Горит ли пенопласт: Горит ли пенопласт? | Delo1

Содержание

Шесть мифов о пенопласте

Мифы о пенополистироле (он же пенопласт) не просто не соответствуют действительности – они ложны. Неправильное обращение с газом иногда приводит к взрывам, но можно ли обвинять в этом газ? Неосторожность – причина тысяч смертей на дорогах, но не переставать же пользоваться из-за этого транспортными средствами?  

 

Миф первый: пенополистирол хорошо горит

Действительно, пенополистирол, как и любые материалы с полимерными добавками, является горючим материалом. Однако правильное использование с выполнением всех существующих правил монтажа и эксплуатации, требований пожарной безопасности позволяют успешно применять его в строительстве.

Температура самовозгорания пенополистирола +491 ºС. Это в 2,1 раза выше, чем температура возгорания бумаги (+ 230 ºС), и в 1,8 раза выше, чем у древесины (+260 ºС). Тепловой энергии, при горении, пенополистирол выделяет от 1000 до 3000 МДж/кг.

Для сравнения, при горении сухой древесины выделяется 7000-8000 МДж/м3. Таким образом, пенополистирол дает незначительное повышение температуры в отличие от других, участвующих при пожаре материалов (мебель, линолеум и т. д.). При соблюдении правил противопожарной безопасности пенопласт марки ПСБ-С менее опасен, чем другие широко распространенные строительные материалы.

 


 

Миф второй: недолговечность пенопласта

 

Вопрос о долговечности пенополистирола также волнует строителей. Производство пенополистирола началось только в 50-х годах, поэтому говорить о том, что его долговечность проверена временем, конечно, пока еще рано. Но заключение ученых испытательной лаборатории НИИСФ уже в наши дни свидетельствует о том, что «пенополистирольные плиты успешно выдержали циклические испытания на температурно-влажностные воздействия в количестве 80 условных лет эксплуатации в многослойных ограждающих конструкциях с амплитудой воздействий ± 40° С».

 

 

Миф третий: опасность для здоровья и окружающей среды

Пенополистирол абсолютно не токсичен, им можно пользоваться без каких бы то ни было опасений. Это подтверждается и тем, что уже на протяжении многих лет его используют для изготовления продовольственных упаковок, предполагающих прямой контакт с пищевыми продуктами. Также и в строительстве, пенополистирол – безопасный изолятор, который может быть использован без риска и принятия дополнительных мер безопасности. В составе пенополистирола нет никаких опасных, ядовитых, токсичных веществ, за все время его использования не потребовалось никаких дополнительных средств защиты (например, респираторных масок или перчаток). Не было зарегистрировано ни одного случая профессионального заболевания, связанного с пенополистиролом.

Пенополистирол эффективно противостоит оседанию (уплотнению) и гарантирует долговечность своих теплоизоляционных свойств. Столь хорошее положение дел объясняется природой пенополистирола: обладая инертной структурой, пенополистирол биологически нейтрален и устойчив на протяжении многих лет. В окружающей нас среде, мономерный стирол можно найти в смолах растений, а также в продуктах питания как земляника, фасоль, орехи, пиво, вино и т.д. Не содержащий никакого другого газа кроме воздуха, пенополистирол гарантирует отсутствие возникновения аллергий или скрытых болезней.


Миф четвертый: пенопласт едят грызуны

Самый простой способ выяснить этот вопрос для себя – дать какому-нибудь грызуну шарики пенополистирола или часть плиты. Уверяем Вас – есть этот «деликатес» никакой грызун не будет.Вопрос в том, что грызуны, особенно домовые мыши, уже давно стали постоянными спутниками жизни людей. Для них уже нет преград на пути к жилищу человека. Будь Ваш дом утеплен пенополистиролом или состоять только из кирпича для них нет никакой разницы. Надеяться и ждать, что грызуны уйдут самостоятельно? С ними необходимо бороться, уменьшая тем самым их численность. Поэтому не надо бояться, что мыши съедят пенопласт, нужно бороться с мышами – разносчиками страшных болезней.


 

Миф пятый: стены утепленные пенополистиролом не «дышат»

Естественный процесс циркуляции и испарения влаги идет внутри любого помещения. Стены дома похожи на многослойный пирог, и если внешний слой отделки стены имеет больший уровень паропроницаемости чем внутренний, то возникает непроходимость пара и оседание его на более плотной части стены.Типичные внешние стены не в состоянии, даже частично, заменить вентиляцию в роли устранения водяного пара из помещений, поскольку объемы водяного пара многократно выше от того его количества, которое в действительности может проникнуть через внешние стены жилища, даже если отказаться от их утепления пенопластом.


 

Миф шестой: пенопласт плохой звукоизоляционный материал

Обладая рядом одинаковых свойств, звукопоглощающие и звукоизоляционные материалы все же различаются, как по акустическим свойствам так и по назначению. Звукопоглощающие материалы и конструкции из них предназначены для поглощения падающего на них звука, а звукоизоляционные – для ослабления звуковых волн, передающихся через конструкции здания из одного помещения в другое.

Звукоизолирующие материалы применяются как упругий прокладочный материал в междуэтажных перекрытиях и стеновых панелях для изоляции отдельных помещений от возникающего в них структурного и, в частности, ударного звука. Структурный звук, вызываемый шагами, ударами или передвижением мебели или вибрациями какого либо механизма, легко распространяется в не имеющих звукоизоляционных прокладок перекрытиях, стенах и перегородках с очень не большим затуханием. Пенополистирол действительно плохой звукопоглотитель, но звукоизоляционный материал из него замечательный. Звукоизоляция перегородки с пенополистиролом 50мм -Rw=41Дб (испытания проводились по ГОСТ 27296-87 Защита от шума в строительстве. Индекс улучшения изоляции структурного шума в конструкции пола =23Дб (испытания проводились по ГОСТ 16297-80).

 


 

ИТОГ: Совокупность данных свойств позволяют применять пенополистирол в различных областях строительства. Пенополистирол – идеальный материал для термоизоляции стеновых панелей, перекрытий, подвалов, кровель, а также для дорожного строительства,

 

Посмотрите – как горит пенопласт

 

И что теперь, со спичками в кармане идти в магазин за пенопластом? Да, именно так!

 

Все мое время сейчас уходит на подготовку релиза нового курса «Мобильный подъемник с лесами» и, похоже, я уже порядком поднадоел Вам, носясь со своей железкой – в случае, если для Вас главное – конструкция дома, а не механизация работ при его постройке.

Сегодня – немного отойдем от темы «железного помощника» при постройке дома и вернемся к стенам дома.

Как Вы знаете, конструкция стен по технологии «Сам себе дом 2.0» выполнена с применением в качестве утеплителя пенополистирола. Ко мне не перестают приходить письма с возгласами такого плана:

«Никогда не забуду «Хромую лошадь»!»

«Не хочу жить в пороховой бочке!»,

т.е. людей волнует, в том числе и горючесть пенопласта.

Что касается «Хромой лошади» — пусть это останется на совести распространителей мифов о горючести пенопласта путем спекуляций на броском примере «Хромой лошади».

Как Вы знаете, пенополистирол вспененный бывает горючим – марки ПСБ (его эпоха практически – в прошлом) и самозатухающим – марки ПСБ-С.

Пенопласт, который был применен в «Хромой лошади», был именно горючим, т.е. марки ПСБ (по заключению комиссии по расследованию трагедии).

Такой пенопласт практически сейчас не выпускается именно по причине его горючести. А если и выпускается, то только недобросовестными производителями. Он горит, почти как бумага.

И у нас в Сургуте пару лет назад при постройке огромного Ледового Дворца сгорела стена, утепленная, как показала комиссия по расследованию, тоже горючим пенополистиролом – ПСБ, а не ПСБ-С – самозатухающим.

Выяснять — где брали для обоих этих объектов такой пенопласт и сколько получили «на лапу» — дело правоохранителей

.

А что же делать нам, простым застройщикам, где брать самозатухающий ПСБ-С пенопласт.

Посмотрите это коротенькое видео, как я пытался поджечь тот пенопласт (ПСБ-С!), который мы используем при постройке внучкиного дома.

 

 

И что теперь, со спичками в кармане идти в магазин за пенопластом?

Да, именно так!

В магазине Вы просите показать Вам пенопласт, отщипываете от него кусочек, отходите в укромное безопасное место, чтобы не спалить магазин, и тестируете его на самозатухание.

Только тогда у Вас будет железобетонная уверенность в правильности Вашего выбора!

Ну вот, со стенами дома помаленьку приходит ясность.


В конце – не удержусь — напомню, что подходит к концу создание нового курса — “Мобильный подъемник с лесами”, который станет неплохим железным помощником при постройке любого дома (в т.ч. и по курсу «Сам себе дом 2.0″).

Более выгодной цены для приобретения этого курса, чем здесь: http://17.sam-sebe-dom.com/index.html — не будет.

Эта запредельно-низкая цена продержится только до релиза, который состоится на днях – идут окончательные доработки.

 

Успехов Вам!

С уважением, Сергей Лапко.

Твитнуть

Пенопласт горит на территории пивного завода в Петербурге

https://ria.ru/20121219/915400301.html

Пенопласт горит на территории пивного завода в Петербурге

Пенопласт горит на территории пивного завода в Петербурге – РИА Новости, 29. 02.2020

Пенопласт горит на территории пивного завода в Петербурге

Сообщение о возгорании в административно-производственном разноуровневом здании на территории Комбината Степана Разина, расположенного на улице Степана Разина, 9, поступило в 09.50. Пожар тушили по первому, самому легкому номеру сложности.

2012-12-19T12:00

2012-12-19T12:00

2020-02-29T18:44

/html/head/meta[@name=’og:title’]/@content

/html/head/meta[@name=’og:description’]/@content

https://cdn22.img.ria.ru/images/sharing/article/915400301.jpg?1582991040

санкт-петербург

европа

северо-западный фо

весь мир

россия

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

2012

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

Новости

ru-RU

https://ria. ru/docs/about/copyright.html

https://xn--c1acbl2abdlkab1og.xn--p1ai/

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

происшествия, санкт-петербург, россия

12:00 19.12.2012 (обновлено: 18:44 29.02.2020)

Сообщение о возгорании в административно-производственном разноуровневом здании на территории Комбината Степана Разина, расположенного на улице Степана Разина, 9, поступило в 09.50. Пожар тушили по первому, самому легкому номеру сложности.

Мифы об утеплении стен пенопластом

Фасад после утепления пенопластом «не дышит»

Стоит начать с того, что технического понятия «дышащей стены» не существует в природе. Данный термин был вырван из контекста научной публицистики, после чего на широкую аудиторию. Понятно, что стена «дышать» не может по определению. Если дом и требует «дыхания», то только на уровне качественно обустроенной вентиляции. «Дыхание» стен дает не больше 0,5-3 процентов от общего воздухообмена в жилых помещениях. Все остальное обеспечивает вентиляционная система. Так что, даже если у вас будет «сверхдышащая» стена, она не сможет в полной мере заменить вентиляцию в вашем доме.

Ну а что касается «дыхательных возможностей», утеплителя, то это и вовсе взаимоисключающие понятия. Если материал наделяется изоляционными свойствами и характеристиками (в нашем случае – теплоизоляционными), то его «дыхание» будет их существенно снижать, что является просто напрасной тратой денег на утепление. Вы и без того получите качественный поток воздуха, использующегося для вентиляции фасада, который будет поступать на конструкцию благодаря воздушным прослойкам между боковыми стыками, пенопластом и фасадом. И никакого конденсата возникать не будет.

Пенопласт хорошо горит

Качественный пенопласт или пенополистирол не поддерживает горение благодаря антипиренам в составе. Используя утеплитель правильно, соблюдая требования монтажа и последующей эксплуатации, а также не пренебрегая противопожарными нормами, то риск возгорания пенопласта в системе сводится к минимальным значениям. Помните, что горючесть пенопластовых плит определяется не столько характеристиками самого материала, сколько его сочетанием с другими материалами системы утепления, равно как и наличием требуемых защитных слоев.

Ну а в подтверждение своих слов о пожарной безопасности пенопласта приведем следующий факт. Чтобы пенополистирол воспламенился, необходимо воздействовать на него температурой от 491 градуса по Цельсию. Чтобы начала гореть древесина, потребуется температура +260 градусов. Бумага горит при +230 градусах. И так далее. Учитывайте еще и тот факт, что пенопласт при горении будет выделять не больше 1000-3000 МДж/м3 тепловой энергии, тогда как для древесины этот показатель составляет около 8000 МДж/м3. К тому же, современные производители пенопластовых утеплителей включают в состав своей продукции особые добавки, резко уменьшающие степень горючести материала. Так что, пенопласт если и воспламенится, то открытого пламени вы не увидите.

Пенопласт не отличается долговечностью

Первые пенопластовые плиты начали производиться в массовом порядке в середине прошлого века. Несколько лет назад были сняты пенополистирольные плиты компании BASF с фасада здания в Европе. Они стали первым доказательством долговечности пенополистирола, что можно увидеть на фотографиях ниже. Эти плиты были на фасаде 75 лет!. У современного пенопласта есть только два внешних врага. Первый – это ультрафиолетовое излучение. Второй – это механическое воздействие. И от того, и от другого, можно спастись при помощи покрытия пенопласта армирующей сеткой, с последующим нанесением таких облицовочных материалов.

Мифы и правда о пенопласте

Пенопласт имеет хорошие эксплуатационные характеристики и является достойным конкурентом всех современных утеплителей. Однако существует много мифов об этом материале, которые не дают понять, что правда, а что нет.

Рассмотрим основные:

  • Пенопласт хорошо горит. Как и любой другой материал с полимерными добавками, он горюч. Однако правильный монтаж и эксплуатация этого утеплителя позволяют успешно использовать его в строительстве на протяжении многих десятилетий. Все материалы делятся на 4 группы: Г4 (сильногорючие), Г3 (нормальногорючие), Г2 (умеренногорючие), Г1 (слабогорючие). При определенной обработке снизить степень горючести пенопласта можно до Г3, Г2 и даже Г1. Нельзя не заметить тот факт, что степень горючести более популярной минеральной ваты составляет Г4.
  • Недолговечность пенопласта. Этот вопрос уже много лет волнует строителей. Пенопласт начали изготавливать лишь в 50-е годы прошлого века, поэтому пока оценить его реальный срок службы довольно сложно. Однако последние исследования ученых говорят о том, что пенопласт успешно прошел испытания на влажностно-температурные воздействия в течение 80 условных лет эксплуатации в ограждающих многослойных конструкциях с амплитудой воздействий ± 40 °С.
  • Пенопласт препятствует естественному воздухообмену в помещении. Естественная циркуляция и испарение влаги происходят внутри любого помещения. Внешние стены построек, вне зависимости от того, из какого материала они выполнены, не могут заменить вентиляцию и самостоятельно устранять весь водяной пар из помещений. Объемы водяного пара внутри постройки серьезно превышают количество, проникающее через внешние стены жилища, даже если не утеплять их пенопластом.
  • Пенопласт — плохой звукоизолятор. Часто звукопоглощение путается со звукоизоляцией, однако в строительстве это совершенно разные понятия. Звукоизоляционные материалы ослабляют звуковые волны, передающиеся через конструкции строения из одного помещения в другое. С этой задачей пенопласт отлично справляется, что доказывают многочисленные испытания материала.

Даже такой неполный список мифов о пенопласте позволяет сделать вывод, что большинство из них является заблуждением. Пенопласт является идеальным утеплителем для стеновых панелей и перекрытий, кровель, подвалов, дорог, резервуаров, холодильных камер и промышленных ангаров, что доказывает многолетний опыт успешного применения этого материала.

ООО «Пенопластик-опт» предлагает приобрести пенопласт для различных нужд на выгодных условиях. Звоните!


Пенопласт имеет хорошие эксплуатационные характеристики и является достойным конкурентом всех современных утеплителей. Однако существует много мифов об этом материале, которые не дают понять, что правда, а что нет.

Возврат к списку

Свяжитесь с нами. Заполнение формы займет не более 1 минуты.

характеристики и вся правда об утеплителе + Фото и Видео

Отопление квартиры в зимнее время обходится нам ой как недешево, а цены на энергоносители с каждым годом непомерно растут. И очень жаль, когда столь дорого обходящееся тепло бесполезно уходит из квартиры наружу. Причем потери эти просто огромны. Впрочем, есть неплохой способ их снизить: обшивание наружных стен дома пенополистирольными, плитами. Этот знакомый всем полистирол характеристики в плане теплоизоляции имеет весьма примечательные. Но так ли хороши его остальные свойства? Сегодня мы об этом расскажем.

О свойствах пенополистирола – подробно и доступно

О теплопроводности

Пенополистирол представляет собой не что иное, как множество пузырьков воздуха, заключенных в тоненькие оболочки из полистирола. При этом соотношение таково: два процента полистирола, остальные девяносто восемь – воздух.

В результате получается некое подобие твердой пены, отсюда и название – пенополистирол. Воздух герметично запаян внутри пузырьков, благодаря чему материал отлично удерживает тепло. Ведь известно, что воздушная прослойка, находящаяся без движения – великолепный теплоизолятор.

По сравнению с минеральной ватой коэффициент теплопроводности у данного материала ниже. Он может иметь значение от 0,028 до 0,034 ватта на метр на Кельвин. Чем плотнее пенополистирол, тем больше значение его коэффициента теплопроводности. Так, для экструдированного пенополистирола, имеющего плотность 45 килограммов на кубометр, этот параметр составляет 0,03 ватта на метр на Кельвин. При этом имеется в виду, что окружающая температура не выше +75% 0С и не ниже -50 0С.

О паропроницаемости и поглощении влаги

Экструдированный пенополистирол имеет нулевую паропроницаемость. А характеристики вспененного пенополистирола, который изготавливается особым образом, иные. Его паропроницаемость варьируется от 0,019 до 0,015 килограмма на метр-час-Паскаль. Это кажется странным, так как, по идее, подобный материал с пенной структурой пар пропускать не способен.

Ответ прост – формовка вспененного пенополистирола производится путем разрезания большого блока на плиты необходимой толщины. Вот и проникает пар через разрезанные вспененные шарики, забираясь внутрь воздушных ячеек. Экструдированный пенополистирол, как правило, не режут, плиты выходят из экструдера уже с заданной толщиной и гладкой поверхностью. Поэтому для проникновения пара этот материал недоступен.

Что касается впитывания влаги, то если погрузить лист вспененного пенополистирола в воду, он впитает ее до 4 процентов. Плотный пенополистирол, изготовленный методом экструзии, останется практически сухим. Он вберет в себя воды в десять раз меньше – всего лишь 0,4 процента.

Видео. Пенополистирол дышит

О прочности

Тут пальма первенства принадлежит экструдированному пенополистиролу, у которого связь между молекулами весьма крепкая. По прочности статического изгиба (от 0,4 до 1 килограмма на квадратный сантиметр) он заметно превосходит рядовой вспененный пенополистирол (его прочность лежит в пределах от 0,02 до 0,2 килограмма на квадратный сантиметр). Поэтому в последнее время вспененного пенополистирола, вырабатывается всё меньше, так как он менее востребован. Метод экструзии позволяет получить более современный материал для изоляции, прочный и влагостойкий.

Чего боится пенополистирол

Пенополистирол никак не реагирует на такие вещества, как сода, мыло и минеральные удобрения. Он не взаимодействует с битумом, цементом и гипсом, известью и асфальтовыми эмульсиями. Нипочем ему и грунтовые воды. А вот скипидар с ацетоном, некоторые марки лаков, а также олифа способны не только повредить, но и полностью растворить этот материал. Растворяется пенополистирол и в большинстве продуктов, получаемых путем перегонки нефти, а также в некоторых спиртах.

Вот только не любит пенопоплистирол (ни вспененный, ни экструдированный) прямых солнечных лучей. Они его разрушают – при постоянном ультрафиолетовом облучении материал становится сначала менее упругим, теряя прочность. После этого дело разрушения довершают снег, дождь и ветер.

Видео. Пенопласт и ацетон – химический опыт

О способности поглощать звуки

Если надо спастись от излишнего шума, пенополистирол стопроцентно не поможет. Ударный шум он несколько приглушить в состоянии, но лишь при условии, что будет проложен достаточно толстым слоем. А вот воздушные шумы, волны которых распространяются по воздуху, пенополистиролу не по зубам. Таковы особенности конструкции и свойства пенополистирола – жестко расположенные ячейки с воздухом внутри оказываются полностью изолированными. Так что для звуковых волн, летящих по воздуху, надо ставить преграды из других материалов.

О биологической устойчивости

Как выяснилось, плесень на пенополистироле жить не способна. Это подтверждено американскими учеными, которые в 2004 году провели ряд лабораторных исследований. Данные работы были заказаны фирмами-производителями пенополистирола из США. Результат их полностью удовлетворил.

Вся правда о безвредности, негорючести и долгом сроке службы

Полистирол способен служить много лет, не теряя своих свойств – испытания показали, что его можно многократно размораживать и замораживать, и качество материала при этом не страдает. Данный материал не подвержен горению, так как в его состав входят специальные вещества – антипирены. Всё это кажется совершенно правильным и неоспоримым, но лишь на первый взгляд. Есть несколько нюансов. О них поговорим далее.

Вопрос экологии

К сожалению, на воздухе пенополистирол окисляется. Причем вспененный пенополистирол, имеющий более рыхлую структуру, сильнее подвержен этому процессу. Экструдированный материал окисляется медленнее, но и его ждет та же участь. Только что уложенный пенополистирол еще и стирол выделяет, так как полная полимеризация материала невозможна на стадии производства. А пока полимеризация не будет завершена, выделение стирола не прекратится.

Производители пытаются оспорить информацию про вредность пенополистирола. Они говорят, что их продукция менее вредна, чем дерево. Имеется в виду выделение деревом вредных веществ при горении. Действительно, при горении пенополистирола образуется двуокись углерода, окись углерода и сажа. Но если пенополистирол нагреть до температуры, превышающей 80 градусов, то происходит выделение паров вредных веществ. В них содержатся пары: стирола, толуола, этилбензола, бензола и оксида углерода. 

Вопрос горючести

На самом деле любой пенополистирол горит. Лукавят производители, заявляя, что он затухает самостоятельно, являясь менее опасным, чем дерево – увы, это не так. Подобное заявление явно противоречит российскому ГОСТу 30244-94, по которому пенопласты по горючести причислены к группам Г3 и Г4 – самым опасным.

Одним из способов извратить факты является эффектное подвешивание пенополистирольной плиты в воздухе, а затем ее поджигание. Для этого на плиту воздействуют снизу зажженной горелкой. Результат говорит сам за себя – выгорает только тот кусочек, который находился в контакте с горелкой, а далее огонь не идет.

Но ведь этот опыт никак не соответствует реальным условиям эксплуатации, и может служить лишь в качестве фокуса. А вот если на плоскость из негорючего материала положить кусок пенополистирола и поджечь, она вовсе не потухнет. Ведь раскаленные капли пенополистиролы, образующиеся при нагревании небольшого кусочка, перенесут огонь на всю его поверхность. Результат не заставит себя ждать – плита сгорит полностью.

Если взять пенополистирол, не включающий в себя антипирены, то его коэффициент образования дыма равен 1048 квадратных метров на килограмм. У пенополистирола с эффектом самозатухания этот показатель больше – 1219 квадратных метров на килограмм. У резины, например, он составляет 850 квадратных метров на килограмм, а у дерева и того меньше – всего 23 квадратных метра на килограмм. Чтобы было понятнее, приведем такие цифры: если задымленность в комнате более 500 квадратных метров на килограмм, то, вытянув руку, можно не увидеть ее пальцев.

Антипирены (чаще всего гексабромциклододексан) добавляют в пенополистирол для увеличения его пожаробезопасности. У нас в стране принято обозначать такой пенополистирол буквой «С». Это должно, по идее, означать, что материал обладает свойством затухать самостоятельно. Но на практике выясняется, что пенополистирол с антипиреном горит ничуть не хуже, чем не содержащий этой добавки. Он лишь загорается хуже, не делая этого самопроизвольно при повышенной температуре. Класс его горючести – Г2, но через несколько лет он превращается в Г3 или Г4 – свойства антипирена со временем ухудшаются.

Однако, следует отметить, что пенополистирол в строительных конструкциях никогда не применяется в открытом виде. Поверх этого материала всегда наносится фасадная штукатурка или монтируется стяжка. Поэтому строительные конструкции, в состав которых входит пенополистирол являются пожаробезопасными.  

Вопрос срока службы

Если правильно эксплуатировать пенополистирол, закрывая его сверху штукатуркой или другим защитно-декоративным слоем, то он прослужит лет 30, не меньше. Правда, на деле всё оказывается не так радужно – то мастера слепят теплоизоляцию наскоро кое-как, то заказчик постарается сэкономить за счет материалов, то неопытный мастер ошибок наделает при монтаже пенополистирольных плит.

Одна из таких ошибок – неправильный расчет толщины утеплителя. Многим кажется, что если взять толстую тридцатисантиметровую плиту пенопласта, то она и прослужит дольше, и в доме теплее будет. Но это не так – материал большой толщины от перепадов температуры пойдет трещинами и волнами, под которые будет проникать холодный воздух. Надо заметить, что в Европе принята норма – утеплять дома снаружи пенополистиролом не более 3,5 сантиметра. толщиной. Это позволяет во время пожара уменьшить опасность отравления.

Как безошибочно выбрать пенополистирол

Пенополистирол является одним из самых популярных строительных материалов. Он легкий, теплый и дешевый, а работать с ним очень просто. Так как спрос велик, то и предложений от производителей появляется всё больше. И каждый из них уверяет, что именно его пенополистирол – самый лучший, а с качеством выше всяких похвал.

1. Теряясь от бесчисленного числа предложений, не спешите покупать материал. Сначала внимательно изучите его параметры. Если вам надо утеплить фасад, берите пенополистирол ПСБ-С, позиционирующийся как самозатухающий. Марка его должна быть не ниже сороковой. А если марка имеет число 25 и менее, то и не смотрите в сторону такого материала – он разве что для упаковки годится, но никак не для строительных работ.

2. При покупке материала проверяйте по каким стандартам он изготовлен. Если производитель изготавливает продукцию не по ГОСТ, а по собственным ТУ, то характеристики материла могут отличаться. Например пенополистирол ПБС-С-40 (сороковой марки) может иметь различную плотность – от 28 до 40 килограммов на кубический метр.

Изготовителю выгодно таким образом вводить покупателя в заблуждение – на производство пенополистирола меньшей плотности уходит меньше средств. Поэтому нельзя ориентироваться лишь на число в названии марки, а надо попросить показать документы подтверждающие технические характеристики пенополистирола.

3. Перед покупкой попробуйте отломить кусочек материала с самого края. Если это окажется низкосортный упаковочный пенопласт, то он разломается с неровным краем, по бокам которого будут видны круглые маленькие шарики. Материал же, полученный методом экструзии, на месте аккуратного разлома имеет правильные многогранники. Линия разлома будет проходить через некоторые из них.

4. Что касается производителей пенополистирола, то лучшими из них являются европейские фирмы «Polimeri Europa», «Nova Chemicals», «Styrochem», «BASF». Не отстают от них и российские компании-производители, такие, например, как «Пеноплэкс» и «Технониколь». Они имеют мощность производства, которой вполне хватает для изготовления пенополистирола весьма высокого качества.

Заключение

Хотя пенополистирол, как выяснилось, горючий материал и выделяет при сильном нагревании вредные вещества, он остается одним из самых востребованных теплоизоляторов. Ведь как утеплитель, пенополистирол имеет массу преимуществ: он самый дешевый, легко режется обычным ножом, почти не впитывает влагу и хорошо держит тепло. Не зря четыре европейских здания из пяти имеют именно пенополистирольное утепление фасада. Причем как жилые дома, так и офисы, и производственные помещения.

Правда, говорить о длительных исследованиях данного материала пока рано – еще и полвека не прошло с начала его использования. Поэтому те, кто говорят о сроке службы пенополистирола более 80 лет, могут подтвердить свои слова только испытаниями в лабораторных условиях. Но им стопроцентно верить не стоит – ведь для того, чтобы получить нужные результаты, можно особые образцы в лабораторию отправить.

Самое главное при эксплуатации пенополистирола во внешней среде – надежно укрыть его от солнечных лучей и атмосферных воздействий. Для этого надо использовать штукатурную смесь, в состав которой входит цемент. Покрытие следует накладывать плотно, не должно остаться ни одного просвета. Иначе крохотный солнечный лучик может со временем полностью разрушить теплоизоляцию.

А вот внутри пенополистирол для утепления применять не стоит, что бы ни утверждали производители. Пусть себе говорят, но ведь в случае пожара их рядом не окажется, а вот продукты горения могут причинить огромный вред, унося здоровье, а порой даже жизни людей. Примером может быть всем известная трагедия в клубе Хромая лошадь, где большинство посетителей просто задохнулись продуктами горения данного утеплителя.

Видео. Пенополистирол – плюсы и минусы

Если вы заметили ошибку, не рабочее видео или ссылку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Утепление дома пенопластом под сайдинг — Docke.Ru

Популярное решение теплоизоляции дома — установка пенопласта под виниловый сайдинг. Технология обеспечивает одновременно и тепло, и привлекательный внешний вид здания. Процесс монтажа плит из пенопласта требует минимальных усилий.

Что представляет собой пенопласт

Для теплоизоляции под сайдинг используется специальный фасадный пенопласт. Это достаточно жесткие плиты экструдированного пенополистирола — полимерного материала, состоящего из небольших ячеек закрытого типа. Он практически совсем не проводит тепло, не впитывает влагу, не горит и очень прочен на сжатие.

В качестве утеплителя под сайдинг подходят пенопластовые плиты толщиной 5 см и плотностью от 25 кг/м3, что соответствует 30-сантиметровой кирпичной стене.

Одно из преимуществ пенопласта — удобство монтажа. Плиты легко режутся ножом и хорошо держат форму, что позволяет приклеивать их или прибивать к стене дюбелями. Как видим, экструдированный пенополистирол вполне подходит в качестве утеплителя под сайдинг. Единственным существенным недостатком является ограниченный срок службы: если сайдинговые панели «Дёке» служат до 50 и более лет, то пенопласт — вдвое меньше.

Как утеплить дом пенопластом: порядок работ

Для утепления здания с помощью винилового сайдинга и пенопласта лучше выбрать теплую сухую погоду, хотя допускается выполнение работ в любое время года, в том числе зимой (при температуре не ниже -10 С). Важно проследить лишь за тем, чтобы под сайдинговые панели не попала влага — она приведет к образованию грибка и плесени.

Подготовка

Фасад очищают от мусора и выступающих элементов строительных конструкций (водостоков, наличников, фонарей и т. д.). Выравнивать стену не требуется, поскольку монтаж утеплителя производится на каркас, который выставляется по уровню и сглаживает неровности.

Обрешетка

Далее на стену прибивается каркас — обрешетка из деревянного бруса или металлопрофиля. Чаще всего, используется дерево — оно дешевле, легче, а при правильном монтаже и изоляции способно служить достаточно долго (сроки службы бруса в условиях нормальной влажности и пенопласта сопоставимы).   Дерево обязательно должно пропитываться антисептическим и огнеупорным составами.

Толщина брусков подбирается строго по толщине пенопласта, а шаг между профилем должен соответствовать ширине плит. Если сайдинг горизонтальный, профиль устанавливают вертикально, и наоборот. Крепление происходит традиционным способом, с помощью дюбелей и шурупов. Дополнительные рейки монтируются вокруг дверных и оконных проемов.

Монтаж пенопласта

В подготовленную обрешетку вставляются пенопластовые плиты, они фиксируются посредством клея и закрепляются шурупами-зонтиками. Швы обрабатываются строительной смесью, для лучшей изоляции. Иногда пенопласт дополнительно заштукатуривают с использованием армированной сетки.

В ряде случаев пенопластовые плиты укладывают в два слоя — соответственно, каркас будет вдвое выше, затраты на материал также удваиваются, но отличный результат гарантирован.

Вторая обрешетка и гидрозащита

На обрешетку монтируется еще один каркас — под гидроизоляцию и сайдинг. Толщина реек второго уровня может составлять 2-5 см, этого достаточно для обеспечения вентиляции фасада. На прибитый новый каркас укладывается гидрозащитная мембрана, которая не пропускает влагу, однако позволяет естественным образом циркулировать воздуху.

Установка сайдинга

Пришло время крепить сайдинговые панели. Делать это следует, соблюдая инструкцию производителя. Материал уже имеет отверстия для крепления, поэтому процесс монтажа происходит легко и быстро.  Однако перед работой обязательно ознакомьтесь с печатной и видеоинструкциями на сайте производителя!

Причина сбоя пены # 2: недопустимая пожароопасность

Неприемлемая опасность пожара

Неужели слишком много просить, чтобы наша теплоизоляция не была ускорителем огня? В конце концов, теплоизоляция может (и должна) постоянно и полностью охватывать здания, которые мы занимаем. Пена питает огонь. Пена не получается. (См. 13 причин отказа пены здесь.)

Чтобы понять, что значит быть ускорителем, посмотрите видео ниже, подготовленное Ассоциацией производителей целлюлозной изоляции, в котором сравниваются характеристики горения целлюлозы, стекловолокна и пены.(Длинная версия видео здесь.) Изоляция из распыляемой пены вызывает пробой за 44 секунды – сверхзвуковая струя при ускорении огня за счет теплоизоляции.

Как описано в техническом меморандуме OSHA 1989 года:

«Жесткие полиуретановые и полиизоциануратные пены при воспламенении быстро воспламеняются и выделяют сильное тепло, густой дым и газы, которые являются раздражающими, легковоспламеняющимися и / или токсичными.Как и в случае с другими органическими [нефтехимическими] материалами на основе углерода, наиболее важным газом обычно является окись углерода. Продукты термического разложения пенополиуретана состоят в основном из оксида углерода, бензола, толуола, оксидов азота, цианистого водорода, ацетальдегида, ацетона, пропена, диоксида углерода, алкенов и водяного пара ».

«Одной из основных мер предосторожности, которые необходимо соблюдать в отношении органических [нефтехимических] пен на основе углерода, является запрещение источников воспламенения, таких как открытое пламя, режущие и сварочные горелки, источники тепла высокой интенсивности и курение.”

Поэтому пена может быть особенно опасной во время строительства или ремонта, поскольку она часто подвергается воздействию.

Шанхай, 2010 г.

В 2010 году возгорание пены, вызванное сваркой в ​​Шанхае, Китай, привело к ужасающей трагедии, унесшей жизни не менее 53 человек и более 70 раненых.

Газета South China Morning Post сообщила:

«В рамках пилотной схемы энергосбережения местное правительство модернизировало его внешними изоляционными панелями. Но горючая полиуретановая пена была определена как главный фактор, способствовавший размаху катастрофы ».

Пена может содержать химические антипирены, но на самом деле они не предотвращают горение пены – см. Этот новый отчет, Огнезащитные составы в строительной изоляции: аргументы в пользу переоценки строительных норм, здесь. Однако замедлители отравляют окружающую среду (см. №1 «Опасные токсичные ингредиенты»).

В ноябре 2012 года небоскреб в Дубае – как писал Ллойд Альтер в Treehugger здесь – фактически сжег дотла своего фасада, ускоренный сэндвич-панелями из пенопласта / металла.

И, конечно же, мы должны упомянуть ужасающую трагедию пожара на Гренфелл-Тауэр в Лондоне в июне 2017 года, в результате которого 72 человека погибли и 70 получили ранения. В то время как башня представляла собой ужас бесхозяйственности и нарушений, облицовка на основе пенопласта была определена как значительный вклад в трагедию.

Учитывая все это, важно напоминать себе, что есть выбор. Какие еще возможные изоляционные материалы мы можем использовать?

    • Минеральная вата? Негорючие.Глянь сюда.
    • Ячеистое стекло? Негорючие. Глянь сюда.
    • Древесное волокно? Огнезащитный. Глянь сюда.
    • Целлюлоза? Огнезадерживающий. * См. Здесь. Смотрите видео ниже. (Не пытайтесь делать это дома.)

Все помогает предотвратить распространение огня.

Пена не только разжигает огонь, но и при неправильном нанесении аэрозольной пены может фактически вызвать пожар. Как сообщил Мартин Холладей в 2011 году на GreenBuildingAdvisor, результаты могут быть разрушительными:

«Подразделение пожарной безопасности Массачусетса (DFS) расследует причины трех пожаров в домах, которые произошли во время установки подрядчиками по теплоизоляции распыляемой полиуретановой пены.

По словам Тима Родрике, директора DFS, следователи подозревают, что возгорания были вызваны экзотермической реакцией, которая возникла в результате смешивания двух химических веществ, используемых для создания распыляемой пены ».

Кейп-Код, 2011. Фото: Дэйв Карран.

Пена не помогает при тушении пожаров. Пенная изоляция делает пожаротушение более опасным и трудным.

У нас есть выбор.

По всем причинам, по которым пена не работает, см. Наш пост «Пена не работает».

Пена

: пожарная опасность и противопожарный барьер

Примечание редактора: Для получения дополнительной информации о пенополиуретане, пожалуйста, ознакомьтесь с материалами Urethane Foam: Magic Material и Best Kept Insulation Secret , автором которых является Дэвид Б. Саут, с приложениями Дэвида Вона.

Пена как пожароопасная

При распылении внутри здания без покрытия, такого как торкретбетон или гипсокартон, пенополиуретан может создать опасную опасность возгорания.

Монолитные купола настолько близки к огнестойкости, насколько вы можете построить здание с помощью современных технологий.Тем не менее, у них в качестве основного компонента используется уретан. В настоящее время уретановая пена является лучшей изоляцией в мире, но позвольте мне рассказать вам остальную часть истории.

Первые впечатления

Когда я только начинал заниматься производством пен, я думал, что уретановая пена не хуже противопожарной защиты, поскольку она считалась негорючей или негорючей. Кусок пены, подожженный спичкой или факелом, самозатухнет, когда спичку или факел унесут. Пламя гаснет. Это особенно верно, если поверхность образца ранее была немного обожжена.Более раннее горение создает обугливание, которое горит хуже, поскольку оно защищает себя.

Рекламный трюк, который я использовал при продаже своих первых больших работ по производству пенопласта, состоял в том, чтобы сказать владельцам, что они могут «отменить свою страховку от пожара» на своих картофелехранилищах. Пена защитит металлические здания, чтобы огонь не повредил их.

Обманчивый тест

Это было распространенным заблуждением, и это было частью коммерческого разговора компаний-поставщиков уретановой пены в 1970 году. Они использовали тесты ASTM (Американское общество по испытаниям и материалам), которые уретановая пена могла легко пройти, такие как ASTM 1692-T.По сути, это испытание проводилось путем зажатия куска уретановой пены на подставке и зажигания горелки Бунзена под краем пены на несколько секунд. Как только горелка Бунзена была удалена, зажженный образец самозатухал. Таким образом, пенополиуретан легко прошел это испытание и был признан «самозатухающим или негорючим».

В начале 1970 года я проводил эксперименты, поджигая блоки уретановой пены, а затем убирая огонь. Образцы немедленно воспламенились.Эта пена не содержала большого количества антипиренов. Но он не прошел ни одного из используемых сегодня огневых испытаний.

Ранний проект

Я начал распылять пенополиуретан на юго-западе Айдахо в 1970 году. Первым делом я занимался облицовкой кузова фургона двухтонного грузовика. Кузов фургона использовался как котельная на бетонном предприятии. Мы распылили два дюйма пены внутри фургона, чтобы котельное оборудование, находящееся внутри, не замерзло. К сожалению, часть стены фургона за трубопроводом была пропущена.

Однажды ночью замерзла труба. Оператор завода начал размораживание труб пропановой горелкой. Это подожгло часть пены. Он хлопнул по нему рукой и подумал: «Это было интересно». Но он участвовал в наших обсуждениях и слышал, что уретан практически пожаробезопасен, поэтому он пошел дальше и снова приставил фонарик к трубам.

Внезапно все внутри фургона загорелось, и полностью сгорела внутренняя изоляция. Чрезвычайно горячее пламя расплавило многие металлические части, уничтожив все внутри кузова фургона.К счастью, директор завода сразу же вышел, потому что пожар длился менее пяти минут.

Переоценка

Мы решили пересмотреть эту так называемую теорию несгорания и самозатухания. Очевидно, что пена могла гореть, как бензин, и гасла сама по себе, только когда ее не было.

По правде говоря, мы превратили внутреннюю часть фургона в духовку с отражателем. Огонь мгновенно стал очень горячим, и чем горячее он становился, тем горячее и быстрее разгорался. Мы обнаружили то, чему должна научиться и пожарная промышленность: так называемая самозатухающая пена действительно очень хорошо горит.

Благодаря нашему опыту и многому другому, подобному у нас и за рубежом, теперь мы знаем, что не существует такой вещи, как уретановая пена, которая не создавала бы опасности возгорания при определенных условиях. Это не потому, что уретан так хорошо горит, а потому, что он так хорошо изолирует.

Дело в том, что большинство современных пенополиуретанов плохо горят. Большинство из них имеют рейтинг UL или класс I с распространением пламени менее 25. Даже пены с добавлением антипиренов могут быть пожароопасными. Но эту опасность можно устранить, изолировав пенополиуретан с помощью покрытия, такого как бетон, напыляемый на пену в монолитном куполе, или листовой камень, используемый поверх пенопласта в обычных конструкциях.

Уретан – безусловно, лучшая в мире коммерческая изоляция. Но когда он остается открытым в качестве облицовки здания, пена помогает превратить внутреннюю часть конструкции в духовку с отражателем. Если в здании начнется пожар, теплу некуда будет уходить. Тепло будет излучаться от огня к пене, отражаться обратно в огонь, снова излучаться в пену и снова и снова отражаться обратно в огонь.

Подобно зеркалам, которые обращены друг к другу и отражают свет, уретан может отражать тепло, поэтому повышение температуры становится феноменальным.

Что я узнал:

Инженер Upjohn сказал мне, что нормальный дом будет гореть при максимальной температуре около 3500 градусов по Фаренгейту. Температура возгорания внутри металлического здания, облицованного пенополиуретаном, достигнет 10 000 градусов по Фаренгейту в течение 30 секунд.

Не имеет значения, является ли уретан наиболее огнестойким или наименее огнестойким; если пожар начинается внутри здания, облицованного открытым уретаном, огонь ускоряется. Это происходит потому, что уретан не поглощает значительного количества тепла.Очевидно, что это становится более серьезной проблемой, если и стены, и потолок изолированы открытым пенопластом, чем если таким образом изолирован только потолок. И это еще более серьезная проблема в зданиях из легковоспламеняющихся материалов.

После нескольких пожаров Федеральная торговая комиссия (FTC) подала в суд на крупных поставщиков уретана. FTC и поставщики приняли решение о согласии, согласно которому поставщики должны были оплачивать дополнительные испытания и прекратить рекламу уретановой пены как негорючей или самозатухающей.

Factory Mutual Insurance and Underwriters Laboratories также подключились к делу, разработав более подходящие тесты.Их испытания показали, что тепловой барьер был единственным способом защитить пену от огня в любых обстоятельствах. Первоначально утвержденные термобарьеры представляли собой штукатурку толщиной 3/4 дюйма или гипсокартон 1/2 дюйма поверх уретановой пены. С тех пор многие другие продукты были протестированы и одобрены в качестве противопожарных барьеров.

Три примера уретана как источника пожара

Изолированное хранилище сахарной свеклы в Топпенише, Вашингтон

Это было огромное металлическое здание с жестким каркасом, шириной 120 футов, длиной 400 футов, высотой 45 футов в центре, использовавшееся для хранения сахарной свеклы-сырца, когда она прибыла с поля. В одном конце сооружения был дверной проем шириной 60 футов. В течение первого года работы предприятия владельцы обнаружили, что тепла, выделяемого свеклой, было больше, чем предполагалось, и что свекла нуждалась в дополнительной вентиляции.

В то время как здание было пустым, рабочие начали прорезать в нем дополнительные вентиляционные отверстия. Сначала они были очень осторожны. Они откололи пену от металла на участке, значительно превышающем вентиляционное отверстие. На пену вокруг снимаемого участка кладут мокрую мешковину.Затем они удалили секцию резаком.

Пена воспламеняется и быстро самозатухает, поэтому проблем не возникло. Вскоре рабочие оставили позади и воду, и мокрую мешковину, продолжая прорезать вентиляционные отверстия, используя строительные леса, чтобы добраться до обозначенных участков на боковой стене на высоте 25 футов.

На последнем вентиляционном отверстии в задней части здания образовалось достаточно огня, чтобы начать отражаться. Огонь начал отражаться от потолка, балок и балок боковых стен. Внезапно стало достаточно тепла, чтобы огонь начал самораспространяться.

Стены и потолок этого здания были облицованы 3-дюймовым открытым уретаном, поэтому огонь распространился очень быстро. Рабочие поспешили вниз по помосту и побежали к двери на другом конце здания. Они едва успели это сделать. К тому времени рабочие подошли к этой далекой двери, огонь и дым были впереди них, над их головами, так что видимость была практически нулевая. Менее чем за пять минут пена сгорела, и все здание рухнуло.Пожар погас до того, как пожарная команда успела отреагировать!

Металлическое хранилище картофеля Quonset длиной 300 футов в Плезант Вэлли, Айдахо

Пожар начался в передней части здания в результате того, что мужчины применили резак на 16 сильно изогнутых дверных петлях. Когда они работали над последним шарниром, они создали достаточно огня, чтобы запустить процесс отражения, в результате которого здание загорелось. Огонь грохотал по всему зданию, набирая обороты. Когда он попал в дальний конец, огонь буквально взорвал стену.Повышение температуры было сопоставимо со взрывом небольшой степени тяжести.

Металлическое здание, используемое для переработки картофеля в Рексбурге, Айдахо

Это здание было обработано самой огнестойкой пеной, имеющейся в наличии, с распространением пламени менее двадцати пяти, как у современных пен. Очевидно, пожар был начат ворами, которые курили, откачивая бензин из грузовика внутри строения. Грузовик загорелся, вынудив воров бросить сифоны и бидоны и спастись бегством.Пламя охватило здание всего за несколько минут, и его ужасный жар уничтожил все оборудование в здании и сжег все горючие материалы. Хотя пена быстро погасла после первоначального пробоя, другие предметы в течение значительного времени яростно горели.

Зоны над транспортными средствами были полностью разрушены, но в большей части здания пена обугливалась менее чем на 1/4 дюйма, что характерно для пен, относящихся к классу I. Но основная конструкция была повреждена без возможности ремонта, и все ее содержимое было полностью потеряно.Если бы уретан был покрыт штукатуркой, пожар был бы очень локализован.

Пена как противопожарная преграда

А вот и хорошие новости:

Пенополиуретан

является отличным противопожарным барьером при использовании снаружи здания. Существует множество примеров крыш из пенополиуретана, спасающих здание от пожара. Горящие марки, которые могут включать в себя что угодно, от горячих углей до больших кусков горящей древесины, могут пролежать на уретановой крыше в течение значительного времени, прежде чем прогореть.Утепленная уретаном крыша просто обуглится. Если нет внешнего источника тепла, огонь погаснет. Уретан требует много тепла, чтобы поддерживать горение. Там, где тепло может излучаться в атмосферу, уретан является превосходным противопожарным барьером.

Завод по производству матрасов в Твин-Фолс, Айдахо

В те дни, когда мы не беспокоились о радиаторах, тепловых барьерах и т. п., мы изолировали общую стену на фабрике по производству матрасов в Твин-Фоллс, штат Айдахо. Мы распылили один дюйм полиуретановой пены на металлическую стену, чтобы защитить офис от потери тепла в зону хранения мебели.Однажды ночью загорелся склад для матрасов. Этот огонь горел очень долго.

Начальник отдела пожарной безопасности сказал мне, что огонь велся у общей стены здания больше часа, прежде чем они смогли его охладить. Его поразило, что тепло не проникает сквозь эту общую стену.

Этого не произошло, потому что уретановая изоляция, нанесенная на стену, отражала тепло огня обратно в складское помещение, вместо того, чтобы пропускать тепло. Начальник отдела пожарной безопасности заявил, что он не знает другого материала, кроме бетона, который мог бы сдерживать огонь в течение времени, необходимого для его тушения.

Лучшие противопожарные двери

С тех пор я считаю, что лучшие противопожарные двери металлические с обеих сторон пенополиуретана. Металл обеспечивает поверхностное горение, а изоляция из пеноматериала предотвращает повышение температуры до точки возгорания на негорящей стороне двери.

Пенополиуретан как термореактивный

Пенополиуретан тоже термореактивный; это означает, что его нельзя нагреть и вернуть в исходную жидкую форму. Когда уретан горит, он не разжижается и не течет, как другие пластмассы, включая пенополистирол или пенополистирол.Уретан либо горит очень горячо, как облицовка из пенопласта, либо горит совсем плохо. Опасность тления пенополиуретана отсутствует.

Реальная пожарная опасность уретана связана с его изоляционными качествами, поскольку пена увеличивает температуру в очагах пожара. Но любой противопожарный барьер, такой как листовой камень, предотвратит горение уретана, поглощая тепло.

Пенополиуретан не представляет большой опасности возгорания при распылении. Другими словами, из него ничего не выходит, что является легковоспламеняющимся.Иногда различные растворители, используемые для очистки пистолета, могут быть горючими, но сам уретан практически негорючий.

Пена тушит пожар

Однажды мы распыляли лайнер в кузове грузовика в нашем магазине. По общему признанию, в магазине было полно всяких вещей, в том числе груды пластиковой пленки, которая раньше использовалась в качестве маскировки. Работавший поблизости сварщик каким-то образом поджег пластиковую сваю. Сотрудник увидел огонь и распылил его из пистолета для пены быстрее, чем из огнетушителя.Он брызнул прямо на пламя, заключил его в капсулу и почти мгновенно потушил огонь.

Компоненты пены, изоцианат и меры предосторожности

Компоненты пенополиуретана сами по себе не представляют опасности возгорания и могут быть отправлены без маркировки пожарной опасности.

Но при сжигании изоцианата (как отдельного химического вещества) выделяются очень токсичные пары. Следует проявлять большую осторожность, чтобы не вдыхать эти токсичные пары. Само по себе химическое вещество не поддерживает горение. Однако, если вы утилизируете пустые бочки изоцианата, снимая их верхнюю часть, не вырезайте верхнюю часть резаком в ограниченном пространстве.На самом деле, лучше вообще не вырезать верхнюю часть резаком. Съемники верхней части консервного ножа для бочек работают намного лучше, чем резаки.

Если вы используете фонари, убедитесь, что вы не вдыхаете дым, образующийся при горении изоцианата. Тебя от этого тошнит. Этот дым – двоюродный брат газа Phosgene, который использовался в войсках во время Первой мировой войны в Европе.

Следует помнить, что нельзя сжигать органику. Даже древесный дым может убить вас. Гораздо лучше утилизировать химические вещества в соответствии с рекомендациями их производителей, чем выпускать химические вещества в окружающую среду.

Пенопластовые и монолитные купола

Совершенно необходимо предотвратить возгорание внутри монолитного купола во время его строительства. В тот короткий период, когда купол полностью облицован уретаном, но до того, как бетон будет на месте, пожар будет разрушительным. Поэтому следует проявлять осторожность.

Использование пенополиуретана на монолитном куполе идеально. Заметьте, сказал я на куполе. Помните, что мы распыляем пену на нижнюю часть Airform, но пена собирается на верхней стороне бетона.Таким образом, пена полностью защищена от внутреннего возгорания бетонной оболочкой. А снаружи купола пена в любом случае не горит и обеспечивает существенный противопожарный барьер.

Обновлено: август 2011 г.

Что происходит при горении пеноматериалов? : Пена Plymouth Пена Plymouth

.

«Что происходит при горении пеноматериалов?» Это последний вопрос в нашей серии часто задаваемых вопросов.

Во-первых, никогда не сжигайте какие-либо материалы в замкнутом пространстве. Обычным продуктом горения является окись углерода.Окись углерода образуется при сжигании материалов, будь то бумага, картон, дерево или пенопласт. Окись углерода смертельно опасна в замкнутом пространстве.

Пенопласты Plymouth, изготовленные из Airpop® EPS и Airehide® EPP, воспламеняются под воздействием огня. В любом случае, независимо от того, используете ли вы пеноматериал для амортизации, шума, вибрации, жесткости или изоляции, никогда не подвергайте вспененный материал воздействию открытого огня. Пена загорится и загорится.

Airpop® EPS и Airehide® EPP следует утилизировать, а не сжигать.Оба будут плавиться при высоких температурах, что делает их отличными кандидатами на переработку. EPS на 98% состоит из воздуха и при сжигании выделяет окись углерода, окись, моно-стирол, бромистый водород и другие ароматические соединения. Ароматические соединения аналогичны тем, что содержатся в сигаретном дыме. Переработка предотвращает выброс этих газов. Давай утилизируем!

Airehide® EPP доступен с огнестойкими свойствами, которые соответствуют стандартам в строительной отрасли, автомобильной промышленности и UL (ранее известный как Underwriters Labs).Airehide® EPP соответствует стандартам ASTM E-84 на распространение пламени и образование дыма, испытаниям UL по термопластам и Федеральному стандарту безопасности транспортных средств 302 относительно воспламеняемости материалов интерьера.

Утилизируйте, не сжигайте. Airpop® EPS и Airehide® EPP плавятся при высоких температурах и могут быть переработаны несколько раз. Airehide® EPP предлагается с огнестойкими свойствами для применения в бытовой, автомобильной и строительной отраслях. Plymouth Foam продолжает быть вашим источником инноваций и сотрудничества.

Нам нравится, когда вы задаете нам эти вопросы. Продолжайте задавать дополнительные вопросы или свяжитесь с нашей командой напрямую: [email protected].

Как лидер отрасли мы считаем важным делиться своим опытом и продолжать обучать и информировать других о возможностях материалов Plymouth Foam и отраслевых тенденциях.

Пожар и воспламеняемость

Полиуретановые материалы являются органическими и, как и другие органические материалы, такие как дерево, бумага, хлопок, шерсть и многие другие, могут воспламениться и гореть при воздействии достаточного количества тепла.Изоляция из органической пены, независимо от того, содержит ли пена антипирены, должна считаться горючей, и с ней следует обращаться соответствующим образом. Следует принять меры для сведения к минимуму любой возможности возгорания из-за случайного возгорания при обращении, хранении и использовании. То, как используются пенополиуретан или полиизоцианурат (полиизо), в конечном итоге помогает определить их пожарную безопасность. При использовании в мебели и постельных принадлежностях гибкие пенополиуретаны (FPF) обычно сочетаются с тканевыми покрытиями и подкладками, которые могут влиять на горючесть готового изделия.

В строительстве, полиуретан и пенополиизо регулируются пожарными кодексами, типовые строительные нормы и правила, а также государственные и местные органы власти. Типовые и местные строительные нормы и правила используются на всей территории Соединенных Штатов для предоставления рекомендаций и требований по безопасному использованию материалов и систем, используемых в зданиях. Они считаются «живыми документами», которые регулярно обновляются и меняются. Строительные нормы и правила помогают охранять жизнь и защищать общественное благосостояние, регулируя проектирование, методы строительства, качество строительных материалов (включая противопожарные характеристики), расположение, размещение и техническое обслуживание зданий и сооружений. При регулировании материалов многие строительные нормы и правила относятся к согласованным стандартам для продуктов или испытаний, разработанным организациями, устанавливающими стандарты, такими как ASTM International и Национальная ассоциация противопожарной защиты. Некоторые строительные нормы и правила и страховые рейтинговые организации также полагаются на тестовую информацию от испытательных лабораторий, таких как Factory Mutual Global и Underwriters Laboratories, Inc.

Принятие национального стандарта на мягкую мебель для жилых домов

CPI поддерживает доступ потребителей к мягкой мебели, которая разработана таким образом, чтобы минимизировать риск возникновения пожаров в жилых помещениях.Это может быть достигнуто путем разработки технически обоснованного и эффективного национального стандарта воспламеняемости, в котором рассматриваются следующие концепции:

  • Процедуры испытаний и оценки с соответствующими опасностями воспламенения для мягкой мебели.
  • Требования должны быть основаны на характеристиках и относиться к конструкциям мягкой мебели, предназначенным для использования в жилых помещениях.
  • Требования должны распространяться на всю жилую мягкую мебель, независимо от материалов, используемых в строительстве.
  • Процедуры испытаний и критерии эффективности должны быть надежными и практичными для компонентов мебели, моделей и готовой мебели.
  • Требования должны включать соответствующие положения о маркировке мебели (или закрытых предметов).

Чтобы узнать больше о воспламеняемости мебели и FPF, посетите Веб-сайт ассоциации по производству пенополиуретана.

Повышение и повышение пожарной безопасности

Для решения проблем пожарной безопасности CPI поощряет образовательные мероприятия по общим принципам пожарной безопасности для дома, включая:

  • Использование пожарных и дымовых извещателей по назначению;
  • Использование систем пожаротушения по назначению; и
  • Правильное обращение с потенциальными источниками возгорания.

Полиуретаны необходимы для многих продуктов и уже давно используются в мягкой мебели, а также в секторах строительства и строительства. Независимо от того, используются ли огнезащитные материалы для уменьшения распространения пламени в постельных принадлежностях и матрасах или теплоизоляция для уменьшения потока тепла через толщину материала, полиуретаны будут продолжать служить этим отраслям промышленности и в будущем, и Члены CPI поддерживают правила пожарной безопасности, которые помогают снизить количество травм и смертей в результате пожаров.

При сгорании

Как и многие обычные предметы домашнего обихода, предметы, содержащие полиуретан, могут попасть в огонь. Все горючие материалы при горении выделяют токсичный дым. Токсичность дыма может иметь значение, поскольку это один из многих факторов, влияющих на способность людей спасаться от огня.

Существуют неправильные представления о том, что дым от огня, связанный с полиуретановыми продуктами, представляет значительно больший риск для здоровья, чем от других синтетических или натуральных материалов, поскольку в дыме присутствует цианистый водород (HCN). HCN образуется при сжигании азотсодержащих материалов, включая полиуретаны и другие распространенные материалы, такие как овечья шерсть. Однако с точки зрения опасности окись углерода (CO) обычно является самым распространенным токсичным веществом при пожарах почти во всех условиях горения.

Подробнее:

Новости Klausbruckner & Associates »Опасность возгорания полиуретановой пены

Известно, что возгорание пенополиуретана приводит к очень высокому уровню тепловыделения и возникновению чрезвычайно токсичных паров.В результате эти типы пожаров создают уникальные проблемы для жизни, пожарных, безопасности имущества и пожаротушения. В этом исследовании возгорание пенополиуретана и процессы его возгорания исследуются с помощью симулятора динамики пожара. Прогнозы программного инструмента были подтверждены результатами испытаний экспериментальных ожогов. Сравнение моделирования и испытаний на огнестойкость продемонстрировало беспрецедентно хорошую корреляцию. Это легло в основу данного исследования, подтверждающего модель и обеспечивающего надежное понимание природы и последовательности различных происходящих событий горения.

Прогнозы модели будут использоваться для оценки воздействия пожаров полиуретановой пены на мощность систем противопожарной защиты, таких как воздействие образования дыма или время срабатывания спринклера.

Обновление, сентябрь 2015 г .: С момента публикации этой статьи исследование пожаров ППУ было расширено с целью сбора дополнительных сведений об их поведении при горении и связанных с ними процессах горения. Обновления этой статьи более подробно обсуждаются ниже, см. Внизу этой страницы.

Введение

Продукты на основе пенополиуретана (ППУ) используются во множестве предметов домашнего обихода, таких как матрасы, обивка, постельные принадлежности и детские манежи. В результате они стали обычным явлением не только в жилых помещениях, но также на складах и в коммерческих целях.

Известно, что в условиях пожара эти типы продуктов производят очень высокую скорость тепловыделения, что, в свою очередь, может представлять значительные проблемы для пожаротушения, а также для пожарной безопасности и безопасности зданий.В частности, влияние роста пожара и образования дыма от пожаров PUF и его влияние на время срабатывания спринклерных систем и системы контроля дыма представляет интерес для оценки возможностей систем противопожарной защиты.

Использование компьютерного моделирования пожара

Компьютерное моделирование пожара часто является очень экономичным и осуществимым методом анализа пожаров для конкретного сценария и набора условий. Однако пожары и связанные с ними процессы горения основаны на физически сложных и сложных явлениях.Следовательно, использование инструментов компьютерной гидродинамики (CFD) требует хорошего понимания всех задействованных физических процессов.

В то же время важно знать ограничения применяемых численных процедур. Однако, когда сценарии пожара смоделированы правильно, окончательные прогнозы могут быть очень близки к фактическим результатам пожара. Прогнозы этих моделей затем можно использовать для объяснения последовательности и возникновения различных событий в процессе горения, а также их воздействия на окружающую среду.Это часто дает понимание, которое иначе невозможно получить.

FDS, сокращение от Fire Dynamics Simulator, используется в этом исследовании и является одним из ведущих программных инструментов CFD в отрасли противопожарной защиты. Он специально разработан для исследования широкого спектра сценариев возгорания.

Цель и подход

Рис. 1. Огнестойкие испытания NIST: скорость тепловыделения.
(Click to Zoom)

Целью данного исследования является моделирование динамики пожара, т. Е. Распространения пламени, роста пламени и результирующих скоростей тепловыделения для горизонтально расположенных материалов на основе ППУ, а также сравнение прогнозов с фактическими испытаниями на огнестойкость, выполненными NIST (Национальный Институт стандартов и технологий). Для достижения этой основной цели модель должна включать критические процессы горения, которые имеют место во время небольших и крупных пожаров ППУ.

NIST провел экспериментальные испытания на горение 1 на плитах из пенополиуретана толщиной 4 дюйма (10 см) и шириной 4 фута x 4 фута (1,2 м x 1,2 м). Результаты этих испытаний на горение используются для сравнения с моделью, разработанной для моделирования распространения пламени, тепловых потоков и образования дыма с течением времени (рис. 1).

Модель

Рисунок 2.Фронт пламени и температурный профиль по центральной линии во время горения полиола. (Нажмите, чтобы увеличить)

Разработана модель вычислительной гидродинамики (CFD), основанная на FDS версии 5.5. FDS – это программный инструмент CFD с низким числом Маха. Другими словами, моделируются только пожары, а не взрывы (горения или взрывы). При моделировании возгорания ППУ необходимо внимательно изучить процесс производства ППУ, чтобы лучше понять некоторые важные детали процесса горения. Во время изготовления / производства для создания пены используются два основных материала:

· Изоцианат (обычно толуолдиизоцианат, TDI)
· Полиол простого полиэфира.

Пропорции этих двух материалов составляют примерно одну треть ТДИ и две трети полиола. Коммерческие пены могут также содержать другие ингредиенты, такие как поверхностно-активные вещества и антипирены. Фактически, эти дополнительные ингредиенты могут повлиять на физические свойства ППУ и ​​свойства горения.

В процессе сгорания пена разлагается на свои исходные составляющие, а именно на ТДИ и полиол, и, в конечном итоге, на обугливание. Для этого исследования в экспериментальных испытаниях на огнестойкость 1 использовалась имеющаяся в продаже гибкая негорючая полиэфирная полиуретановая пена.Свойства материала были получены из мелкомасштабных (микрокалориметрических) экспериментов, выполненных 1 , а также из литературы.

Таблица 1. Свойства материала PUF

Свойство Пенополиуретан Толуолдиизоцианат Полиол полиэфирный
Плотность 27 кг / м 3 или
1,7 фунт / фут 3
1210 кг / м 3 или
75,5 фунт / фут 3
1012 кг / м или
63. 2 фунт / фут 3
Теплота сгорания 27100 кДж / кг или
11660 БТЕ / фунт
9600 кДж / кг или
4130 БТЕ / фунт
17500 кДж / кг или
7530 БТЕ / фунт
Дополнительные свойства материала можно найти в ссылке 1

На основе свойств материала в таблице 1 для этого исследования разработана многослойная модель с двумя материалами (т.е. моделируются уложенные однородные слои TDI и полиола) . Количество ячеек, применяемых в моделях FDS во время разработки, колеблется от полумиллиона до четырех миллионов ячеек.Моделирование выполняется на выделенном компьютере с двенадцатью процессорами Intel XEON с использованием версии FDS для параллельных вычислений.

Первоначальные усилия по моделированию включали моделирование процесса горения для каждого отдельного горючего материала, TDI и полиола соответственно. Этот шаг оказался решающим в создании реалистичной отправной точки для сборки по существу двухфазной модели горения, имитирующей разложение ППУ обратно на ТДИ и полиол при воспламенении.

Обсуждение результатов

Для целей данного обсуждения весь процесс сгорания разделен на три фазы.

Рис. 3. Скорости тепловыделения при моделировании и испытании на огнестойкость.

ТДИ Сгорания

После возгорания плиты ППУ вдоль одного края плиты огонь распространяется радиально наружу. Из экспериментов 1 при сжигании ППУ известно, что сначала будет гореть ТДИ, а после его израсходования начнет гореть полиол. Во время горения в этой фазе скорость тепловыделения медленно увеличивается, а затем выравнивается, когда достигается начало фазы горения полиола.

Приблиз. 180 секунд и скорость тепловыделения (HRR) примерно 0,68 миллиона БТЕ / час (200 кВт) (рис. 3), прогнозируемый фронт пламени распространился по поверхности пены, и огонь полностью охватил плиту. В центральной области TDI сгорел, и части слоя полиола теперь обнажены и сгорают, хотя они еще не начали выделять большую часть своей накопленной энергии. Наблюдения при испытании на огнестойкость 1 демонстрируют, что части пены разрушились, и на дне поддона остался «слой расплава».Во время этой фазы образование дыма постепенно увеличивается, и дым быстро заполняет контрольный объем (Рисунок 5).

Полиол для сжигания

Когда большая часть TDI израсходована, образуется большое количество полиола. Полиол воспламеняется и полностью высвобождает свою энергию. Эта фаза сгорания с высоким тепловыделением длится примерно от 180 до 260 секунд (Рисунок 3). Максимальные зарегистрированные значения HRR при моделировании пожара составляют около 3,7 миллиона БТЕ / час (примерно от 1070 кВт до 1110 кВт).Эти прогнозируемые значения лежат в пределах диапазона HRR, измеренного во время экспериментальных огневых испытаний, то есть измеренные значения варьируются от приблизительно 2 миллионов БТЕ / ч до 3,7 миллионов БТЕ / ч (от 600 кВт до 1100 кВт, рисунок 1).

Полиол горит настолько горячо, что, по сути, образует «огненный столб» с сильным жаром (рис. 4). Модель предсказывает, что фронт пламени на мгновение приближается к высоте более 14 футов с температурой пламени, достигающей 1500 градусов по Фаренгейту (примерно 820 градусов по Цельсию, рис. 2).Рассчитана пиковая плотность теплового потока (тепловая мощность на единицу площади) 0,2 миллиона БТЕ / ч / фут 2 (760 кВт / м 2 ). Выработка дыма параллельна развитию тепловыделения в том смысле, что в течение этой фазы оно увеличивается, достигает пика и затем уменьшается. К моменту завершения второй фазы сгорания все еще остается несгоревшая ППУ.

После сжигания полиола

Рис. 4. Развитие фронта пламени (без дыма) для индексов времени 150 сек, 220 сек и 300 сек.(Нажмите, чтобы увеличить)

Оставшийся PUF (в конечном итоге разлагающийся на TDI и полиол) будет гореть в течение некоторого времени (260–500 секунд), в течение которого еще выделяется значительное количество тепла. Однако из-за довольно небольшого количества сгорания ППУ (в начале этой фазы примерно 10% от общего количества доступного ТДИ и полиола) общее выделенное тепло намного меньше по сравнению с предыдущей фазой. Тем не менее, показатели тепловыделения от 0,5 до 0,7 миллиона БТЕ / час (от 150 до 200 кВт) все еще достигаются (Рисунок 3).Во время этой фазы высота пламени и образование дыма сначала немного возрастают (с тенденцией к небольшому увеличению тепловыделения), а затем уменьшаются до тех пор, пока огонь не погаснет.

Особые наблюдения FDS

Рис. 5. Развитие дыма при открытых граничных условиях, т.е. дым не накапливается в (вентилируемом) контрольном объеме для временных индексов
150 сек, 220 сек и 300 сек. (Нажмите, чтобы увеличить)

Имитационная модель включает две совершенно разные модели горения, одну для твердого топлива, а другую для жидкого топлива.Значительные усилия были затрачены на «объединение» двух моделей горения. Легко показать, что модель твердого топлива вполне способна точно предсказать динамику возгорания одного компонента TDI, и то же самое можно сказать о применении модели жидкого топлива для полиола.

Однако, как только две отдельные модели объединяются в единую модель, становится очевидным, что взаимодействие процессов горения является более сложным, чем предполагают модели для каждой из отдельных составляющих.Например, полиол при высоких температурах сгорает сразу же, в отличие от более низких температур, когда начало процесса сгорания с высоким тепловыделением, по-видимому, происходит с задержкой. Это может быть эффект фазового перехода, но требует дальнейшего изучения.

Возможно, дополнительная сложность, показанная во время разработки модели, ожидается с учетом необходимости в первую очередь упростить процесс горения до «модели слоистого пиролиза» и невозможности применить более физический подход к разложению, другими словами, применяя « Layer »по сравнению с подходом к моделированию« ячейка за ячейкой », при котором каждая ячейка PUF разлагается на TDI и Polyol, а затем превращается в ее остаток.

В результате, это обязательство состоит в том, чтобы комбинация этих двух моделей создавала реалистичное представление задействованной физики и давала результаты, которые выгодно отличаются от экспериментальных результатов. В итоге была получена модельная конструкция, которая отличается не только своей простотой, но и полнотой в обращении и объяснении экспериментально наблюдаемых процессов горения. Присущая модели простота конструкции позволяет легко применять ее к другим сценариям сжигания с другой геометрией, ожидая получения точных результатов.

Заключение

Многослойная модель CFD разработана с использованием FDS для изучения огнестойкости плит из ППУ толщиной 4 дюйма (10 см), используемых во многих коммерческих целях. Прогнозы модели по сравнению с реальными испытаниями на горение демонстрируют очень хорошую корреляцию и точные прогнозы процессов горения, преобладающих при горении пенополиуретана.

Воздействие пожаров ППУ кратко описывается следующим образом:

  • Первоначальные огнестойкие свойства плиты из ППУ характеризуются горением ТДИ.Как только TDI израсходован, полиол начнет гореть, что приведет к значительному увеличению тепловыделения. Высота пламени, образующегося во время этого процесса, в несколько раз превышает высоту пламени, возникающую при первоначальном горении ТДИ. Это важное соображение в сценариях складского хозяйства, особенно для стеллажного хранения с высокими стеллажами открытого пенополиуретана, считающегося «вспененным пластиком группы А».
  • Полиол перед тем, как начать горение, разложился до жидкого состояния и поэтому будет течь или капать, потенциально создавая места вторичного воспламенения и опасности.Фактически это нагретая горючая жидкость (с токсичными продуктами горения).
  • Хотя горение полиола относительно короткое и интенсивное, после того, как большая часть его израсходована, он вместе с оставшимся ТДИ продолжает гореть при более низких скоростях тепловыделения в течение довольно долгого времени и до тех пор, пока не сгорит весь ППУ и ​​не произойдет самозатухание. .
  • Образование дыма при горении ТДИ меньше, чем при горении полиола, когда образование дыма достигает пика. Можно ожидать, что видимость вблизи очагов пожаров ППУ будет сильно нарушена – даже вскоре после возгорания.Однако фактическое воздействие на видимость и токсичность будет зависеть от рассматриваемых параметров отдельной комнаты и окружающей среды.
  • Пожары
  • PUF вызывают серьезные опасения и создают опасность для жизни, поскольку при сжигании ТДИ и полиола образуются высокотоксичные пары оксидов азота и углерода, включая чрезвычайно токсичные углеводородные соединения, такие как цианистый водород.
  • Моделирование динамики горения плит из пенополиуретана сложно и требует глубоких знаний о различных процессах разложения и химических реакциях.
  • Процесс горения характеризуется двухфазным разложением TDI и полиола, которое сложно моделировать. Многослойная модель точно предсказывает скорость тепловыделения во время горения. Это демонстрируется сравнением результатов моделирования с результатами реальных испытаний на сжигание.
  • Результаты моделирования демонстрируют способность FDS моделировать процессы двухфазного горения, в частности пожары PUF.
  • Разработка этой проверенной модели формирует основу и понимание для инженерного анализа для оценки времени срабатывания спринклера и образования дыма для больших зданий, которые содержат перекрытия и области из пенополиуретана, подверженные возгоранию.

Обновление : дополнительные обсуждения по поводу задержки сжигания полиола

Были проведены дополнительные исследования, в которых полиол (после его разложения из ППУ) сгорает без задержки (здесь и далее мы будем называть этот тип процесса горения «Сгорание полиола без задержки», NDPC). Кривые смоделированных скоростей тепловыделения сравниваются с кривыми экспериментально полученных скоростей тепловыделения. Основное предположение для этого исследования состоит в том, что устранение задержки горения полиола приведет к кривым HRR, которые не демонстрируют всех эффектов задержки, как показано на рисунке 3, в течение периодов 110–180 секунд и 250–320 секунд.

В целях моделирования NDPC корректируются только числовые параметры, относящиеся к задержке процесса сгорания полиола, в то время как все остальные параметры модели остаются неизменными. Задержка горения полиола ранее обсуждаемой модели (показанной на рисунке 3 и называемой моделью с задержкой горения полиола, DPC) определяется как 100% эталонной задержки. На основании этой ссылки было выполнено дополнительное моделирование с 50% задержкой горения полиола (50% DPC). Опять же, все остальные параметры модели, использованные в этом дополнительном моделировании, остались неизменными.Цель этого второго моделирования – продемонстрировать постепенное влияние задержек сгорания полиола на общую HRR ППУ в условиях горения.

Рис. 6. Сравнение кривых HRR с различными задержками сгорания полиола

Обсуждение

Рис. 7. Наклонные виды контурных линий разложения ППУ в начале горения полиола (верхнее и нижнее изображения, площадь поверхности полиола при горении окрашена в коричневый цвет). Среднее изображение: косая проекция ожога в то же время указатель (прибл.120 секунд), но с добавлением фронтов пламени.
(Нажмите, чтобы увеличить)

Во время фазы сгорания TDI кривые, отслеживающие скорости тепловыделения NDPC, идут параллельно кривым, отслеживающим выделение тепла, смоделированным моделью DPC, как показано на рисунке 6. Это наблюдение не должно вызывать удивления из-за того, что только TDI горение во время этой фазы и все его материалы и параметры горения остались неизменными среди моделей. Как обсуждалось ранее, как только часть ТДИ полностью сгорает, на дне поддона начинает образовываться лужа расплава (рис. 7).Как только слой расплава сформирован, моделирование NDPC предсказывает немедленное возгорание полиола и немедленное высвобождение всей его доступной химической энергии. Максимальные показатели тепловыделения достигают примерно 580 кВт.

При сравнении с фактическими испытаниями на горение видно, что общие характеристики горения NDPC довольно плохо соответствуют характеристикам горения огневого испытания № 2 NIST, его наиболее близкого соответствия из всех испытаний на огнестойкость. Однако моделирование 50% DPC показывает гораздо лучшую корреляцию с экспериментальными огневыми испытаниями в целом и огневым испытанием №1 NIST в частности.

Задержки сгорания

полиола значительно повлияют на наблюдаемые максимальные скорости тепловыделения. Это подтверждается результатами моделирования HRR и их корреляцией с огневыми испытаниями, т. Е. Наблюдаемые пики тепловыделения составляют примерно 580 кВт (NDPC), 790 кВт (50% DPC) и 1100 кВт (100% DPC, эталонная задержка). .

Задержки горения полиола через плиту PUF для случая моделирования 100% DPC могут быть визуализированы с помощью трехмерной карты, рис. 8. Однако следует отметить, что трудно создать точные представления задержек горения с учетом неизвестна природа их причин.В приближении для имитации фактических задержек горения был нанесен дополнительный слой полиола с более низкой скоростью горения и различной толщиной по плоскости плиты. Моделируемые модели задержки полиола основаны на изменениях (локализованной) потери массы TDI через плиту PUF во время горения.

Различная толщина дополнительного слоя приведет к полному сгоранию открытого однородного слоя полиола с определенными задержками по всей плите. Фактически, результирующие временные задержки будут соответствовать распределению толщины, применяемому в дополнительном слое.Массу полиола, используемую в дополнительном слое, брали из общего баланса массы полиола.

Гипотеза

Если мы сосредоточимся на динамике возгорания при сгорании полиола и для краткости не будем учитывать влияние сценариев вентиляции, можно сделать следующую гипотезу: общее количество тепла, выделяемого ППУ и ​​регулируемое сгоранием полиола, зависит от размера площадь поверхности при полном сгорании полиола в ванне расплава. Определена эффективная площадь слоя расплава, которая является основным фактором, способствующим сгоранию полиола с высоким тепловыделением.Эта эффективная площадь слоя расплава регулируется:

(1) Скорость разложения ППУ или скорость образования полиола
(2) Скорость истощения полиола

Следует отметить, что скорость истощения полиола также является функцией задержки сгорания полиола. Давайте дополнительно проясним этих участников и обсудим их отношения. Если полиол уже начинает полностью гореть на значительной площади, в то время как большая часть доступного полиола все еще создается (случай NDPC), то это снизит пиковые скорости тепловыделения ППУ, которые возникают позже в процессе горения.Однако это произойдет только в том случае, если оставшийся объем полиола (топливная нагрузка) этого раннего сгорания недостаточен для поддержания непрерывного горения до тех пор, пока не будет наблюдаться пиковое значение HRR.

Рис. 8. Смоделированная диаграмма задержки полиола (горелка расположена вдоль левого края).
(Щелкните, чтобы увеличить).

Другими словами, если в этом случае можно предположить, что поток жидкого полиола практически отсутствует с учетом вязкости полиола, предполагаемые относительно высокие углы смачивания границы раздела жидкость-подложка и относительно тонкий слой расплава на основе исследуемого образца ограниченная толщина и горизонтальная ориентация, тогда «локализованный объем» сгорающего полиола на ранней стадии будет уменьшен до такой степени, что останется очень мало материала для сгорания и, таким образом, будет выделяться тепло во время сгорания на поздней фазе оставшегося полиола.Это состояние представляет собой локальное «выгорание» полиола. В результате эффективная площадь поверхности слоя расплава при обжиге полиола уменьшается.

Влияние этого локализованного выгорания на HRR можно увидеть в испытании NIST № 2 и испытании № 4 на Рисунке 1. С другой стороны, оптимальные скорости тепловыделения будут иметь место, если задержки сгорания полиола соответствуют следующим условиям: (a) площадь поверхности ванны расплава имеет максимально возможный размер для данной геометрии образца с (b) достаточной глубиной слоя расплава (топливной загрузкой), чтобы поддерживать полное сгорание в течение достаточно длительного времени, чтобы достичь пика HRR.Результат этого влияния на HRR показан на Рисунке 3.

Сводка

Из этих имитаций и сравнений с результатами фактических испытаний на огнестойкость сделан вывод, что полиол будет гореть после разложения с некоторой задержкой, прежде чем будет высвобождена его полная химическая энергия. Испытания на огнестойкость показали, что величина задержки может варьироваться в зависимости от ожогов ППУ, даже при использовании испытательных образцов из одной и той же партии пенополиуретана 1 . Причины таких задержек сгорания неизвестны.

Мы надеемся, что эти дополнительные объяснения и подробности о вспененных материалах на основе полиуретана при горении дадут ответы на больше вопросов, чем они создают. Мы уверены, что многие идеи, обсуждаемые здесь, должны быть применимы и для других сценариев возгорания PUF, таких как процессы горения PUF с центральным зажиганием и с торцевого воспламенения. Возможно, самое главное, мы приветствуем любые усилия по углублению понимания горения ППУ. Это постоянная область исследований, которая, кажется, становится только более важной с течением времени, поэтому любые ценные идеи, которыми могут поделиться другие, будут приветствоваться.

Артикул:

[1] «ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ПОЖАРА НА ПЛИТЫ ИЗ ПОЛИУРЕТАНОВОГО ПЕНА» Prasad, K. R .; Kramer, R .; Marsh, N .; Ниден, М. Р., Отдел пожарных исследований, NIST, Гейтерсбург, 2009 г.

Бюллетени с информацией об опасностях OSHA Опасность возгорания полиуретановой и другой органической вспененной изоляции на борту судов и в строительстве

Бюллетени информации об опасностях OSHA


Опасность возгорания полиуретановой и другой органической вспененной изоляции на борту судов и в строительстве

10 мая 1989 г.

  • LEO CAREY
  • Директор
  • Управление программ на местах
  • ЭДВАРД Дж.BAIER
  • Директор
  • Дирекция технической поддержки
  • Безопасность Информационный бюллетень об опасностях по пожарной опасности полиуретановой и другой органической вспененной изоляции на борту судов и в строительстве

Региональный офис Сиэтла обратил наше внимание на потенциальную опасность возгорания, связанную с использованием полиуретана и других органических пенопластов, используемых на борту судов и в строительстве. Случаи возгорания, связанные с этой изоляцией, были задокументированы, что свидетельствует о необходимости лучшего понимания пожарной опасности этого типа материала.

Жесткие пенополиуретаны и полиизоцианураты при воспламенении быстро воспламеняются с выделением сильного тепла, густого дыма и газов, которые являются раздражающими, воспламеняющимися и / или токсичными. Как и в случае с другими органическими материалами, наиболее важным газом обычно является окись углерода. Продукты термического разложения пенополиуретана состоят в основном из оксида углерода, бензола, толуола, оксидов азота, цианистого водорода, ацетальдегида, ацетона, пропена, диоксида углерода, алкенов и водяного пара.

Все органические ячеистые пластмассы, независимо от того, содержат они антипирены или нет, следует считать горючими и обращаться с ними соответствующим образом.Такие термины, как «огнестойкий», «огнестойкий» и «самозатухающий», иногда используемые для описания характеристик воспламеняемости пен, являются действительными показателями характеристик этих материалов при небольшом воздействии огня и не предназначены для отражения опасности при воздействии крупномасштабного пожара.

При строительстве зданий пожар обычно вызывает серьезную озабоченность, потому что там может быть хранение незащищенной пены, неполная установка, другие опасности неправильного применения и методов утилизации, плохие домашние условия и возможность воздействия открытого огня от смежных профессий во время определенного строительства виды деятельности.

Полиуретан и другие вспененные органические материалы находят все более широкое применение на судах из-за их превосходных изоляционных свойств и легкого веса. Поскольку на нескольких судах произошли серьезные пожары, связанные с использованием этих материалов, Береговая охрана США издала циркуляр № 8-80 по вопросам навигации и инспекции судов, в котором рассматривается пожарная опасность полиуретана и других органических вспененных материалов.

Для вашего сведения прилагаются два бюллетеня, посвященных пожарной опасности полиуретана и других органических пен

  1. Циркуляр Береговой охраны США по навигации и инспекции судов №8-80.
  2. «Руководство по пожарной безопасности при использовании жесткой полиуретановой или полиизоциануратной пенопластовой изоляции в строительстве», опубликовано Отделением уретана Общества производителей пластмасс.

Одной из основных мер предосторожности, которые следует соблюдать при работе с органическими пенами, является запрещение источников воспламенения, таких как открытое пламя, режущие и сварочные горелки, источники тепла высокой интенсивности и курение. Рекомендации по безопасности поставщика пены должны соблюдаться в дополнение к минимальным требованиям, установленным OSHA для противопожарной защиты.

Разошлите этот бюллетень всем региональным офисам, штатам, работающим в рамках государственного плана, и руководителям консультационных проектов.

Является ли огнестойкая пена огнестойкой? | Пена по всему миру – Platinum Zotefoam Distributor

Когда вы собираетесь купить огнестойкую пену, это помогает понять, что такое антипирен.

Согласно Википедии,

Антипирен – это вещество, которое используется для замедления или остановки распространения огня или уменьшения его интенсивности.Обычно это достигается с помощью химических реакций, снижающих воспламеняемость топлива или замедляющих его сгорание. [1] [2] Антипирены могут также охлаждать топливо за счет физического воздействия или эндотермических химических реакций. Антипирены доступны в виде порошка, смешиваемого с водой, огнегасящих пен и антипиренов. Антипирены также доступны в виде покрытий или спреев для нанесения на объект. [3]

Огнезащитные составы обычно используются при тушении пожаров, где их можно наносить с воздуха или с земли.

Недавно в этом месяце мы представили на рынок огнестойкий сшитый полиэтилен XP-18UL. Это заставило нас задуматься.

Понимает ли средний потребитель, что существует разница между огнестойкостью, огнестойкостью и огнестойкостью, это три разные вещи.

Мы уже определили огнестойкость, в этой статье мы обозначим разницу между двумя другими, чтобы вы могли быть уверены, что будете следовать рекомендациям и оставаться в безопасности!

  • Огнестойкая пена изготовлена ​​из материалов, которые по своей природе негорючие – материалы обладают огнестойкостью, заложенной в их химическую структуру.Ткани, изготовленные из этих материалов, предотвращают распространение огня и не тают и не капают в непосредственной близости от пламени. Поскольку огнестойкие ткани обычно не изготавливаются из 100% огнестойких материалов, они будут гореть, но будут гореть очень, очень медленно и часто самозатухающие.
  • Огнестойкие пены химически обработаны, чтобы они замедлили горение или стали самозатухающими при воздействии открытого пламени. Эти ткани могут быть изготовлены из любого материала, но они должны быть обработаны специальными химикатами, чтобы считаться огнестойкими.

Самая большая разница между огнестойкими и огнестойкими тканями заключается в том, как они сделаны. Без специального химического нанесения ткань не считается огнестойкой. Точно так же ткань, не изготовленная из некоторых негорючих волокон, не будет огнестойкой.

Покупая огнестойкие ткани, вы чаще всего сталкиваетесь с негорючими тканями. Они дешевле и проще в производстве, чем огнестойкие ткани, и часто изготавливаются из обработанного полиэстера или хлопка.

XP-18UL представляет собой химически сшитую огнестойкую пену с закрытыми порами плотностью 1,8 фунта. Соответствуя стандарту испытаний UL 94 HF-1, XP-18UL является идеальным материалом для применений, где требуется самозатухающий или медленный горючий материал.

Национальные стандарты пожарной безопасности

Национальное агентство противопожарной защиты разработало набор стандартов для определения пожарной безопасности текстиля или ткани, известный как NFPA 701: Стандартные методы испытаний на огнестойкость текстильных материалов и пленок .Хотя NFPA 701 сам по себе не является законом, многие местные органы власти и власти штатов требуют, чтобы текстильные изделия, используемые в общественных местах, соответствовали ему.

Что касается NFPA 701?
Два различных метода испытаний позволяют различать ткани разной плотности. Методы испытаний применимы к текстильным материалам, используемым во внутренней отделке общественных зданий, включая шторы, оконные шторы, драпировки, скатерти, текстильные настенные ковры, а также к тканям, используемым при сборке навесов, палаток, брезентов и других аналогичных архитектурных тканей. конструкции и баннеры. – NFPA

В Worldwide Foam мы производим и распространяем огнестойкую пену.

Мы предлагаем огнестойкие (FR) пены, которые соответствуют спецификации FAR 25.853, чем другие производители пены FR.

XP-18UL в настоящее время доступен в размере булочки 4 ”x39” x79 ”угольного цвета.

Помимо пенопласта, соответствующего стандарту UL 94 HF-1, большинство наших материалов из сшитого полиэтилена и пенопласта Zotefoam соответствуют техническим требованиям для автотранспортных средств FMVSS-302. Этот стандарт измеряет горизонтальную скорость горения материалов, которые будут использоваться в пассажирских отсеках автомобилей.

Не стесняйтесь обращаться к нам, если у вас есть какие-либо вопросы или вы хотите запросить бесплатный образец XP-18UL!

У нас также есть артикул продукта Zotefoam Azote FR

.

Эти пенопласты всегда есть в наличии, и мы можем предоставить сертификат FAR 25.853 спецификации .

У нас также есть промышленная пена, в том числе огнестойкая и огнестойкая пена.

Доступен в виде силиконовой пены с закрытыми ячейками, коммерческого класса и класса F 12 толщиной от 1/16 дюйма.до 1 дюйма и размерами 36 дюймов x 36 дюймов (Ш x Д) с номинальной плотностью 12 фунтов / куб. футов. Силиконовая пена коммерческого класса представляет собой гибкий материал легкой плотности с гладкой кожей с обеих сторон. Силиконовая пена негорючая, самозатухающая и может выдерживать пламя 2100 градусов по Фаренгейту более 10 минут без возгорания.

Силиконовая пена не вызывает коррозии при работе с металлами и в агрессивных средах. Области применения включают авиацию, общественный транспорт, автомобильную промышленность, электронику, строительство, мебель, противопожарные блоки, тепловые барьеры, гасители шума и вибрации, изоляцию и высокоэффективные прокладки или уплотнения.Силиконовая пена соответствует требованиям UL® 94 VO.

Преимущества пены с закрытыми порами / огнестойкая пена во всем мире

  • Стабильный и инертный
  • Огнестойкий
  • Высокое отношение прочности к массе из сшитой смолы
  • Устойчив к большинству химикатов и растворителей
  • Простая формовка с помощью обычных деревообрабатывающих инструментов
  • Отлично заменяет дерево
  • Не поддерживает рост грибков

Всегда помните, что огнестойкость не означает огнестойкость.

Продолжительное воздействие огня может вызвать возгорание пенополиуретана. Пенополиуретан – это органический материал, такой же, как дерево или хлопчатобумажная ткань. Огнестойкая пена ASTM E84 класса I означает, что пена была протестирована Underwriter’s Laboratories (UL) на распространение пламени и образование дыма в соответствии с туннельным тестом ASTM E-84 на характеристики горения поверхности.

Большинство основных органов строительного кодекса считают пену класса I удовлетворяющим этим параметрам: распространение пламени <25 и количество образовавшегося дыма <450.

Что все это значит?

Это означает, что очень важно применять внутри стен вашего дома только изоляцию E84 класса 1, потому что, хотя она не остановит пожар, но даст вам время выбраться из дома. Это также означает, что вся изоляция должна быть покрыта 15-минутным противопожарным барьером в жилых помещениях из пенопласта, как гипсокартон 1/2 дюйма.

Компания

Worldwide Foam желает, чтобы у вас были безопасные производственные мощности, распределительные центры и довольные конечные пользователи.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *