Битумной мастики плотность – ()

ГОСТ 2889-80


ГОСТ 2889-80

Группа Ж14

ОКП 57 7521

Дата введения 1982-01-01

1. РАЗРАБОТАН И ВНЕСЕН Центральным научно-исследовательским и проектно-экспериментальным институтом промышленных зданий и сооружений (ЦНИИпромзданий) Госстроя СССР


РАЗРАБОТЧИКИ

М.И.Поваляев, канд. техн. наук, О.К.Михайлова, Л.Г.Грызлова, канд. техн. наук, Л.М.Лейбенгруб

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по делам строительства от 24 марта 1980 г. № 39

3. ВЗАМЕН ГОСТ 2889-67

4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

5. ПЕРЕИЗДАНИЕ. Январь 1995 г.


Настоящий стандарт распространяется на битумную кровельную горячую мастику, представляющую собой однородную массу, состоящую из битумного вяжущего и наполнителя и используемую в горячем состоянии.


Мастика может изготавливаться с добавками антисептиков и гербицидов.

Мастика предназначена для устройства рулонных кровель, а также мастичных кровель, армированных стекломатериалами.

Область применения мастики приведена в приложении 1.

1. МАРКИ

1.1. Мастику в зависимости от теплостойкости подразделяют на марки, указанные в табл. 1.

Таблица 1

Марка

МБК-Г-55

МБК-Г-65

МБК-Г-75

МБК-Г-85

MБK-Г-l00

Теплостойкость, °С

55

65

75

85

100


1.2. Условное обозначение марок мастики состоит из ее названия – мастика битумная кровельная горячая и цифры, обозначающей теплостойкость мастики определенной марки.

В обозначение марок мастики с добавками антисептиков или гербицидов после обозначения теплостойкости добавляют соответственно букву А или Г.

Пример условного обозначения мастики теплостойкостью 55°С:

МБК-Г-55

То же, с добавкой антисептика:

МБК-Г-55А

То же, с добавкой гербицидов:

МБК-Г-55Г

2. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

2.1. Мастика должна изготавливаться в соответствии с требованиями настоящего стандарта по технологическому регламенту, утвержденному в установленном порядке.

Рекомендации по составу и приготовлению мастик приведены в приложении 2.

2.2. В зависимости от марки мастика должна соответствовать требованиям табл. 2.

Таблица 2


Наименование

Норма для мастики марок

показателя

МБК-Г-55

МБК-Г-65

МБК-Г-75

МБК-Г-85

МБК-Г-100

1. Теплостойкость в течение 5 ч, °С, не менее

55

65

75

85

100

2. Температура размягчения по методу «кольца и шара», °С

55-60

68-72

78-82

88-92

105-110

3. Гибкость при температуре (18±2) °С на стержне диаметром, мм

10

15

20

30

40

4. Содержание наполнителя, % по массе:

– волокнистого

12-15

1215

12-15

12-15

12-15

– пылевидного

25-30

25-30

25-30

25-30

25-30

5. Содержание воды

Следы


2.3. По внешнему виду мастика должна быть однородной, без посторонних включений и частиц наполнителя, антисептика или гербицида, не покрытых битумом.

На срезе мастики площадью 50 кв.см не должно быть более двух непропитанных частиц наполнителя, антисептика или гербицида размером более 0,4 мм.

2.4. Мастика должна прочно склеивать рулонные материалы. При испытании образцов пергамина, склеенных мастикой, разрыв и расщепление образцов должны происходить по пергамину.

2.5. Мастика должна быть удобонаносимой: при температуре 160 – 180° С мастика массой 10 г должна свободно растекаться по поверхности пергамина размерами 50 х 100 мм ровным слоем толщиной 2 мм.

2.6. При транспортировании мастики в горячем состоянии возможно оседание наполнителя. При этом количество наполнителя (на разных уровнях транспортного средства) может отличаться от указанного в табл. 2 соответственно для волокнистого наполнителя не более чем на 3%, а для пылевидного – 10%.

2.7. Требования к материалам для приготовления мастик

2.7.1. Битумное вяжущее

2.7.1.1. В качестве вяжущего для приготовления мастики следует применять нефтяные кровельные битумы, соответствующие требованиям ГОСТ 9548, и их сплавы, а также нефтяные дорожные битумы по ГОСТ 22245 и их сплавы с кровельным битумом марки БНК 90/30 (БНК 90/40).

2.7.1.2. Для уменьшения оседаемости наполнителей в битумное вяжущее следует вводить поверхностно-активные вещества (ПАВ).

В качестве ПАВ следует применять анионные или катионные вещества.

Перечень продуктов, применяемых в качестве ПАВ, приведен в приложении 3.

2.7.1.3. В битумное вяжущее, применяемое для изготовления мастик в зимних условиях, следует вводить: масло каменноугольное для пропитки древесины по ГОСТ 2770, масло сланцевое для пропитки древесины по ГОСТ 10835 или кукерсольный лак по техническим условиям, утвержденным в установленном порядке.

2.7.1.4. Температура размягчения и хрупкости битумного вяжущего для изготовления мастик разных марок должна удовлетворять требованиям табл. 3.

Таблица 3

Марка мастики

Температура размягчения битумного вяжущего по методу “кольца и шара”, град.С

Температура хрупкости битумного вяжущего, град.С, не выше

МБК-Г-55

45-50

– 18

МБК-Г-65

51-60

– 15

МБК-Г-75

61-70

– 13

MБK-Г-85

71-80

– 12

МБК-Г-100

85-95

– 10

Примечание. При введении пластифицирующих добавок в битумное вяжущее температура его размягчения может быть на 3-5°С ниже.

2.7.2. Наполнитель

2.7.2.1. Для приготовления мастики должны применяться волокнистые или пылевидные наполнители.

В качестве волокнистого наполнителя следует применять хризотиловый асбест 7-го сорта по ГОСТ 12871.

В качестве пылевидного наполнителя следует применять тонкомолотые тальк или талькомагнезит по ГОСТ 21235, сланцевые породы, известняки, доломиты, трепел или мел по техническим условиям, утвержденным в установленном порядке.

2.7.2.2. Для уменьшения оседаемости наполнителя при его помоле может быть введено ПАВ на основе синтетических жирных кислот, указанных в приложении 3. В этом случае ПАВ в битумное вяжущее не вводят.

Примечание. В случае, когда в качестве наполнителя используют сланцевые породы, ПАВ не вводят.

2.7.2.3. Наполнитель для изготовления мастики должен удовлетворять требованиям табл. 4.

Таблица 4

Наименование показателя

Норма

1. Плотность (удельный вес), кг/куб.м, (г/куб.см), не более

2,7

2. Влажность наполнителя, % по массе, не более:

– волокнистого

5

– пылевидного

3

3. Зерновой состав наполнителя:

– волокнистого

Проходит полностью через сито с сеткой N 04

– пылевидного

Проходит полностью через сито с сеткой N 02, а остаток на сите с сеткой N 009 -не более 10%

2.7.3. Антисептики и гербициды

2.7.3.1. В качестве антисептирующих добавок должны применяться кремнефтористый натрий по ТУ 113-08-587 или фтористый натрий по ТУ 113-08-586.

В мастики с пластифицирующими добавками антисептик не вводят.

2.7.3.2. В качестве гербицидов должны применяться симазин по ГОСТ 15123 или аминная (натриевая) соль дихлорфеноксиуксусной кислоты (2, 4Д) по техническим условиям, утвержденным в установленном порядке.

Количество антисептиков и гербицидов в составе мастики должно соответствовать требованиям СНиП II-26.

3. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

3.1. Мастика является горючим материалом с температурой вспышки 240-300°С. При изготовлении и применении мастик должны соблюдаться требования главы СНиП III-А.11.

3.2. При производстве, сливе, наливе и отборе проб мастик следует применять спецодежду и индивидуальные средства защиты согласно «Типовым отраслевым нормам бесплатной выдачи спецодежды, спецобуви и предохранительных приспособлений», с дополнением к ним, утвержденным постановлением Государственного комитета СССР по труду и социальным вопросам и Президиумом ВЦСПС 6 июля 1978 г. № 226/П9-4.

3.3. В случае загорания небольших количеств мастики пожар следует тушить песком, кошмой, специальными порошками, пенным огнетушителем; развившиеся пожары – пенной струей или водой от лафетных стволов.

4. ПРАВИЛА ПРИЕМКИ

4.1. Мастика должна быть принята техническим контролем предприятия-изготовителя.

Приемку и поставку мастики осуществляют партиями.

Размер партии устанавливают в количестве сменной выработки мастики, приготовленной по одной рецептуре, технологии и из одних и тех же компонентов.

4.2. Для проверки соответствия мастики требованиям настоящего стандарта от каждой партии отбирают 3%, но не менее трех упаковочных мест, при этом масса каждой пробы, отобранной на трех различных уровнях, должна быть не менее 0,5 кг. При перевозке специальными машинами пробу отбирают перед загрузкой в машину в количестве 1,5 кг.

4.3. Все отобранные пробы сплавляют при температуре 120-130° С, тщательно перемешивают и делят на две равные части. Одну из этих частей испытывают, другую маркируют и хранят в чистом плотно закрытом сосуде в сухом и прохладном помещении для контрольных испытаний.

Все испытания проводят на 3 образцах.

4.4. Приемку мастики производят путем проведения приемочного контроля по следующим показателям: внешний вид, теплостойкость, температура размягчения и гибкость.

4.5. Предприятие-изготовитель обязано проводить периодические испытания мастики по следующим показателям:

– содержание наполнителя и воды в мастике – один раз в месяц;

– определение склеивающих свойств и удобонаносимости – при изменении рецептуры, но не реже одного раза в месяц.

4.6. При получении неудовлетворительных результатов испытания хотя бы по одному из показателей, проводят повторные испытания по этому показателю удвоенного количества мастики, отобранной от той же партии.

Результаты повторных испытаний являются окончательными.

4.7. Потребитель имеет право производить контрольную проверку мастики в соответствии с требованиями настоящего стандарта.

5. МЕТОДЫ ИСПЫТАНИЙ

5.1. Проверку внешнего вида (однородность мастики, наличие посторонних включений и частиц наполнителя, антисептика или гербицида, не покрытых битумом) производят визуально.

5.2. Определение теплостойкости

5.2.1. Аппаратура и принадлежности

Шкаф сушильный лабораторный с перфорированными полками, вентилируемый, позволяющий автоматически регулировать заданную температуру.

Пластинка металлическая плоская размерами 50х100х2 мм.

5.2.2. Подготовка к испытанию

Для определения теплостойкости на образец пергамина размерами 50х100 мм наносят равномерным слоем 8 – 10 г мастики, предварительно разогретой до температуры 140 – 160° С. Сверху накладывают кусок пергамина тех же размеров и прижимают грузом в 2 кгс на 2 ч. Груз прикладывают через плоскую металлическую пластинку размерами 50х100х2 мм.

Сушильный шкаф нагревают в зависимости от марки мастики до температуры, указанной в табл. 2.

5.2.3. Проведение испытания

После 2 ч выдержки образцы с мастикой марок МБК-Г-55 или МБК-Г-65 помещают в нагретый сушильный шкаф на наклонной подставке (20%), а с мастикой марок МБК-Г-75, МБК-Г-85, МБК-Г-100 – на наклонной подставке (100 % под углом 45°).

Образцы выдерживают в шкафу в течение 5 ч при заданной температуре, после чего образцы вынимают и осматривают.

Мастику считают выдержавшей испытание, если она не потечет и не начнет сползать.

5.3. Определение гибкости

Метод основан на изгибании образца пергамина с нанесенной на него мастикой по полуокружности стержня определенного диаметра при заданной температуре.

5.3.1. Аппаратура и принадлежности

Термометр по ГОСТ 28498.

Стержни диаметром 10, 15, 20, 30, 40 мм.

Сосуд для воды.

5.3.2. Подготовка к испытанию

На образец пергамина размерами 50х100 мм равномерным слоем наносят 8-10 г мастики, предварительно разогретой до 140-160°С.

После этого образец выдерживают в течение 2 ч при температуре (18±2) °С на воздухе. Затем в сосуд наливают воду, температура которой должна быть (18±2) °С.

Образцы и стержень помещают в этот сосуд с водой и выдерживают в нем в течение 15 мин.

5.3.3. Проведение испытания

После выдерживания в воде образец медленно изгибают по полуокружности стержня в течение 5 с лицевой поверхностью (мастикой) вверх. Время с момента изъятия образца из воды и изгибания его по полуокружности стержня не должно превышать 15 с.

Мастику считают выдержавшей испытание, если на поверхности образца не образуются трещины.

5.4. Определение склеивающих свойств мастики

Сущность метода заключается в определении нагрузки, необходимой для разрыва двух склеенных образцов определенной длины и ширины.

5.4.1. Аппаратура и принадлежности

Разрывная машина марки РТ-250М-2 или аналогичные машины, имеющие рабочую часть шкалы от 0 до 100 кгс с ценой деления не более 0,2 кгс, с допустимой погрешностью показаний в пределах рабочей шкалы +/-1%.

Шкаф сушильный лабораторный с перфорированными полками, вентилируемый, позволяющий автоматически регулировать температуру.

Пластинка металлическая.

5.4.2. Подготовка образцов к испытанию

Два образца пергамина размерами 50х140 мм, вырезанные из рулона в продольном направлении, склеивают мастикой на площади 50х60 мм. Нагретую до 140-160 °С мастику в количестве 4-6 г наносят на поверхность обоих образцов так, чтобы один конец каждого образца остался не покрытым мастикой. Склеенные образцы прижимают грузом массой 1 кг через металлическую пластинку и выдерживают в течение 2 ч при температуре (20±2)°С. Для испытания готовят 3 образца.

5.4.3. Проведение испытания

Через 2 ч после склеивания образцы помещают в зажимы разрывной машины без перекосов.

Испытания образца проводят при постоянной скорости перемещения подвижного зажима 50 мм/мин до разрыва, который должен произойти по пергамину.

5.5. Определение содержания наполнителя после прогрева

Содержание наполнителя определяют методом сжигания по ГОСТ 2678 со следующим дополнением. Пробу мастики заливают в разъемный цилиндр диаметром 20 мм и высотой 150 мм, который помещают в сушильный шкаф, нагревают до температуры 160°С (при применении ПАВ до 130 °С) и выдерживают при этой температуре 5 ч.

После охлаждения до комнатной температуры мастику извлекают из цилиндра и отбирают (снизу и в середине цилиндра) пробы массой не менее 1 г каждая. Результаты испытаний должны соответствовать требованиям п. 2.6.

5.6. Определение температуры размягчения мастики – по ГОСТ 11506.

5.7. Определение содержания наполнителя – по ГОСТ 2678.

5.8. Определение содержания воды в мастике – по ГОСТ 2477.

6. УПАКОВКА, МАРКИРОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

6.1. Мастика может быть упакована в стальные бочки со съемным днищем, в деревянные бочки или барабаны, мешки бумажные с противоадгезионной прослойкой.

На строительные объекты, расположенные вблизи мест централизованного изготовления, мастику следует транспортировать разогретой до 160-180°С в специальных автомашинах, оборудованных мешалками. Время в пути не должно превышать 3 ч.

6.2. На упаковке мастики должно быть указано несмываемой краской:

– наименование или товарный знак предприятия-изготовителя;

– марка мастики;

– наименование наполнителя;

– номер партии.

6.3. Каждая отгружаемая партия мастики должна сопровождаться документом, удостоверяющим качество, в котором указывают:

– наименование или товарный знак предприятия-изготовителя;

– количество мест в партии и их массу;

– марку мастики;

– наименование наполнителей и их процентное содержание в мастике;

– наименование антисептика или гербицида и их процентное содержание в мастике;

– результаты испытаний;

– обозначение настоящего стандарта.

6.4. Упакованная мастика может перевозиться транспортом любого вида.

6.5. Мастика должна храниться раздельно по маркам в закрытом помещении.

7. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

7.1. Изготовитель гарантирует соответствие мастики требованиям настоящего стандарта при соблюдении условий транспортирования и хранения.

Гарантийный срок хранения мастики – один год со дня изготовления. По истечении гарантийного срока хранения перед применением мастика должна быть проверена на соответствие ее требованиям настоящего стандарта.

ПРИЛОЖЕНИЕ 1 (рекомендуемое). РЕКОМЕНДУЕМАЯ ОБЛАСТЬ ПРИМЕНЕНИЯ МАСТИКИ


ПРИЛОЖЕНИЕ 1
Рекомендуемое

1. Область применения мастики в зависимости от района строительства и уклона кровли указана в таблице.


Район строительства

Мастика для устройства

кровель с уклоном, %

мест

менее 2,5

2,5 – менее 10

10 – 25

примыканий

1. Севернее географической широты 50 град. для европейской и 53 град. для азиатской части СССР

МБК-Г-55

МБК-Г-65

МБК-Г-75

МБК-Г-85

2. Южнее этих районов

МБК-Г-65

МБК-Г-75

МБК-Г-85

МБК-Г-100


2. Мастики марок МБК-Г-55 и МБК-Г-65 следует применять для наклейки антисептированного рубероида, стеклорубероида и толевых материалов, а мастики марок МБК-Г-55А и МБК-Г-65А – для наклейки неантисептированного рубероида; мастики марок МБК-Г-55Г и МБК-Г-65Г – для устройства защитного слоя на кровлях.

ПРИЛОЖЕНИЕ 2 (рекомендуемое). РЕКОМЕНДАЦИИ ПО СОСТАВУ И ПРИГОТОВЛЕНИЮ БИТУМНЫХ КРОВЕЛЬНЫХ ГОРЯЧИХ МАСТИК


ПРИЛОЖЕНИЕ 2
Рекомендуемое

1. Мастики следует готовить в заводских условиях (например, на асфальтобетонных заводах), на централизованных установках строительных трестов в обогреваемых емкостях, оборудованных перемешивающими устройствами. Допускается изготовление мастик в построечных условиях.

2. Процесс приготовления битумного вяжущего состоит в обезвоживании и расплавлении битума, в сплавлении битумов, в введении в битум или сплав ПАВ и пластифицирующих добавок.

3. Первоначально в емкость загружают легкоплавкий битум, который обезвоживают при температуре 105-110 град.С, после этого загружают битум марки БНК 90/30 (БНК 90/40) и при постоянной работе мешалки температуру битумного вяжущего доводят до 160 – 180 град. С.

4. Количество кровельного битума марки БНК 90/30 (БНК 90/40), вводимого в расплавленный легкоплавкий битум, зависит от температуры размягчения смешиваемых битумов и определяется по формулам:

где Бт – содержание в сплаве более тугоплавкого битума (марки БНК 90/30), %;

Бм – содержание в сплаве легкоплавкого битума, %;

t – температура размягчения битумного вяжущего для приготовления мастик, назначаемая в соответствии с табл. 3 настоящего стандарта;

tт, tм – температура размягчения, соответственно, тугоплавкого и легкоплавкого битумов.

5. Для предотвращения вспенивания битума при нагревании следует добавлять пеногаситель марки СКТН-1 из расчета 0,01 г (2-3 капли) на 1 т битума.

6. Добавки ПАВ, вводимые для уменьшения оседаемости наполнителя при транспортировке мастик при температуре не выше 130 град.С, следует вводить непосредственно в битумное вяжущее или с наполнителем.

В битумное вяжущее вводят ПАВ в количестве 1,5 – 2 % от массы битумного вяжущего.

ПАВ в наполнитель вводят при помоле в количестве 0,15 – 0,2 % от массы наполнителя.

7. По согласованию с потребителем для работ в зимних условиях допускается вводить в количестве 3 -8 % от массы битумного вяжущего пластифицирующие добавки. При введении пластифицирующих добавок вводить в битумное вяжущее ПАВ не следует.

8. После отбора проб и определения температуры размягчения битумного вяжущего вводят наполнитель отдельными порциями при постоянном перемешивании.

9. Количество загружаемого наполнителя в каждой порции должно составлять 1/3 -1/4 часть от потребного расчетного количества. При интенсивном подъеме пены введение наполнителя прекращают до понижения уровня пены, после этого засыпку наполнителя возобновляют.

10. После загрузки последней порции наполнителя варку мастики продолжают при температуре 160 – 180 С при постоянном перемешивании до получения однородной смеси и полного оседания пены.

11. Антисептирующие добавки в количестве 4 – 5% или гербициды в количестве: симазина 0,3 – 0,5%, аминной (натриевой) соли 2,4Д 1 – 1,5% от массы битумного вяжущего вводят отдельными порциями в 2 -3 приема при постоянном перемешивании перед окончанием приготовления мастики.

ПРИЛОЖЕНИЕ 3 (справочное). ПЕРЕЧЕНЬ ПРОДУКТОВ, ПРИМЕНЯЕМЫХ В КАЧЕСТВЕ ПАВ

ПРИЛОЖЕНИЕ 3
Справочное

Наименование продукта

Нормативный документ

1.Анионные типа высших карбоновых кислот:

– госсиполовая смола (хлопковый гудрон)

ОСТ 18-114

– жировой гудрон

ОСТ 18-114

– синтетические жировые кислоты С(17) – С(20)

ОСТ 38-7-25

2. Катионные:

– типа высших алифатических аминов (БП-З)

ТУ 382-01-170

– типа четырех замещенных аммониевых оснований (алкилтриметиламмоний хлорид)

ТУ 3840798




Текст документа сверен по:
официальное издание
М.: Издательство стандартов, 1995

docs.cntd.ru

Гун Р.Б. Нефтяные битумы (стр. 10)

ПЛОТНОСТЬ

Плотность битума определяют по плотности его смеси с равным объемом растворителя известной плотности ареометром или пикнометром. Температурный коэффициент плотности а, характеризующий уменьшение плотности при нагревании на 1 °С, в среднем для всех битумов равен 0,0006 г/(см *град). Зная плотность битума, например при 20 °С, при помощи коэффициента можно вычислить его плотность при любой температуре t в интервале 15—300°С по формуле:

Практическое значение данных о плотности заключается в возможности пересчета количества битума из объемных единиц в весовые. Особенно это важно для составления материальных балансов по установке и заводу в целом с применением информационно-вычислительных и управляющих вычислительных машин.

Плотность является одной из важных характеристик битума и его компонентов, по ней судят о происхождении битума. Плотность, так же как и пенетрация, зависит от химического состава битума: увеличение содержания ароматических структур повышает его плотность, а увеличение содержания насыщенных соединений — уменьшает.

Окисленные битумы из остатков высокосмолистых нефтей имеют большую плотность, чем битумы той же температуры размягчения из высокопарафинистых нефтей.

Существует взаимосвязь между плотностью битума и содержанием в нем серы. При одинаковой консистенции с повышением содержания серы увеличивается плотность битума. Для некоторых фракций из мальтенов битумов типа золь — гель получена прямолинейная зависимость плотности от содержания серы.

Плотность остаточных битумов, полученных из одного и того же сырья, возрастает с увеличением отбора масел и понижением пенетрации, что видно из следующих данных для остаточных битумов из нагиленгиелской нефти [498]:

Плотность окисленных битумов незначительно возрастает по мере углубления окисления и уменьшения пенетрации. Плотность окисленных битумов в зависимости от пенетрации следующая [476]:

3 2 3

Плотность битумов из крекинг-остатков в среднем на 0,1 г/см (10″ кг/м ) выше, чем окисленных битумов той же пенетрации.

ТЕПЛОВЫЕ СВОЙСТВА

Удельная теплоемкость практически одинакова для различных битумов. Она увеличивается с повышением температуры: изменение теплоемкости битумов различной консистенции на 1°С равно 0,00032 — 0,00078 кал/(г* *град) [484].

Наличие твердых парафинов в битуме способствует повышению теплоемкости и нарушению линейной зависимости теплоемкости от температуры. Теплоемкость смесей битумов с минеральными материалами (наполнителями) можно рассчитать по правилу аддитивности.

В среднем удельная теплоемкость битумов составляет при 0°С – 0,4 кал/(г-град), т. е.

3 3

1,67*10 дж/(кг* град), при 100 °С – 0,45 кал/(г-град), т. е. 1,88*10 дж/(кг*град), при 200°С – 0,5 кал/(г*град), т. е. 2,09* 103 дж/(кг*град), при 300°С — 0,55 кал/(г*град), т. е. 2,3 *103 дж/(кг*град).

Коэффициент теплопроводности для всех битумов практически одинаков и незначительно уменьшается с возрастанием температуры. Так, при 0°С он равен 0,13—0,145 ккал/(м-ч-град), т. е. 1,51—1,69 вт/(м*град), при 20°С – 0,125—0,135 ккал/(м-ч-град), т. е. 1,45— 1,57 вт/(м*град), при 40°С — 0,120—0,130 ккал/(м*ч* *град), т. е. 1,4—1,5 вт/(м*град).

Теплопроводность нефтяных битумов сравнительно мала, поэтому они находят применение в качестве теплоизоляционных материалов. Каменноугольные дегти и пеки обладают сравнительно высокой теплопроводностью [363].

Коэффициент объемного расширения при повышении температуры на 1°С в интервале 60—300 °С для дорожных битумов находится в пределах 0,000033—0,000042.

Температура вспышки битума, определяемая в открытом тигле по ГОСТ 4333—48, составляет обычно более 200°С. По этому показателю можно судить о наличии низкокипящих фракций в сырье и в готовом битуме, а также об их взрыво- и пожароопасности в процессе производства и применения битумов.

ДИЭЛЕКТРИЧЕСКИЕ СВОЙСТВА

Битумы обладают высокими электроизоляционными свойствами, не уступая в этом хорошим изоляторам.

Пробивное напряжение битума зависит от способа его получения и составляет 10 — 60 кв/мм (1*10° — 6*10° в/м) при 20°С. Для мягкого битума оно меньше, для твердого — больше. Для одного и того же битума с возрастанием температуры пробивное напряжение уменьшается.

Удельная электропроводимость битумов незначительна и при 50 °С составляет менее

13 11 2 13 1 1

10″ ом” см” (10″” сим/м), при 80°С она повышается до 30*10″ ом” см” (0,3 сим/м). Удельная электропроводимость возрастает с повышением температуры и с понижением вязкости битумов. Повышение электропроводимости при 20°С растворов битумов, асфальтенов и мальтенов в бензоле сопровождается возрастанием коэффициента водостойкости битумно-минеральных смесей и адгезии к каменным материалам.

Так, коэффициент водостойкости битумно-минеральной смеси, приготовленной на битуме, раствор которого в бензоле имеет электропроводимость 68* Ю”10 ом”1 равен 0,92; через 5 суток — 0,86; через 10 суток — 0,79; для такого же раствора битума с электропроводимостью 148* Ю10 ом”1 этот коэффициент соответственно равен 1; 0,94 и 0,91. Измерением электропроводимости растворов битумов, асфальтенов и мальтенов в бензоле можно контролировать их адгезионные свойства.

Тангенс угла диэлектрических потерь при 20°С для битумов составляет 0,013—0,021; потери на гистерезис и потери мощности (в сумме) при 80°С в пределах 3—5. Диэлектрическая проницаемость битумов при 80°С составляет 2,9—3,2.

ОПТИЧЕСКИЕ СВОЙСТВА

К оптическим свойствам битумов и их фракций относятся коэффициент рефракции n20D и светопоглощение растворов битума. Значение n20D для каждой фракции битума приведено выше.

Для измерения коэффициента рефракции тяжелых материалов темного цвета разработан метод [518], основанный на аддитивности этого показателя для растворов битума в вазелиновом масле, если состав этих растворов выражен в объемных процентах. Было показано также, что существует эмпирическая взаимосвязь между коэффициентом рефракции и плотностью битума и его фракций.

Установлена также взаимосвязь между коэффициентом рефракции, содержанием серы и групп СН2 во фракциях битума: с увеличением содержания серы этот коэффициент увеличивается; с увеличением содержания групп СН2 — уменьшается.

Предложен [422] метод оценки удельной дисперсии* материалов темного цвета, который позволяет глубже изучить состав битума. Измерениям в фотоэлектрическим методом светопоглощения растворов битума [294] установлена взаимосвязь между цветом и содержанием в нем асфальтенов и смол.

* Удельная дисперсия — это разность между коэффиг{иентами рефращии вещества, определенными при двух разных длинах волн, деленная на его плотность.

Колориметрическими методами можно отличить остаточный битум от окисленного, а усовершенствование конструкции приборов и методики поможет ускорить определение состава битума.

ОТНОШЕНИЕ К РАСТВОРИТЕЛЯМ, ХИМИЧЕСКИМ РЕАКТИВАМ И ВОДЕ

Битумы растворяются в большинстве органических растворителей кроме низкомолекулярных спиртов. Растворители по отношению к асфальто-смолистым веществам можно разделить на три группы.

К первой группе относятся растворители с высокой растворяющей способностью (83—90%) и практически с нулевой избирательностью к асфальтенам (ароматические растворители, четыреххлористый углерод и сероуглерод).

Вторая группа характеризуется высокой растворяющей способностью, как и первая группа, но отличается от них выраженной избирательностью (хлороформ и трих лор этилен).

Третья большая группа растворителей характеризуется умеренной растворяющей способностью (27—40%) и резко выраженной отрицательной избирательностью. К ним относятся алифатические углеводороды С5—Cg, низшие алифатические спирты Ci—С5 и ацетон.

Избирательность растворителей влияет на состав извлекаемых асфальтенов, что важно при их разделении на узкие фракции. По растворимости в органических растворителях, помимо зольности и температуры вспышки, судят о чистоте битума. Зольность определяют одновременно с испытанием битума на растворимость. Допускаемое содержание золы в битуме — не более 0,1%.

Остаточные и окисленные битумы, полученные из хорошо обессоленных и обезвоженных нефтей, практически не содержат золы.

Растворимость битумов в таких органических растворителях, как хлороформ, бензол, сероуглерод и четыреххлористый углерод, характеризует наличие примесей — минеральных и других твердых веществ (например, карбенов и карбоидов). В этих растворителях товарные окисленные нефтяные битумы растворяются более чем на 99%.

Растворимость природных битумов в сероуглероде сравнительно невелика; например, тринидадский битум растворяется в нем всего лишь на 54 —56,5%, бермудский — на 90—95%, кубинский — на 90%.

В четыреххлористом углероде не растворяются карбены, наличие которых характерно для битумов, получаемых из продуктов крекинга.

Критерием устойчивости дорожных битумов к крекингу [410] служит количество нерастворимой в циклогексане части.

Воздействие реагентов на битум зависит от его химического состава, происхождения, способа получения и твердости. Чем тверже битум, тем выше его сопротивляемость к действию химических реагентов.

Мягкие битумы с высокие кислотным числом подвергаются действию разбавленных щелочей. При комнатной температуре битумы устойчивы к действию 20%-ных гидроокиси натрия или карбоната натрия. При обычной температуре битумы обладают высокой химической стойкостью.

При температуре более 150°С битум вступает в реакцию с кислородом, серой, хлором и другими веществами. Эти свойства используют для получения различных сортов битумов.

Под действием воздуха, света и радиоактивных излучений свойства битумов медленно изменяются, происходит их старение. Степень окисления зависит от величины поверхности, подверженной воздействию кислорода воздуха, и от скорости диффузии последнего к поверхности раздела фаз и в битум. В результате образуются растворимые в воде продукты окисления, дающие кислую реакцию. Исследования показали, что воздух и свет влияют только на поверхность битума, применяемого как защитный материал слоем толщиной несколько миллиметров.

bitumen.globecore.ru

Битумы плотность – Справочник химика 21


    ДЛЯ получения битума после деасфальтизации гудрона, предлагается схема, изображенная на рис. III-14 [27]. Здесь флегма выводится с глухой тарелки, прокачивается через печь и возвращается в колонну в колонне поддерживается постоянный уровень жидкости на глухой тарелке, и флег.ма на этой тарелке подогревается до более высокой температуры, чем исходное сырье. При давлении в секции питания 0,105 МПа температура подогрева флегмы равна 400 °С, сырья 370 °С и низа колонны 358 °С. Расходы и плотности сырья, рециркулирующей флегмы и остатка приведены ниже  [c.169]

    Л — толщина слоя битума, см д — плотность битума г/смз (условно принята 1). [c.416]

    Тип битума Плотность, г/см Масла Смолы Асфальтены [c.116]

    Периодическое коксование дает наибольший выход кокса по сравнению с другими способами. Так, при периодическом способе коксования битума плотностью 1,019 г/см выход кокса составляет около 30%, а при полунепрерывном —21,0% . Естественно, что боль- [c.90]

    Техническими характеристиками битума служат, в частности, его температура размягчения, температура хрупкости, достигаемая при понижении температуры, температура вспышки, характеризующая степень огнеопасности битума, плотность, вязкость, пластичность, глубина проникновения иглы, растяжимость нити, прилипание к поверхности металла или камня и др. Методы определения их применяются большей частью эмпирические, условные. Остановимся для примера лишь на определении температуры размягчения. Битумы ие обладают резкой температурной границей между твердым и жидким состояниями. Твердый битум при повышении температуры постепенно размягчается и далее переходит в вязкотекучее состояние и, наконец, в более подвижную жидкость. Такой переход охватывает интервал в несколько десятков градусов. [c.209]


    Для первой нефти опыт /), разделявшейся с помощью СОг (см. табл. 59), не даны выходы полученных фракций из-за больших потерь легких углеводородов, не конденсировавшихся при 60 кгс/см в последнем сосуде установки. Следующий опыт (2) относится к той же нефти, но из нее предварительно были отогнаны углеводороды, кипящее до 125°С. Однако и в этом опыте удовлетворительный баланс не был получен из-за неполной конденсации легких УВ в последнем сосуде установки. Судя по количеству не растворившейся в газе фракции нефти (22,9%) суммарный выход разделенных фракций должен быть около 77%. Не растворившаяся в газе фракция представляла собой твердый битум плотностью 1,016 г/см . Разделение той же нефти на фракции с помощью этилена было проведено при более низких давлениях. Несмотря на это в газе не растворились 18,3% исходного продукта (плотность остатка 1,024 г/см ). [c.100]

    На иоверхности минеральных зерен образуются диффузные структурированные оболочки битума, плотность и вязкость которых имеют наивысшее значение непосредственно у границы разде- [c.10]

    При определении растяжимости битумов, имеющих плотность значительно большую или меньшую плотности воды (при растяжении нити битума достигают дна или всплывают на поверхность воды), плотность воды изменяют добавлением раствора поваренной соли или глицерина (для увеличения плотности) и этилового спирта (для уменьшения плотности). [c.392]

    Интенсивность протекания процесса старения, длительность во времени каждой стадии зависят от типа битума, плотности битумоминерального материала и климатических условий местности. [c.176]

    Периодическое коксование дает наибольший выход кокса по сравнению с другими способами. Так, при периодическом коксовании битума (плотность 1019 кг/м ) выход кокса доходит до 30%, а при полунепрерывном всего до 21,0%. Естественно, что большему выходу кокса соответствует меньший выход дистиллята, имеющего при этом более легкий фракционный состав. Отмеченные особенности периодического коксования объясняются тем, что процесс протекает при относительно низких температурах, что замедляет удаление продуктов разложения из реакционной зоны и благоприятствует реакциям уплотнения. [c.84]

    Для пересчетов кинематической и динамической вязкостей, необходимых при загрузке резервуаров и транспортных средств, следует знать плотность битумов. Последняя зависит от технологии п

www.chem21.info

Виды и свойства битума

Вода – это не только «символ» всего живого, но и грозный разрушитель. Ее постоянное воздействие может уничтожить самую прочную конструкцию. Для защиты от этого губительного свойства, используют гидроизоляционные материалы, одним из которых является битум.

Слово «битум» переводится с латинского языка, как «горная смола». Этот материал представляет собой «микс» из органических веществ в жидком или твердом состоянии.

Химический состав битума: углеводородные смеси в сочетании с азотными, сернистыми и металлосодержащими компонентами.

Существует два его основных вида:

  • Природный битум.

В природе встречается в твердом и жидком состоянии около месторождений нефти. Но бывает в чистом виде редко, чаще в составе, так называемой, асфальтовой породы (известняк, песчаник и т.п.).

  • Искусственный битум.

Добывают методом переработки нефтепродуктов. В зависимости от способа получения бывают:

  • Остаточные (основной источник – гудрон, из которого выделяют остатки масленых компонентов).
  • Окисленные (тот же гудрон окисляют на специальных установках).
  • Крекинговые (переработка остаточных продуктов при крекинге нефти).

Основные свойства битума зависят от качественного состава его основных компонентов. Этот материал характеризуется по таким параметрам:

  • Плотность битума. (0,8 — 1,3 г/см.куб).
  • Теплопроводность битума (0,5—0,6 Вт/(м•°С)).
  • Теплоемкость битума (1,8—1,97 кДж/кг•°С).
  • Коэффициент теплового расширения (для вязких материалов ≈5•10-4 — 8•10-4°С-1, если температура битума низкая ≈ 2•104°С-1).

Битум является водостойким и электроизоляционным материалом. Так же обладает высокой адгезией и устойчивостью при нагревании.

Важное физико-химическое свойство битума — поверхностное натяжение, которое составляет 25—35 эрг/см2 (при температуре 20 — 25 ̊С).

Вес битума (объемный показатель) в среднем 1100 кг/м.куб.

Характерным для данного материала есть устойчивость к агрессивным средам: щелочи, кислоты. Поэтому он активно используется для химической защиты.

Растворяется битум с помощью органических растворителей.

Марки битума

Битум широко применяется во всех сферах промышленности. По этому параметру его делят на:

  • Строительный вид — используют для гидроизоляции бетонных сооружений, заделки щелей, пропитки других материалов и т.п.
  • Кровельный вид – используют для кровельных работ.
  • Дорожный вид – жидкий битум является основным компонентом для асфальтного покрытия. Требует особого внимания из-за своей «капризности», так как теряет свои свойства при повторном нагреве. Для хранения битума на асфальтобетонных заводах организовывают битумохранилища, где поддерживается его постоянная температура.

Различают марки битума для каждого из упомянутых видов. Они характеризуются такими величинами: твердостью, растяжимостью и температурой размягчения. Условные обозначения – это заглавные буквы: БН (битум нефтяной), БНК (битум нефтяной кровельный), БНД (битум нефтяной дорожный). Затем идут цифры в формате «*/*». Они означают: «температура размягчения/ температура условной твердости» (например, БН-70/30).

Расход битума зависит от его предназначения. Разные виды работ имеют строго определенные технологии затрат этого материала. Это обусловлено точными расчетами его оптимальной толщины, чтобы максимально «задействовать» его полезные свойства.

Например, при вяжущем состоянии материала, расход битума для кровельных работ – от 4 л/м.кв., для гидроизоляции – 3-6 л/м.кв., для придания материалу антикоррозионных свойств – от 0,6 л/м.кв. Для твердого битума, данная характеристика измеряется в килограммах на м.кв.

www.gmsgroup.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *