарантировано множество теплых зим и прохладных летних периодов.

eurobud.ua

Пенополистирол - Свойства

Химия - Пенополистирол - Свойства

01 марта 2011

Оглавление:
1. Пенополистирол
2. Применение пенополистирола
3. Потребление пенополистирола в мире
4. Свойства
5. Пожароопасные свойства
6. Токсичность продуктов горения пенополистирола

Теплопроводность и энергоэффективность

Теплопроводность — одно из ключевых свойств теплоизоляционных материалов. Хорошие показатели теплопроводности позволяют сократить толщину утеплителя, необходимую для обеспечения нужного уровня тепла, а значит, и затраты на сам материал.

Примерный расчёт толщины стен из однородного материала для выполнения требований СНиП 23-02-2003 «Тепловая защита зданий».

Материал стены Коэф. теплопроводн. Требуемая толщина в метрах
Вспененный пенополистирол 0, 039 0,12
Минеральная вата 0, 041 0,13
Железобетон 1,7 5,33
Кладка из силикатного полнотелого кирпича 0,76 2, 38
Кладка из дырчатого кирпича 0,5 1,57
Клееный деревянный брус 0,16 0,5
Керамзитобетон 0,47 1,48
Газосиликат 0,5 0,47
Пенобетон 0,3 0,94
Шлакобетон 0,6 1,88

1. Нормируемое значение сопротивления теплопередаче Rreq = 3,14. 2. Толщина однородного материала d = Rreq * l.

Влагостойкость

Панель из EPS типа I согласно стандарту CAN/CGSB 51.20 M87 может абсорбировать максимум 6 % влаги. При таком количестве воды она, тем не менее, сохраняет 92 % от своего первоначального значения R.

В рамках глобальной программы оценки методов изоляции фундаментов, закладываемых ниже уровня грунта, Канадская ассоциация строителей жилых зданий разработала методику испытания, позволяющую определить влияния на вспененный пенополистирол, обусловленные воздействием циклов замораживания и размораживания. Пенополистирол, расплавленный надлежащим образом, был подвергнут 50 циклам замораживания/размораживания в 4%-ном растворе хлорида натрия. Раствор соли обеспечивал жёсткие условия испытания. Результаты после 50 циклов замораживания/размораживания не выявили никакого влияния ни на ячеистую структуру вспененного пенополистирола, ни на целостность её структуры. Такое использование в Северной Америке и в Европе в течение многих лет подтверждает, что циклы замораживания/размораживания очень слабо влияют на структуру качественного пенополистирола.

Влагостойкость, а также морозоустойчивость позволили рекомендовать вспененный пенополистирол для изоляции фундаментов даже в регионах с суровым климатом.

Химическая и биологическая нейтральность

В США Ассоциация переработчиков пенополистирола в 2004 году спонсировала испытательную программу по исследованию возможности образования плесени на пенополистироле. Испытательная лаборатория компании SGS провела исследования в соответствии с национальным стандартом ASTM C1338 «Метод определения сопротивлению образования плесени теплоизоляционных и облицовочных материалов». Испытательные образцы из пенополистирола были подвергнуты тесту на пять различных типов плесени, для проверки их на рост плесени. Результаты показывали, что в идеальных для роста плесени лабораторных условиях, грибы не росли и плесень не образовывалась.

Долговечность пенополистирола

Долговечность службы высококачественного пенополистирола подтверждена различными испытаниями. Так, в рамках научно-исследовательской работы Шведского королевского технологического института, результаты которой были опубликованы в 1999 г.,определялись минимальные сроки службы строительных материалов в конструкциях зданий. Минимальный срок службы пенополистирола был определен в 60 лет..

В России в настоящее время не существует утвержденного стандарта, регламентирующего требования к долговечности, и испытания проводятся по методике разработанной Научно-исследовательским институтом строительной физики РААСН. В 2001 г. в испытательной лаборатории теплофизических и акустических измерений НИИСФ проведены исследования на долговечность образцов пенополистирола из сырья компании BASF. Образцы подвергались цикличным температурно-влажностным воздействиям в климатической камере КТК-800. По этой методике один цикл, включающий двукратное понижение температуры до −40оС, чередующееся с нагревом образцов до + 40оС и последующей выдержкой в воде, эквивалентен по температурно-влажностному воздействию 1 усл. году эксплуатации теплоизоляционного материала в многослойной ограждающей конструкции. Всего проведено 80 циклов испытаний образцов пенополистирольных плит. Полученные результаты позволили сделать заключение, что изделия из пенополистирола успешно выдержали циклические испытания на температурно-влажностные воздействия в количестве 80 циклов, что может быть интерпретировано как соответствующее количество условных лет эксплуатации в многослойных ограждающих конструкциях с амплитудой температурных воздействий ±40оС. Проведение испытаний было остановлено по экономическим причинам, а не по причине значительного ухудшения свойств материала. Таким образом, по результатам российских испытаний, долговечность материала составила не менее 80 лет .

Аспекты экологической безопасности использования пенополистирола

Хотя в российском обществе ведутся споры относительно экологической безопасности пенополистирола, известно, что за более чем 50 лет применения вспененного пенополистирола и стиролосодержащих материалов в мире не были выявлены подтвержденные корреляции между его использованием и нарушениями репродуктивных и иных функций у людей.

Кроме того, Международный строительный кодклассифицирует пенополистирол как один из наиболее энергоэффективных и экологически чистых утеплителей. Что также подтверждается исследованиями Американских специалистов, пришедших к выводу о безопасности SIP-технологий с использование пенополистирола.

Согласно гиду по экологичности строительных материалов «Building materials and the envirnoment» с точки зрения экологичености свойства пенополистирола соотносятся со свойствами других видов теплоизоляции следующим образом:

Материал Происхождение Энергия, потребляемая для производства Теплопроводность Зелёный рейтинг BRE* комментарии
Овечья шерсть Овцеводство 20.90 0.036-0.040 A пропитывается химическими антипиренами; возобновляемый
пеностекло переработка стекла 27.00 0.042 от A+ до C рейтинг зависит от прочности;поддается рециклингу; высокая прочность на сжатие
Стекловата на 30-60 % процентов из промышленных отходов 28.00 0.032-0.040 от A+ до A рейтинг зависит от прочности; потенциально поддается рециклингу;высокий процент вторично переработанных веществ; связующие могут быть токсичными; раздражитель
Каменная вата до 23 % промышленных отходов 16.80 0.036 от A+ до C рейтинг зависит от прочности; потенциально поддается рециклингу;связующие могут быть токсичными; раздражитель; в процессе производства выделяются токсичные вещества;
Пенополистирол Нефтепродукты 88.60 0.039 A+ продукт нефтепереработки; энергозатратен; антипирены могут быть токсичными; потенциально поддается рециклингу;высокая прочность на сжатие; водостойкий;не биоразлагаемый;
Экструдированный пенополистирол Нефтепродукты 109.20 0.032 E чрезвычайно энергозатратен;продукт нефтепереработки;антипирены могут быть токсичными;потенциально поддается рециклингу;высокая прочность на сжатие;водостойкий;не биоразлагаемый; эмиссии могут разрушать озоновый слой

Зелёный рейтинг BRE — метод анализа ряда фактов влияния на экологию и человека, который классифицирует все материалы по шкале от А до E,где А — наилучший показатель безопасности и дружественности к окружающей среде, а E — наихудший показатель.

Удобство монтажа

Пенополистирол — легкий, прочный и не хрупкий материал. Резка пенополистирола возможна без использования специальных режущих инструментов и позволяет применять простые средства, такие как нож или ручная пила. Обращение с материалом не представляет опасности для здоровья во время транспортировки, монтажа, использования и демонтажа, поскольку он не радиоактивен, не содержит опасных волокон или других веществ. Пенополистирол может обрабатываться и резаться не вызывая раздражения, экземы или раздражения кожи, дыхательных путей и глаз. Это означает, что дыхательные маски, защитные очки, защитная одежда и перчатки не требуются для того, чтобы работать с пенополистиролом. Цемент, известь, гипс, ангидрит и растворы, модифицированные полимерными дисперсиями, не оказывают негативного эффекта на пенополистирол. Все это делает пенополистирол полностью безопасным и практичным при использовании в гражданском, промышленном и транспортном строительстве. Монтаж пенополистирольных плит простой процесс и доступен практически каждому человеку

Взаимодействие с растворителями

Растворимость пенополистирола в технических жидкостях в первую очередь обуславливается химической природой исходного полимера. Пенополистирол хорошо растворяется в исходном мономере, в ароматических и хлорированных углеводородах, сложных эфирах, кетонах, сероуглероде. В низших спиртах, низкомолекулярных алифатических углеводородах, простых эфирах, фенолах и воде пенополистирол нерастворим.

Особые свойства вспененного полистирола

Пенополистирол — типичный представитель поро- и пенопластов поэтому его физико-механические и теплофизические характеристики ничем существенно не отличаются от остальных ячеистых пластмасс.

Но в силу ячеистой природы низкая теплостойкость стирола полимеров объясняет особенности окислительной, термоокислительной и термической деструкции, а также горения пенополистирола что обуславливет особенности его применения, а также накладывает ряд ограничений на его использование.

Современный пенополистирол, применяемый в строительстве, производится по технологиям, предусматривающим применение, специальных химических добавок: стабилизирующих, термостабилизирующих и антипиренов. Эти добавки значительно увеличивают стойкость полистирола к окислительной, термоокислительной и термической деструкции, при необходимости в пенополистирол может быть добавлена добавка, увеличивающая его стойкость к солнечному свету, вернее его ультрафиолетовой составляющей. Как правило, такая добавка не применяется, поскольку, пенополистирол находится в составе конструкции и защищен от воздействия негативных факторов.

Деструкция пенополистирола

Неизбежность деструкции полистирола обусловлена самой сущностью полимеризационных пластмасс. Под воздействием внешних факторов у всех полимеров, в том числе и у полистирола происходят разрушения макромолекул в результате чего изменяются химико-физические и эксплуатационные свойства. Деструкция пенополистирола существенным образом отлична от деструкции полистирола. В первую очередь это обусловлено развитой наружной поверхностью, характерной для всех вспененных пластмасс.

1831 г. из смолы styrax было получено новое органическое соединение, названное «стиролом», из которого в 1839 г. впервые был получен полимер полистирол – одно из первых синтетических высокомолекулярных соединений, синтезированных человеком. Строение полистирола было впервые установлено в 1911-1913 гг. русским ученым И.И.Остромысленским. Первые промышленные полимеры, были получены в условиях, при которых отсутствовали термодинамические ограничения со стороны участвующих реагентов, поэтому полистирол удалось синтезировать примерно за 100 лет до открытия термодинамической теории полимеризации. И только в 1948 г. с развитием физико-химии полимеров начались детальные исследования в области термодинамики полимеризационных процессов, результатом которых стало открытие равновесного состояния системы «полимер – мономер».

О равновесном состоянии системы «полистирол - стирол» впервые высказал предположение Тобольский. Он же, с учениками, в 1957-1960 гг. вывел подробную математическую интерпретацию этого процесса для разных видов полимеров. В частности для полистирола, согласно предложенной им классификации, справедливо математическое обоснование типа «III-а» которое в упрощенном схематическом виде принято записывать так:

Пi=Пi-1+С

В той или иной форме эту формулу "«полимеризационно-деполимеризационного равновесия»" приводят как каноническую все основоположники химии высокомолекулярных соединений — Савада, Берлин, Гордон, Эммануэль, Кауш, Фойгт. Согласно этой формулы совместное существование системы «мономер-полимер» возможно только до некой предельной температуры Тпред, выше которой существование полимера термодинамически запрещено Ниже Тпред термодинамическое равновесие системы «полимер – мономер» регламентируется балансом внешних физических воздействий системы «температура - парциальное давление мономера над поверхностью полимера». При отводе мономера равновесие системы нарушается и начинается процесс деполимеризации, так как термодинамические законы существования Вселенной стремятся восполнить баланс. И если отвод мономера постоянен – процесс деполимеризации остановится только по исчерпанию запаса полимера. Иными словами - из условий полимеризационно-деполимеризационного равновесия полистирола, при температуре выше равновесной, или при концентрации мономера ниже равновесной термодинамически возможны процессы деполимеризации.

Для наглядной иллюстрации полимеризационно-деполимеризационного равновесия очень часто привлекают аналогию равновесия системы «вода-водяной пар», которое от температуры абсолютного нуля и до температуры Тпред всегда существуют совместно.

Помимо теоретического обоснования, равновесность системы «полистирол – стирол», обусловленную одновременностью течения реакции полимеризации стирола и деполимеризации полистирола доказана также и экспериментально.

Низкотемпературная деструкция пенополистирола

Термодинамические условия эксплуатации полимерных материалов всегда невыгодны с точки зрения устойчивости и сопровождаются процессом хоть и медленной, но неуклонной их деструкции. Полистирол существует в равновесном состоянии со своим мономером, образуя систему «стирол-полистирол», описываемую теорией термодинамики полимеризационных процессов которая утверждает, что константа полимеризационно-деполимеризационного равновесия зависит только от равновесной концентрации мономера. Поэтому в полимеризационных пластмассах в том числе и в полистироле всегда присутствует некоторое количество мономера, равновесная концентрация которого определяется термодинамическими характеристиками системы, а поэтому не зависит от механизма процесса.

Но сама по себе термодинамическая возможность протекания какого-либо процесса еще не обуславливает определенных скоростей его протекания и, в свою очередь, регламентируется или температурой или объемом протекания реакции. Для полистирола в форме плотных изделий, регламентирующим началом деструкции выступает температурный фактор. При более низких температурах его деструкция теоретически хотя и возможна в соответствии с законами термодинамики полимеризационных процессов, но из-за чрезвычайно низкой газопроницаемостью полистирола парциальное давление мономера имеет возможность изменяться только на наружной поверхности изделия. Соответственно ниже Тпред = 310 ˚С деполимеризация полистирола происходит только с поверхности изделия, и ею можно пренебречь для целей практического применения.

Для пенопополистирола на первый план выступает тот факт, что это не плотное изделие из полистирола, а набор ячеек площадью 0,06 - 2,5 мм2 с толщиной стенок от 3 микрон. Поэтому пенополистирол следует рассматривать как особое физическое состояние полистирола в форме совокупности тонких пленок, для которых вероятность контакта с внешней средой в несколько миллионов раз больше, чем для плотного изделия из полистирола. Процессы полимеризации и деполимеризации идут одновременно, но имеют свои особенности для тонких и толстых образцов. В толстом образце деполимеризовавшаяся молекула имеет больше шансов снова полимеризоваться, чем в тонком. Кроме того, в случае достаточно большой удельной поверхности раздела между полимером и газовой фазой становится справедливо так называемое «псевдоравновесное» состояние, описываемое термодинамическими параметрами «полимеризационно-деполимеризационного» равновесия. Поэтому деструкция тонких образцов имеет свои четко обозначенные особенности.

Окисление полистирола в толстых, массивных образцах лимитируется кислородом, растворенном в самом полимере. В тонких образцах превалирует окисление, инспирированное кислородом, диффундирующим в полимер извне, в результате градиента его концентраций в атмосферном воздухе и в полимере. Поэтому в пленках полистирола толщиной 25 мкм, к примеру, реакция его окисления идет в 1.7 – 6.7 раза быстрее, чем в толстых образцах. Окислительные процессы в полистироле пространственно локализуются в очагах – «микрореакторах» потому что именно в этих местах при прочих равных условиях растворяется в 5 – 6 раз больше кислорода, чем в бездефектных областях. Физико-химические воздействия жидких или газообразных сред, химически активных по отношению к полистиролу, вызывает набухание поверхностного слоя. В случае тонких пленок полистирола, такое набухание предопределяет практически мгновенное формирование микротрещин и каверн. В свете выше сказанного современная наука о полимерах четко разделяет деструкцию полимеров в зависимости от толщины образцов, называя для так называемых «тонких» образцов главной причиной снижения эксплуатационной долговечности – окисление, так как разрушение всего 0.1% углеродных связей приводит к многократному снижению молекулярной массы полимера, что ухудшает эксплуатационных характеристик на десятки процентов.

При деструкции полистирола, в результате внутримолекулярного замещения с последующим распадом макрорадикалов, образуются низкомолекулярные вещества разнообразного состава - толуол, этилбензол, изопропилбензол, кумол. Продуктами окисления стирола на воздухе являются бензальдегид и формальдегид. Поэтому при санитарно-химических исследования пенополистирола нормативные документы в обязательном порядке предписывают осуществлять его проверку на выделения стирола, α-метилстирола, бензола, толуола, этилбензола, кумола, метанола и формальдегида. Аналогичные требования содержатся также и в украинских нормативных документах.

Низкотемпературная деструкция пенополистирола - мнение Ассоциации Производителей Пенополистирола

Вопрос о низкотемпературной деструкции современного пенополистирола до конца не исследован. Доподлинно известно, что в 1960—1970х годах в СССР проводились замеры, показавшие превышение ПДК по стиролу, однако это было связано с несовершенством химического производства. По причине использования несовершенных технологий в полученном полистироле оставалась значительная концентрация мономера, которая не извлекалась из материала при дальнейшей обработке . Современные разработки в области химической промышленности позволили решить эту проблему, и произведенный по современным технологиям пенополистирол не содержит остаточного мономера, что исключает превышение ПДК стирола при нормальных условиях эксплуатации.

Однако, стоит учитывать, что в связи с несовершенством систем контроля за производством и продажей строительной продукции, на современных строительных рынках до сих пор можно приобрести контрафактную продукцию, которая может нанести вред здоровью человека. .

При фотохимической деструкции под воздействием солнечного света разрушение пенополистирола происходит только в поверхностном слое на глубину несколько миллиметров. Однако, известно, что при правильной эксплуатации в строительстве пенополистирол не должен выступать наружу, и должен использоваться внутри инженерно-строительной конструкции.

Д.х.н., профессор кафедры переработки пластмасс РХТУ им. Менделеева Л. М. Кербер о выделении стирола из современного пенополистирола:

В условиях обычной эксплуатации стирол окисляться никогда не будет. Он окисляется при гораздо более высоких температурах. Деполимеризация стирола действительно может идти при температурах выше 320 градусов, но всерьёз говорить о выделении стирола в процессе эксплуатации пенополистирольных блоков в интервале температур от минус 40 до плюс 70 С нельзя. В научной литературе имеются данные о том, что окисления стирола при температуре до +110 С практически не происходит.

Также эксперты утверждают, что падение ударной вязкости материала при 65 градусах Цельсия не отмечено на интервале 5000 часов, а падение ударной вязкости при 20 градусах Цельсия не отмечено за 10 лет.

Токсичная природа стирола и способность пенополистирола выделять стирол считается европейскими экспертами недоказанной. Эксперты, как в строительной, так и в химической отрасли либо отрицают саму возможность окисления пенополистирола в обычных условиях, либо указывают на отсутствие прецедентов, либо ссылаются на отсутствие у них информации по данному вопросу .

Кроме того, сама опасность стирола изначально часто преувеличивается. Согласно крупномасштабным научным исследованиям, проведенным в в 2010 г в связи с прохождением обязательной процедуры перерегистрации химических веществ в Европейском Химическом Агентстве в соответствии с регламентом REACH,, были сделаны следующие выводы: мутагенность — нет оснований для классификации; канцерогенность — нет оснований для классификации; репродуктивная токсичность — нет оснований для классификации.

Более того, необходимо иметь в виду, что стирол естественным образом содержится в кофе, корице, клубнике и сырах.

Таким образом, основные опасения, связанные с особой токсичностью стирола, якобы выделяющегося при использовании пенополистирола, не подтверждаются.

Высокотемпературная деструкция пенополистирола

Высокотемпературная фаза деструкции пенополистирола хорошо и обстоятельно исследована. Она начинается при температуре +160С. С повышением температуры до +200С начинается фаза термоокислительной деструкции. Выше +260С преобладают процессы термической деструкции и деполимеризации. В связи с тем, что теплота полимеризации полистирола и поли-'''α'''-метилстирола одни из самых низких среди всех полимеров, в процессах их деструкции преобладает деполимеризация до исходного мономера — стирола.

Просмотров: 20298

4108.ru

НАУЧНЫЙ ВЗГЛЯД НА ПЕНОПОЛИСТИРОЛ

Принятие Закона № 261-ФЗ «Об энергосбережении и повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации» открыло новую страницу в российском строительстве: производители впервые ощутили реальный спрос на энергосберегающие, инновационные технологии, а параллельное усиление «зеленых тенденций» поставило ещё одну задачу: комбинировать эффективность технологий с безопасностью для человека и окружающей среды.

Эти два фактора стали определяющими как для производителей строительных материалов, так и для специалистов в области проектирования и строительства и заставили оба звена строительной цепочки затрачивать немало ресурсов на поиск строительных материалов, удовлетворяющих этим требованиям. При этом часть профессионального строительного сообщества признаёт, что энергоэффективные и долговечные материалы уже представлены на рынке и, соответственно, поиск инноваций — скорее дань моде и/или маркетинговая стратегия, чем реальная необходимость.

Среди материалов, чьи свойства уже были не раз доказаны, испытаны, измерены и опробованы в конструкциях по всему миру, — пенополистирол.

Несмотря на очевидные физико-механические преимущества пенополистирола по сравнению с другими видами теплоизоляции, вокруг его применения в жилищном и гражданском строительстве не утихают споры, и если пенополистирол и включают в проектные решения, то делается это с большой осторожностью.

Это связано, прежде всего, с недостаточной информированностью о современных данных, результатах текущих испытаний, наличии разрешительных документов, а также с путаницей, которую вносят в классификацию материала устаревшие ГОСТы и некоторые предприимчивые производители.

Данная статья призвана рассмотреть свойства пенополистирола, его преимущества и недостатки по сравнению с другими теплоизоляционными материалами именно в контексте требований современности и актуальных строительных тенденций.

Прежде всего, следует отметить, что свойства пенополистирола очевидно проистекают из метода его производства и особенностей этого процесса. Пенополистирол получают из готового полимера — полистирола — путем его вспенивания при нагревании не выше 100 °С. Этот процесс носит чисто физический характер, какие-либо химические реакции при этом исключены.

При этом важно подчеркнуть, что только пенополистирол, пенополиэтилен и пенополивинилхлорид получаются из чистых полимеров. Пенополиуретан и другие пенореактопласты образуются в результате химических реакций при смешении двух реакционноспособных олигомеров, и полимер синтезируется одновременно с его вспениванием. Справедливо сказать, что в самой технологии производства пенополистирола заложена его санитарно-гигиеническая безопасность и «чистота».

Согласно санитарно-гигиеническим нормам пенополистирол может контактировать с любыми пищевыми продуктами, из него изготовляют одноразовую посуду, упаковку для овощей, фруктов, рыбы и мяса.

Одним из аргументов против использования пенополистирола в строительстве является тот факт, что полистирол появляется путем полимеризации стирола. Считается, что пенополистирол подвергается постоянному окислению под воздействием кислорода, и при этом, якобы, происходит выделение стирола в окружающую среду.

Однако для большинства представителей научного химического сообщества такие утверждения представляются беспочвенными и безграмотными, так как в условиях обычной эксплуатации пенополистирол окисляться никогда не будет. Деполимеризация стирола действительно может идти при температурах выше 320 °С, но всерьёз говорить о выделении стирола в процессе эксплуатации пенополистирольных блоков в интервале температур от –40 до +70 °С нельзя.

Данные испытаний Московского научно-исследовательского института гигиены им. Ф. Ф.Эрисмана показывают, что в отобранных пробах воздуха в помещениях со стеновыми панелями со средним слоем из пенополистирольного утеплителя стирол не обнаружен (согласно заключению Московского НИИ Гигиены
им. Ф. Ф. Эрисмана № 03/ПМ8).

Кроме того, анализ всех имеющихся мировых данных по токсикологии, в том числе самые последние исследования Консорциума «Стирол» в рамках европейского регламента REACH (который суммировал результаты исследований за последние 20 лет), говорит о том, что стирол не является мутагенным, канцерогенным веществом и не оказывает воздействие на репродуктивную деятельность организма.

В зависимости от состава и применяемой технологии вспенивания полимера плотность пенополистирола, оказывающая решающее влияние на основные свойства материала, может меняться в широких пределах. Так, плотность материала, полученного беспрессовым методом, может меняться от 13 до 48 кг/м3; плиты, полученные методом экструзии, могут иметь плотность от 21 до 40 кг/м3. При получении изделий прессовым методом или методом литья под давлением плотность полученных изделий может достигать 160 кг/мз.

Говоря о высоких требованиях, предъявляемых к повышению энегроэффективности зданий, следует рассмотреть такое свойство теплоизоляционных материалов, как теплопроводность, то есть способность материала передавать тепло от одной своей части к другой в силу теплового движения молекул. Низкие показатели теплопроводности позволяют сократить толщину утеплителя, необходимую для обеспечения нужного уровня тепла, а значит, и затраты на сам материал.

Пенополистирол в этом отношении уникален, он обладает низкой тепловодностью в сочетании с малой плотностью. В зависимости от состава материала, его структуры и метода получения теплопроводность пенополистирола меняется от 0,028 до 0,045 вт/мК. Этот показатель соответственно составляет 0,058 у дерева, 0,048 — у шлаковаты, 0,045 — у древесноволокнистой плиты, 0,039 — у пробки; однако плотности этих материалов соответственно 368, 35, 208 и 112 кг/м3.

Низкая теплопроводность пенополистирола определила его широкое применение в Европе, где, что любопытно, его стоимость не уступает стоимости волокнистых утеплителей. В условиях экономии каждого сантиметра фасадное утепление в Германии почти полностью ведется с использованием пенополистирола (с 1960-х годов утеплены были более 500 млн кв. м фасадов, по данным Института строительной физики Фраунгофера, г. Хольцкирхен), в связи с чем Германия — основной источник данных о поведении этого материала на фасадах в течение длительного времени.

В данный момент отсутствие претензий со стороны немецкого строительного сообщества к навесным фасадным штукатурным системам «мокрого типа» в силу положительных долгосрочных эксплуатационных характеристик и удовлетворительной защитой от проливного дождя, а также с высокими теплоизоляционными качествами позволило ежегодно утеплять таким методом более 30 млн кв. м жилья по всей Германии.

Однако в России противники применения пенополистирола высказывают опасения по поводу деструкции данного материала под действием факторов внешней среды, что обязывает нас проанализировать отечественные данные.

Большой интерес представляют результаты испытаний образцов пенополистирола, извлеченных из стеновых сэндвич-панелей при разборке панельных домов со сроком эксплуатации 40 лет и более. Как показали испытания этих образцов, их свойства сохранились на уровне 85–90% от исходных, что говорит о возможности длительной эксплуатации сооружений, построенных с грамотным использованием панелей с пенополистирольным теплоизоляционным слоем.

В течение 12 лет исследователи наблюдали за теплоизоляционным слоем, изготовленным фирмой «Пластбау», в недостроенном доме в Казани, где пенополистирольные плиты толщиной 100 мм стояли открытыми всем ветрам, дождям и солнцу. Тончайший слой, не более 20 микрон, пожелтел, а под ним — нетронутая ни физически, ни химически белоснежная структура. Даже в условиях, в которых он не должен применяться, а именно — в открытой атмосфере, пенополистирол не деструктирует столь заметно, чтобы можно было говорить о проблеме его старения. По истечении длительного времени пенополистирол полностью сохраняет свои свойства и характеристики.

Таким образом, доступный нам опыт исследований в данной области позволяет сделать следующие выводы.

Пенополистирол — материал влагостойкий, более того, будучи неполярным полимером, он гидрофобен, то есть обладает плохой смачиваемостью. Пенополистирол сохраняет свои свойства при контакте с влагой, что актуально для регионов с повышенной влажностью или для условий проведения работ во время осадков.

Безусловно, обычный паропроницаемый пенополистирол способен накапливать влагу: она может конденсироваться, и, если конструкция сконструирована плохо, происходит замораживание и оттаивание влаги. Но, как и все полимеры, пенополистирол — податливый материал, поэтому такого разрушения, как в минеральных пористых материалах, не происходит.

Пенополистирол обладает также достаточной морозостойкостью, что позволяет эксплуатировать его при весьма низких температурах (–40 °С –50 °С) (ниже –40 °С) без заметного ухудшения свойств.

Некоторый недостаток отечественных исследований в этой области компенсируется богатой базой данных, например, канадских коллег, которые с 70-х годов XX века скрупулёзно изучали свойства вспененных и экструдированных полистиролов на предмет их применимости в суровых климатических условиях.

Здесь, в Канаде, в 1973 году в «Журнале отделений механики грунтов и фундаментов» авторы статьи, озаглавленной как «Проектирование изолированных фундаментов» (Eli I. Robinsky — M. ASCE, Keith E. Bespflug), в своих выводах рекомендовали применение для этих целей «обыкновенного» пенополистирола: «Хотя в теоретических анализах предполагалось применение экструдированного полистирола в качестве изоляционного материала и он также использовался на строительных площадках, другие материалы, такие как плиты из гранулированного пенополистирола, могут столь же успешно служить для этой цели и даже обеспечивать большую экономию.

Однако там, где изоляция располагается под нагружаемой частью конструкции, например под фундаментом или под плитами перекрытия, она должна обладать достаточной прочностью на сжатие для того, чтобы выдержать нагрузку».

Полагаем, что подобные испытания с максимальной долей объективности и научной точности должны быть продолжены и в России, тем более что положительный опыт применения полимерных утеплителей в северных широтах России насчитывает не один десяток лет, однако он требует конкретных и убедительных данных о результатах такого применения.

В тоже время верхний предел температур его эксплуатации ограничен значениями от +60 до +70 °С, так как выше этой температуры материал начинает размягчаться, и его механические свойства заметно ухудшаются. Однако из-за низкой теплопроводности материала кратковременные превышения этой температуры допустимы без ухудшения свойств.

Помимо способности противостоять влаге и воздействию низких температур, пенополистирол демонстрирует высокую стойкость к действию агрессивных сред, в частности к действию кислот, растворов щелочей и других химически активных продуктов, что также снижает вероятность деструкции материала, однако не отменяет наличия ряда ограничений его применения, так как взаимодействие пенополистирола с красками на основе растворителей или с ароматическими и хлорированными углеводородами губительно для материала.

К сожалению, примеры игнорирования правил совместимости строительных материалов не единичны в современной строительной практике. Досадно, что такие проявления халатности нередко списываются на сам материал или несовершенство его свойств. Примером подобного развития событий может служить авария в торговом центре «Охотный ряд», где сочетание экструдированного полистирола с агрессивными красками привело к деструкции материала и всей строительной конструкции. Для снижения вероятности повторения таких эпизодов предполагаем, что должен быть усилен контроль соответствующих органов за корректностью проведения строительных работ, а производители пенополистирольных утеплителей должны усилить просветительскую деятельность среди строителей.

Продолжая тему применимости пенополистирола, необходимо отметить, что он легко совместим с бетонными конструкциями.

По эксплуатационной совместимости с другими строительными материалами он превосходит все другие пенопласты (фенольные, карбамидные — пеноизол, пенополиуретановые).

В связи с высокими требованиями к экологичности современных материалов, следует говорить не только о безопасности самих материалов и их влиянии на окружающую среду, но также и о микроклимате внутреннего помещения и качестве воздуха в нем. Важным фактором в данном случае является возможность предотвращения размножения бактерий, плесени и грибов и их проникновения через ограждающую конструкцию здания.

Испытания, проводимые в лабораториях с идеальными для роста плесени условиями, показали, что плесень на испытуемых образцах не образовывается, роста грибов также не наблюдается. Отсюда можно сделать вывод о химической и биологической нейтральности пенополистирола.

Помимо экологичности, безопасности и энегроэффективности, пенополистирол, будучи легким, прочным и нехрупким материалом, отвечает также такому важному в строительстве требованию, как удобство монтажа. Резка пенополистирола возможна без использования специальных режущих инструментов, простыми средствами, такими как нож или ручная пила. Обращение с материалом не представляет опасности для здоровья во время транспортировки, монтажа, использования и демонтажа, поскольку он нерадиоактивен, не содержит опасных волокон или других веществ. Пенополистирол может обрабатываться и резаться не вызывая раздражения, экземы или раздражения кожи, дыхательных путей и глаз. Это означает, что дыхательные маски, защитные очки, защитная одежда и перчатки не требуются для того, чтобы работать с пенополистиролом. Монтаж пенополистирольных плит — простой процесс и доступен практически каждому человеку.

В последнее время в прессе широко обсуждаются вопросы, связанные с пожароопасностью пенополистирола и конструкций с его участием.

Следует отметить, что действительно пенополистирол — горючий материал, что накладывает определенные ограничения на его использование. Однако эти ограничения должны быть известны современному строителю, так как отражены в действующем пока ГОСТе 15588-86, и их соблюдение не требует сверхъестественных усилий.

50-летний опыт применения этого материала в мире очевидно свидетельствует о том, что вклад пенополистирола в пожарный риск не больше, чем других широко распространенных органических строительных материалов.

При горении пенополистирола выделяется всего около 1000 МДж/м3. Теплота сгорания сухого лесоматериала составляет 7000–8000 МДж/м3, что при равном объеме дает значительно большее повышение температуры при пожаре в здании, чем пенополистирол.

Пенополистирол используется для тепловой изоляции в качестве среднего слоя строительных конструкций при отсутствии контакта с внутренними помещениями. Во многих случаях фасадные утепления с пенополистиролом показали лучшие результаты при полномасштабных пожарных испытаниях, чем навесные фасады с минеральной ватой.

Проблема горения пенополистирола решается сегодня за счет различных добавок антипиренов, которые резко снижают опасность возгорания и обладают способностью к самозатуханию при удалении источника огня. До недавнего времени сырье для производства пенополистирола типа ПСБ-С пропитывали гексабромциклододеканом (ГБЦД), доля которого обычно не превышала 0,5%.

Несмотря на то, что ГБЦД не образует токсичных диоксинов и фуранов при горении и не является источником формирования полибромодибензофуранов и диоксинов при различных видах горения в диапазоне температур от 400 до 800 °C, в последние время были предъявлены новые экологические требования к его влиянию на окружающую среду. В связи с этим европейская полистирольная индустрия столкнулась с необходимостью разработки безопасной альтернативы ГБЦД до 2014 года.

В конце марта 2011 года Great Lakes Solutions (подразделение компании Chemtura) объявили об успешном создании нового антипирена. По заявлениям специалистов Great Lakes Solutions, новая добавка не снижает теплотехнических характеристик вспененных и экструдированных полистиролов и одновременно удовлетворяет требованиям по экологичности.

Тем не менее любая органика, включая дерево и даже шерсть, горит с выделением определенных газов. Следует, однако, отметить, что ни полистирол, ни входящие в его состав компоненты не образуют при горении фосгена и цианидов. Данные о подобных явлениях чаще всего на проверку ссылаются на результаты исследований 1970-х годов, когда способ производства пенополистирола существенно отличался.

Продукты горения полистирола, используемого в качестве среднего слоя строительных конструкций, менее опасны, чем продукты горения целлюлозы, дерева и шерсти, широко распространенных в быту. По мнению авторов данной статьи, пожары в зданиях с применением пенополистирола, муссирующиеся в СМИ, случаются из-за непростительного волюнтаризма в сочетании с фактическим отсутствием контроля над проведением строительных работ в нашей стране.

Так или иначе, оптимизм вселяет то, что проблемы, с которыми сталкивается сейчас пенополистирольная отрасль, не связаны с самим материалом, применение которого авторам данной статьи представляется более чем перспективным в силу отсутствия в ряде случаев достойной альтернативы этому материалу.

Те проблемы, которые проистекают из недоразвитости законодательной, строительной нормативной и исследовательской базы, безусловно, преодолимы. Самое непосредственное участие в разработке новых стандартов, активизации просветительской работы, усилении интеграции европейского опыта должны сыграть и деятели науки, и производители пенополистирола, и представители строительного сообщества, опыт которых может служить превосходным мотиватором для совершенствования этой индустрии на благо жителей нашей страны.

Михаил Леонидович Кербер, доктор химических наук,
профессор кафедры переработки пластмасс РХТУ им. Д. И. Менделеева

Вадим Григорьевич Хозин, доктор технических наук,
зав. кафедрой технологии строительных материалов, изделий и конструкций Казанского ГАСУ.

msg-penoplast.ru

Пенополистирол — характеристики и критерии выбора

Отопление квартиры в зимнее время обходится нам ой как недешево, а цены на энергоносители с каждым годом непомерно растут. И очень жаль, когда столь дорого обходящееся тепло бесполезно уходит из квартиры наружу. Причем потери эти просто огромны. Впрочем, есть неплохой способ их снизить: обшивание наружных стен дома пенопластовыми, иначе, полистирольными, плитами. Этот знакомый всем полистирол характеристики в плане теплоизоляции имеет весьма примечательные. Но так ли хороши его остальные свойства? Сегодня мы об этом расскажем.

 О свойствах пенополистирола – подробно и доступно

Сперва рассмотрим технические характеристики пенополистирола, которые действительно соответствуют данному утеплителю, позже затронем те моменты его свойств которые являются спорными, но постоянно продвигаются продавцами и производителями.

О теплопроводности

Пенопласт представляет собой не что иное, как множество пузырьков воздуха, заключенных в тоненькие оболочки из полистирола. При этом соотношение таково: два процента полистирола, остальные девяносто восемь – воздух. В результате получается некое подобие твердой пены, отсюда и название – пенополистирол. Воздух герметично запаян внутри пузырьков, благодаря чему материал отлично удерживает тепло. Ведь известно, что воздушная прослойка, находящаяся без движения – великолепный теплоизолятор.

По сравнению с минеральной ватой коэффициент теплопроводности у данного материала ниже. Он может иметь значение от 0,028 до 0,034 ватта на метр на Кельвин. Чем плотнее пенопласт, тем больше значение его коэффициента теплопроводности. Так, для экструдированного пенополистирола, имеющего плотность 45 килограммов на кубометр, этот параметр составляет 0,03 ватта на метр на Кельвин. При этом имеется в виду, что окружающая температура не выше семидесяти пяти и не ниже минус пятидесяти градусов Цельсия.

О паропроницаемости и поглощении влаги

Обычный пенопласт имеет нулевую паропроницаемость. А характеристики экструдированного пенополистирола, который изготавливается особым образом, иные. Его паропроницаемость варьируется от 0,019 до 0,015 килограмма на метр-час-Паскаль. Это кажется странным, так как, по идее, подобный материал с пенной структурой пар пропускать не способен. Ответ прост – в плотном экструдированном пенопласте формовка производится путем резания. Вот и проникает пар через эти разрезы, забираясь внутрь воздушных ячеек. Обычный же пенопласт, как правило, не режут, поэтому он для пара и недоступен.

Что касается впитывания воды, то здесь ситуация обратная. Если погрузить лист простого пенопласта в воду, то он впитает ее до 4 процентов. Плотный пенополистирол, изготовленный методом экструзии, останется практически сухим. Он вберет в себя воды в десять раз меньше – всего лишь 0,4 процента.

Видео: Пенополистирол дышит

О прочности

Тут пальма первенства принадлежит экструдированному пенополистиролу, у которого связь между молекулами весьма крепкая. По прочности статического изгиба (от 0,4 до 1 килограмма на квадратный сантиметр) он заметно превосходит рядовой пенопласт (его прочность лежит в пределах от 0,02 до 0,2 килограмма на квадратный сантиметр). Поэтому в последнее время обыкновенного, не экструдированного, пенопласта вырабатывается всё меньше, так как он менее востребован. Метод экструзии позволяет получить более современный материал для изоляции, прочный и влагостойкий.

Чего боится пенополистирол

Пенополистирол никак не реагирует на такие вещества, как сода, мыло и минеральные удобрения. Он не взаимодействует с битумом, цементом и гипсом, известью и асфальтовыми эмульсиями. Нипочем ему и грунтовые воды. А вот скипидар с ацетоном, некоторые марки лаков, а также олифа способны не только повредить, но и полностью растворить этот материал. Растворяется пенопласт и в большинстве продуктов, получаемых путем перегонки нефти, а также в некоторых спиртах.

Вот только не любит пенопласт (ни обычный, ни экструдированный) прямых солнечных лучей. Они его разрушают – при постоянном ультрафиолетовом облучении материал становится сначала менее упругим, теряя прочность. После этого дело разрушения довершают снег, дождь и ветер.

Видео: Пенопласт и ацетон — химический опыт

О способности поглощать звуки

Если надо спастись от излишнего шума, пенополистирол стопроцентно не поможет. Ударный шум он несколько приглушить в состоянии, но лишь при условии, что будет проложен достаточно толстым слоем. А вот воздушные шумы, волны которых распространяются по воздуху, пенопласту не по зубам. Таковы особенности конструкции и свойства пенополистирола – жестко расположенные ячейки с воздухом внутри оказываются полностью изолированными. Так что для звуковых волн, летящих по воздуху, надо ставить преграды из других материалов.

О биологической устойчивости

Как выяснилось, плесень на пенопласте жить не способна. Это подтверждено американскими учеными, которые в 2004 году провели ряд лабораторных исследований. Данные работы были заказаны фирмами-производителями пенополистирола из США. Результат их полностью удовлетворил.

 Вся правда о безвредности, негорючести и долгом сроке службы

В плане экологии пенопласт абсолютно безопасен – ведь при его производстве не используется фреон, пробивающий бреши в озоновом слое Земли. Полистирол способен служить много лет, не теряя своих свойств – испытания показали, что его можно многократно размораживать и замораживать, и качество материала при этом не страдает. Данный материал не подвержен горению, так как в его состав входят специальные вещества – антипирены. Всё это кажется совершенно правильным и неоспоримым, но лишь на первый взгляд. Есть несколько нюансов. О них поговорим далее.

Вопрос экологии

К сожалению, на воздухе пенополистирол окисляется. Причем пенопласт обыкновенный, имеющий более рыхлую структуру, более подвержен этому процессу. Экструдированный материал окисляется медленнее, но и его ждет та же участь. И даже горения никакого не надо – достаточно тридцатиградусной жары на улице. В процессе окисления выделяется масса вреднейших веществ. Это бензол с этилбензолом, толуол, ядовитый формальдегид, метиловый спирт и ацетофенон. Только что уложенный пенопласт еще и стирол выделяет, так как полная полимеризация материала невозможна в стадии производства. А пока полимеризация не будет завершена, выделение стирола не прекратится.

Производители пенопласта пытаются оспорить информацию про вредность пенополистирола. Они говорят, что их сырье менее вредно, чем дерево. Имеется в виду выделение деревом вредных веществ при горении. Это неправда – если пенополистирол нагреть до температуры, превышающей 80 градусов, то такой «букет» веществ выплывет – куда там дереву. Впору для газовой атаки использовать образующиеся при горении вредные сажу с дымом. В них содержатся, например, фосген (карбонилдихлорид), синильная кислота (гидроцианид), бромистый водород (гидробромид).

Вопрос горючести

На самом деле любой полистирол горит. Лукавят производители, заявляя, что он затухает самостоятельно, являясь менее опасным, чем дерево – увы, это не так. Подобное заявление явно противоречит российскому ГОСТу 30244-94, по которому пенопласты по горючести причислены к группам Г3 и Г4 – самым опасным.

Говоря о пожаробезопасности пенополистирола, изготовители хитрят, используя европейские стандарты, отличающиеся от отечественных. Там горючесть определяется по трем оценочным характеристикам: биологической, химической и комплексной. Согласно первой из них, самый опасный по загораемости материал – именно дерево. Но при этом токсичность определяется крайне приблизительно, далеко не в полном объеме. И полностью сравнить вредность продуктов сгорания пенопласта и древесины этим способом не получается. С химическим методом дело обстоит так же.

А вот комплексная методика, которую в Европе принято использовать при проверке полимеров, способна дать правдивые результаты. Но российские фирмы, продающие пенопласт из Европы, предоставляя покупателям технические характеристики пенополистирола, показывают лишь биологический и химический тесты материала. Точно так же поступают и некоторые отечественные изготовители пенопласта, открывая только часть информации потребителю. Так истина оказывается скрытой от широких масс.

Еще одним способом извратить факты является эффектное подвешивание пенопластовой плиты в воздухе, а затем ее поджигание. Для этого на плиту воздействуют снизу зажженной горелкой. Результат говорит сам за себя – выгорает только тот кусочек, который находился в контакте с горелкой, а далее огонь не идет. Но ведь этот опыт никак не соответствует реальным условиям эксплуатации, и может служить лишь в качестве фокуса. А вот если на плоскость из негорючего материала положить кусок пенополистирола и поджечь, она вовсе не потухнет. Ведь раскаленные капли пенопласта, образующиеся при нагревании небольшого кусочка, перенесут огонь на всю его поверхность. Результат не заставит себя ждать – плита сгорит полностью.

Если взять пенополистирол, не включающий в себя антипирены, то его коэффициент образования дыма равен 1048 квадратных метров на килограмм. У пенопласта с эффектом самозатухания этот показатель больше – 1219 квадратных метров на килограмм. У резины, например, он составляет 850 квадратных метров на килограмм, а у дерева и того меньше – всего 23 квадратных метра на килограмм. Чтобы было понятнее, приведем такие цифры: если задымленность в комнате более 500 квадратных метров на килограмм, то, вытянув руку, можно не увидеть ее пальцев.

Антипирены (чаще всего гексабромциклододексан) добавляют в пенополистирол для увеличения его пожаробезопасности. У нас в стране принято обозначать такой пенопласт буквой «С». Это должно, по идее, означать, что материал обладает свойством затухать самостоятельно. Но на практике выясняется, что пенополистирол с антипиреном горит ничуть не хуже, чем не содержащий этой добавки. Он лишь загорается хуже, не делая этого самопроизвольно при повышенной температуре. Класс его горючести – Г2, но через несколько лет он превращается в Г3 или Г4 – свойства антипирена со временем ухудшаются.

Вопрос срока службы

Если правильно эксплуатировать пенополистирол, закрывая его сверху штукатуркой или другим защитно-декоративным слоем, то он прослужит лет 30, не меньше. Правда, на деле всё оказывается не так радужно – то мастера слепят теплоизоляцию наскоро кое-как, то заказчик постарается сэкономить за счет материалов, то неопытный мастер ошибок наделает при монтаже пенополистирольных плит.

Одна из таких ошибок – неправильный расчет толщины утеплителя. Многим кажется, что если взять толстую тридцатисантиметровую плиту пенопласта, то она и прослужит дольше, и в доме теплее будет. Но это не так – материал большой толщины от перепадов температуры пойдет трещинами и волнами, под которые будет проникать холодный воздух. Надо заметить, что в Европе принята норма – утеплять дома снаружи пенополистиролом не более 3,5 миллиметра толщиной. Это позволяет во время пожара уменьшить опасность отравления.

 Как безошибочно выбрать пенополистирол

Пенопласт является одним из самых популярных строительных материалов. Он легкий, теплый и дешевый, а работать с ним очень просто. Так как спрос велик, то и предложений от производителей появляется всё больше. И каждый из них уверяет, что именно его пенопласт – самый лучший, а с качеством выше всяких похвал.

1. Теряясь от бесчисленного числа предложений, не спешите покупать материал. Сначала внимательно изучите его параметры. Если вам надо утеплить фасад, берите пенополистирол ПСБ-С, позиционирующийся как самозатухающий. Марка его должна быть не ниже сороковой. А если марка имеет число 25 и менее, то и не смотрите в сторону такого материала – он разве что для упаковки годится, но никак не для строительных работ.

2. Имейте в виду, что пенопласт ПБС-С-40 (сороковой марки) может иметь различную плотность – от 28 до 40 килограммов на кубический метр. Изготовителю выгодно таким образом вводить покупателя в заблуждение – на производство пенополистирола меньшей плотности уходит меньше средств. Поэтому нельзя ориентироваться лишь на число в названии марки, а надо попросить показать технические характеристики экструдированного пенополистирола.

3. А еще будет отлично, если вам расскажут, как именно изготавливают данный пенополистирол. Ведь если его плотность более 35 килограммов на кубический метр, то это должна быть только экструзия. Обычным способом, не используя сильное сжатие, можно добиться плотности не выше, чем 17 килограммов на кубический метр.

4. Перед покупкой попробуйте отломить кусочек материала с самого края. Если это окажется низкосортный упаковочный пенопласт, то он разломается с неровным краем, по бокам которого будут видны круглые маленькие шарики. Материал же, полученный методом экструзии, на месте аккуратного разлома имеет правильные многогранники. Линия разлома будет проходить через некоторые из них.

4. Что касается производителей пенополистирола, то лучшими из них являются европейские фирмы «Polimeri Europa», «Nova Chemicals», «Styrochem», «BASF». Не отстают от них и российские компании-производители, такие, например, как «Пеноплэкс» и «Технониколь». Они имеют мощность производства, которой вполне хватает для изготовления пенополистирола весьма высокого качества.

 Заключение

Хотя пенопласт, как выяснилось, опасен при горении и выделяет при этом вредные вещества, он остается одним из самых востребованных теплоизоляторов. Ведь как утеплитель пенополистирол имеет массу преимуществ: он самый дешевый, легко режется обычным ножом, почти не впитывает влагу и хорошо держит тепло. Не зря четыре европейских здания из пяти имеют именно пенополистирольное утепление фасада. Причем как жилые дома, так и офисы, и производственные помещения.

Правда, говорить о длительных исследованиях данного материала пока рано – еще и полвека не прошло с начала его использования. Поэтому те, кто говорят о сроке службы пенополистирола более 80 лет, могут подтвердить свои слова только испытаниями в лабораторных условиях. Но им стопроцентно верить не стоит – ведь для того, чтобы получить нужные результаты, можно особые образцы в лабораторию отправить.

Самое главное при эксплуатации пенополистирола во внешней среде – надежно укрыть его от солнечных лучей и атмосферных воздействий. Для этого надо использовать штукатурную смесь, в состав которой входит цемент. Покрытие следует накладывать плотно, не должно остаться ни одного просвета. Иначе крохотный солнечный лучик может со временем полностью разрушить теплоизоляцию.

А вот внутри пенопласт для утепления применять не стоит, что бы ни утверждали производители. Пусть себе говорят, но ведь в случае пожара их рядом не окажется, а вот токсичные продукты горения могут причинить огромный вред, унося здоровье, а порой даже жизни людей. Примером может быть всем известная трагедия в клубе Хромая лошадь, где большинство посетителей просто задохнулись продуктами горения данного утеплителя.

 Видео: Пенополистирол — плюсы и минусы

Дополнения

  • Отзывы о использовании экструдированного пенополистирола
  • Отзывы и мнения о использовании утеплителей Пеноплекс
__________________________________________________

Почитать еще:

uef.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *