Теплопроводность полиэтилена
Теплопроводность представляет собой способность какого-то материала передавать через себя тепловой поток, возникающий от разности температурных показателей на противоположных поверхностях. Разные материалы проводят теплоту по-своему: одни это делают быстрее (к примеру, металлы), другие значительно медленнее (изоляционные материалы).
Понятие теплопроводности исходит из количества теплоты (Дж), которая в течение 1 часа проходит через образец материала имеющего толщину 1 метр, площадь 1 м. кв., с разностью температуры на плоскопараллельных противоположных поверхностях в 1 К. Обозначается теплопроводность буквой А и выражается в Вт/(м К). Материалы имеющие теплопроводность не больше 0,175 Вт/(м • К), среднюю температуру слоя 298 К и влажность, определенную ГОСТами или ТУ относятся к теплоизоляционным.
Теплопроводность напрямую зависит от плотности материала (теплопроводность возрастает при увеличении плотности), его влажности, пористости, структуры и средней температуры слоя. С повышением пористости теплопроводность снижается, а увеличение влажности материала ведет к резкому росту теплопроводности, но снижает теплоизоляционные свойства. В связи с этим теплоизоляционные материалы необходимо хранить в помещении, а в теплоизоляционных конструкциях предусмотрена защита от попадания влаги в виде покровного слоя.
Полиэтилен представляет собой пластический материал, имеющий хорошие диэлектрические свойства. Ударостойкий, не ломается, имеет небольшую поглотительную способность. Обладает низкой газо и паропроницаемостью, не растворяется в органических растворителях. Полиэтилен изготавливается двух видов – высокого давления и низкого давления.
Полиэтилен легко поддается переработке и подвергается модификации. В результате есть возможность улучшения его теплопроводности и химической стойкости. Несмотря на то, что полиэтилен имеет хорошие теплоизоляционные свойства, в подземных трубопроводах теплоизоляционные свойства грунта иногда более значимы, чем те же свойства самой трубы.
Коэффициент теплопроводности полиэтилена составляет 0,36-0,43 Вт/м0К.
Учеными проводятся испытания по получению полимерного материала, который бы отличался более высокой теплопроводностью. Уже достигнуты определенные результаты, позволяющие использовать полиэтиленовые волокна в качестве более дешевой замены металлам.
propolyethylene.ru
Свойства полимеров – технические характеристики полимеров
Показатель текучести расплава
Показатель текучести расплава полиэтилена (ПТР полиэтилена) характеризует его вязкость. Данный показатель определяет, сколько полиэтилена под определенным давлением и заданной температуре за десять минут выдавится через тонкий сосуд — капилляр. Чем выше данный показатель, тем полиэтилен более текучий и менее вязкий. Данный параметр имеет важность для выбора способа переработки полиэтилена. Например, для производства пленки методом экструзии необходимо, чтобы расплав был достаточно вязким, поэтому используют марки полиэтилена с низкими значениями ПТР.
Требования к определению показателя текучести расплава полиэтилена
В различных странах существуют стандарты, в которых расписаны температуры и уровень нагрузки рекомендованные для определения показателя текучести расплава полиэтилена. Для разных видов полиэтилена применяют свои нагрузки и температуры. Поэтому сравнение ПТР полиэтилена низкого давления и ПТР полиэтилена высокого давления является некорректным, поскольку для определения показателя текучести берутся разные показатели нагрузки. Сравнивать можно только ПТР материалов одного вида разных марок.
Страна (группа стран) | Наименование стандарта |
Россия | ГОСТ 11645-73 |
Германия | ВШ 53735 |
США | АСТМВ 1238-73 |
Европа | ИСО 1133-76 |
Для измерения ПТР полиэтилена обычно используют системы ИИРТ различных модификаций, принцип действия которых основан на действии капиллярного вискозиметра.
Значение показателей текучести расплава различных видов и базовых марок полиэтилена
Базовая марка | ПТР, г/10 мин. |
Полиэтилен высокого давления плотностью 922-926 кг/м3 | |
марки 2 | 0,24 — 0,36 |
марки 6 | 0,56 – 0,84 |
марки 13 | 3,4 – 4,6 |
марки 69 | 3 – 5 |
марки 84 | 16 — 24 |
Полиэтилен высокого давления плотностью 917-921 кг/м3 | |
марки 7 и 8 | 1,7 – 2,3 |
марки 15 | 5,95 – 8,05 |
марки 20 и 21 | 17 — 23 |
марки 50 | 0,14 – 0,26 |
марки 55 | 0,3 – 0,5 |
марки 58, 62 и 64 | 1,5 – 2,5 |
марки 66 | 0,825 – 1,375 |
марки 68 | 5,25 – 8,75 |
марки 74 и 84 | 16 — 24 |
марки 75 и 76 | 0,45 – 0,75 |
марки 77 | 0,8 – 1,2 |
марки 78 | 1,125 – 1,875 |
марки 80 | 2,1 – 3,9 |
марки 81 | 2,45 – 4,55 |
марки 82 | 4,125 – 6,875 |
марки 83 | 9 – 15 |
Полиэтилен высокого давления плотностью 927-930 кг/м3 | |
марки 63 | 0,375 – 0,625 |
марки 60 | 0,6 – 1 |
Суспензионный полиэтилен низкого давления плотностью 0,948-0,959 г/см3 | |
марки 1 | до 0,1 |
марки 2 | 0,1 – 0,3 |
марки 3 | 0,3 – 0,6 |
марки 4 и 5 | 0,5 – 0,9 |
марки 6 | 0,9 – 1,5 |
марки 7 | 1,2 – 2 |
марки 8 | 1,8 – 3 |
марки 9 | 3 – 5 |
марки 10 | 5 — 10 |
Газофазный полиэтилен низкого давления | |
марки 71 с термостабилизатором неокрашенный или слабоокрашенный | 0,45 – 0,65 |
марки 73 с термо- и светостабилизаторами черного цвета | 0,3 – 0,55 |
марки 73 с термостабилизатором первичной переработки неокрашенный | 0,4 – 0,65 |
марки 73 с термо- и светостабилизаторами, черного цвета стойкий к фотоокислительному старению | 0,3 – 0,55 |
марки 76 | 2,6 – 3,2 |
марки 77 | 17 — 25 |
Теплопроводность
Теплопроводность представляет собой способность какого-то материала передавать через себя тепловой поток, возникающий от разности температурных показателей на противоположных поверхностях. Разные материалы проводят теплоту по-своему: одни это делают быстрее (к примеру, металлы), другие значительно медленнее (изоляционные материалы).
Понятие теплопроводности исходит из количества теплоты (Дж), которая в течение 1 часа проходит через образец материала имеющего толщину 1 метр, площадь 1 м. кв., с разностью температуры на плоскопараллельных противоположных поверхностях в 1 К. Обозначается теплопроводность буквой А и выражается в Вт/(м К). Материалы имеющие теплопроводность не больше 0,175 Вт/(м • К), среднюю температуру слоя 298 К и влажность, определенную ГОСТами или ТУ относятся к теплоизоляционным.
Теплопроводность напрямую зависит от плотности материала (теплопроводность возрастает при увеличении плотности), его влажности, пористости, структуры и средней температуры слоя. С повышением пористости теплопроводность снижается, а увеличение влажности материала ведет к резкому росту теплопроводности, но снижает теплоизоляционные свойства. В связи с этим теплоизоляционные материалы необходимо хранить в помещении, а в теплоизоляционных конструкциях предусмотрена защита от попадания влаги в виде покровного слоя.
Полиэтилен представляет собой пластический материал, имеющий хорошие диэлектрические свойства. Ударостойкий, не ломается, имеет небольшую поглотительную способность. Обладает низкой газо и паропроницаемостью, не растворяется в органических растворителях. Полиэтилен изготавливается двух видов – высокого давления и низкого давления.
Полиэтилен легко поддается переработке и подвергается модификации. В результате есть возможность улучшения его теплопроводности и химической стойкости. Несмотря на то, что полиэтилен имеет хорошие теплоизоляционные свойства, в подземных трубопроводах теплоизоляционные свойства грунта иногда более значимы, чем те же свойства самой трубы.
Коэффициент теплопроводности полиэтилена составляет 0,36-0,43 Вт/м0К.
Учеными проводятся испытания по получению полимерного материала, который бы отличался более высокой теплопроводностью. Уже достигнуты определенные результаты, позволяющие использовать полиэтиленовые волокна в качестве более дешевой замены металлам.
Удельный вес
Удельный вес (он же — плотность) полиэтилена меняется в незначительных пределах — от 0,91 до 0,976 г/см3.
В то же время, свойства полиэтилена с высоким удельным весом существенно отличаются от свойств материала с низким удельным весом. Происходит это из-за того, что существуют две различные технологии производства полиэтилена. Фактически, синтезируются два разных материала с одинаковым названием и формулой.
Гирьки для измерения удельного весаСинтезом при высоком давлении (100-280 МПа) получают полиэтилен низкой плотности. В России его обозначают аббревиатурами ПЭНП (низкой плотности) и ПВД (высокого давления), а в англоязычном мире — LD PE (Low Density Polyethylene).
Напротив, полиэтилен высокой плотности получают синтезом при низком давлении (0,1-0,5 МПа). За границей этот материал обозначают как HD PE (High Density Polyethylene), а у нас — ПЭВП и ПНД.
Свойства ПВД (LD PE)
Удельный вес этой разновидности полиэтилена — около 0,92 г/см3. Полимерные цепочки имеют сравнительно небольшую длину, но зато обладают значительным количеством поперечных связей. Температура плавления не превышает 110°C. Материал получается пластичным, он легко тянется и не боится механических повреждений.
Свойства ПНД (HD PE)
Удельный вес выше — порядка 0,95 г/см3. Отличие свойств обусловлено более длинными полимерными цепочками: температура плавления выше 130°C, Этот тип полиэтилена менее пластичен, зато он способен выдерживать более высокую нагрузку.
Внешние отличия разных сортов полиэтилена
Если сравнивать плёнки, полученные из ПВД и ПНД, то первые имеют большую толщину, легче растягиваются и на ощупь кажутся слегка жирными. В отличие от них, плёнки из ПНД очень тонкие, более жёсткие и за счёт этого издают характерное шуршание при смятии. К их недостаткам следует отнести так называемый “эффект молнии” — при точечном проколе плёнка из такого материала может практически без усилия разорваться на две половины.
Свойства смесового полиэтилена (ПСД)
Чтобы избавиться от недостатков, присущих этим двум разновидностям полиэтилена, технологи изобрели материал, называющийся смесовым полиэтиленом. Как ясно из названия, он получается путём смешивания гранул ПВД и ПСД при производстве готовых изделий. Кроме того, к композиции добавляют небольшое количество вспомогательных компонентов, улучшающих внешний вид готового изделия. Меняя пропорции ПВД и ПСД, можно получить материал с заданными свойствами — более пластичный или более жёсткий.
Температура плавления
Температура плавления различных сортов полиэтилена составляет от 103 до 137°C.
Анализируя этот показатель, можно разделить все разновидности этого полимера на две большие группы. У представителей первой группы температура плавления находится в пределах от 103 до 110°C, а у второй — от 130 до 137°C. Отличия связаны с тем, что существуют две принципиально отличающиеся технологии производства полиэтилена. Поэтому свойства материалов, полученных по разным технологиям, заметно отличаются.
Плавление полиэтиленаПри давлении 100-288 МПа синтезируют полиэтилен c низким удельным весом. В России чаще всего его обозначают аббревиатурой ПВД (высокого давления), а за рубежом — LDPE (полиэтилен с низкой плотностью, Low Density Polyethylene).
В отличие от первого метода, полиэтилен высокой плотности получают синтезом при невысоком давлении (0,1-0,495 МПа). Международное общепринятое обозначение этого материала — HDPE (полиэтилен с высокой плотностью — High Density Polyethylene), а у нас — ПНД (то есть низкого давления).
На большинстве изделий из полиэтилена, изготовленных в России, присутствует интернациональная маркировка — HDPE либо LDPE. Мы также будем придерживаться терминологии, принятой во всём мире.
Свойства ПВД
Полимерные цепочки этого материала короткие и разветвлённые, за счёт этого материал имеет низкую плотность — около 0,92 г/см3. Температура плавления ПВД низкая. Этот полиэтилен пластичен — легко тянется и устойчив к механическим повреждениям. За счёт низкого удельного веса он имеет меньшую теплопроводность и теплоёмкость. Из LD PE также изготавливают вспененный полиэтилен, являющийся хорошим теплоизолятором.
Свойства ПНД
Удельный вес — выше, чем у LDPE — порядка 0,95 г/см3. На изменение свойств влияют более длинные полимерные цепочки с меньшим количеством устойчивых поперечных связей. Температура его плавления — высокая. Как следствие, этот материал более жёсткий и выдерживает повышенные нагрузки.
Как отличить ПВД от ПНД
Если сравнивать плёнки, полученные из LD PE и PE HD, то заметно, что первые имеют большую толщину и легче растягиваются, имеют характерный блеск и кажутся навощёнными. Напротив, плёнки из HD PE очень тонкие, более жёсткие, издают характерное лёгкое шуршание при смятии. Поверхность изделий из такого материала обычно не глянцевая, а матовая.
Золотая середина
Существует интересная разновидность, именуемая смесовым полиэтиленом. Он получается путём смешивания расплавов LD PE и HD PE при производстве готовых изделий. Для корректировки свойств материала в расплав вводят модифицирующие добавки. Меняя пропорции LD PE и HD PE, можно получить более пластичный или более жёсткий материал.
Как мы уже отмечали, при увеличении количества поперечных межмолекулярных связей (ветвлений) полиэтилен приобретает пластичность и прочность. Для того, чтобы существенно увеличить количество таких связей, при синтезе полиэтилена при высоком давлении материал подвергают воздействию жёсткого ионизирующего излучения. Называют полученный полимер сшитым полиэтиленом. Его прочность настолько высока, что он успешно применяется для производства всевозможных труб, работающих при повышенном давлении.
Полиэтилен и его теплота сгорания
Сгорание полиэтилена. Важнейшей характеристикой теплота сгорания является для различных видов топлива. Чем выше теплота сгорания, тем выше эффективность использования топлива для нагрева, для работы двигателей и тому подобное.
Для технических и производственных нужд различают высшую и низшую теплоту сгорания. Первая включает в себя энергию, выделенную при полном сгорании некоторого объема вещества и плюс энергию, выделяемую при охлаждении продуктов сгорания. Вторая энергию, которая выделяется при охлаждении продуктов сгорания, не учитывает.
Подробнее про полиэтилен
Полиэтилен является термопластичным полимером, продуктом переработки этилена. Широкое применение полиэтилена очевидно, его можно встретить как в простейших бытовых изделиях, так и в качестве конструкционного материала для очень сложного и ответственного промышленного оборудования.
Полиэтилен, как высокого, так и низкого давления, имеет очень высокую удельную теплоту сгорания. Ничего странного в этом нет, так как полиэтилен – это полимеризированный углеводород.
Диапазон теплоты сгорания полиэтилена, в зависимости от марки – от 44,0 до 47,2 МДж/кг (мегаджоулей на килограмм).
Для сравнения, средняя теплота сгорания бензина — 42 МДж/кг. А теплота сгорания древесины, издревле применяемой в качестве топлива – 13,8 МДж/кг.
Как показатель, теплота сгорания полиэтилена применяется при расчете категории пожаробезопасности. Для такого случая в качестве расчетной принимается величина для полиэтилена в 46,68 МДж/кг. Важными показателями также в таком случае являются температура воспламенения полиэтилена (306 градусов) и температура самовоспламенения (417 градусов). Категорий пожаробезопасности есть достаточно много, а самый негативный вариант развития событий при пожаре учитывают категории «А» и «Б». Если в помещении достаточно много полиэтилена, именно такие категории пожаробезопасности ему главным образом и присваиваются.
Учитывается теплота сгорания полиэтилена также при проектировании технологического оборудования для его переработки. С учетом количества выделяемой энергии при случайном возгорании полиэтилена такие материалы должны выдержать тепловую нагрузку и не разрушиться. Или же, по меньшей мере, должны препятствовать распространению пламени.
Отходы полиэтилена подлежат переработке. Часто они применяются в виде вторичного сырья, но, при невозможности или нецелесообразности повторного использования такого материала в производстве пластиковых изделий его утилизируют. Наилучшим способом утилизации полиэтилена является сжигание, использование в качестве топлива. В таком случае теплота сгорания используется для расчета количества получаемой тепловой энергии.
polymers.com.ua
Технические характеристики полиэтиленовой пленки
Полиэтиленовая пленка – идеальный упаковочный материал. Она производится из полиэтилена, потому стоимость такого упаковочного материала очень низкая.
Вместе с этим она не изменяет свойства груза и хорошо закрепляет его при транспортировке. В зависимости от сферы применения используется пленка с различными характеристиками.
Для начала давайте определим основные отрасли, в которых используется такой упаковочный материал:
Строительная сфера. Этот материал подходит в качестве изоляции между полом и бетоном, при возведении крыши, а также в качестве защитного покрытия на строительном участке во время осадков.
Ремонт частных помещений. Таким покрытием укрывают мебель и полы, если в квартирах или зданиях затеян частичный ремонт.
Сельскохозяйственная сфера. Покрытие теплиц, мульчирование почвы, хранение продуктов сельскохозяйственного назначения, а также временное захоронение отходов в почве.
Во всех этих случаях используется разнообразная пленка. Ключевыми требованиями при ее подборе для отдельного случая являются именно технические характеристики упаковки.
Характеристики упаковки из полиэтилена:
Плотность. Плотность полиэтиленовой пленки при нормальных условиях составляет от 916 до 982 кг/м3 и практически не зависит от температуры.
Коэффициент теплопроводности. Теплопроводность полиэтиленовой пленки зависит от плотности и составляет 0,25…0,3 Вт/(м·град) — при плотности 916 кг/м3; при плотности полиэтиленовой пленки 982 кг/м3 ее теплопроводность составит 0,5…1,18 Вт/(м·град), причем, с понижением температуры теплопроводность полиэтилена увеличивается.
Теплоемкость. Массовая (удельная) теплоемкость полиэтиленовой пленки в диапазоне температуры от -173 до 20 °С составляет от 620 до 2500 Дж/(кг·град) соответственно.
Цвет. Пленочная упаковка такого типа выпускаются в черном, белом и сером цвете, но чаще всего имеют прозрачную структуру. Это важно для отрасли, в которой она будет использоваться. К примеру, для покрытия мебели во время ремонта, цвет покрытия не важен. Для обустройства парника используют только прозрачный материал, для захоронения отходов – черный.
Уровень светопропускаемости. Для определенных отраслей, чем прозрачнее покрытие, тем лучше.
Толщина. Как правило, толщина и прочность упаковки непосредственно влияют на ее долгосрочность службы. Иногда стоит пожертвовать параметром прозрачности и сделать ставку в пользу срока эксплуатации, чтобы материал прослужил максимально длительный срок и хорошо выполнял свои функции, в том числе и защитные. Толщина полиэтиленовой пленки влияет на ее сопротивление паропроницанию — чем толще пленка, тем оно больше. Например, для пленки толщиной 0,16 мм сопротивление паропроницанию равно 7,3 м2·ч·Па/мг.
Ширина. При целевом выборе упаковки стоит обратить внимание на ширину материала, чтобы потом не пришлось его сшивать.
Длина. Эта величина указывает на метраж упаковки в одном рулоне, чтобы вы могли рассчитать необходимое количество материала.
Сорт. Пленка бывает 1-го и 2-го сорта. Второсортный материал – это тот же полиэтилен, правда, переработанный. Такой материал стоит несколько дешевле, но имеет меньшую прозрачность.
Наличие УФ – стабилизация. Этот параметр указывает на длительность эксплуатации на открытом воздухе. Такое покрытие более устойчиво к воздействию солнечных лучей.
Смотрите на сайте альтернативную замену полиэтиленовой пленке для упаковки товаров.
Источники:
1. Новиченок Н.Л., Шульман З.П. Теплофизические свойства полимеров. Минск, «Наука и техника» 1971. — 120 с.
2. Сайт компании «Складпак».
thermalinfo.ru
Полиэтилен теплопроводность – Справочник химика 21
В качестве трубопровода обычно используют медную трубку, а в качестве изоляционного материала — вспененный полиэтилен, теплопроводность которого составляет 0,041- [c.789]По виду температурной зависимости коэффициента теплопроводности кристаллические полимеры можно разделить на две группы. К первой группе относятся полиэтилен и полиформальдегид, у которых теплопроводность уменьшается при повышении температуры. У остальных кристаллических полимеров (полиэтилентерефталат, изотактический полипропилен, политрифторхлорэтилен, политетрафторэтилен и т. д.) теплопроводность возрастает с повышением температуры. Температурная зависимость коэффициента теплопроводности кристаллических полимеров второй группы аналогична зависимости к для аморфных полимеров. На значение коэффициента теплопроводности заметное влияние оказывает степень кристалличности полимера. Особенно существенно оно проявляется при низких температурах. [c.152]
В результате этой реакции образуется атактический полимер с неупорядоченным пространственным расположением фе-нильных групп относительно основной цепи. Поэтому он почти целиком аморфен и прозрачен. Под влиянием объемистых фе-нильных групп полимерная цепь становится более жесткой, чем в полиэтилене, что в сумме с относительно сильным межмоле-кулярным взаимодействием вызывает повышение температуры стеклования (до 95 °С) и делает полимер твердым и жестким при комнатной температуре. Благодаря ряду ценных свойств полистирол получил широкое распространение для изготовления разнообразных изделий методами литья под давлением и вакуум-формования. Кроме того, низкая теплопроводность полистирола и легкость получения из него пенопласта обеспечили [c.260]
Ряд авторов публикует работы по изучению физических, химических и механических свойств полиэтилена, определению кристалличности полиэтилена и температур плавления [208—211 ], кинетике кристаллизации [212], фракционированию и определению молекулярных весов [213, 214], статистической механике разбавленных растворов [215], плотности растворов полиэтилена [216],ориентации в полиэтилене [217—219] и влиянию ориентации на сорбционную способность полимеров [220] и на теплопроводность [221], ядерной магнитной релаксации в полиэтилене [222], зависимости сжимаемости от температуры при больших давлениях [223], влиянию на аутогезию молекулярного веса, формы молекулы и наличия полярных групп [224], фрикционных свойств полиэтилена [225], скорости ультразвуковых волн в полиэтилене [226], реологического поведения полиэтилена при непрерывном сдвиге [227], инфракрасного дихроизма полиэтилена [228], плотности упаковки высокополимерных соединений [229], кристалличности и механического затухания полиэтилена [230], межкристаллической ассоциации в полиэтилене [231], принципа конгруэнтности Бренстеда и набухания поли- [c.188]
Пластмассы, обладающие высокой светопроницаемостью (полиэтилен, поливинилхлорид, полиметилметакрилат, поликарбонаты, полиэфирные стеклопластики), все шире применяют в строительстве взамен силикатного стекла. По светотехническим характеристикам они сравнимы со стеклом, а по некоторым показателям, например по прозрачности для УФ-излучения, превосходят его. По сравнению со стеклом у них меньше плотность и теплопроводность, выше ударопрочность. Ниже приведены свойства отдельных светотехнических материалов, применяемых в строительстве за рубежом [c.234]
Определены температуры перехода 1-го и 2-го родов полиэтилена, молекулярное движение в полиэтилене 1529-1535 рассмотрена связь последних со структурой полимера 536-1538 также его термодинамические свойства (плавление, стеклование, теплоемкость, теплопроводность и т. п.) >539-1566 [c.264]
Бутилкаучук сильное размягчение. Полиэтилен потеря прочности на растяжение Натуральный каучук сильное изменение, жесткость. Углеводородные масла увеличение вязкости. Металлы возрастание предела текучести Углеродистая сталь уменьшение прочности на сжатие Керамика уменьшение теплопроводности, плотности и кристалличности [c.219]
Длительность и интенсивность нагревания — функции главным образом тепловых констант пластика. Для большинства применяемых при выдувании материалов (сополимеры стирола и полихлорвинила, полиэтилен высокого давления) экспериментально найдено значение фактора времени порядка 20—30 сек на 1 мм толщины при удельной мощности нагревания 15—25 квт на 1 площади заготовки. Однако для пластиков с повышенной теплоемкостью и пониженной теплопроводностью обе эти цифры приходится увеличивать в 2—3 раза. Температура листовой заготовки сильно влияет не только на величину необходимого усилия формования, но и на модуль вытяжки и разнотолщинность стенок изделия. [c.610]
Отрицательными свойствами пластических масс являются малая теплопроводность, затрудняющая использование их для изготовления теплообменных поверхностей низкая теплостойкость и для некоторых пластмасс подверженность текучести даже при комнатных температурах. Что же касается относительного удлинения, то пластмассы делятся в этом отношении на две группы. Все фенопласты, полистирол и плексиглас являются хрупкими материалами, удлинение которых мало от 0,2% для фаолита и до 4% для плексигласа. Другую группу представляют фторопласты, полиэтилен, полипропилен и тому подобные материалы, относительное удлинение которых измеряется десятками и сотнями процентов, и осо- [c.63]
Повышенные температуры (выше 100° С). В этой температурном области многие полимеры находятся в расплавленном состоянии. Измерение теплопроводности жидких полимеров связано с определенными экспериментальными затруднениями и этим, по-видимому, объясняется то, что теплопроводность расплавов исследована в меньшей степени, чем твердых полимеров. Имеющиеся экспериментальные результаты показывают, что теплопроводность расплавов практически не зависит от температуры (полиэтилен, атактический и изотактический полипропилен, сополимеры этилена с пропиленом, полиамид-6, полиизобутилен) или слабо уменьшается с повышением температуры (полиметилметакрилат, полистирол и др.) 102,1 1,135-140 [c.194]
Особая разновидность контактной сварки — сварка трением. Как и все термопласты, полиэтилен легко оплавляется при трении благодаря высокому коэффициенту трения и плохой теплопроводности. Таким способом легко, например, приварить поли> этиленовые штуцеры к емкости. [c.243]
В последние годы появились новые доказательства в пользу предположения о тепловой форме пробоя полимеров в области повышенных температур. В работе [115] приводятся следующие соображения в пользу теплового пробоя полимеров при повышенных температурах 1) введение антистатической добавки в полиэтилен, увеличивает ток проводимости и одновременно снижает пробивное напряжение в области повышенных температур 2) в ходе термообработки пленок полиимида уменьшается их проводимость и одновременно возрастает пробивное напряжение 3) расчетные значения Упр по упрощенной теории теплового пробоя (адиабатический нагрев до Г — 7кр без учета отвода теплоты за счет теплопроводности) согласуются с экспериментальными данными для пленок поливинилиденфторида и тонких пленок полистирола (полученных в плазме тлеющего разряда) при разумных значениях параметров, описывающих зависимость плотности тока через образец от температуры и напряженности поля [c.156]
Химически стойкие органические материалы. Это в большинстве случаев синтетические полимерные вещества. Они обладают рядом достоинств по сравнению с неорганическими материалами легко обрабатываются, штампуются, склеиваются, имеют меньшую плотность. Однако многие из них можно применять только при сравнительно невысокой температуре (не более 100°С). Из химически стойких органических материалов широко известны фаолит, винипласт, полиизобутилен, полиэтилен, антегмит. Хорошая теплопроводность и высокая химическая стойкость антегмита позволяют применять его для изготовления холодильников. [c.20]
Недостаточная химическая стойкость стекла, его хрупкость иногда затрудняют работу химиков. Поэтому в лабораторном обиходе используют посуду, принадлежности и даже приборы из пластиков, например полиэтилена, метил-метакриловых смол, фторопластов и других прозрачных или полупрозрачных пластиков, обладающих большой химической стойкостью. В этом отношении особый интерес по доступности представляет полиэтилен, из которого изготовляют колбы разных размеров и различного назначения, флаконы, воронки, трубки, промывалки, мерную посуду (в частности, цилиндры) и пр. В полиэтиленовую посуду можно наливать горячие растворы с температурой до 200—220 °С также допускается нагревание на водяной бане, но из-за малой теплопроводности полиэтилена оно происходит довольно медленно. Нагревание жидкостей в такой посуде возможно, если использовать электронагревательные приборы типа кипятильников, в которых нагревательные элементы заключены в кварцевую трубку или капсулу. [c.129]
Однак многие из них можно применять только при сравнительно невысокой температуре (не более 100° С). Из химически стойких органических материалов широко известны фаолит, винипласт, полиизобутилен, полиэтилен, антегмит. Хорошая теплопроводность и высокая химическая стойкость антегмита позволяют применять его для изготовления холодильников. [c.29]
Полиэтилен высокого давления (ПЭВД)—легкий, прочный, эластичный материал с низкой газо-, паропроницаемостью, хороший диэлектрик, отличается высокой химической стойкостью к органическим растворителям, низким водопоглощением и отличной морозостойкостью. Это самый дешевый материал. К недостаткам его можно отнести низкую теплопроводность, высокий коэффициент линейного расширения, низкие, по [c.127]
По сравнению с металлами полиэтилен обладает более низкой теплопроводностью, однако из него изготовляют теплообменники, когда условия эксплуатации требуют от материала высокой коррозионной устойчивости. Змеевик теплообменника выполняют методом контактной сварки. [c.15]
На коэффициент теплопроводности полигликолей оказывает влияние структура цепи молекулы. Простые моноэфиры смешанного полиэтилен-полипропиленгликоля имеют более высокий [c.18]
Термостабилизаторы влияют как на коэффициент теплопроводности в необлученном полиэтилене, так и на зависимость этого показателя от поглощенной дозы излучения и температуры испытаний (табл. 28). Стаби- [c.105]
Для кристаллических полимеров, как и для аморфных, до сих пор проведено очень мало измерений теплопроводности при этих температурах. Характерные данные для полиэтиленов различной плотности приведены на рис. 11.10. Анализ результатов по определению низкотемпературной теплопроводности кристаллических полимеров показывает, что температурная зависимость Я в этой области хорошо передается следующим выражением [24, 69, 70, 80] [c.73]
По характеру температурной зависимости теплопроводности в этой области температур кристаллические полимеры можно разделить в основном на две группы [59, 71—74]. К первой группе относятся полимеры, теплопроводность которых с повышением температуры падает (полиэтилен, полиоксиметилен, полиоксиэтилен, найлон 6). Для полимеров второй группы характерно повышение теплопроводности с повышением температуры (полиэтилентерефталат, изотактический полипропилен, политетрафторэтилен, полихлортрифторэтилен). Для обеих групп характерно увеличение теплопроводности с ростом степени кристалличности. По абсолютным значениям теплопроводность полимеров первой группы выше, чем полимеров второй группы. [c.74]
Вспенивание является простым методом получения пено- и губкообразных материалов. Особые свойства этого класса материалов — амортизирующая способность, легкий вес, низкая теплопроводность – делают их весьма привлекательными для использования в различных целях. Обычными вспенивающимися полимерами являются полиуретаны, полистирол, полиэтилен, полипропилен, силиконы, эпоксиды, ПВХ и пр. Вспененная структура состоит из изолированных (закрытых) или взаимопроникающих (открытых) пустот. В первом случае, когда пустоты закрыты, они могут заключать в себе газы. Оба типа структур схематически представлены на рис. 15.11. [c.360]
У поликристаллических полимеров типа ПЭВП наблюдается непрерывное падение к с ростом температуры. В зависимости от степени кристалличности эффект проявляется в большей или меньшей степени. Это показано на рис. 5.11 для обоих типов полиэтиленов — высокой и низкой плотности. Интересно также отметить, что при Т а Тт. чем меньше степень кристалличности, тем ниже коэффициент теплопроводности. Изменение значения к в зависимости от температуры и степени кристалличности для поликристаллических полимеров также составляет 30—40 %. [c.121]
Используя формулы (4.101) или (4.102), выделяют теплопроводность аморфной и полностью кристаллической частей полимера. К такого рода расчетам следует относиться с большой осторожностью, так как параметры У.К и Ха сильно изменяются при изменении температуры в широком интервале. При этом значительно изменяются и плотности аморфного ра и кристаллического Рк образцов. Между тем в формулы (4.101) и (4.102), как правило, подставляют значения стеиени кристалличности X, рассчитанные из измерений рк и ра при комнатной температуре. Вопрос о применении формулы (4.102) вообще представляется весьма проблематичным, так как она справедлива лишь в том случае, если кристалличе ские области равномерно распределены в виде вклю чений в аморфной матрице. В отношении высококри сталлических полимеров, какими могут быть, например полиэтилен и политетрафторэтилен, можно говорить ско рее о неупорядоченных областях, распределенных в де фектных кристаллах, и формула (4.102) теряет смысл Кроме того, формула (4.102) даже качественно не со гласуется с эксиернментальными данными ири низких температурах. Более оправдано использование формулы (4.101). [c.158]
Олефины — 4-метилпентен-1, гексен-1, пентен-1 и 3-метилбути-лен-1—являются ценными мономерами для производства полимеров и сополимеров, обладающих высокой температурой плавления, низкой плотностью, малой теплопроводностью, хорошими механическими и диэлектрическими свойствами [73]. Сополимеризацией этилена с 4-метилпентеном-1 получают линейный полиэтилен низкой плотности — сополимер, характеризующийся ценными физико-механическими свойствами. Пентен-1 служит также сырьем для производства системного пестицида — пропиконазола, поэтому разработка эффективной технологии промышленного производства этих моноолефинов является важной народнохозяйственной задачей. [c.116]
Хансен и Хоу предложили теорию теплопроводности аморфных полимеров, основанную на развитых ранее представлениях о теплопроводности ппзкомолекулярных жидкостей. В этой теории учитывается разная степень взаимодействия соседних звеньев соединенных химическими и межмолекулярными связями. Теория предполагает, что с повышением молекулярного веса теплопроводность должна возрастать пропорционально корню квадратному и молекулярного веса. Такая зависимость до.лжна наблюдаться доопределенного значения молекулярного веса, начиная с которого ожидается более медленное повышение теплопроводности. Экспериментальные данные для большого числа полиэтиленов различного молекулярного веса полностью согласуются с теоретическими предположениями до значения молекулярного веса порядка 100 тыс. Совпадение теории с экспериментом наблюдается для полистирола, теплопроводность которого измерялась авторами теории. Ими использовались также ранее опубликованные данные Для полистирола отклонение от пропорциональности выявляется более резко, чем для полиэтилена. Это объясняется относительно большим влиянием бензольного кольца на передачу тепла между соседними сегментами цепе1 1 полистирола. [c.197]Металлы защищают также эмалевыми покрытиями, устойчи выми при любых концентрациях и температурах серной кислоты Из химически стойких органических материалов широко изве стны фаолит, винипласт, полиизобутилен, полиэтилен, антегмит Хорошая теплопроводность и высокая химическая стойкость ан тегмита позволяют применять его для изготовления холодильни ков. К другим органическим материалам, применяемым для изго товления или покрытия сернокислотной аппаратуры, относятся резина, графит и в некоторых случаях особые сорта дерева. [c.19]
Широкое применение для тепло- и звукоизоляционных целей находит пенопласт, получаемый на основе мочевино-формальде-гидной смолы. Такой пенопласт называют мипорой (пиорка. пиатерм). Мипора имеет закрытые поры малого размера, она более чем в 10 раз легче пробки, а теплопроводность ее в 2 раза меньше, чем у пробки. Мипору получают путем отвердевания вспененной мочевино-формальдегидной смолы, которая по сравнению с такими смолами, как феноло-формальдегидная, полистирол, полиэтилен, полиуретан, — менее горюча. Следовательно, мипора в отличие от многих других пенопластов менее пожароопасна, и в этом также ее большое достоинство. Применяют мипору в судостроении, вагоностроении, при изготовлении и строительстве холодильников. [c.70]
Некоторые из перечисленных условий противоречивы. Например, малому коэффициенту трения способствуют низкие адгезионные свойства, которые обусловливают низкую прочность сцепления граничного слоя (с оропласт-4 и полиэтилен). С конструкционной точки зрения необходима хорошая прочность, полимеры же обладают малой прочностью сравнительно с металлами. Необходимо отметить также плохую теплопроводность полимерных материалов. [c.86]
Наполнение полиэтилена представляет в настоящее время одно из высокоэффективных и быстроразвиваю-щихся направлений модифицирования его структуры и свойств. Наполнители придают полиэтилену способность эффективно поглощать СВЧ и ионизирующие излучения, повышают его теплопроводность, электропроводность и диэлектрическую проницаемость, устойчивость к воздействию ультрафиолетового излучения, снижают горючесть, улучшают радиационную стойкость и устойчивость к атмосферному старению, снижают ползучесть под нагрузкой, температурное расширение, растрескивание при контакте с поверхностно-активными веществами и т. д. [c.110]
Винипласт мало теплопроводен. Его теплопроводность в 200 раз меньше теплопроводности стали, почти равна теплопроводности древесины и только в 2 раза больше теплопроводности стекла. Температурное расширение жесткого поливинилхлорида в 7 раз больше, чем стали, и в 3 раза больше, чем легких металлов. Винипласт имеет хорошие механические свойства разрушающее напряжение при растящэнии 40—60 (400—600), при изгибе 90— 120 (900—1200), цри сжатии 80—160 МПа (800—1600 кгс/ск ). По этим показателям он превосходит полиэтилен, полистирол, фенопласты, аминопласты, фаолит. [c.113]
Существует предположение [69], что отклонение от линейного изменения теплопроводности с температурой обусловлено наличием дополнительных источников рассеяния, причем процесс рассеяния характеризуется средней длиной свободного пробега Л2, которая не зависит от температуры. Риз и Такер [69] предположили, что этими внутренними источниками рассеяния в кристаллических полимерах являются сферолиты. Константа Лг для исследованных полимеров, определенная экспериментально из данных по теплопроводности, в температурном интервале 1—4,5 К имеет порядок 10 см. Это соответствует размеру сферолитов в исследованных образцах. Проведенное впоследствии исследование на полиэтиленах и найлоне 6,6 не привело к такому соответствию [70]. Определенное экспериментально в температурном интервале 1,2—4 К значение Лг было значительно меньше размеров сферолитов и хорошо совпадало [c.73]
Полиэтилен высокого давления обладает следующими свойствами удельный вес 0,92—0,93 предел прочности при разрыве 120—150 кг/см предел прочности при изгибе 120—170 кг1см предел прочности при сжатии 125 кг1см относительное удлинение при разрыве 150—600% температура размягчения 108—120° С теплопроводность 0,0007 ккал см-сек-град-, коэффициент линейного расширения (в интервале от О до 50° С) 0,00021 на 1 °С. [c.453]
chem21.info
Получен полиэтилен с высокой теплопроводностью
Большинство полимеров чрезвычайно плохо проводят как тепло, так и электричество, однако исследователи из Массачусетского Технологического Института (MIT) нашли способ, позволяющий превратить самый распространенный полимер – полиэтилен в материал, теплопроводность которого соответствует теплопроводности металла.
Новый процесс приводит к тому, что полимер приобретает способность эффективно проводить тепло в одном направлении, в отличие от металлов, равно хорошо проводящих тепло во всех направлениях. Такое свойство нового материала может оказаться полезным для применения там, где необходимо отводить от объекта избыток теплоты, например, в системах охлаждения компьютерных микросхем.
Ключом к приданию полимеру новых физических свойств оказалось превращение хаотично спутанных нитей молекул полимера в упорядоченную систему. С помощью точного кантилевера атомно-силового микроскопа исследователи медленно вытягивали нити полимера из раствора, упорядочивая их. С помощью того же атомно-силового микроскопа изучались свойства полученного волокна.
Руководители проекта Ганг Чен (Gang Chen) и Карл Ричард Содерберг (Carl Richard Soderberg) отмечают, что теплоповодность полученного волокна в направлении индивидуальных волокон в 300 раз выше, чем у исходного полиэтилена. Высокая теплопроводность материала может привести к тому, что его волокна окажутся полезными для рассеивания теплоты во многих практических приложениях.
Чен поясняет, что большинство ранее предпринимавшихся попыток получить полимеры с увеличенной теплопроводностью строились на введении в полимеры других материалов, как, например, углеродных нанотрубок, однако такие подходы позволяли добиваться лишь незначительного увеличения теплопроводности, поскольку значительному увеличению способности материала проводить тепло препятствовала граница раздела между двумя материалами; на границе раздела происходит значительное рассеивание тепла. Метод, предложенный исследователями из MIT, позволяет увеличить теплопроводность полимерного материала до уровня теплопроводности таких металлов, как железо или платины.
Получение новых волокон, в которых молекулы полимера упорядочены, представляет собой двустадийный процесс, включающий в себя две стадии нагрева и растяжения полимера. Чен отмечает, что хотя полученный полимерный материал отличается наиболее высоким значением теплопроводности для материалов своего рода, модификация методики позволит увеличить теплопроводность еще в большей степени.
Новый метод заключается в вытягивании тонкой нити материала (отображено сверху) из раствора (снизу), и в обработке индивидуальных нитей, приводящей в конечном итоге к их упорядочению
Та теплопроводность, которую полиэтиленовые волокна демонстрируют уже сейчас, вполне достаточна для использования новой модификации полимера в качестве дешевой замены металлам, применяющимся для теплопереноса во многих областях, особенно в тех, где анизотропная теплопроводность особенно важна – радиаторы-теплообменники, корпуса сотовых телефонов или пластиковые оболочки компьютерных микросхем. Исследователи полагают, что необычное сочетание высокой теплопроводности, небольшой плотности, химической стабильности и диэлектрических свойств нового материала может стать причиной разработки новых способов применения этого материала.
На настоящий момент теплопроводный полиэтилен был получен только как образец в лабораторных условиях, Чен и Содерберг надеются, что им удастся масштабировать новый метод получения до промышленных объемов, получая целые десятисантиметровые пластины полиэтилена с анизотропными теплопроводными свойствами.
Результаты работы опубликованы в журнале Nature.
www.nanonewsnet.ru
Полиэтилен.
12 февраля, 2014
Химическая формула
(—СН2СН2—)n
Другие названия и торговые марки.
Полиэтилен, ПЭ, ПЭВД, ПЭСД, ПНД, ПВП, ПЭНП, PE, HDPE, LDPE, ALKATEN, HOSTALEN LD, LUPOLEN, MALEN-E и др.
О материале.
Полиэтилен – один из самых популярных и широко применяемых полимерных материалов. Относится к полиолефинам. Получают полиэтилен путём полимеризации газа «этилен», при этом молекулы газа выстраиваются в длинные цепи и образуют молекулы полимера. Получившийся материал обладает хорошей химической стойкостью, диэлектрическими свойствами, дёшев, хорошо перерабатывается, имеет удовлетворительные физико-механические свойства, низкую температуру плавления и плохую термостойкость. Наиболее широко полиэтилен применяется в производстве товаров широкого спроса, в производстве тары, упаковки, товаров бытового и медицинского назначения. В технике полиэтилен применяется в качестве изоляционного, прокладочного и химически стойкого материала. Невысокие физико-механические свойства материала и низкая термостойкость не позволяют использовать полиэтилен в качестве конструкционного пластика. В уплотнительной технике из полиэтилена изготавливают уплотнительные кольца и фланцевые прокладки для лёгких условий эксплуатации, а также отдельные элементы сложных уплотнений.
Отдельным масштабным направлением является производство трубопроводных систем, включая трубы, фитинги и трубопроводную арматуру из полиэтилена. При этом герметичность достигается путём сварки, а уплотнения подвижных элементов выполняются из эластомеров (резины).
Виды и получение
Различают полиэтилен низкой плотности (высокого давления, ПЭВД, LDPE), средней плотности(среднего давления), высокой плотности (низкого давления, ПЭНД, HDPE).
Они различаются методом получения, и как следствие, различной молекулярной структурой, что достаточно серьезно сказывается на физико-механических свойствах материалов.
ПЭВД – имеет разветвлённую структуру, и представляет собой мягкий, эластичный материал.
ПЭНП – имеет большую степень кристалличности, и является гораздо более жёстким и упругим.
Основные свойства
ФИЗИКО—ХИМИЧЕСКИЕ СВОЙСТВА ПОЛИЭТИЛЕНА НИЗКОГО ДАВЛЕНИЯ (ПНД)
ГОСТ 16338-85
Плотность, г/см3 0,931-0,970
Температура для плавления, °С 125-132
Температура для размягчения в воздушной среде по Вика, °С 120-125
Разрушающее напряжение при изгибе, МПа 19,0-35,0
Предел прочности при срезе, МПа 19,0-35,0
Твердость по вдавливанию под заданной нагрузкой шарика, МПа 48,0-54,0
Удельное электрическое поверхностное сопротивление, Ом 1014
Водопоглощение за 30 суток, % 0,03-0,04
Тангенс угла диэлектрических потерь при частоте 1010 Гц 0,0002-0,0005
Диэлектрическая проницаемость при частоте 1010 Гц 2,32-2,36
Удельная теплоемкость при 20-25 °С, Дж/кг·°С 1680-1880
Теплопроводность, В/(м·°С) 0,41 – 0,44
ФИЗИКО—ХИМИЧЕСКИЕ СВОЙСТВА ПОЛИЭТИЛЕНА ВЫСОКОГО ДАВЛЕНИЯ (ПВД)
ГОСТ 16337-77
Плотность, г/см3 0,900-0,939
Температура для плавления, °С 103-110
Разрушающее напряжение при изгибе, Па (кгс/см2) (117,6-196,07)·105 (120-200)
Предел прочности при срезе, Па (кгс/см2) (137,2-166,6)·105 (140-170)
Предел прочности при разрыве, не менее Па (кгс/см2) 113-105, 137-105
Удельное электрическое поверхностное сопротивление, Ом 1015
Водопоглощение за 30 суток, % 0,02
Диэлектрическая проницаемость при частоте 1010 Гц 2,25-2,31
Температура хрупкости, не выше °С от -100 до -120
Теплопроводность, В/(м·°С) 0,36 – 0,40
Модификации и сополимеры
Сополимеры и композиты.
Свойства полиэтилена могут быть существенно изменены путем получения сополимеров с другими мономерами и композиций с полимерами и эластомерами. Например, полиэтиленами другого типа, полипропиленом, винилацетатом, полиизобутиленом, различными каучуками. В результате можно существенно изменить физико-механические свойства, улучшить термостойкость и снизить горючесть.
ПЭ-С (PE-X).
Также улучшить свойства полиэтилена можно за счёт так называемой «сшивки», благодаря которой создаются дополнительные связки на молекулярном уровне. Сшитые полиэтилены обозначаются ПЭ-С (PE-X).
Сверхвысокомолекулярный полиэтилен (СВМПЭ).
Сверхвысокомолекулярный полиэтилен (СВМПЭ) – достаточно новый материал, обладающий уникальными свойствами. Свойства материала обусловлены очень большой длинной моно молекул и высокой плотностью структуры. Материал имеет уникальную прочность, стойкость к абразивному воздействию, низкий коэффициент трения, стойкость к агрессивным средам и имеет хорошие перспективы для применения в различных областях техники.
sealing.su © 2014
Перепечатка без ссылки на источник запрещена.
Дополнительные материалы по теме:
Таблица международных обозначений полимерных материалов >>>
Читайте также:
Полиэтиленовые фитинги 2016. Обзор. >>>
sealing.su
Утеплитель из вспененного полиэтилена Изолар НПЭ
Вспененный полиэтилен Изолар НПЭ – это современный экологически чистый утеплитель, производство которого осуществляется по передовой технологии, без применения фреона и других вредных веществ. Вспененный полиэтилен Изолар НПЭ – рулонный изоляционный материал, на 80 процентов состоящий из мельчайших пузырьков воздуха, заключенных в непроницаемую полиэтиленовую оболочку. Коэффициент теплопроводности вспененного полиэтилена близок к воздуху, примерно – 0,035-0,037 Вт/м² С, являясь наименьшим среди изоляционных материалов. Кроме того, вспененный полиэтилен имеет воздухонепроницаемую и влагонепроницаемую, закрытую пористую структуру, поэтому, потери тепла путем конвекции исключаются. Вспененный полиэтилен позволяет значительно сократить объем строительных конструкций стен, полов и кровли без потерь теплотехнических характеристик, обеспечивая существенную экономию средств. Монтаж вспененного полиэтилена не зависит от сезонности, не требует высококвалифицированных специалистов. Относится к категории недорогих утеплителей, которые может позволить себе любой человек. Вспененный полиэтилен химически неактивен, поэтому совместим практически со всеми строительными материалами: цементом, бетоном, гипсом, известью, кирпичом, древесиной. | ||
1 смИзолар НПЭ заменяет: 1,4 см пенополистирола 5 см дерева 16 см кирпичной кладки 20 см минеральной ваты |
Содержание:
1. Область применения
2. Статьи на тему применения
3. Технические характеристики
4. Сертификаты
1. Область применения Изолар НПЭ
1.1 Универсальная строительная Изоляция Изолар НПЭ (2-10мм). | |
Основное применение вспененного полиэтилена – в строительстве в качестве теплоизоляции и шумоизоляции. Материал также обеспечивает надежную защиту от проникновения влаги. Важным достоинством Изолар НПЭ является то, что в отличие от минеральной ваты он имеет максимальное тепловое сопротивление при минимальной толщине и весе. Таким образом, экономится пространство и минимизируется нагрузка на строительные конструкции. Он очень прост в монтаже: легко режется ножом, крепится при помощи клея, степлера и гвоздей, скрепляется при помощи скотча и строительного фена. Крепление на изогнутые поверхности производится с использованием двухстороннего монтажного скотча. Материал химически неактивен, поэтому совместим практически со всеми строительными материалами: цементом, бетоном, гипсом, известью, древесиной. Подробнее |
1.2 Подложка под ламинат Изолар НПЭ (2-3мм) | |
Идеально подходит для использования в качестве выравнивающей и амортизирующей подложки под ламинат, паркетную доску и другие напольные покрытия.
Подробнее | |
1.3 Упаковка для мебели и техники Изолар НПЭ (0,5-1,0мм) | |
Широко применяется в качестве упаковочного материала бытовой техники, мебели, природного и искусственного камня и других дорогостоящих изделий, подлежащих бережному хранению и транспортировке. Идеально подходит для сохранения товарного вида изделий из керамики, фарфора, стекла, полированных поверхностей из любых материалов.
Подробнее | |
1.4 Шумоизоляция в системе «плавающий» пол Изолар НПЭ (8-10мм) | |
При устройстве «плавающего» пола используется рулонный материал Изолар НПЭ толщиной 8 или 10 мм для обеспечения тепло-ударо-звукоизоляции. При необходимости под Изоларом на бетонную основу дополнительно раскатывается парогидроизоляционная плёнка марки «С» или «D» или просто слой полиэтиленовой пленки…
Подробнее | |
1.5 Производство ТНП Изолар НПЭ (3-10мм) | |
Используется в производстве товаров для спорта и отдыха, кожгалантерейных, ортопедических изделий.
Подробнее |
2. Статьи на тему применения
Технические характеристики теплоизоляционных материалов
Тестирование утеплителей
Виды подложек под ламинат: плюсы и минусы
«Плавающий пол» – наиболее эффективное средство защиты от ударного шума для межэтажных перекрытий
Типовые схемы конструкций «Плавающего пола»
Звукоизоляция. Типичные ошибки и заблуждения
Эффективная звукоизоляция. Основные правила-
Звукоизоляция квартиры в панельном доме: 8 практических советов
3. Технические характеристики
Температура применения | От –50°С до +80°С – (допускается кратковременное использование в температурном режиме до +95 °С) |
Теплопроводность | 0,035-0,040 Вт/м – (это наименьший коэффициент теплопроводности среди изоляционных материалов) |
Уровень теплового отражения поверхности материала (без дополнительного фольгирования) | Высокий (не менее %) |
Удельная теплоемкость | 1,95 кДж/(кг °С) |
Водопоглощение по объему | 0,8-1,5% за 24 часа, но не более 0,2% |
Паропроницаемость | 0,001 мг/(м.ч.Па) – (сопротивление диффузии парам позволяет отнести материал к паронепроницаемым) |
Звукопоглощение | От 3% при 125 Гц до 13% при 4000 Гц, Не менее 32 дБ (А) |
Напряжение при сжатие (25%) | Не менее 0,015 Мпа |
Относительная остаточная деформация при сжатии (25%) | Не более 20 % |
Группа горючести | Г2 – Г4 |
Группа воспламеняемости | В2-В3 – умеренновоспламеняемые |
Группа дымообразующей способности | Д3 – высокая дымообразующая способность |
Группа токсичности продуктов горения | Т3 – высокоопасные |
Температура дымовых газов | Не более 135оС |
Долговечность | Более 50 лет эксплуатации без потери своих свойств |
Внешний вид | Полупрозрачное полотно, окрашиваемое, по желанию заказчика, в различные цвета.
|
Плотность | 20-30 кг / м3 – (не создает большой дополнительной нагрузки на здание или оборудование)
|
Напряженность электростатического поля на поверхности Изолар НПЭ | 15 кВ/м
|
4. Сертификаты
#s3gt_translate_tooltip_mini { display: none !important; }
izolar.net