Геотекстиль под ленточный фундамент: Геотекстиль для фундамента: как выбрать и укладывать

Содержание

Геотекстиль для фундамента: как выбрать и укладывать

Геотекстиль представляет собой полиэфирное или полипропиленовое полотно, изготавливаемое тканым либо нетканым способом. Данный материал обладает высокой механической прочностью, не подвержен гниению под воздействием влаги. Для чего нужен геотекстиль в фундаменте:

  • Укрепление почвы со слабой несущей способностью.
  • Обеспечение гидроизоляции и дренажа основания, предотвращение его заиливания.
  • Разделение слоев различных стройматериалов, что необходимо при укладке плитного фундамента и др.
  • В этих же целях он применяется и в других конструкциях, в частности, при обустройстве дорожных полотен, экопарковок.

 

Как выбрать геотекстиль для фундамента

Базовый параметр выбора геотекстиля под фундамент – это плотность материала. Она должна быть в диапазоне 225 ± 25 единиц.

Материалы с меньшей плотностью могут не выдержать эксплуатационной нагрузки и порваться, с большей – обойдутся дороже при обеспечении того же результата. В целом, при выборе геотекстиля следует ориентироваться на реальные нагрузки, которые будут приходиться на него.

 

Как уложить геотекстиль под фундамент

Подготовительные работы

Перед тем, как укладывать геотекстиль, необходимо выкопать траншею под фундамент, разровнять и хорошо утрамбовать ее дно.

Укладка материала

Рулоны геотекстиля раскатывают по длине фундамента. Это выполняют вручную. Рекомендуется стелить полотно максимально широко, с запасом 1,5 ± 0,5 м. Это позволит ему лучше гасить почвенные нагрузки. На слишком слабых грунтах материал можно уложить в несколько слоев.

 

Скрепление геотекстиля

При применении геотекстиля в фундаменте на плотных грунтах материал можно соединить посредством сшивания.

Для этого используют мешкозашивочную, реже – бытовую машинку. Другой способ соединения – уложить полотно внахлест.

Засыпка

Поверх геотекстиля укладываются остальные слои основания.

Геотекстиль под фундамент

Геотекстиль для фундамента способен обеспечить дополнительную защиту фундаменту,а значит основа дома будет более устойчивой.

Геотекстиль обладает сразу несколькими полезными свойствами:

  • Армирование – укрепления грунта, особенно слабого, что помогает увеличить его несущую способность. Использование геополотна способствует равномерному распределению нагрузки по всей основе фундамента;
  • Разделение – укладка материала под песчаную подушку не дает песку и щебню перемешиваться с землей, то есть предупреждает заиливание;
  • Дренаж – отвода вод, защиты фундамента от их негативного воздействия, разрушающего прочность конструкции.

Применение геополотна при возведении фундамента не дает зданию проседать, предупреждает его разрушение.

Подбор геотекстиля по плотности под фундамент

Плотность подходящего материала зависит от давления на фундамент: этажность строения, тип здания и другие параметры.

  • Под фундмент используют геотекстиль начиная с плотности 200 г/м2 и выше в зависмости от типа фундамента.
  • Кроме того учитываются также свойства грунта. В случае его нестабильности, частых оползней подойдет материал плотностью выше 250 г/м². Он укладываются под подушку в траншею.
  • Термофиксированное полотно плотностью равной 200 г/м², подходит в качестве защиты основания фундамента и фильтрующего материала для дренажа.
  • Чтобы добиться распределения нагрузки на фундамент, используют термоскрепленные виды полотна, плотностью свыше 300 г/м².
  • Технология укладки геотекстильного материала зависит от вида фундамента. Если он ленточный, то дно траншеи застилают полимерной пленкой, ее плотность не должна быть меньше 300 г/м².
  • В случае плитной конструкции фундамента дно котлована покрывают геотекстилем с плотностью свыше 350 г/м².

Выбирая геотекстиль, обратите внимание на его основные технические характеристики: плотность, разрывную нагрузку, коэффициент фильтрации.

Рулоны нужно раскатать и расстелить на поверхности, чтобы нахлест на стыках составлял не меньше 30 см и даже 50 см, если основание недостаточно ровное. Новый слой настилают только на тщательно выравненный предыдущий.

Стыки отрезков полотна заделывают путем сшивания скобами или сваркой.

Затем геотекстиль накрывают слоем песка или грунта. Поверхность выравнивают и утрамбовывают для подготовки к дальнейшим работам по заливке фундамента бетоном.

Надежность возводимого объекта, а так же его эксплуатационный срок напрямую зависят от такого внешнего элемента как фундамент, который подвержен влиянию воды в грунте, содержащей в себе ряд агрессивных элементов. Большой уровень влажности почвы зачастую является пусковым механизмом, который является основной причиной возникновения процесса разрушения. Чтобы защитить основание от потопления и негативных факторов, в строительстве применяется геотекстиль под фундамент.

Основные функции геотекстиля для фундамента

Основным назначением материала является рассредоточение нагрузки, которую здание оказывает на грунтовую основу для предотвращения последующей ее деформации. Таким образом, фундамент в котором задействовано полотно, оказывается не только устойчивым, но и стабильным.

Геотекстиль незаменим в тех случаях, когда:

  • необходимо обеспечить дренаж или предотвратить заливание почвы;
  • требуется разделить слои, чтобы исключить их смешивание, а соответственно и образование в будущем провалов;
  • нужно армирование.

Подобное геополотно применяется в строительстве разных объектов, но наиболее часто используется относительно слабонесущего грунта. Данный материал имеет высокую степень упругости, который позволяет равномерно распределить напряжение по основанию, разделив при этом разные прослойки, не давая возможности им смешаться, что значительно увеличивает несущую способность. Укладка геотекстиля под фундамент во всех вышеописанных случаях является неотъемлемой частью строительства.

Какие полезные функции он выполняет?

  1. Усиление грунта. Правильное использование геосинтетики – вот залог успеха при решении специфических задач обустройства фундамента.Укладывают геотекстиль в вырытый котлован.Когда требуется механическое усиление основания, площадь уложенного геотекстиля должна превышать площадь дома. Не менее метра от стены в каждую сторону должна простираться застеленная полотном площадка.

Надежно использование подушки из щебня, обернутого геотекстилем. Имейте в виду, если подложить геоткань ровно по размеру фундамента, задача по усилению грунта выполнена не будет!

  • Защита фундамента от грунтовых вод. Свойство прерывать земляные капилляры позволяет уменьшить просачивание воды к фундаменту.
  • Увеличение прочности бетонного фундамента. Препятствуя просачиванию жидкого «цементного молочка» из бетонного раствора в грунт, подстилка под фундамент из геотекстиля позволяет сохранить все заданные свойства бетона.
  • Обустройство дренажа. По свойству препятствовать заиливанию дренажной системы геотекстилю нет равных.Оборачивая им дренажную трубу, увеличивают ее срок службы. Чтобы добиться еще большей эффективности дренажа, в геотекстиль полностью помещают и весь дренажный заполнитель. Это щебень, внутри которого лежит дрена. В этом случае, заполнитель может иметь большую фракцию – а значит, быть более дешевым.

Технология укладки геотектиля под фундамент

Укладка геополотна требует соблюдения ряда условий и проходит согласно имеющейся инструкции:

  1. Во время устройства прослоек из геотекстиля необходимо выполнение таких предварительных операций, как транспортировка и укладка материала, подготовка грунта, соединение текстиля, если необходимо, а так же отсыпка и разравнивание верхнего слоя на полотно с последующим его уплотнением.
  2. Подготавливать грунт, значит уплотнять и выравнивать его. При этом необходимый коэффициент плотности указан в нормативных требованиях, где отмечено, что на поверхности грунта не должны присутствовать неровности, превышающие 5 сантиметров в глубину. Многие не знают, как укладывать геотекстиль под фундамент, если отсутствует опасность повреждения полотна. В данном случае можно исключить подготовительные работы, а глубокие ямы и коли засыпаются грунтом, и выравниваются с помощью бульдозера. Если на участке имеются насаждения, их можно не выкорчевывать в данном случае, а просто произвести спил на одном уровне с землей.
  3. Рулоны с материалом транспортируются на место проведения работ перед началом укладки. Геотекстиль распределяется непосредственно по всей длине основания на расстояние, равное ширине полотна.
  4. Укладывают полотно поперек или продольно насыпи. С технологической стороны считается более удобным продольный вариант, но он не может обеспечить одинаковой прочности геотекстиля по всей ширине, однако, данный показатель обязателен при создании армирующей прослойки, если основание слабое.
  5. Во время укладки материала выполняется ручная раскатка рулонов звеном. Первые метры прижимаются к грунту при помощи двух анкеров по краям, дальнейшая раскатка предполагает небольшое натяжение материала с периодическим разравниванием. Геополотно впоследствии закрепляется на грунте через 15 метров с помощью тех же анкеров.
  6. Правила укладки геотекстиля под фундамент требуют величину перекрытия, если нет соединений, не меньше 0,5 метра. Если полотна соединяются путем сшивания мешкозашивочной швейной машиной, величина перекрытия может быть снижена.
  7. Во время проведения работ со сложным грунтом полотна лучше соединять полностью или частично, чтобы производить их укладку с увеличенной шириной.

 

для чего нужен, как выбрать и уложить

Все виды геотекстиля относятся к группе материалов, способных одновременно изолировать друг от друга отдельные технологические слои, армировать конструкцию и пропускать влагу только в одном направлении. Геотекстильное полотно — это один из наиболее популярных материалов для изоляции в современном строительстве. Для чего нужен геотекстиль в фундаменте, как выбрать и использовать его — рассказывается в этой статье.

Виды выпускаемых полотен и технологии их производства

В зависимости от технологии изготовления различают тканые и нетканые материалы.

Нетканый геотекстиль изготавливают из полиэфирных волокон, которые располагаются в полотне в хаотическом порядке.

Для соединения волокон поверхность обрабатывается на иглопробивной машине, где большое количество иголок затягивают полотно в прочную единую структуру. По другой технологии соединение отдельных нитей нетканого полимерного текстиля производится в результате термической обработки с использованием каландирования сильно нагретым воздухом или адгезионным склеиванием.

Тканый материал может быть сделан из полиэстеровых, полиэфирных или полипропиленовых нитей. Допускается комбинированный состав двух или трех видов полимерной нити.

Благодаря тканой конструкции материал обладает повышенной пластичности. Поэтому тканый геотекстиль для фундамента можно применять в местах со сложной конфигурацией. В этом вопросе тканевая основа превосходит нетканую, поскольку хорошо выдерживает изламывающие деформации.

Если тканый материал подвергнуть термической обработке, то его плотность увеличится.

В таком случае появляется возможность обеспечить качественную изоляцию влажных грунтов и не допустить грунтовые воды к строительным конструкциям.

Использование геотекстиля при возведении фундаментов

Применение геотекстильных полотен позволяет обеспечить:

  • разделение отдельных насыпных слоев, исключая их заиливания со временем;
  • гидроизоляцию фундамента геотекстилем;
  • равномерное распределение весовых нагрузок от строительных конструкций на грунт;
  • улучшенные дренажные свойства нижнего щебеночного слоя и, как следствие, свободный отвод влаги;
  • дополнительное армирование и общее укрепление конструкций.

Для укрепления применяют специальный армированный геотекстиль. Такой материал отличается долговечностью, не подвержен воздействию влаги, низких температур и гниению.

Условия для правильного выбора материала

Выбор геотекстиля напрямую зависит от условий его дальнейшей эксплуатации. Учитывается технология изготовления, плотность, эластичность и гидроизоляционные свойства.

При этом главным техническим параметром и характеристикой является плотность материала и в зависимости от этого полимерный текстиль применяют:

  • для устройства дренажных слоев и отвода влаги – 150-200 г/м2;
  • для защиты фундамента и в качестве разделительного слоя между щебнем и песком – 250-300 г/м2;
  • для равномерного распределения нагрузок на грунт от строительных конструкций и создания защиты от воздействия пучинистых грунтов – от 350 г/м2.

Поэтому, чтобы узнать, какой геотекстиль положить, необходимо точно определить конструкцию фундамента и те технические задачи, которые должны быть решены с помощью этого материала.

Характеристики геотекстиля.

Применение геотекстиля для различных элементов фундаментной конструкции

Полимерный текстиль при устройстве фундамента применяется в качестве армирующего и подстилающего слоя, материала для устройства дренирующих систем и как защиту от механических повреждений тепло и гидроизоляционного слоя.

Подстилающий слой

Фундамент рассматривается как единая конструктивная система, включающая грунтовое основание, дренажный слой, насыпную подушку и строительные элементы. В ходе расчетов, вычисление несущей способности фундаментной конструкции производится в зависимости от фактического сопротивления грунта.

Для того, чтобы увеличить несущую способность почвы и избежать последствий вспучивания при малом заглублении конструкции, верхний слой грунта снимается на глубину до 1,0 метра и заменяется насыпными нерудными материалами в виде щебня и песка.

Котлован с уложенным геотекстилем.

Слой геотекстильного полотна из пропиленовой мононити с плотностью 300-350 г/м2 позволяет равномерно распределить нагрузки и исключить возможное перемешивание почвы и насыпных слоев. Также рекомендуется использовать этот материал для защиты инженерных коммуникаций в случае существующей возможности сезонной подвижки грунтов.

Дренажный отвод воды

Система дренажа.

В результате эксплуатации дренажный подстилающий слой щебня и водоотводящие дрены постепенной заиливаются грунтом и мелким песком. Чтобы этого не происходило, дренажный слой защищают геотекстилем сверху и снизу. Отверстия в перфорированных дренах также забиваются грунтовым илом. Поэтому обсыпающий их щебень рекомендуется обернуть полимерным нетканым текстилем плотностью 200 г/м2.

Геотекстильная защита

Для того, чтобы защитить бетонный ленточный фундамент от неблагоприятного воздействия влаги и уменьшить тепловые потери на его наружные стены, их покрывают слоем гидроизоляции и пенополистиролом. Однако эти покрытия в свою очередь сами нуждаются в защите от механических повреждений. Особенно на момент обратной засыпки траншей.

Обеспечить целостность гидравлической и тепловой изоляции можно с помощью геотекстиля, наклеив его на поверхность фундаментной стены. Для этого рекомендуется использовать нетканый материал плотностью 150-200 г/м2.

Технологии применения геотекстиля для разных типов фундаментов

Геотекстильное полотно в ленточном фундаменте.

Различие в устройстве фундаментных конструкций вносит свои коррективы при укладке геотекстильных материалов в каждом отдельном случае. Поэтому следует рассмотреть то, как правильно укладывать геотекстиль под фундамент для каждого типа по отдельности, а так же отдельно упомянуть про условия защиты отмостки, как элемента общей конструкции.

Монолитный фундамент ленточного типа

После того, как будут вырыты траншеи, на их дно необходимо засыпать выравнивающую песчаную подушку, хорошо утрамбовать и застелить по всей длине слоем полимерного текстиля плотностью не менее 300 г/м

2. Такая защита надежно закроет доступ влаге к нижней части монолитной фундаментной конструкции, а так же дополнительно укрепит подстилающий слой грунта или песчаной подушки.

Далее устанавливается опалубка и по ее стенкам со стороны бетона закрепляется гидроизоляционный геотекстильный слой, края которого должны выходить за верхний край опалубки. В качестве материала рекомендуется применять не пропускающего влагу термоскрепленный тип полотна с плотностью 200-250 г/м2. Более плотная ткань будет стоить дороже, а результат не улучшится. Соединение стыков соседних полотен лучше всего сделать с использованием термообработки.


После окончания этих работ можно приступать к монтажу армирующего каркаса и заливке бетона в ленточный монолит. После твердения монолита опалубку снимают и проверяют отсутствия нарушений целостности гидравлической изоляции. В случае наличия порывов их следует тщательно заклеить.

Фундамент из сборного железобетона

Главное отличие защиты фундамента из сборного железобетона от устройства монолитных конструкций заключается в том, что геотекстиль приклеивается к ж/б блокам на битумную мастику или другой водостойкий состав. При этом выполняется тщательная проработка всех швов между соседними полотнами.

Края нижнего слоя необходимо вывести за края бетонных блоков на 150 мм и после сборки фундамента заворачиваются вверх и так же приклеиваются, чем обеспечивается плотная укладка геотекстиля под фундамент и на стены.

Плитные конструкции

Если монтируется монолитная плита, то геотекстилем покрывается все дно вырытого котлована. Плотность материала в этом случае должна быть не менее 350 г/м2. После засыпки и уплотнения подстилающего слоя его поверхность необходимо полностью застелить геотканью с плотностью 200-250 г/м2.

Для одновременного распределения нагрузки и защиты бетона, в плитной конструкции от воздействия влаги рекомендуется использовать текстиль в виде термопрессованной пленки.

Нетканое полотно в отмостке вокруг дома.

Свайные основания

При устройстве фундамента на сваях, геополотно применяют только при наличии цоколя. После установки свай по всей площади, между ними снимается верхний слой грунта, расстилается слой геотекстиля, который покрывают слоем песка, щебня, гравия или цементного раствора.

Устройство отмостки

Правильно сделанная отмостка вокруг здания обеспечит защиту цоколя и фундамента от проникновения осадков и, как следствие, возможного его разрушения. Для устойчивости этого защитного слоя рекомендуется применение геотекстиля по поверхности подстилающего слоя, заводя его по стене дома выше уровня поверхности отмостки.

Популярные виды отечественных материалов

Специалисты выделяют и советуют три вида полотен, производимых в нашей стране:

  • устойчивый к растяжению армированный «Стабитекс» из полиамида;
  • недорогой «Геоспан», с высокой прочностью;
  • упругий и устойчивый к механическим повреждениям «Дорнит».

Из этих торговых марок вы всегда сможете подобрать геотекстиль необходимой плотности и прочности.

Стоимость геотекстиля.

Видео по теме

Страница не найдена – ГидФундамент

Содержание статьи1 Об «устаревших»  стандартах2 О квалификации сварщика при армировании3 Основные критерии выбора способа фиксации арматуры Дискуссии на тему «вязать […]

Содержание статьи1 Определение и назначение2  3 Нормативы4 Параметры4.1 Ширина4.2 Глубина4.3 Угол наклона5 Типы и структура6 Самые распространённые виды отмосток6.1 Бетонная6.2 […]

Содержание статьи1 Функции армопояса из кирпича2 Виды поясов3 Пояс из кирпича под перекрытие4 Кирпичный пояс под мауэрлат5 Гидроизоляция и утепление6 […]

Содержание статьи1 Для кровли1.1 Основные функции1.2 Способы возведения1.3 Геометрические параметры1.4 Правила  армирования2 Для перекрытий3 Общие принципы устройства армопояса3.1 Утепление3.2 Бетонирование3.3 […]

Содержание статьи1 Как избежать работ по выравниванию поверхности2 Инструменты для контроля горизонта3 Основной способ4 Практические советы и рекомендации5 Другие способы […]

Содержание статьи1 Виды  армопояса2 Материалы опалубки для армопояса3 Виды опалубки для армопояса4 Крепление опалубки В технологический процесс устройства монолитного армированного […]

Содержание статьи1 Кирпичные фронтоны2 Требования к материалу3 Завершение кладки3.1 Ровный обрез3.2 Кладка кирпича уступом4 Гидроизоляция под мауэрлат5 Способы крепления мауэрлата5.1 […]

Содержание статьи1 Последствия неправильного выбора арматуры2 Понимание процесса работы арматуры в ленточном фундаменте3 Критерии надёжности4 Виды5 Классификация5.1 Классы5.2 Дополняющие литеры5.3 […]

Содержание статьи1 Виды монолитных лестниц2 Типы и назначение арматуры3 Практические рекомендации4 Особенности расчёта армирования лестницы4.1 Задачи армирования4.2 Угол подъёма4.3 Место […]

Содержание статьи1 Задачи армирования2 Основная функция защитного слоя3 Факторы формирования толщины4 Нормативы и допуски защитного слоя бетона5 Ошибки6 Восстановление защитного […]

Страница не найдена – ГидФундамент

Содержание статьи1 Об «устаревших»  стандартах2 О квалификации сварщика при армировании3 Основные критерии выбора способа фиксации арматуры Дискуссии на тему «вязать […]

Содержание статьи1 Определение и назначение2  3 Нормативы4 Параметры4.1 Ширина4.2 Глубина4.3 Угол наклона5 Типы и структура6 Самые распространённые виды отмосток6.1 Бетонная6.2 […]

Содержание статьи1 Функции армопояса из кирпича2 Виды поясов3 Пояс из кирпича под перекрытие4 Кирпичный пояс под мауэрлат5 Гидроизоляция и утепление6 […]

Содержание статьи1 Для кровли1.1 Основные функции1.2 Способы возведения1.3 Геометрические параметры1.4 Правила  армирования2 Для перекрытий3 Общие принципы устройства армопояса3.1 Утепление3.2 Бетонирование3.3 […]

Содержание статьи1 Как избежать работ по выравниванию поверхности2 Инструменты для контроля горизонта3 Основной способ4 Практические советы и рекомендации5 Другие способы […]

Содержание статьи1 Виды  армопояса2 Материалы опалубки для армопояса3 Виды опалубки для армопояса4 Крепление опалубки В технологический процесс устройства монолитного армированного […]

Содержание статьи1 Кирпичные фронтоны2 Требования к материалу3 Завершение кладки3.1 Ровный обрез3.2 Кладка кирпича уступом4 Гидроизоляция под мауэрлат5 Способы крепления мауэрлата5.1 […]

Содержание статьи1 Последствия неправильного выбора арматуры2 Понимание процесса работы арматуры в ленточном фундаменте3 Критерии надёжности4 Виды5 Классификация5.1 Классы5.2 Дополняющие литеры5.3 […]

Содержание статьи1 Виды монолитных лестниц2 Типы и назначение арматуры3 Практические рекомендации4 Особенности расчёта армирования лестницы4.1 Задачи армирования4.2 Угол подъёма4.3 Место […]

Содержание статьи1 Задачи армирования2 Основная функция защитного слоя3 Факторы формирования толщины4 Нормативы и допуски защитного слоя бетона5 Ошибки6 Восстановление защитного […]

Страница не найдена – ГидФундамент

Содержание статьи1 Об «устаревших»  стандартах2 О квалификации сварщика при армировании3 Основные критерии выбора способа фиксации арматуры Дискуссии на тему «вязать […]

Содержание статьи1 Определение и назначение2  3 Нормативы4 Параметры4.1 Ширина4.2 Глубина4.3 Угол наклона5 Типы и структура6 Самые распространённые виды отмосток6.1 Бетонная6.2 […]

Содержание статьи1 Функции армопояса из кирпича2 Виды поясов3 Пояс из кирпича под перекрытие4 Кирпичный пояс под мауэрлат5 Гидроизоляция и утепление6 […]

Содержание статьи1 Для кровли1.1 Основные функции1.2 Способы возведения1.3 Геометрические параметры1.4 Правила  армирования2 Для перекрытий3 Общие принципы устройства армопояса3.1 Утепление3.2 Бетонирование3.3 […]

Содержание статьи1 Как избежать работ по выравниванию поверхности2 Инструменты для контроля горизонта3 Основной способ4 Практические советы и рекомендации5 Другие способы […]

Содержание статьи1 Виды  армопояса2 Материалы опалубки для армопояса3 Виды опалубки для армопояса4 Крепление опалубки В технологический процесс устройства монолитного армированного […]

Содержание статьи1 Кирпичные фронтоны2 Требования к материалу3 Завершение кладки3.1 Ровный обрез3.2 Кладка кирпича уступом4 Гидроизоляция под мауэрлат5 Способы крепления мауэрлата5.1 […]

Содержание статьи1 Последствия неправильного выбора арматуры2 Понимание процесса работы арматуры в ленточном фундаменте3 Критерии надёжности4 Виды5 Классификация5.1 Классы5.2 Дополняющие литеры5.3 […]

Содержание статьи1 Виды монолитных лестниц2 Типы и назначение арматуры3 Практические рекомендации4 Особенности расчёта армирования лестницы4.1 Задачи армирования4.2 Угол подъёма4.3 Место […]

Содержание статьи1 Задачи армирования2 Основная функция защитного слоя3 Факторы формирования толщины4 Нормативы и допуски защитного слоя бетона5 Ошибки6 Восстановление защитного […]

для чего нужен, какой выбрать и как укладывать?

Геотекстиль — относительно новый многофункциональный рулонный материал, применяемый для защиты заглубленных строительных конструкций от неблагоприятных воздействий. Изготавливается из полиэстера, полиэфира и полипропилена в виде тканых полотен (геоткань) или термически обработанной нетканой перфорированной пленки.


Геологическую ткань получают путем традиционного текстильного плетения полимерных нитей под прямым углом по отношению друг к другу. Такое полотно отличается высокой прочностью, эластичностью и способно пропускать влагу только в одну сторону. Повышенная эластичность позволяет использовать геологический текстиль в местах со сложной пространственной конфигурацией строительных конструкций с ломающей деформацией изолирующих слоев.

Для изготовления нетканых полотен используют полимерные волокна из вискозы, полиамидов, полиэфиров и полипропилена, которые хаотично скрепляют между собой термическим или пробивным способом. Структура материала может состоять из одного вида сырья или комбинации различных полимеров.

Применение

Для чего нужен геотекстиль в фундаменте? Он применяется для решения разных задач, поскольку учитывается:

  • высокая прочность и долговечность материала;
  • способность к укреплению грунта;
  • устойчивость к воздействию влаги и низких температур;
  • уникальные гидроизоляционные свойства;
  • более равномерное распределение весовых нагрузок;
  • прекращение роста сорных растений;
  • пропуск влаги в одном направлении;
  • устойчивость к воздействию грибка, насекомых и грызунов.

Кроме этого, следует отметить способность геотекстиля для фундамента увеличивать плотность и прочность после дополнительной термической обработки. В результате геотекстильные полотна применяются для:

  • укрепления слабых грунтов и распределения нагрузки от конструкций;
  • разделение различных слоев насыпных строительных материалов;
  • дренажного отвода влаги от несущего основания.

При этом доступная стоимость полотна делает такую защиту эффективной и оправданной экономически.

Критерии выбора материала

Эксплуатационные характеристики полимерных нитей, которые применяют для изготовления геотекстиля, очень близки. В то же время, следует помнить, что нетканые полотна обладают лучшими гидроизоляционными свойствами и дешевле, а геоткань более пластична, прочнее, но дороже.

По плотности

При выборе рулонного материала, прежде всего, следует ориентироваться на его плотность:

  • 150-200 г/м2 применяют для устройства дренажей и эффективного отведения влаги;
  • 250-300 г/м2 для разделения грунта и насыпных слоев с увеличением их устойчивости и прочности;
  • более 350 г/м2 для более эффективного распределения весовой нагрузки на почву и защиты от пучинистых грунтов.

Как показывает практика, при отсутствии подвижной или неустойчивой почвы, для защиты фундамента для зданий высотой до 2-х этажей правильно будет применять полотно плотностью 250-300 г/м2.

По толщине и другим параметрам

Изготовители материала поставляют на рынок геологический текстиль толщиной от 0,8 до 3,8 мм. Чем больше толщина, тем полотно прочнее, но и стоит дороже. Оптимальным вариантом для укладки геотекстиля под фундамент считается материал толщиной 1,6-2,4 мм.

В числе других важных параметров можно назвать коэффициент фильтрации, который определяет количество влаги, пропускаемой за единицу времени, и показатель прочности на разрыв.

Укладка геотекстиля при возведении фундаментов

Уровень эффективности применения защитных геологических полотен для фундаментов зданий в значительной степени зависит от точного соблюдения технологии укладки материала. Для каждого типа фундаментных оснований она имеет определенные особенности. Но перед тем как укладывать геотекстиль под фундамент, следует изучить основные принципы:

  • поверхность грунта или насыпного материала должна быть хорошо уплотнена и максимально выровнена по горизонтали;
  • нахлест соседних полотен при укладке составляет полосу — не менее 200 мм, при наличии уклона — вдвое больше;
  • при возможности, рекомендуется использовать термический способ соединения полотен, в противном случае следует применять пластиковые или металлические скобы.

Для сварки полотен используется газовая горелка или паяльная лампа. После достаточного разогрева, соседние кромки накладывают друг на друга и плотно прижимают. Бетон на геотекстиль не заливается. Перед бетонированием полотно покрывается слоем утрамбованного песка толщиной 50-100 мм.

Монолитный фундамент ленточного типа

Геологическое полотно плотностью 300 или более г/м2 укладывают на дно траншеи до засыпки подстилающей подушки. Если слой гравия и песка засыпаются отдельно, а не в виде смеси, то их так же следует разделить геотекстилем под ленточный фундамент плотностью 200-300 г/м2. Это исключит постепенное вымывание песка в слой гравия.

Нижний слой текстиля следует соединить с вертикальным полотном с внешней стороны ленты и только после этого приступать к сборке опалубочной конструкции. При несъемной опалубке из пенополистирола вертикальная полоса рулонной изоляции не нужна, поскольку пенопласт уже сам по себе станет достаточной защитой.

По окончании заливки бетонной смеси и ее схватывания, верхнюю плоскость монолитной ленты так же следует покрыть полотном плотностью 150-250 г/м2. Более высокая плотность в данном случае не требуется.

Ленточный фундамент из сборного железобетона

Отличие защиты от монолитной конструкции заключается в том, что боковую стенку ленты защищают геотекстилем, наклеивая его на бетонную поверхность при помощи битумной мастики. При этом края бокового полотна должны выходить за края стенки и соединяться с другими слоями.

Плитные основания

Полосы полотен расстилают по всему дну котлована таким образом, чтобы они выходили за периметр фундамента на 150-200 мм. Затем устанавливают опалубку, собирают арматурный каркас и заливают бетон.

После снятия опалубочных щитов пленку заворачивают на боковые торцы и приклеивают при помощи битумной мастики. Верхняя плоскость монолитной плиты не изолируется, поскольку будет закрыта от внешних воздействий.

Какой геотекстиль использовать для фундамента монолитная плита? В качестве материала рекомендуется выбрать нетканый материал плотностью 150-200 г/м2. Или тканое плотно плотностью 200-250 г/м2. Оно вполне обеспечит хорошую защиту конструкции и улучшит ее устойчивость.

Столбчатые и свайные фундаменты

Сами столбы и сваи в гидроизоляции фундамента геотекстилем не нуждаются. Но, при наличии цокольного этажа, перед монтажом ростверка рекомендуется покрыть выровненный грунт полотном и насыпать сверху песок, гравий или залить поверхность бетоном. После этого можно перейти к монтажу ростверка и цокольных стен.

В качестве защитного материала можно выбрать нетканый пленочный материал плотностью 150-200 г/м2.

Использование полимерных полотен при устройстве отмостки

Отмосткой называют примыкающее к стене покрытие в виде твердой сплошной полосы по всему периметру дома. Она защищает стены и фундамент здания от неблагоприятного воздействия атмосферных осадков, уменьшает глубину и зону промерзания, снижает потери тепла в нижней части дома.

Однако и сама отмостка со временем может быть разрушена под давлением вспученного грунта или при таянии снегов. Для ее защиты можно использовать полотна, если уложить и зафиксировать изоляцию правильно.

Перед размещением насыпной подушки нужно постелить на грунт два слоя полотна таким образом, чтобы геотекстильный слой выходил за край отмостки на 300-400 мм. Кроме этого, изоляцию следует завести на стену и поднять на 50-100 мм выше планируемого уровня бетонной поверхности.

Сверху отсыпать слой щебня (про то, какой щебень лучше выбрать, мы писали тут), утрамбовать и покрыть его еще одним слоем полотна. В этом случае песок не будет вымываться водой в слой щебня. Не образуются пустоты, и отмостка будет длительное время стоять на прочной основе. Далее насыпается песок, проливается водой и заливается бетонная полоса по периметру дома.

Для этой конструкции рекомендуется использовать нетканое иглопробивное полотно плотностью не менее 350 г/м2. Такой геотекстиль имеет максимальную прочность и наиболее эффективно отводит влагу. Менее плотный материал допускается использовать на устойчивых непучинистых грунтах.

Инженер-строитель: ОСНОВЫ НА ГЕОТЕКСТИЛЬНО-УСИЛЕННЫХ ПОЧВАХ.

РЕЗУЛЬТАТЫ ИСПЫТАНИЙ ЛАБОРАТОРНОЙ МОДЕЛИ

Результаты ограниченного числа модельных испытаний, проведенных в начале-середине 1980-х годов для определения несущей способности поверхностных фундаментов (то есть Df = 0), покоящихся на геотекстильных грунтах, можно найти в литература. Guido et al. [4] сообщил о результатах нескольких лабораторных модельных испытаний для квадратного основания размером 0,31 м × 0,31 м (B × B), поддерживаемого рыхлым или средним песком, армированным несколькими слоями нетканого геотекстиля, склеенного расплавом (размер b × b). . Рисунок 7.13 показывает геометрические параметры рассматриваемой задачи, а Рисунок 7.14 показывает некоторые результаты этих тестов. Для испытаний, представленных в Рис. 7.14 , применяются следующие параметры: относительная плотность песка Dr = 50%; ширина слоев георешетки b = 0,62 м; b / B = 0,2; u / B = 0,5; и h / B = 0,25.

Аналогичные результаты испытаний модели на сплошном поверхностном фундаменте, поддерживаемом насыщенной глиной ( Φ = 0 состояние), усиленной термосваренным нетканым геотекстилем, были представлены Сакти и Дасом [5].Кривые нагрузки-осадки для некоторых из этих испытаний приведены в Рис. 7.15 . Для этих испытаний применяются следующие параметры: ширина, B = 76,2 мм; недренированное сцепление глины, cu = 22,5 кН / м2 и u / B = h / B = 0,33. Испытания ясно показывают, что предельная несущая способность фундамента увеличивается при использовании геотекстильной арматуры.

КОММЕНТАРИИ К ГЕОТЕКСТИЛЬНОМУ УСИЛЕНИЮ Рисунки 7.14 и 7.15 показывают, что геотекстильное армирование способствует к увеличению предельной несущей способности фундаментов по песку и насыщенная глина.Однако при невысокой осадке фундамента геотекстиль армирование практически не увеличивает несущую способность. Это … (подробнее)

РИСУНОК 7.13 Фундамент на геотекстильном грунте

РИСУНОК 7.14 Результаты модельных испытаний Guido et al. [4] на геотекстиле –
песок армированный для фундамента квадратной формы


РИСУНОК 7.15 Результаты испытаний модели Сакти и Даса [5] на армированном геотекстилем
пропитанная глина для сплошного поверхностного фундамента

ИСПОЛЬЗОВАННАЯ ЛИТЕРАТУРА.

Влияние геотекстильной конструкции на несущую способность ленточной опоры

Международный журнал геосинтетики и наземного строительства (2020) 6:36

https://doi.org/10.1007/s40891-020-00219-w

ОРИГИНАЛЬНАЯ БУМАГА

Эффект «Геотекстильного устройства на» несущей способности

из a Полосчатая опора

AhadOuria1  · ArsamMahmoudi1 · HamidSadeghpour1

/ Поступила: 11 апреля 2020 г. Принято к печати: 19 июля 2020 г. / Опубликовано онлайн: 11 августа 2020 г. – несущая способность ленточного фундамента на песке, армированном геотекстильными лентами.Была исследована несущая способность ленточного фундамента

24,5 × 7,5 × 1,5 см на песочнице 90 × 25 × 30 см, усиленной тремя разными типами геотекстиля в семи различных формах трехмерного расположения

. Геотекстильные конструкции состояли из одного, двух и трех слоев

непрерывных полос с шагом 1 см по вертикали, двух и трех полос усиления шириной 5 см с горизонтальными интервалами 5 см

друг под другом в вертикальной плоскости, и 5см смещено в горизонтальной плоскости.Результаты показывают, что улучшение

несущей способности фундамента по армированному грунту на единицу ширины арматуры является максимальной для однослойной сплошной арматуры

. Несущая способность основания на единицу ширины арматуры уменьшается при увеличении

количества слоев арматуры. Для многослойных армированных моделей использование арматурных полос в интервальном расположении

увеличивает эффективность геотекстиля для улучшения несущей способности основания.Использование правильного трехмерного расположения арматурных полос

дает аналогичную предельную несущую способность примерно на 50% меньше арматуры

по сравнению с непрерывным многослойным армированием.

Ключевые слова Геотекстиль · Ленточное основание · Несущая способность · Устройство · Лабораторная модель · Армированный грунт

Введение

Применение геосинтетических материалов в грунтовом массиве

улучшает прочностные параметры грунта [1].Методы механической стабилизации грунта

широко используются для улучшения устойчивости и эксплуатационных характеристик

тротуаров, удерживающих стены, фундаменты и насыпи

[2–11]. Geosynthetic-

армированные земляные конструкции необходимы для устойчивого развития [12]. Использование правильно спроектированных элементов армирования

внутри массива грунта помогает ему выдерживать его вес

и внешние нагрузки [13]. Устойчивость геосинтетически-армированной конструкции из грунта

зависит от трех критериев, включая осевое разрушение арматурных элементов

, их вырыв и скольжение

[1].Исходя из этих критериев, количество армирующих слоев

, их длина, их прочность на растяжение и межфазные параметры грунта и арматуры

в дополнение к глубине заделки

являются эффективными параметрами нагрузки. –

Несущая способность фундамента [13–19]. Дополнительные укладки арматуры

увеличивают несущую способность опоры

с уменьшающейся скоростью [20]. Существует оптимальная длина

арматуры для достижения максимального улучшения несущей способности

[17, 21].

Экономические и экологические соображения диктуют

оптимальное использование строительных материалов, включая геосинтетические материалы,

с максимальной эффективностью [22, 23]. Было проведено несколько исследований

для повышения эффективности геосинтетического армирования

в отношении несущей способности фундаментов.

Геосинтетические материалы с выступом были использованы для увеличения прочности геосинтетических материалов на отрыв

для увеличения несущей способности фундаментов

[24].Lovisa etal. [25] предложили применение

предварительно напряженных арматурных полос для повышения несущей способности фундаментов

и эффективного уменьшения их осадки

. Геосинтетика с цементно-обработанной поверхностью

была предложена для уменьшения необходимой длины анкеровки

арматуры в армированных грунтовых конструкциях [26].

* Ахад Урия

[email protected]; [email protected]

Арсам Махмуди

арсам[email protected]

Хамид Садехпур

[email protected]

1 Кафедра гражданского строительства, Университет Мохагеха

Ардабили, Ардебиль, Иран

Содержание предоставлено Springer Nature, применяются условия использования. Права защищены.

(PDF) Несущая способность полосовой опоры на песчаных откосах, укрепленных геотекстилем и грунтовыми гвоздями

10 Enas, Mohd Raihan & Fathi / JurnalTeknologi (Science & Engineering) 65: 2 (2013) 1–11

Рисунок 10 Сравнение БКР с геотекстилем и грунтовыми гвоздями

№4.0 ВЫВОДЫ

Проведенные лабораторные испытания показали, что использование геотекстиля

является эффективным в улучшении несущей способности песка.

Другие выводы подробно изложены ниже:

 Стабилизация откоса грунта с помощью ряда грунтовых гвоздей или геотекстиля

оказывает значительное влияние на повышение несущей способности

ленточного фундамента, опирающегося на песчаную почву

на склоне.

 BCR варьировалось от 1.06 до 3.0 в зависимости от д / б.

 Наиболее эффективным d / B оказалось 0,5

, независимо от относительной плотности песка или X / B.

Влияние арматуры на несущую способность

более выражено в образцах грунта с более низкой относительной плотностью

.

 Забивание гвоздями увеличило BCR с 1,05 до 2,40,

в зависимости от расположения b / B и X / B.

 Общее улучшение при использовании геотекстиля для стабилизации грунтового откоса

было намного лучше, чем при использовании грунтовых гвоздей

.

 Оптимальное расположение ряда грунтовых гвоздей или геотекстиля

– на гребне склона с учетом повышения несущей способности

вместо общей устойчивости

склона.

Выражение признательности

Испытания проводились в лаборатории механики грунтов факультета структурной инженерии

, Александрийский университет,

Египет, за что мы признательны. Я хотел бы выразить искреннюю благодарность

всем сотрудникам Лаборатории механики грунтов.

Ссылки

[1] Абдраббо, Ф. М., Гавер, К. Э. и Омар, Э. А. 2008. Поведение ленточных опор

на армированных и неармированных песчаных откосах.

GeoCongress 2008, ASCE. 25–32.

[2] Аламшахи, С., Хатаф, Н. 2009. Несущая способность ленточных опор

на песчаных откосах, укрепленных георешеткой и анкером. Геотекстиль

и геомембраны. 27: 217–226.

[3] Савицкий А. и Лесневска Д.1991. Устойчивость армированных тканью откосов связного грунта

. Геотекстиль и геомембраны.10: 125–146.

[4] Бушехриан, Дж. Х. и Хатаф, Н. 2003. Экспериментальные и численные исследования

Исследование несущей способности модельных круглых и кольцевых опор

на армированном песке. Геотекстиль и геомембраны. 21 (4):

241–256.

[5] Каулэнд, Дж. У., Вонг, С. К. 1993. Работа набережной дороги

на мягкой глине, поддерживаемой на матрасе Geocell

Foundation.Геотекстиль и геомембраны. 12 (8): 687–705.

[6] Даш, С. К., Кришнасвами, Н. Р., Раджагопал, К. 2001a. Подшипник

Вместимость ленточных опор на песке, армированном геоячейками.

Геотекстиль и геомембраны. 19 (4): 235–256.

[7] Даш, С. К., Раджагопал, К., Кришнасвами, Н. Р. 2001b. Ленточная опора

на песчаных пластах, армированных Geocell, с дополнительным планарным армированием

. Геотекстиль и геомембраны.19 (8): 529–538.

[8] Дэш, С., Сириш, С. и Ситхарам, Т. 2003. Модельные исследования опоры круговой

, поддерживаемой на армированном геоячейке песке, подстеленном мягкой глиной

. Геотекстиль и геомембраны. 21 (4): 197–219.

[9] Даш, С. К., Раджагопал, К., Кришнасвами, Н. Р. 2004. Характеристики различных геосинтетических армирующих материалов

в песчаных фундаментах.

Geosynthetics International. 11 (1): 35–42.

[10] Эль-Савваф, М.2005. Поведение полосы на сваях и шпунтовых сваях

Стабилизированный песчаный откос. Журнал геотехнологии и

геоэкологической инженерии. 131 (6): 705–715.

[11] Эль Савваф, М. 2007. Поведение полосовой опоры на армированном георешеткой песке

на мягком глиняном откосе. Геотекстиль и геомембраны. 25 (1):

50–60.

[12] Эль Савваф М., Назир А. 2011. Циклическое оседание полосы

Фундамент, опирающийся на армированный слоистый песчаный склон.Журнал

Advanced Research. 3 (4): 315–324.

[13] Хуанг, К., Тацуока, Ф. и Сато, Ю. 1994. Механизмы разрушения укрепленных песчаных откосов

, нагруженных опорой. Почвы и фундаменты.

24 (2): 27–40.

[14] Дженнер, К. Г., Бассет, Р. Х., Буш, Д. И. 1988. Использование троса скольжения

Поля для улучшения несущей способности мягкого грунта №

, полученного матрасом Cellular Foundation, установленным на основании

Набережная.В: Материалы Международного геотехнического симпозиума

по теории и практике укрепления грунта. Балкема,

Роттердам. 209–214.

[15] Кришнасвами, Н. Р., Раджагопал, К., Мадхави Лата, Г. 2000. Модель

Исследования насыпей, поддерживаемых геоячейками, построенных на мягком глиняном фундаменте

. Журнал геотехнических испытаний, ASTM. 23 (1): 45–54.

[16] Ли К. М. и Манджунат В. Р. 2000. Экспериментальные и численные исследования

Геосинтетически-армированных песчаных откосов, нагруженных опорой

.Канадский геотехнический журнал. 37: 828–842.

[17] Митчелл, Дж. К., Као, Т. К., Кавазанджиам-младший, Э. 1979. Анализ решетчатых оснований дорожного покрытия, армированного ячейками

. Технический отчет № GL-79–8, US

, Экспериментальная станция водных путей армии США.

[18] Могхаддас, С.Н., Доусон, А.Р. 2010. Поведение опор на армированном песке

, подвергающемся повторяющейся нагрузке – сравнение использования геотекстиля

3D и плоского геотекстиля. Геотекстиль и геомембраны.28: 434–47.

[19] Омар, Э. А. 2006. Поведение полосовой опоры на укрепленной земле.

Наклон. M. Sc. Диссертация, Александрийский университет, Египет.

[20] Ри К., Митчелл Дж. К. 1978. Армирование песком с использованием бумажной сетки.

Cells. Весенняя конвенция и выставка ASCE, Питтсбург, Пенсильвания, апрель. 24-

28, Препринт 3130.

Эффективность ленточного фундамента с армированием георешеткой для различных типов грунтов в Мосуле, Ирак

Abstract

Основная причина проблемного разрушения грунта при определенной нагрузке – низкая несущая способность и чрезмерная осадка.В связи с растущим интересом к использованию неглубокого фундамента для поддержки тяжелых конструкций важно изучить методы улучшения почвы. Техника использования геосинтетического армирования широко применяется в последние несколько десятилетий. Целью данной статьи является определение влияния использования георешетки Tensar BX1500 на несущую способность и осадку ленточного основания для различных типов почв, а именно Аль-Хамедат, Башика и Аль-Рашидия в Мосуле, Ирак. Расчет армированных и неармированных грунтовых оснований проводился численно и аналитически.Был протестирован ряд условий путем изменения количества ( N ) и ширины ( b ) слоев георешетки. Результаты показали, что георешетка может улучшить несущую способность основания и уменьшить осадку. Почва на участке Аль-Рашидиа была песчаной и показала лучшее улучшение, чем почвы на двух других участках (глинистые почвы). Оптимальная ширина георешетки ( b ) в пять раз превышала ширину основания ( B ), в то время как оптимальное число георешетки ( N ) не было получено.Наконец, численные результаты предельной несущей способности были сопоставлены с аналитическими результатами, и сравнение показало хорошее соответствие между результатами анализа и оптимальным диапазоном, опубликованным в литературе. Значительные результаты показывают, что усиление георешетки может способствовать улучшению грунтового основания, однако напрямую не зависит от ширины и количества только георешетки. Различные свойства почвы и размер основания также влияют на значения BCR и SRR, подтвержденные расчетами коэффициента улучшения.Таким образом, полученные результаты дополнили выгоду от эффективного применения укрепленных грунтовых оснований.

Образец цитирования: Хасан Н.И., Мохд Тайб А., Мухаммад Н.С., Мат Язид М.Р., Муталиб А.А., Абанг Хасболла Д.З. (2020) Эффективность ленточного фундамента с армированием георешеткой для различных типов почв в Мосуле, Ирак. PLoS ONE 15 (12): e0243293. https://doi.org/10.1371/journal.pone.0243293

Редактор: Цзяньго Ван, Китайский горно-технологический университет, КИТАЙ

Поступило: 17 июня 2020 г .; Одобрена: 19 ноября 2020 г .; Опубликовано: 17 декабря 2020 г.

Авторские права: © 2020 Hasan et al.Это статья в открытом доступе, распространяемая в соответствии с условиями лицензии Creative Commons Attribution License, которая разрешает неограниченное использование, распространение и воспроизведение на любом носителе при условии указания автора и источника.

Доступность данных: Все соответствующие данные находятся в документе.

Финансирование: Инициалы автора: AMT Номер гранта: GGPM-2018-039 Спонсор: Universiti Kebangsaan Malaysia URL: https://www.ukm.my/portal/ Роль спонсора: Оплата сборов за публикацию и предоставление оборудования для проекта.

Конкурирующие интересы: Авторы заявили, что конкурирующих интересов не существует.

Введение

Методы улучшения грунта с помощью геосинтетических материалов были широко разработаны за последние несколько десятилетий, особенно в области строительства дорожных покрытий и фундаментов. Хотя было проведено множество экспериментальных исследований для определения эффекта геосинтетического армирования, анализ отличается в отношении свойств геотекстиля, таких как форма и размеры, расстояние и толщина [1–13].Кроме того, в исследованиях также анализируется влияние различных типов грунтов и конструкций основания. Что касается поведения грунта с классификацией песчаных грунтов, многочисленные аналитические исследования внесли свой вклад в изучение взаимодействия грунта и конструкции, проведенного несколькими исследователями в отношении несущей способности оснований из грунта, армированного георешеткой [13–17]. Кроме того, бесчисленные численные модели, позволяющие сэкономить время и средства, были выполнены для исследования несущей способности и осадки армированного грунта [9, 18–29].Концепция армированного грунта как строительного материала, основанная на существовании взаимодействий между грунтом и арматурой за счет прочности на разрыв, фрикционных и адгезионных свойств арматуры, была впервые представлена ​​французским архитектором и инженером Анри Видалем в 1960-х годах [29]. С тех пор этот метод широко используется в инженерно-геологической практике. Геосинтетические материалы, которые используются в армированных грунтах, бывают разных типов, включая геосетки, геотекстиль, геомембраны, геосинтетические глиняные облицовки, геосетки и геоячейки [30].Георешетка – один из строгальных геосинтетических материалов, обычно изготавливаемых из полимеров; В настоящее время различные разновидности геосеток изготавливаются из полипропилена или полипропилена высокой плотности (HDPP), что способствует эффективному использованию различных геотекстильных материалов.

Фундамент с армированным грунтом называется фундаментом с армированным грунтом (РПЗ). На рис. 1 показан типичный геосинтетический армированный грунт фундамент и описание различных геометрических параметров. Параметры армирования георешеткой включают расстояние между верхними слоями ( и ), расстояние по вертикали ( s или h ), количество слоев армирования ( N ), общую глубину армирования ( d ) и ширину арматуры ( б ).Как указано в литературе, оптимальное значение для параметров ( u / B ) и ( h / B ) составляет 0,33 (где B – ширина основания). Во многих исследованиях были выбраны разные размеры основания и георешетки, но все результаты указывают на различное поведение в зависимости от классификации почвы. Можно понять, что разные географические районы имеют разные типы почвы и условия, следовательно, правильная конструкция используемой георешетки важна для улучшения грунтовых оснований.Более того, фундаменты из армированного грунта могут быть экономичной альтернативой обычным фундаментам мелкого заложения с большими размерами фундамента, которые, в свою очередь, увеличивают осадку фундамента из-за увеличения глубины зоны влияния под фундаментом или замены слабых слоев грунта подходящими материалами [31] .

В течение последних тридцати лет было проведено множество экспериментальных, численных и аналитических исследований для изучения поведения RSF для различных типов почв.Все исследования показали, что использование арматуры может значительно увеличить несущую способность и уменьшить осадку грунтовых оснований [33]. Чен и Абу-Фарсах и др. . В работе [34] использовались две концепции для оценки преимуществ фундамента с усиленным грунтом, например, коэффициент несущей способности (BCR) и коэффициент уменьшения осадки (SRR). BCR определяется как отношение несущей способности фундамента из армированного грунта к несущей способности фундамента из неармированного грунта, тогда как SRR определяется как отношение уменьшения осадки основания на основе армирования к осадке основания из неармированного грунта при постоянном поверхностном давлении [ 35].BCR представлен как: (1)

Где:

( q ult ) r – предельная несущая способность фундамента с усиленным грунтом.

( q ult ) u – предельная несущая способность неармированного грунтового основания.

И SRR определяется как: (2)

Где:

s R – осадка армированного грунтового основания.

s 0 – осадка неармированного грунтового основания.

Многие из этих исследовательских усилий были направлены на изучение параметров и переменных, которые будут влиять на значения BCR и SRR. Другие исследования также были сосредоточены на улучшении осадки фундамента, других геотехнических конструкций и методов расчета, таких как Abbas и др. . [36], Росииди и др. . [37], Хаджезаде и др. . [38], Joh и др. .[39], Чик и др. . [40], Ли и др. . [41], Азриф и др. . [42] и Zhanfang et al . [43] работают. Гвидо и др. . [1] провели экспериментальное исследование земляных плит, армированных геотекстилем. Их модельные испытания проводились с использованием квадратного фундамента на песке. Они показали, что BCR уменьшалась с увеличением ед. / B ; улучшение несущей способности было незначительным, когда количество армирующих слоев было увеличено до трех, что соответствовало глубине воздействия 1 . 0B для u / B , h / B и b / B отношения 0,5, 0,25 и 3. Незначительное улучшение BCR наблюдалось при увеличении отношения длин ( b / B ) армирования сверх трех с двумя армирующими слоями и отношениями u / B и h / B , равными 0,25 и 0,25, соответственно. Кроме того, Ли и др. . [44] провели испытание лабораторной модели с использованием жесткой ленточной опоры, опирающейся на плотный песок, покрывающий мягкую глину, со слоем геотекстиля на границе раздела.Они обнаружили, что армирующий слой на границе раздела песок-глина привел к дополнительному увеличению несущей способности и уменьшению осадки основания; Эффективная ширина арматуры, которая привела к оптимальным характеристикам основания, оказалась примерно в пять-шесть раз больше ширины основания.

Кроме того, исследование методом конечных элементов, проведенное Курианом и др. . [45] на ленточном основании, поддерживаемом армированным песком, с использованием модели грунта Дункана-Чанга показали явное уменьшение осадки в армированном песке при более высоких нагрузках, чем в случае неармированного песка.Численные результаты также показали, что небольшое увеличение осадки произошло в армированном песке на начальной стадии процесса нагружения. Возможное объяснение этого явления дано Курианом и др. . [45] было то, что нормальная нагрузка была слишком мала, чтобы мобилизовать достаточное трение между почвой и арматурой. Относительное движение между грунтом и арматурой увеличивалось с увеличением нагрузки и уменьшалось с увеличением глубины армирования.Максимальное напряжение сдвига на границе раздела грунт-арматура произошло на относительном расстоянии ( x / B ) примерно 0,5 от центра основания, а напряжение, развиваемое в арматуре, было максимальным в центре и постепенно уменьшалось к концу. арматуры. С другой стороны, Махарадж [19] выполнил численный анализ на ленточном основании, поддерживаемом армированной глиной, с использованием модели грунта Друкера – Прагера. Он пришел к выводу, что в случае однослойной арматуры оптимальное соотношение расстояния между верхними слоями ( u / B ) оказалось около 0.125 из армированной глины. Он также обнаружил, что эффективное отношение длины ( b / B ) арматуры было около 2,0, глубина влияния зависела от жесткости арматуры, а увеличение геосинтетической жесткости уменьшило оседание основания.

Хотя многие исследования показали много интересных особенностей механизма взаимодействия грунт-геосинтетика, методы, используемые для проектирования геосинтетических грунтовых систем, все еще различаются и в большинстве случаев озадачивают инженеров.В основном использовался расчет системы армированного грунта с использованием методов предельного равновесия, который считался очень консервативным [46–48]. В последнее время внедрение метода конечных элементов для моделирования и анализа системы армированного грунта обеспечило соответствующие проектные характеристики, низкую стоимость и скорость, с использованием различных систем армирования грунта и граничных условий [49]. Однако необходимость численного и аналитического исследования, учитывающего основные факторы механизма взаимодействия армированного грунтового основания, остается актуальной.В этой статье анализ несущей способности и осадки армированного георешеткой и неармированного грунтового основания трех участков (т.е. Аль-Хамедат, Аль-Рашидия и Башика) в Мосуле, Ирак, проводится численно с помощью программы конечных элементов Plaxis. и сравнивается с аналитической несущей способностью, рассчитанной теоретически с использованием метода, разработанного Ченом и Абу-Фарсахом [17]. Производные и аналитические методы основаны на анализе предельного равновесия и рассчитывают только предельную несущую способность для данного осадки.Поскольку с помощью этих методов невозможно получить осадки, поэтому осадки, полученные в результате численного анализа, были использованы в теоретическом методе.

Механизм армирования георешеткой

Во многих случаях при строительстве неглубокие фундаменты возводятся поверх существующего слабого грунта, что приводит к низкой несущей способности и чрезмерным проблемам осадки. Недостатки могут вызвать структурное повреждение, снижение срока службы и ухудшение уровня производительности [50].В этих условиях методы улучшения почвы использовались в течение длительного времени для решения проблемы, связанной с этими типами почв. Несколько исследователей разработали различные методы улучшения почвы для повышения прочности почвы с помощью различных методов стабилизации. Для решения вышеупомянутых проблем с почвой было разработано несколько типов методов улучшения почвы, включая цементацию, вертикальные дренажи, замену почвы, укладку свай и геосинтетическое армирование [51–54]. Полимерная природа геосинтетического материала делает геосинтетические изделия долговечными в различных условиях грунта и окружающей среды.Общие применения геосинтетики в области инженерно-геологической инженерии включают повышение прочности и жесткости подземного грунта, подчеркнутого на неглубоких основаниях и тротуарах, обеспечение устойчивости грунтовых подпорных конструкций и откосов, обеспечивая безопасность плотин, как описано в Han et al . [55] и Ван и др. . [56] работают. Георешетка используется для улучшения механических характеристик подземного грунта при внешних нагрузках. Таким образом, он широко применяется в качестве армирующих слоев в стенах из механически стабилизированного грунта (MSE) и геосинтетического армированного грунта (GRS), в качестве меры стабилизации откосов и в качестве армирования подземного грунта под тротуарами и фундаментами.Высокая растягивающая способность геосеток позволяет слоям армирования принимать на себя значительную часть растягивающих напряжений, возникающих в массиве грунта из-за действия внешней нагрузки. Таким образом, георешетки действуют как армирующие элементы и усиливают нагрузочно-деформационные характеристики армированного грунтового массива.

В ходе некоторых экспериментальных исследований Бинке и Ли [14] оценили несущую способность грунта, армированного металлическими полосами; Результаты испытаний показали, что несущая способность может быть улучшена в 2–4 раза за счет усиления грунта.Результаты их испытаний также показали, что арматура, размещенная ниже глубины воздействия, которая составляла приблизительно 2B , оказала незначительное влияние на увеличение несущей способности и размещение первого слоя на ( u / B = 0,3) ниже основание фундамента привело к максимальному улучшению. Акинмусуру и Акинболаде [57] исследовали влияние использования канатных волокон в качестве армирующих элементов на песчаную почву; их результаты показали, что предельная несущая способность может быть увеличена до трех раз по сравнению с неармированным грунтом; Оптимальное расстояние между верхними слоями ( и ) было определено равным 0 . 5B , и они показали, что улучшение несущей способности было незначительным, когда количество армирующих слоев было увеличено до трех, что соответствовало глубине воздействия 1 . 75Б . Сакти и Дас [2] провели экспериментальное исследование фундамента из глинистого грунта, армированного геотекстилем. Результаты их испытаний показали, что большинство преимуществ геотекстильной арматуры было получено при соотношении расстояния между верхними слоями ( u / B ), равном 0.От 35 до 0,4. Для u / B 0,33 и h / B 0,33, BCR увеличился с 1,1 до 1,5, когда количество слоев увеличилось с 1 до 3, и после этого оставался практически постоянным. Глубина воздействия при укладке геотекстиля была определена как 1,0 B . Наиболее эффективная длина геотекстиля равнялась четырехкратной ширине ленточного фундамента

.

Чжоу и Вэнь [58] провели экспериментальное исследование, чтобы изучить влияние использования однослойной песчаной подушки, армированной геоячейками, на мягкой почве.Результаты показали, что произошло существенное уменьшение осадки нижележащего мягкого грунта, а коэффициент реакции земляного полотна K30 улучшился на 3000%; деформация уменьшилась на 44%. Более того, Рафтари и др. . [24] провели численный анализ на ленточном основании, поддерживаемом усиленным откосом, с использованием модели грунта Мора – Кулона. Результаты испытаний показали, что осадка фундамента на неармированном откосе более сильная, чем на усиленном.Так как осадка в армированной ситуации с тремя слоями арматуры уменьшилась примерно на 50%. Они сообщили, что для достижения наименьшей осадки оптимальное вертикальное расстояние между георешетками ( х ) должно быть эквивалентно ширине фундамента ( B ). Хинг и др. . [5] провели серию модельных испытаний на ленточных фундаментах, поддерживаемых песком, армированным георешеткой. Результаты испытаний показали, что размещение георешетки на глубине ( d / B ) больше 2.25 не привело к улучшению несущей способности ленточного фундамента. Для достижения максимальной выгоды минимальный коэффициент длины ( b / B ) георешетки должен быть равен 6. BCR, рассчитанный при ограниченном коэффициенте осадки ( s / B ) 0,25, 0,5 и 0,75, составил примерно 67 % –70% от окончательного BCR.

Адамс и Коллин [11] выполнили несколько серий крупномасштабных полевых испытаний. Испытания проводились в бетонном боксе с четырьмя квадратными опорами различных размеров.Для испытаний был выбран мелкодисперсный песок для бетонного раствора с плохой сортировкой. Результаты испытаний показали, что три слоя армирования георешеткой могут значительно увеличить несущую способность и что коэффициент предельной несущей способности (BCR) может быть увеличен до более чем 2,6 для трех слоев армирования. Однако величина осадки, необходимая для этого улучшения, составляла приблизительно 20 мм ( s / B = 5%) и могла быть неприемлемой для некоторых применений фундамента. Результаты также показали, что положительные эффекты армирования при низком коэффициенте осадки ( s / B ) могут быть максимально достигнуты, когда расстояние между верхними слоями меньше 0.25 В . В качестве альтернативы, Араб и др. . [27] провели численный анализ на ленточном основании, поддерживаемом песчаным грунтом, с использованием модели затвердевающего грунта. Они сообщили, что для геометрических параметров u / B = h / B = 0,5 и b / B = 4, эффект увеличения количества слоев георешетки ( N ) на несущую способность армированных георешеткой грунтов увеличили несущую способность и немного увеличили общую жесткость армированного песка.Увеличение жесткости георешетки также привело к увеличению BCR. Несмотря на то, что исследования грунтового основания, армированного георешеткой, проводились широко, поведение грунта не отражено полностью, особенно с учетом оптимизированного применения георешетки. Численное моделирование в этом исследовании способствует более глубокому пониманию грунтового основания за счет определения арматуры в моделях грунта.

Численное моделирование

Численное моделирование поведения армированного и неармированного грунтового основания проводилось с использованием программного обеспечения Plaxis.Plaxis – это программа конечных элементов, специально разработанная для анализа деформации и устойчивости в инженерно-геологических задачах [59]. В этом исследовании процесс тестирования включает в себя полное моделирование грунта, усиления георешетки, установки фундамента и приложения нагрузки, как показано на рисунке 1. Реальные сценарии могут быть смоделированы с помощью модели плоской деформации, которая используется в текущей задаче. Модель плоской деформации подходит для реализации с относительно однородным поперечным сечением, схемой нагружения и большой протяженностью модели в направлении, перпендикулярном плоскости модели, где нормальные напряжения полностью учитываются, но смещения и деформации принимаются равными нулю. .

Анализ модели

В Plaxis доступны различные модели почв. С помощью моделирования методом конечных элементов в данной работе была рассмотрена упруго-идеально пластичная модель грунта Мора – Кулона. Конститутивная модель Мора-Кулона широко используется в большинстве инженерно-геологических задач, поскольку исследователи показали, что комбинации напряжений, приводящие к разрушению в образцах грунта при трехосных испытаниях, соответствуют контуру разрушения по критерию Мора-Кулона (шестиугольная форма) Гольдшейдера [60].При использовании конститутивной модели Мора-Кулона в качестве входных данных требуются пять параметров [61]. Эти пять параметров могут быть получены путем анализа основных испытаний грунта, и они состоят из двух параметров жесткости: эффективного модуля Юнга ( E ′) и эффективного коэффициента Пуассона ( v ′) и трех параметров прочности: эффективного сцепления ( c ). ′), Эффективный угол трения ( φ ′) и угол расширения ( ψ ). В 2D-пространстве огибающая разрушения символизирует прямую или слегка изогнутую линию, касающуюся круга Мора или точек напряжения.В диапазонах напряжений в пределах области текучести почвенный материал эластичен. По мере развития критического сочетания напряжения сдвига и эффективного нормального напряжения точка напряжения будет совпадать с зоной разрушения, и предполагается идеально пластичное поведение материала с непрерывным сдвигом при постоянном напряжении. После достижения идеально пластичного состояния материал никогда не сможет вернуться к полностью эластичному поведению без каких-либо необратимых деформаций. Ленточный фундамент моделируется как жесткая плита и в анализах считается очень жестким и грубым.

Детали армированных георешеткой грунтов, рассматриваемых в модельных испытаниях, показаны в Таблице 1. В Plaxis армирование георешетки представлено с помощью специальных элементов растяжения (пятиузловых элементов георешетки). Георешетки имеют только нормальную жесткость и не имеют жесткости на изгиб, которая может выдерживать только растягивающие усилия. Единственное свойство материала георешетки – упругая осевая жесткость EA . Для моделирования взаимодействия элементов георешетки с окружающей почвой часто бывает удобно комбинировать эти элементы георешетки с интерфейсами.Назначенные интерфейсы почва-георешетка показаны на рис. 2. Каждому интерфейсу присвоена виртуальная толщина, которая является воображаемым размером, используемым для определения свойств материала границы раздела. Модель упруго-идеально пластическая используется для описания поведения границ раздела при моделировании взаимодействия грунт-георешетка. Кулоновский критерий используется для различения упругого поведения, при котором небольшие смещения могут происходить в пределах границы раздела, и пластического поведения границы раздела, когда происходит постоянное скольжение.Параметры границы раздела рассчитываются из параметров окружающего грунта с использованием коэффициента взаимодействия R inter , определяемого как отношение прочности на сдвиг границы раздела к прочности почвы на сдвиг [59]. В этом исследовании используются 15-узловые элементы грунта, а прочность границы раздела установлена ​​вручную. Для реального взаимодействия грунт-конструкция граница раздела слабее и гибче, чем связанный грунт, что означает, что значение R inter должно быть меньше 1.Следовательно, R inter предполагается равным 0,9 в настоящем исследовании.

После того, как геометрическая модель полностью определена и свойства материала назначены слоям грунта и структурным объектам, сетка применяется для расчетов методом конечных элементов (КЭ). Plaxis включает в себя процедуру полностью автоматического создания сетки, в которой геометрия дискретизируется на элементы типа базового элемента и совместимые структурные элементы, как показано на рис. 3. Основным типом элемента в сетке, использованной в настоящем исследовании, является треугольный элемент со средним размером 0.5–2 м, что обеспечивает точный расчет напряжений и разрушающих нагрузок. Plaxis предлагает пять различных плотностей ячеек, от очень крупной до очень мелкой. Предварительные расчеты проводились с использованием пяти доступных уровней глобальной грубости сетки, чтобы получить наиболее подходящую плотность сетки и минимизировать влияние зависимости сетки на моделирование методом конечных элементов. В ходе анализа количество треугольных элементов и точек напряжения в модели для каждого участка было изменено в зависимости от плотности сетки и расположения арматуры.В таблице 2 показано изменение количества элементов и точек напряжений в зависимости от плотности сетки моделей трех участков для случая пяти слоев георешетки. Как видно на рис. 4, размер сетки оказывает минимальное влияние на результаты после примерно 240 элементов для участка Башика и 400 элементов для участков как Аль-Хамедат, так и Аль-Рашидиа. Для Ba’shiqa это соответствует крупной сетке с уточнением вокруг элементов георешетки и фундамента модели, где ожидаются большие концентрации напряжений, и средней сетке с уточнением как для Аль-Хамедат, так и для Аль-Рашидиа.

Смоделированные граничные условия предполагались такими, что вертикальные границы были свободными по вертикали и ограничены по горизонтали, а нижняя горизонтальная граница была полностью фиксированной, как показано на рис. 5. Рассматриваемые вертикальные границы сетки находились на расстоянии 10 м от центра сетки. фундамент с каждой стороны, в то время как нижняя горизонтальная граница была на 20 м ниже основания фундамента, так что эти границы не влияют на напряжения и деформации, возникающие в массиве грунта.В исследовании использовалась точечная нагрузка. Конструкция моделировалась с увеличивающейся величиной нагрузки до тех пор, пока почва не достигла невозможности исследовать оседание под действием приложенной нагрузки. После создания геометрической модели и создания сетки конечных элементов необходимо указать начальное напряженное состояние. Начальные условия состоят из двух различных режимов: один режим для создания начального давления воды, а другой режим для задания начальной геометрической конфигурации и создания начального эффективного поля напряжений.Поскольку слои почвы для Аль-Хамедат и Башика сухие, а уровень грунтовых вод на участке Аль-Рашидиа достаточно глубок, чтобы не влиять на поведение фундамента, состояние грунтовых вод было принято как незначительное. Начальные напряжения в грунте генерируются с использованием формулы Джаки, выраженной уравнением 3 (в программном обеспечении Plaxis процедура создания начальных напряжений грунта часто известна как процедура K 0 ). (3) где K 0 – коэффициент бокового давления грунта, а φ – угол внутреннего трения грунта.

Plaxis позволяет выполнять различные типы расчетов методом конечных элементов, такие как расчет пластичности, анализ консолидации, анализ снижения Phi-c и динамический расчет. Для текущего исследования был выбран пластический расчет. Для проведения анализа упругопластической деформации следует выбрать пластический расчет. Этот тип расчета подходит для большинства практических геотехнических приложений. В инженерной практике проект делится на фазы проекта. Точно так же процесс расчета в Plaxis также разделен на этапы расчета.В данном исследовании рассматриваются два этапа расчета. Первый – это начальная фаза, которая представляет начальную ситуацию проблемы. Второй этап включает в себя усиление георешетки и приложение нагрузки на внешние линии.

При расчетах методом конечных элементов анализ становится нелинейным, если задействован расчет пластичности, что означает, что каждый этап расчета должен решаться в этапах расчета (этапах нагрузки). Размер шага и алгоритм решения важны для нелинейного решения.Если шаг вычисления подходящего размера, то количество итераций, необходимых для достижения равновесия, будет небольшим, примерно 5–10, а если шаг большой, то количество требуемых итераций будет чрезмерным, и решение может отличаться. Итерационные параметры в программном обеспечении: желаемый минимум и максимум в первую очередь предназначены для определения того, когда расчет должен включать большие или меньшие шаги. Если расчет может решить шаг нагрузки (следовательно, сходиться) за меньшее количество итераций, чем желаемый минимум, который по умолчанию равен 4, он начинает использовать шаг нагрузки, который в два раза больше.Если, однако, для вычисления требуется больше итераций, чем желаемый максимум, который по умолчанию равен 10 для схождения, вычисление решит выбрать шаг вычисления только половинного размера. Для пластического анализа изменение желаемого минимума или желаемого максимума не влияет на результаты. Пока расчет сходится на каждом шаге, неважно, использует ли расчет много маленьких шагов с несколькими итерациями или ограниченное количество больших шагов с большим количеством итераций на шаг.

Существует несколько процедур для решения задач нелинейной пластичности. Все процедуры основаны на автоматическом выборе размера шага в зависимости от применяемого алгоритма. Предельный уровень продвижения нагрузки – одна из таких процедур, которая используется в текущем анализе. Процедура автоматического определения размера шага используется в основном для этапов расчета, на которых необходимо достичь определенного предельного уровня нагрузки. Процедура завершает расчет при достижении заданного уровня нагрузки или при обнаружении разрушения грунта.Количество дополнительных шагов установлено на 1000, чтобы процесс расчета продолжался до конца до того, как будет достигнуто количество дополнительных шагов. В этой процедуре итерационные параметры установлены на стандартные и показали хорошую производительность при сходимости вычислений. В стандартных настройках допустимая ошибка, которая представляет собой отклонение от точного решения, была установлена ​​на 0,03, коэффициент чрезмерной релаксации, который отвечает за уменьшение количества итераций, необходимых для сходимости, был установлен на 1,2, максимальное количество итераций было установлено на 50, желаемая минимальная и максимальная итерация была установлена ​​на 4 и 10 соответственно, и, наконец, было активировано управление длиной дуги, что важно для сходимости вычислений и точного определения нагрузки при отказе, иначе расчет будет повторяться и нагрузка при отказе будет переоценен.Поэтапная конструкция была выбрана в качестве варианта ввода нагрузки, где можно определить значение и конфигурацию нагрузки, а также состояние отказа, которое необходимо достичь. Поскольку поэтапное строительство выполняется с использованием процедуры предельного уровня увеличения нагрузки, оно контролируется общим множителем (∑Mstage). Этот множитель обычно начинается с нуля и достигает конечного уровня 1,0 в конце фазы расчета. Временной интервал фазы расчета считается нулевым, поскольку анализ модели является пластическим и не включает консолидацию или использование модели ползучести мягкого грунта.

Свойства материала

Почвы были собраны с трех разных участков в Мосуле, Ирак: Аль-Хамедат, Башика и Аль-Рашидия. Мосул расположен в северной части Ирака. Район отличается обширными равнинами и антиклиналями. Возле реки Тигр расположены три уровня накопленных террас аллювиальных почв. Большая часть почвы в этом районе умеренно экспансивного типа. Плоские участки между антиклиналями покрыты слоистыми наносами стока, которые включают глину, песок, ил, а иногда и покрыты рассыпным гравием.В таблице 3 показаны механические и физические свойства почвы, а в таблице S1 показаны пределы Аттерберга и размер зерна для каждого задействованного участка. В данном исследовании использовался бетонный ленточный фундамент шириной B = 600 мм. Свойства основания показаны в Таблице 4. Двухосные георешетки (Tensar BX1500), показанные на Рис. 5, использовались для укрепления почвы на всех трех участках. Различные свойства армирования георешеткой, использованные при моделировании методом конечных элементов данного исследования, показаны в Таблице 5.

Результаты и обсуждения

Результаты, полученные от Plaxis для определения предельной несущей способности и осадки основания, представляли собой кривые осадки под нагрузкой усиленного и неармированного грунта трех упомянутых участков, а результаты аналитического анализа Уравнение Мейерхофа [63] и метод, полученный Ченом и Абу-Фарсахом [17], были значениями BCR для этих грунтов с усилением георешетки.

Грунты неармированные

Три моделирования методом конечных элементов были проведены с использованием программного обеспечения Plaxis для оценки предельной несущей способности неармированного грунта для каждого участка. На рис. 6 показана деформированная сетка (увеличенная до 15 раз) грунта под действием разрушающей нагрузки. На рис. 6 можно увидеть небольшой подъем грунта по краям основания и осадку 57,43 мм, что указывает на разрушение грунта при сдвиге. На рисунках 7 и 8 показаны развитые вертикальные напряжения и вертикальные перемещения неармированного грунта, соответственно, при приложении разрушающей нагрузки.На рис. 7 и 8 показан пузырь приращений вертикального напряжения и вертикального смещения, соответственно, в пределах профиля почвы из-за приложения нагрузки полосы [64]. Однако вертикальное напряжение и вертикальное смещение уменьшались с увеличением глубины, как показано на этих рисунках значениями штриховки контуров. Соответствующие напряжения и перемещения в горизонтальном направлении представлены на рисунках 9 и 10 соответственно. Максимальные горизонтальные напряжения на рис. 9 были сосредоточены непосредственно под основанием на глубине B и по горизонтали шириной B ; кроме того, по штриховке горизонтальных напряжений было ясно, что грунт разрушился под действием местного сдвига.

Максимальная часть горизонтального смещения, представленная на Рис. 10, приходилась на поверхность почвы, и это было причиной вспучивания почвы по краям основания. Однако эти горизонтальные напряжения и смещения значительно повлияли на поведение георешетки, как будет обсуждаться позже в разделе с усиленным грунтом. Напряжения сдвига и деформации, связанные с разрушением, показаны на рисунках 11 и 12 соответственно. Обратите внимание, что максимальные касательные напряжения и деформации или зона сильного сдвига были расположены под краями фундамента и почти распространялись на глубине 2 B по горизонтали на расстоянии B от краев фундамента и значительно уменьшались на нижние глубины.Тем не менее, местное разрушение при сдвиге было почти очевидно из затенения касательных напряжений, показанных на рис. 11. На рис. 13 представлены точки пластичности или точки пластичности разрушения, образовавшиеся в массиве грунта под действием разрушающей нагрузки. Пластическая точка – это точка, соответствующая необратимому напряжению и деформации, которая расположена на огибающей Мора-Кулона (огибающая является функцией угла внутреннего трения сцепления грунта).

На рис. 13 также показаны точки растяжения (точки с черным цветом) на поверхности почвы, которые соответствуют трещинам от растяжения (участки напряжений от растяжения).Однако эти точки натяжения указывали на то, что грунт разрушился под действием растяжения, а не сдвига. Теоретическая предельная несущая способность неармированного грунта была получена с помощью формул (4) – (9). Параметры прочности на сдвиг (c и φ ) и удельный вес ( γ ), используемые в следующих уравнениях, показаны в таблице 3.

Сайт Аль-Хамедат:

Сайт Башики:

Сайт в Аль-Рашидии:

Результаты неармированного грунтового основания, полученные путем численного анализа, и теоретическая предельная несущая способность, полученная Мейерхофом [63], показаны в Таблице 6.Здесь можно увидеть, что числовые значения несущей способности были больше, чем теоретические значения. Высокое значение несущей способности может быть связано с тем, что уравнения несущей способности обычно недооценивают (более консервативно) предельную несущую способность грунта [64]. Кривые зависимости давления от осадки из численного анализа неармированных грунтовых оснований трех площадок показаны на рис. 14–16. Кроме того, эти цифры показывают метод, используемый для определения предельной несущей способности по кривым нагрузки – осадки; он представляет собой консервативное и наиболее реальное состояние отказа.Этот метод представляет собой метод касательных пересечений, разработанный Траутманном и Кулхави [65].

Из рисунков 14–16 можно заметить, что грунт Аль-Хамедат показывает более высокую несущую способность ( q u = 640 кПа ), чем два других участка, где грунт Ba’shiqah показывает промежуточную несущую способность. ( q u = 365 кПа ), а почва Аль-Рашидия представляет собой самое низкое ( q u = 67 кПа ) среди почв.Это различие может быть связано с характеристиками и свойствами почвы, указанными в Таблице 3 и Таблице S1. Считается, что почва на участке Аль-Хамедат представляет собой твердую глину с высокой степенью сцепления ( c = 40 кПа ), Аль-Рашидиа представляет собой песчаный грунт с высоким углом трения ( φ = 28 °) с нулевым сцеплением ( c = 0 кПа), в то время как почва на участке Башика классифицируется как глинистая от низкой до средней с относительно низким сцеплением ( c = 15 кПа ) по сравнению с почвой Аль-Хамедат.

Армированные грунты

Девяносто расчетов методом конечных элементов было проведено на армированном грунтовом основании для изучения влияния армирования георешеткой на предельную несущую способность и осадку ленточного основания, расположенного на трех упомянутых участках. Деформированная сетка (увеличенная до 10 раз) армированного георешеткой грунта показана на рис. 17. Кроме того, осадка была уменьшена до 44,68 мм за счет включения арматуры георешетки, где уменьшение осадки было отнесено за счет подъемных сил. создается арматурой георешетки во время деформации и мобилизации осевых растягивающих сил слоев арматуры.Кроме того, просачивание грунта на краях основания уже исчезло, что означало, что грунт не разрушился при сдвиге, как упоминалось ранее в случае неупрочненного грунта. На рис. 18 показаны горизонтальные напряжения, возникающие в массиве укрепленного грунта. Видно, что горизонтальные напряжения были немного увеличены до значения 228,96 кН / м 2 из-за передачи части вертикальной нагрузки на горизонтальную нагрузку, которую несет арматура и, в свою очередь, на окружающий грунт. Кроме того, горизонтальные напряжения были распределены по слоям арматуры шириной 5 B , что указывало на сцепление и взаимодействие слоев почвы и георешетки; в результате силы растяжения внутри арматуры были мобилизованы, как показано на рис.19.

На рис. 20 показано распределение горизонтальных смещений в армированном грунте. Понятно, что смещение уменьшено до 8,68 мм из-за ограничения слоев арматуры, стрелки почти одинаково распределены по слоям арматуры и небольшие значения смещения, вызванные на поверхности почвы, по сравнению с неармированным состоянием, когда большая часть горизонтального смещения произошла на верхняя часть почвы, вызывающая вспучивание почвы. Следовательно, разрушение грунта при сдвиге предотвращается путем передачи приложенной вертикальной нагрузки к силам растяжения в арматуре георешетки за счет поверхностного трения и опоры между грунтом и арматурой.На рисунках 21 и 22 показаны напряжения сдвига и деформации армированного грунта и их распределение вдоль арматуры георешетки, соответственно. Замечено, что области концентрации касательных напряжений и деформаций под фундаментом уменьшаются за счет распределения напряжений и деформаций вдоль и через слои арматуры, что приводит к изменению плоскости разрушения и предотвращает разрушение в армированной зоне. Пластические точки в усиленной зоне изображены на рис. 23.Показано, что точки пластичности сильно концентрируются вдоль армированной зоны, что указывает на экстремальные напряжения, возникающие на границе раздела между почвой и георешеткой. Следовательно, это оправдывает взаимодействие между грунтом и георешеткой и изменение механизма разрушения.

Влияние ширины георешетки

(б) и количества слоев георешетки (Н) на предельную несущую способность

На рис. 24–26 показано изменение BCR с шестью различными значениями ширины георешетки (b) для от 1 до 5 слоев георешетки ( N ) для трех участков Аль-Хамедат, Аль-Рашидиа и Башика, соответственно.Из рисунков 24–26 видно, что увеличенная ширина георешетки (b) и номер георешетки (N) приводит к увеличению BCR для всех трех участков. Кроме того, грунт на Аль-Рашидиа способствует более высокому повышению предельной несущей способности, чем на двух других участках. Улучшение может быть связано с различием свойств почвы и размера зерна, как показано в Таблице 3 и Таблице S1. Почва Аль-Рашидиа песчаная и имеет угол трения ( φ = 28 °), больший, чем на двух других участках, где пассивные силы и силы трения между почвой и георешеткой будут выше, чем на двух глинистых участках [8].Что касается участков Аль-Хамедат и Башика с глинистыми почвами, то почва участка Башика с глинистостью от низкой до средней лучше улучшается, чем грунт участка Аль-Хамедат, который представляет собой твердую глину с точки зрения предельной несущей способности. Следовательно, используя армирование георешеткой со слабой глиной, почва может улучшиться до более жесткой глины. Однако максимальное улучшение предельной несущей способности может быть получено при b / B = 5 для любого номера георешетки на этих трех участках, поэтому оптимальная ширина георешетки (b) для трех участков составляет 5 B хотя не было оптимального числа георешетки (N) , полученного как N = 5, все три почвы показывают хорошее улучшение несущей способности основания.

Влияние ширины георешетки

(б) и количества слоев георешетки (N) на осадку основания

Коэффициент уменьшения осадки (SRR%) в зависимости от ширины георешетки ( b ) с числом слоев георешетки от 1 до 5 ( N ) показан на рисунках 27–29 для почв Аль-Хамедат, Аль-Рашидия, и Ба’шика соответственно. Из этих рисунков видно, что увеличение ширины слоя георешетки (b) и числа георешетки ( N ) приводит к уменьшению осадки основания для трех участков.На рисунках 27–29 наблюдалось уменьшение осадки фундамента (SRR%), полученное на этих трех участках в результате увеличения ширины арматуры георешетки (b) и количества слоев георешетки ( N ). Показано, что большее уменьшение осадки фундамента при увеличении ширины георешетки (b) достигается за счет грунта участка Башика для первых трех слоев георешетки ( N = от 1 до 3), за которым следует грунт Сайты Аль-Рашидиа и Аль-Хамедат соответственно.В то время как при N = 4 и 5 почва Аль-Рашидиа начала показывать более высокие улучшения, чем почва участка Башика, в отличие от почвы участка Аль-Хамедат, где улучшение было наименьшим.

Разница в SRR% может быть обусловлена ​​двумя причинами: хорошим углом трения грунта Башика ( φ = 25 °) и возникновением эффекта глубокой опоры [50] в грунте участка Башика, который делает общее разрушение грунта сдвигом развито ниже армированной зоны.В этом случае натяжение всех слоев георешетки в усиленной зоне будет мобилизовано, поскольку основание выйдет из строя с точки зрения предельной несущей способности после пробивки слоев георешетки. Почва участка Аль-Рашидиа показывает второе более высокое улучшение и при N = 4 и 5, что указывает на более высокое улучшение грунтового поселения. Как указывалось ранее, грунт на участке Аль-Рашидиа песчаный и имеет самый высокий угол трения ( φ ) между двумя другими участками, в котором значение мобилизованного натяжения слоев георешетки в усиленной зоне будет выше, чем это два участка из-за попадания частиц песка в отверстия георешетки.Кроме того, может возникнуть более высокое сопротивление трению в зоне контакта между почвой и слоями георешетки. С другой стороны, грунт Аль-Хамедат имеет угол трения ( φ = 20 °) ниже, чем у двух других участков, что приводит к меньшему трению в зоне контакта грунта с георешеткой и меньшим пассивным силам на краях грунта. ребра георешетки. Таким образом, небольшое улучшение отражается на оседании фундамента, даже несмотря на то, что в этой почве может происходить эффект глубокого залегания.

Из рисунков 27–29 также можно увидеть, что почва Аль-Хамедат демонстрирует лучшее улучшение осадки основания, поскольку число георешетки ( N ) увеличивалось, чем приращение ширины георешетки ( b ), в то время как почва Башики была противоположной. .Увеличение может быть связано с более высокой прочностью почвы на участке Аль-Хамедат ( c = 40 кПа ), чем почва Башика ( c = 15 кПа ), где на нее могут повлиять количество слоев георешетки ( N ) больше ширины георешетки ( b ). Оптимальная ширина георешетки ( b ) для трех участков при любом номере георешетки также составляет 5 B , в то время как не было получено оптимальное число георешетки ( N ), N = 5 все три почвы показали хорошее улучшение опоры основания.

Коэффициент улучшения (IF)

Коэффициент улучшения (IF) определяется как отношение несущей способности армированного грунта ( q усиленного ) к неармированному грунту ( q неармированного ) при определенных s / B соотношения. Где s / B – отношение осадки основания к ширине основания. IF при различных соотношениях s / B был рассчитан для сравнения предельной несущей способности грунтов с различным числом георешетки ( N ) на разных уровнях осадки.Вариации IF с отношениями s / B трех сайтов показаны на рис. 30–32. Из этих цифр очевидно, что при увеличении осадки основания коэффициент улучшения (предельная несущая способность армированного грунта) увеличивается для любого номера георешетки, и это ожидается, поскольку слоям георешетки требуется осадка основания для мобилизации их сил растяжения, следовательно, повышение устойчивости к приложенным вертикальным нагрузкам. Также можно отметить влияние числа георешетки ( N ), увеличение количества слоев георешетки приводит к увеличению IF, таким образом, уменьшая начальную осадку, необходимую для мобилизации натяжения слоя георешетки и обеспечения устойчивости армированного грунта. сопротивление приложенным нагрузкам даже при очень высокой осадке без обрушения.

Более того, использование георешетки в почве на участке Аль-Хамедат демонстрирует меньший коэффициент улучшения и достигает очень большого поселения для улучшения несущей способности основания по сравнению с двумя другими участками. Это большое поселение связано с тем, что почва Аль-Хамедат представляет собой очень прочную глину ( c = 40 кПа) с низким углом трения ( φ = 20 °), чем на двух других участках, и, следовательно, требует высокой осадки для мобилизации напряжения в георешетке. слоев, почва Ba’shiqa также глинистая ( c = 15 кПа) с углом трения ( φ = 25 °) лучше, чем грунт Al-Hamedat, поэтому он показал лучшее улучшение предельной несущей способности и меньшее оседание для мобилизации напряжение в слоях георешетки, чем в почве Аль-Хамедат.В то время как почва Аль-Рашидиа показала самое высокое улучшение предельной несущей способности и самое низкое оседание при мобилизации напряжения в слоях георешетки, что связано с почвой Аль-Рашидии, это песок с более высоким углом трения ( φ = 28 °), кроме того, Георешетка лучше работает с песчаным грунтом из-за угла трения и сцепления частиц с отверстиями георешетки.

Сравнение численного и аналитического анализа

BCR численного анализа с использованием Plaxis и аналитического анализа с использованием метода, разработанного Ченом и Абу-Фарсахом [17] для армированных грунтов трех участков, сравниваются на рис. 33–35.Эти рисунки показывают изменение BCR численного и аналитического анализа с номером георешетки ( N ) для почв Аль-Хамедат, Аль-Рашидиа и Башика, соответственно.

Из рисунков 33-35 заметно, что аналитический анализ является почти линейным и показал небольшую разницу с численным анализом, что может быть связано с ограничениями в определении точной глубины продавливания в глинистых грунтах (Al-Hamedat & Ba’shiqa), что впоследствии приводит к низкому или высокому сопротивлению грунта приложенным нагрузкам.Кроме того, значения угла наклона арматуры георешетки (ξ и α) для глинистых участков (Аль-Хамедат и Башика) и песчаных участков (Аль-Рашидиа) под нагрузкой на фундамент могут быть выбраны не совсем точно, как в действительности. Однако общий аналитический анализ показал почти хорошие результаты, близкие к численному анализу.

Заключение

Что касается комплексного анализа методом конечных элементов и аналитического анализа, включение арматуры может улучшить несущую способность основания и уменьшить осадку.Несущая способность и уменьшение осадки армированного грунтового основания для трех участков увеличивались с увеличением ширины слоев георешетки ( b ). Степень улучшения несущей способности и осадки фундамента для каждого участка была разной. Почва участка Аль-Хамедат показала меньшее улучшение, чем два других участка, в то время как почва участка Аль-Рашидия продемонстрировала более высокое улучшение. Оптимальная ширина георешетки для всех трех участков составила (5 B ).Увеличение количества слоев георешетки ( N ) привело к повышению несущей способности и уменьшению осадки армированного грунтового основания на всех трех площадках. По мере увеличения количества георешеток степень улучшения несущей способности и осадки фундамента для каждого участка была различной. Почва участка Аль-Хамедат показала меньшее улучшение, чем два других участка, в то время как почва участка Аль-Рашидия продемонстрировала более высокое улучшение. Оптимального числа георешеток не было, так как три участка показали хорошее улучшение даже при N = 5.Использование армирования георешеткой с песчаными почвами или слоями слабых глин привело к лучшему повышению несущей способности и уменьшению осадки, чем более сильные слои, которые требуют более высокой осадки, чтобы показать свои улучшения; это было ненадежно, потому что фундамент мелкого заложения был почти рассчитан на определенный уровень поселения. BCR из аналитического анализа увеличивались по мере увеличения количества ( N ) и ширины ( b ) георешетки. Их прирост был почти линейным и показал приемлемые значения, которые близко соответствовали BCR из численного анализа.Это исследование убедительно доказывает, что усиление георешетки потенциально способствует улучшению грунтового основания, однако напрямую не зависит от ширины и количества только георешетки. Различные свойства почвы и размер основания также влияют на значения BCR и SRR. Общие выводы дополняют преимущество эффективного применения укрепленных грунтовых оснований.

Список литературы

  1. 1. Гвидо В. А., Чанг Д. К. и Суини М. А. Сравнение земляных плит, армированных георешеткой и геотекстилем.Канадский геотехнический журнал, 1986, 23 (4): 435–440.
  2. 2. Сакти Дж. П. и Дас Б. М. Модельные испытания ленточного фундамента на глине, армированной слоями геотекстиля. Совет по исследованиям в области транспорта, 1987 г. Получено с https://trid.trb.org/view/289088
  3. 3. Хуанг К. и Тацуока Ф. Несущая способность укрепленного горизонтального песчаного грунта. Геотекстиль и геомембраны, 1990, 9 (1): 51–82.
  4. 4. Мандал Дж. Н. и Сах Х. С. Испытания несущей способности глины, армированной георешеткой.Геотекстиль и геомембраны, 1992, 11 (3): 327–333.
  5. 5. Хинг К. Х., Дас Б. М., Пури В. К., Кук Э. Э., Йен С. С. Несущая способность ленточного фундамента на песке, армированном георешеткой. Геотекстиль и геомембраны, 1993, 12 (4): 351–361.
  6. 6. Омар М. Т., Дас Б. М., Пури В. К. и Йен С. С. Максимальная несущая способность фундаментов мелкого заложения на песке с армированием георешеткой. Канадский геотехнический журнал, 1993, 30 (3): 545–549.
  7. 7.Шин Э., Пинкус Х., Дас Б., Пури В., Йен С. и Кук Э. Несущая способность ленточного фундамента на глине, армированной георешеткой. Журнал геотехнических испытаний, 1993, 16 (4): 534.
  8. 8. Дас Б. М. и Омар М. Т. Влияние ширины фундамента на модельные испытания на несущую способность песка с армированием георешеткой. Геотехническая и геологическая инженерия, 1994, 12 (2): 133–141.
  9. 9. Етимоглу Т., Ву Дж. Т. Х., Сагламер А. Несущая способность прямоугольных фундаментов на песке, армированном георешеткой.Журнал геотехнической инженерии, 1994, 120 (12): 2083–2099.
  10. 10. Дас Б. М., Шин Э. К. и Сингх Г. Ленточный фундамент на глине, усиленной георешеткой: предварительная процедура проектирования. Международное общество морских и полярных инженеров. Шестая Международная конференция по морской и полярной инженерии, 1996 г., 26–31 мая, Лос-Анджелес, Калифорния, США.
  11. 11. Адамс М. Т. и Коллин Дж. Г. Испытания под нагрузкой на большие модели на геосинтетических основаниях из армированного грунта.Журнал геотехнической и геоэкологической инженерии, 1997, 123 (1).
  12. 12. Зайни М. И., Каса А. и Наян К. А. Прочность на сдвиг границы раздела геосинтетической глиняной облицовки (GCL) и остаточного грунта. Международный журнал передовых наук, инженерии и информационных технологий, 2012. 2 (2): 156–158.
  13. 13. Xie L., Zhu Y., Li Y. и Su T. C. Экспериментальное исследование давления кровати вокруг геотекстильного матраса с наклонной пластиной. PLoS ONE, 2019, 14 (1): e0211312.pmid: 30682145
  14. 14. Бинке Дж. И Ли К. Л. Испытания несущей способности армированных земляных плит. Журнал геотехнической и геоэкологической инженерии, 1975, 101 (Протокол ASCE № 11792).
  15. 15. Уэйн М. Х., Хан Дж. И Акинс К. Проектирование геосинтетических армированных фундаментов. геосинтетика в системах усиления фундамента и контроля эрозии, 1998 г., Источник: https://cedb.asce.org/CEDBsearch/record.jsp?dockey=0113604
  16. 16. Михаловски Р.L. Предельные нагрузки на грунты с усиленным фундаментом. Журнал геотехнической и геоэкологической инженерии, 2004, 130 (4): 381–390.
  17. 17. Чен К. и Абу-Фарсах М. Анализ предельной несущей способности ленточных фундаментов на армированном грунтовом фундаменте. Почвы и фундаменты, 2015, 55 (1): 74–85.
  18. 18. Лав Дж. П., Берд Х. Дж., Миллиган Г. У. Э. и Хоулсби Г. Т. Аналитические и модельные исследования армирования слоя зернистой засыпки на мягком глиняном грунте.Канадский геотехнический журнал, 1987, 24 (4): 611–622.
  19. 19. Махарадж Д. К. Нелинейный конечно-элементный анализ опор полосы на армированной глине. Электронный журнал инженерной геологии, 2003, 8.
  20. 20. Эль Савваф М. А. Поведение ленточного фундамента на песке, армированном георешеткой, над мягким глиняным откосом. Геотекстиль и геомембраны, 2007, 25 (1): 50–60.
  21. 21. Ахмед А., Эль-Тохами А. М. и Марей Н. А. Двумерный конечно-элементный анализ лабораторной модели насыпи.В геотехнической инженерии для смягчения последствий стихийных бедствий и реабилитации, 2008 г., https://doi.org/10.1007/978-3-540-79846-0_133
  22. 22. Аламшахи С. и Хатаф Н. Несущая способность ленточных фундаментов на песчаных склонах, армированных георешеткой и анкерной сеткой. Геотекстиль и геомембраны, 2009, 27 (3).
  23. 23. Чен К. и Абу-Фарсах М. Численный анализ для изучения масштабного эффекта неглубокого фундамента на укрепленных грунтах. Рестон, Вирджиния: Материалы конференции ASCE Geo-Frontiers 2011, 13–16 марта 2011 г., Даллас, Техас | г 20110000.
  24. 24. Рафтари М., Кассим К. А., Рашид А. С. А., Моайеди Х. Осадка мелкого фундамента возле укрепленных склонов. Электронный журнал геотехники, 2013, 18.
  25. 25. Аззам У. Р. и Наср А. М. Несущая способность основания из оболочек на армированном песке. Журнал перспективных исследований, 2015, 6 (5). pmid: 26425361
  26. 26. Хусейн М. Г. и Мегид М. А. Трехмерный метод конечных элементов для моделирования двухосной георешетки с применением к почвам, армированным георешеткой.Геотекстиль и геомембраны, 2016, 44 (3): 295–307.
  27. 27. Араб М. Г., Омар М. и Тахмаз А. Численный анализ фундаментов мелкого заложения на грунте, армированном георешеткой. Сеть конференций MATEC, 2017, 120.
  28. 28. Каса А., Чик З. и Таха М. Р. Глобальная устойчивость и оседание сегментных подпорных стен, армированных георешеткой. ТОЖСАТ, 2012, 2 (4): 41–46.
  29. 29. Видаль, М. Х. Развитие и будущее армированной земли. Труды симпозиума по укреплению грунта на ежегодном съезде ASCE, Питтсбург, Пенсильвания, 1978, стр. 1–61.
  30. 30. Кернер Р. М., Карсон Д. А., Дэниел Д. Э. и Бонапарт Р. Текущее состояние тестовых участков Цинциннати GCL. Геотекстиль и геомембраны, 1997, 15 (4–6), 313–340.
  31. 31. Бушехриан А. Х., Хатаф Н. и Гахрамани А. Моделирование циклического поведения неглубоких фундаментов, опирающихся на геомеш и песок, армированный якорями. Геотекстиль и геомембраны, 2011, 29 (3): 242–248.
  32. 32. Рен Ю. Мгновенная реакция на нагрузку и оседание ленточных фундаментов, опирающихся на глину, армированную георешеткой, 2015 г., Получено с https: // etda.библиотеки.psu.edu/catalog/25223
  33. 33. Габр М. А., Додсон Р. и Коллин Дж. Г. Исследование распределения напряжений в песке, армированном георешеткой. Геосинтетика в системах укрепления фундамента и контроля эрозии, 1998 г., взято с https://cedb.asce.org/CEDBsearch/record.jsp?dockey=0113608
  34. 34. Чен К., Абу-Фарсах М. Ю., Шарма Р., Чжан Х. Лабораторное исследование поведения фундаментов на геосинтетически армированных глинистых почвах. Отчет об исследованиях в области транспорта: Журнал Совета по исследованиям в области транспорта, 2004 г., 2007 г., (1): 28–38.
  35. 35. Алаваджи Х. А. Испытания модели пластиной нагрузкой на складной грунт. Журнал Университета Короля Сауда – Технические науки, 1998, 10 (2).
  36. 36. Аббас Дж. М., Чик З. Х. и Таха М. Р. Моделирование и анализ одной сваи, подвергшейся воздействию поперечной нагрузки. Электронный журнал геотехнической инженерии, 2008, 13 (E): 1–15.
  37. 37. Росьиди С. А., Таха М. Р. и Наян К. А. М. Эмпирическая модельная оценка несущей способности осадочного остаточного грунта методом поверхностных волн.Jurnal Kejuruteraan, 2010, 22 (2010): 75–88.
  38. 38. Хаджезаде М., Таха М. Р., Эль-Шафи А. и Эслами М. Модифицированная оптимизация роя частиц для оптимального проектирования опор и подпорной стены. Журнал Чжэцзянского университета: Science A, 2011, 12 (6): 415–427.
  39. 39. Джох С. Х., Хванг С. К., Хассанул Р. и Рахман Н. А. Построение поперечного сечения модуля упругости железнодорожного полотна под балластом для определения потенциальной осадки. Журнал Корейского общества железных дорог, 2011, 14 (3): 256–261.
  40. 40. Чик З., Альджанаби К. А., Каса А. и Таха М. Р. Моделирование искусственной нейронной сетью с перекрестной проверкой десятикратной проверки поведения оседания каменной колонны под насыпью шоссе. Арабский журнал наук о Земле, 2013, 7 (11): 4877–4887.
  41. 41. Ли Ю. П., Янг Ю., Йи Дж. Т., Хо Дж. Х., Ши Дж. Й. и Го С. Х. Причины проникновения самоподъемных оснований со спудканом в глины после монтажа. PLoS ONE, 2018, 13 (11): e0206626. pmid: 30395581
  42. 42.Азриф М., Закиран М. Н. Ф., Сякира М. Р. Н., Азуан С. М., Нур Р. К., Ли Э. К. и др. Применение геофизических исследований к возникновению поселений – тематическое исследование. На 2-м совещании EAGE-GSM в Азиатско-Тихоокеанском регионе по наукам о приповерхностной геологии и инженерии (2-е совещание EAGE-GSM в Азиатско-Тихоокеанском регионе по приповерхностной геонауке и инженерии). Европейская ассоциация геологов и инженеров, EAGE, 2019.
  43. 43. Чжаньфан Х., Сяохун Б., Чао Ю. и Яньпин В. Вертикальная несущая способность фундамента из свайного разжижаемого песчаного грунта при горизонтальной сейсмической силе.PLoS ONE, 2020, 15 (3): e0229532. pmid: 32191717
  44. 44. Ли К., Манджунатх В. и Дэвайкар Д. Численные и модельные исследования ленточного фундамента, поддерживаемого системой армированного гранулированного грунта и мягкого грунта. Канадский геотехнический журнал, 2011 г., 36: 793–806.
  45. 45. Куриан Н. П., Бина К. С. и Кумар Р. К. Осадка армированного песка в фундаменте. Журнал геотехнической и геоэкологической инженерии, 1997, 123 (9): 818–827.
  46. 46. Зорнберг Дж.Г., Лещинский Д. Сравнение международных критериев проектирования геосинтетических армированных грунтовых конструкций. В: Ochiai et al. (ред.) Ориентиры в укреплении земли, 2003, 2: 1095–1106.
  47. 47. Лещинский Д. О глобальном равновесии при проектировании геосинтетической армированной стены. J. Geotech. Geoenviron. Англ. ASCE, 2009, 135 (3): 309–315.
  48. 48. Ян К.Х. Утомо П. и Лю Т.Л. Оценка подходов к расчету на основе равновесия сил и деформации для прогнозирования нагрузок на арматуру в геосинтетических конструкциях из армированного грунта.j.GeoEng, 2013, 8 (2): 41–54.
  49. 49. Sieira A.C.F. Вытягивание геотекстиля: численный прогноз. Int. J. Eng. Res., 2016, Appl. 6 (11–4): 15–18.
  50. 50. Шарма Р., Чен К., Абу-Фарсах М. и Юн С. Аналитическое моделирование грунтового основания, армированного георешеткой. Геотекстиль и геомембраны, 2009, 27 (1): 63–72.
  51. 51. Лю С. Ю., Хан Дж., Чжан Д. В. и Хун З. С. Комбинированный метод DJM-PVD для улучшения мягких грунтов. Geosynthetics International, 2008, 15 (1): 43–54.
  52. 52. Rowe R.K. и Taechakumthorn C. Комбинированное воздействие PVD и армирования на насыпи на чувствительных к скорости грунтов. Геотекстиль и, 2008, 26 (3): 239–249.
  53. 53. Ван К., Ли Х., Сюн З., Ван К., Су К. и Чжан Ю. Экспериментальное исследование влияния цементирующей арматуры на прочность на сдвиг трещиноватого массива горных пород. PLoS ONE, 2019, 14 (8): e0220643. pmid: 31404074
  54. 54. Ван Ю., Гэ Л., Ченди С., Ван Х., Хан Дж.И Го З. Анализ гидравлических характеристик улучшенных песчаных грунтов с мягкими породами. PLoS ONE, 2020, 15 (1): e0227957. pmid: 31978135
  55. 55. Хан Дж., Покхарел С. К., Ян Х., Манандхар К., Лещинский Д., Халахми И. и др. Характеристики оснований из RAP, армированных геоячейками, на слабом грунтовом полотне при полномасштабных движущихся колесных нагрузках. Журнал материалов в гражданском строительстве, 2011, 23 (11): 1525–1534.
  56. 56. Ван Дж. К., Чжан Л. Л., Сюэ Дж. Ф. и Йи Т. Реакция на осадку неглубоких квадратных фундаментов на песке, армированном георешеткой, при циклической нагрузке.Геотекстиль и геомембраны, 2018, 46 (3): 586–596.
  57. 57. Акинмусуру Дж. О. и Акинболаде Дж. А. Устойчивость нагруженных опор на армированном грунте. Журнал геотехнической и геоэкологической инженерии, 1981, 107 (ASCE 16320 Proceeding).
  58. 58. Чжоу Х. и Вэнь X. Модельные исследования песчаной подушки, армированной георешеткой или геоячейками, на мягком грунте. Геотекстиль и геомембраны, 2008, 26 (3): 231–238.
  59. 59. Бринкгрев Р. Б. Дж. И Вермеер П.A. Конечноэлементный код для анализа грунтов и горных пород. A. A. Balkema, Роттердам, Нидерланды, 1998.
  60. 60. Гольдшейдер М. Истинные трехосные испытания на плотном песке. Практикум по определяющим отношениям для почв, 1982, 11–54. Получено с https://ci.nii.ac.jp/naid/10007804852/
  61. 61. Бринкгрев, Р. Б. Дж., Кумарсвами, С., Свольфс, В. М., Уотерман, Д., Чесару, А., Бонньер, П. Г. и др., 2014 г., Plaxis 2014. PLAXIS bv, Нидерланды.
  62. 62. NAUE GmbH & Co.KG, 2012. https://www.naue.com/naue-geosynthetics/geogrid-secugrid/ (веб-сайт) [10 июня 2020 г.]
  63. 63. Мейерхоф, Г.Г. Предельная несущая способность фундаментов. geotecniadecolombia.com 1963, Получено с http://geotecniadecolombia.com/xtras/ Максимальная несущая способность фундаментов.pdf
  64. 64. Буссинеск, Дж. Применение потенциалов равновесия и движения твердых эластичных материалов, Готье-Виллар, Париж, (1883).
  65. 65.Траутманн К. Х. и Кулхави Ф. Х. Поведение при подъеме и перемещении насыпных фундаментов. Журнал геотехнической инженерии, 1988, 114 (2): 168–184.

Фундаментные дренажи – US Fabrics

Типичная дренажная система жилого фундамента представляет собой комбинацию мелко-гравийной и перфорированной трубы из ПВХ, выводящей в отстойник. Как обнаружили многие домовладельцы, эти системы часто выходят из строя. В результате сниженной дренажной способности возрастает давление воды, и в конечном итоге влага проникает через фундаментную стену или поднимается через трещины в цокольном этаже.

Есть две основные причины отказа: почва мигрирует в дренажный гравий, создавая смесь грязи и породы, которая больше не дренирует эффективно, или дренажная труба раздавливается или забивается.

Эффективное и экономичное решение двух проблем – это спроектированные сборные дренажные панели фундамента, такие как композитные дренажные системы US Fabrics. Сборные дренажные системы (PDS), часто называемые «ямчатыми плитами», состоят из двух элементов: обертывания из геотекстильной фильтрующей ткани и формованного пластикового сердечника.Геотекстильная фильтрующая ткань обеспечивает превосходный поток воды, ограничивая миграцию частиц почвы в сердцевину с углублениями. Сердечник изготовлен из высокопрочного пластика, который выдерживает давление засыпки и нагрузку при установке.

  • Рентабельно
  • Устанавливается быстрее
  • Высокая прочность
  • Устойчивость к раздавливанию
  • Превосходный расход воды
  • 18-21 галлон / минуту / SF
  • Ограничивает перемещение почвы
  • Работает лучше

Полная дренажная система фундамента состоит из двух компонентов: дренажной панели, обычно 200 или 400 дБ США, и US SWD (дренаж воды на стройплощадке).Дренажные панели бывают шириной 4, 6,5 и 8,5 футов и могут быть изготовлены с мембраной для защиты гидроизоляционных материалов. US SWD поставляется в рулонах шириной 6 дюймов и размещается в нижней части системы в качестве замены стандартной трубы из ПВХ. SWD имеет переходники для подключения к стандартной 4-дюймовой трубе, подсоединенной к отстойнику.

По сравнению с традиционными системами фундамента подвала, композитные трапы US Fabrics дешевле, быстрее устанавливаются и работают лучше. Если вы решите установить традиционную систему дренажа фундамента из камня и труб, мы настоятельно рекомендуем вам обернуть всю систему нетканым фильтрующим материалом US 120NW.

Технические характеристики и инструкции по установке можно найти, перейдя по ссылкам ниже.

Влияние предварительного напряжения арматуры георешетки на характеристики песчаного слоя, поддерживающего ленточный фундамент

Авторов: Ахмед М. Элтохами

Аннотация:

В этой статье было проведено экспериментальное и численное исследование для изучения влияния предварительного напряжения арматуры георешетки на соотношение осадки под давлением песчаного пласта, поддерживающего ленточный фундамент.Изучаемые параметры включают глубину фундамента и коэффициент предварительного напряжения для случаев с одним и двумя предварительно напряженными слоями арматуры. Исследование показало, что предварительное напряжение армированного грунта привело к заметному увеличению жесткости усиленного грунта по сравнению с усиленным грунтом без предварительного напряжения. Наилучшая выгода от предварительного напряжения арматуры была получена при увеличении давления покрывающей породы и коэффициента предварительного напряжения. Предварительное напряжение самых верхних слоев двойного армирования приводит к дальнейшему усилению зависимости напряжения и деформации грунта основания.

Ключевые слова: Армирование георешетки, ленточный фундамент, предварительное напряжение, несущая способность.

Цифровой идентификатор объекта (DOI): doi.org/10.5281/zenodo.1339414

Процедуры APA BibTeX Чикаго EndNote Гарвард JSON ГНД РИС XML ISO 690 PDF Загрузок 1208

Артикул:


[1] Гвидо, В.А., Чанг, Д.К., Суини, М.А., “Сравнение плит, армированных георешеткой и геотекстилем”. Канадский геотехнический журнал, 1986, том 23, стр. 435-440.
[2] Етимоглу Т., Ву Дж.Т.Х., Сагламер А. Несущая способность прямоугольных оснований на песке, армированном георешеткой. Журнал геотехнической инженерии, ASCE 120, 1994, Vol. 12. С. 2083-2099.
[3] Адамс. М.Т., Коллин, Дж. Г., Испытания под нагрузкой распределительного фундамента большой модели на геосинтетических основаниях из армированного грунта. Журнал геотехнической инженерии, ASCE 123, 1997, Vol.1. С. 66-72.
[4] Шин E.C., Дас Б.М., «Экспериментальное исследование несущей способности ленточного фундамента на песке, армированном георешеткой». Geosynthetic International, 2000, Vol. 7 нет. 1. С. 59-71.
[5] Ситхарам, Т.Г., Сириш, С., «Модельные исследования закладных круговых оснований на песчаных пластах, усиленных георешеткой». Благоустройство грунта, 2004, т. 8 нет. 2. С. 69–75.
[6] Шукла С.К., Чандра С. Обобщенная механическая модель геосинтетического армированного грунта основания. Геотекстиль и геомембраны, 1994.Vol. 13. С. 531-543.
[7] Ловиса, Дж., Шукла, С. К. и Сивакуган, Н., «Поведение предварительно напряженного слоя песка, армированного геотекстилем, поддерживающего нагруженное круговое основание», Геотекстиль и геомембраны, 2010, т. 28, вып. 1. С. 23-32.
[8] Роу, Р.К., Содерман, К.Л., «Стабилизация очень мягких грунтов с использованием высокопрочных геосинтетических материалов: роль анализа методом конечных элементов», Геотекстиль и геомембраны, 1987. Vol. 6. С. 53-80.
[9] Мадхав, М.Р., Пурошасб, Х.Б., Новая модель геосинтетически усиленного грунта, Компьютеры и геотехника, 1988.Vol. 6. С. 277-290.
[10] Шукла, С.К., Чандра, С., «Исследование реакции оседания сжимаемой системы сжимаемого гранулированного грунта и мягкого грунта, армированной геосинтетическим материалом». Геотекстиль и геомембраны, 1994. Vol. 13. С. 531-543.
[11] Шукла. С.К. Модель фундамента для системы армированный зернистый насыпь – мягкий грунт и ее реакция на осадку. Кандидат наук. кандидатская диссертация, Департамент гражданского строительства, Индийский технологический институт, Канпур, Индия, 1995.
[12] Швашанкар Р. и Джаярадж Дж. «Влияние чрезмерного напряжения арматуры на поведение армированного зернистого грунта, перекрывающего слабый грунт», Геотекстиль и геомембрана, 2014 г., том.42. С. 69-72.
[13] Баламахесвари, М., Илампарути, К., «Характеристики опоры на усиленном грунтовом дне». Труды Индийской геотехнической конференции, 2011, стр.15-17, Кочи.
[14] Дхатрак А.И., Хан Ф.А., «Поведение квадратного фундамента на предварительно напряженном геосинтетическом армированном песке», Международный журнал инженерии и науки (IJES), 2014, Vol. 3. С. 72-83.
[15] Аламшахи, С. и Хатаф, Н. «Несущая способность внецентренно нагруженных ленточных фундаментов вблизи песчаного откоса, армированного геотекстилем», Geotextiles and Geomembrances, 2009, Vol.27, нет. 3. С. 217-226.
[16] Шукла, С.К., и Инь. Дж. Х., Основы геосинтетической инженерии, Тейлор и Фрэнсис, Лондон, 2006.
[17] Дас, Б.М., и Омар, М.Т., «Влияние ширины фундамента на модельные испытания на несущую способность песка с армированием георешеткой». Геотехническая и геологическая инженерия, 1994. Vol. 12. С. 133-141.
[18] Хинг, К.Х., Дас, Б.М., Пури, В.К., Кук, Э.Е., Йен, С.С., «Несущая способность ленточного фундамента на песке, армированном георешеткой», Геотекстиль и геомембраны, 1993, т.12. С. 351-361.
[19] Лат, Г. М. и Сомванши, А. «Несущая способность квадратного фундамента на геосинтетическом армированном песке». Геотекстиль и геомембраны, 2009, том 27, стр. 281-294.
[20] Бригкгрев, Р. Б., Вермеер, П. А., Код конечных элементов для анализа почвы и горных пород (PLAXIS), Руководство пользователя, 1998.
[21] Весич, A.S., “Анализ предельных нагрузок на мелкие фундаменты”, Журнал отдела механики грунтов и оснований Американского общества гражданского строительства, 1973. Том. 99, СМИ, стр.45-73.
[22] Хуанг, C.C., и Менк, Ф.Й., «Эффекты глубокого основания и широкой плиты в армированном песчаном грунте». Журнал геотехнической и геоэнвироментальной инженерии, ASCE, 1997. Vol. 123, № 1, с. 30-36.
[23] Омар, М.Т., Дас, Б.М., Пури, В.К., Йен, С.С., «Максимальная несущая способность фундаментов мелкого заложения на песке с армированием георешеткой». Канадский геотехнический журнал, 1993. Том 30, стр. 545-549.

«Нагрузка-оседание и деформационное поведение геотекстиля, армированного геотекстилем» Шади Ария

Название

Расчетно-деформационные характеристики песчаного грунта, армированного геотекстилем

Название степени

доктор философских наук

Школа

Инженерная школа

Первый советник

Доцент Санджай Кумар Шукла

Второй советник

Доктор Алиреза Мохеддин

Аннотация

В течение последних нескольких десятилетий было проведено множество исследований по изучению поведения осадки геосинтетических оснований, и исследователи предложили различные методы для улучшения характеристик геосинтетических грунтов основания, а также для разработки эмпирических уравнений для оценки их несущая способность.В недавнем прошлом было рекомендовано использование геотекстильного армирования с огибающими концами для укрепления грунта основания с целью повышения эффективности использования геосинтетического армирования. Однако есть области, которым в прошлом уделялось слишком мало внимания, например оптимальные геометрические параметры в геосинтетически армированных песчаных грунтах с применением или без использования техники кругового армирования. Оптимальная конструкция и эффективность использования геосинтетического материала для укрепления грунта основания требуют обширных знаний о поведении при оседании нагрузки и механизме разрушения укрепленных грунтов.

В этой диссертации представлены обширные лабораторные измерения и численный анализ, проведенный для (i) исследования влияния угла внутреннего трения грунта на оптимальную глубину залегания арматуры и несущую способность геосинтетического армированного песчаного грунта на основе численного моделирования, ( ii) изучить влияние геометрических параметров арматуры, а именно ширины площадки, занимаемой арматурой, и длины нахлеста обернутых концов, на основе численного моделирования; (iii) представить экспериментальные оценки эффективности техники огибающей арматуры для улучшения несущей способности характеристики прочности и осадки песчаных грунтов, а также (Дас и Сивакуган) изучают распределение деформации и мобилизацию модуля упругости в геотекстильной арматуре, заложенной в песчаном грунте.На экспериментальной стадии были проведены испытания лабораторной модели ленточного фундамента для исследования влияния длины огибающего нахлеста и ширины занимаемой земли на поведение песчаного грунта при оседании нагрузки. Кроме того, была разработана программа контрольно-измерительных приборов с датчиками давления и тензодатчиками для исследования распределения напряжений и деформаций в песчаном пласте. Результаты испытаний показывают, что наличие огибающих концов геотекстильной арматуры улучшает несущую способность песчаного слоя примерно на 70% по сравнению с армированным грунтом основания без огибающих концов.Наблюдения за распределением деформации показывают, что теоретическое решение может завышать предел прочности геотекстиля на 30-60%, что может быть связано с изолированными методами, используемыми стандартами для измерения модуля упругости геосинтетических материалов.

На этапе численных расчетов сначала была построена численная модель для исследования влияния угла внутреннего трения песка на оптимальную глубину залегания геосинтетической арматуры. Численные результаты показывают, что оптимальная глубина заглубления существенно зависит от угла внутреннего трения песка и имеет линейную зависимость от высоты активного клина под основанием.На втором этапе было проведено параметрическое исследование техники огибающего армирования для изучения влияния геометрических параметров огибающей арматуры на несущую способность песчаного грунта. Модель была использована для критического анализа усиливающих механизмов для улучшения несущей способности, вызванной огибанием концов. Результаты показывают, что эффективность усиленных моделей с огибающими концами с точки зрения занимаемой площади примерно на 100% выше, чем у моделей без огибающих концов.Исследование, проведенное, как представлено в этой диссертации, демонстрирует, что метод геосинтетического армирования может быть очень полезным в местах с ограниченной шириной земли для строительства фундамента.

Публикации по теме

Ария, С. и Шукла, С.К. (2017). Влияние угла внутреннего трения песчаного грунта на несущую способность ленточного фундамента, опирающегося на грунт, армированный георешеткой. Труды Международной конференции по устойчивой практике гражданского строительства, 2-3 марта 2017 г., Чандигарх, Индия, стр.96-106 . https://ro.ecu.edu.au/ecuworkspost2013/5921

Ария, С., Шукла, С. К., и Мохеддин, А. (2021 г.). Поведение песчаного грунта, армированного геотекстилем с частично или полностью обернутыми концами. Труды Института инженеров-строителей – Благоустройство территории, 174 (1), 29-41 DOI: 10.1680 / jgrim.18.00102. https://ro.ecu.edu.au/ecuworkspost2013/9733

Ария, С., Шукла, С. К., и Мохеддин, А. (2018). Оценка несущей способности геосинтетического грунта основания на основе концепции увеличенного угла внутреннего трения.P из материалов 11-й Международной конференции по геосинтетике, Сеус, Южная Корея, 16-22 сентября 2018 г., PP-1-02. п. 1-8. https://ro.ecu.edu.au/ecuworkspost2013/5922/

Ария, С., Шукла, С. К., и Мохеддин, А. (2019). Численное исследование технологии геотекстильного армирования для усиления грунта фундамента. Международный журнал геомеханики, 19 (4). Doi: 10.1061 / (ASCE) GM.1943-5622.0001361 https://ro.ecu.edu.au/ecuworkspost2013/5633/

Ария, С., Шукла, С. К., & Мохеддин, А. (2017). Оптимальная глубина залегания геосинтетического армирования в песчаном пласте на основе численных исследований. Международный журнал геотехнической инженерии, 1-9. DOI: 10.1080 / 19386362.2017.1404202 https://ro.ecu.edu.au/ecuworkspost2013/5920

Ария, С., Шукла, С. К., и Мохеддин, А. (2019). Поведение при растяжении геотекстильной арматуры в песчаной почве, поддерживающей нагруженное основание. Géotechnique Letters, 9 (1), 59-65. DOI: 10.1680 / jgele.18.00169 https://ro.ecu.edu.au/ecuworkspost2013/6149/

Access Note

Доступ к этой диссертации запрещен до 3 августа 2022 года.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *