Какие материалы имеют меньшую теплопроводность – Теплопроводность строительных материалов

Какие материалы обладающие малой теплопроводностью вы знаете какие?

Последние годы при строительстве дома или его ремонте большое внимание уделяется энергоэффективности. При уже существующих ценах на топливо это очень актуально. Причем похоже что дальше экономия будет приобретать все большую важность. Чтобы правильно подобрать состав и толщин материалов в пироге ограждающих конструкций (стены, пол, потолок, кровля) необходимо знать теплопроводность строительных материалов. Эта характеристика указывается на упаковках с материалами, а необходима она еще на стадии проектирования. Ведь надо решить из какого материала строить стены, чем их утеплять, какой толщины должен быть каждый слой.  

Что такое теплопроводность и термическое сопротивление

При выборе строительных материалов для строительства необходимо обращать внимание на характеристики материалов. Одна из ключевых позиций — теплопроводность. Она отображается коэффициентом теплопроводности. Это количество тепла, которое может провести тот или иной материал за единицу времени. То есть, чем меньше этот коэффициент, тем хуже материал проводит тепло. И наоборот, чем выше цифра, тем тепло отводится лучше.

Диаграмма, которая иллюстрирует разницу в теплопроводности материалов

Материалы с низкой теплопроводностью используются для утепления, с высокой — для переноса или отвода тепла. Например, радиаторы делают из алюминия, меди или стали, так как они хорошо передают тепло, то есть имеют высокий коэффициент теплопроводности. Для утепления используются материалы с низким коэффициентом теплопроводности — они лучше сохраняют тепло. В случае если объект состоит из нескольких слоев материала, его теплопроводность определяется как сумма коэффициентов всех материалов. При расчетах, рассчитывается теплопроводность каждой из составляющих «пирога», найденные величины суммируются. В общем получаем теплоизоляцонную способность ограждающей конструкции (стен, пола, потолка).

Теплопроводность строительных материалов показывает количество тепла, которое он пропускает за единицу времени

Есть еще такое понятие как тепловое сопротивление. Оно отображает способность материала препятствовать прохождению по нему тепла. То есть, это обратная величина по отношению к теплопроводности. И, если вы видите материал с высоким тепловым сопротивлением, его можно использовать для теплоизоляции. Примером теплоизоляционных материалов может случить популярная минеральная или базальтовая вата, пенопласт и т.д. Материалы с низким тепловых сопротивлением нужны для отведения или переноса тепла. Например, алюминиевые или стальные радиаторы используют для отопления, так как они хорошо отдают тепло.

Таблица теплопроводности теплоизоляционных материалов

Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше  (а лучше — хоть немного больше) рекомендованной для вашего региона.

Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций

При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

В сухом состоянииПри нормальной влажностиПри повышенной влажности
Войлок шерстяной0,036-0,0410,038-0,0440,044-0,050
Каменная минеральная вата 25-50 кг/м30,0360,0420,,045
Каменная минеральная вата 40-60 кг/м30,0350,0410,044
Каменная минеральная вата 80-125 кг/м30,0360,0420,045
Каменная минеральная вата 140-175 кг/м30,0370,0430,0456
Каменная минеральная вата 180 кг/м30,0380,0450,048
Стекловата 15 кг/м30,0460,0490,055
Стекловата 17 кг/м30,0440,0470,053
Стекловата 20 кг/м30,040,0430,048
Стекловата 30 кг/м30,040,0420,046
Стекловата 35 кг/м30,0390,0410,046
Стекловата 45 кг/м30,0390,0410,045
Стекловата 60 кг/м30,0380,0400,045
Стекловата 75 кг/м30,040,0420,047
Стекловата 85 кг/м30,0440,0460,050
Пенополистирол (пенопласт, ППС)0,036-0,0410,038-0,0440,044-0,050
Экструдированный пенополистирол (ЭППС, XPS)0,0290,0300,031
Пенобетон, газобетон на цементном растворе, 600 кг/м30,140,220,26
Пенобетон, газобетон на цементном растворе, 400 кг/м30,110,140,15
Пенобетон, газобетон на известковом растворе, 600 кг/м30,150,280,34
Пенобетон, газобетон на известковом растворе, 400 кг/м30,130,220,28
Пеностекло, крошка, 100 — 150 кг/м30,043-0,06
Пеностекло, крошка, 151 — 200 кг/м30,06-0,063
Пеностекло, крошка, 201 — 250 кг/м30,066-0,073
Пеностекло, крошка, 251 — 400 кг/м30,085-0,1
Пеноблок 100 — 120 кг/м30,043-0,045
Пеноблок 121- 170 кг/м30,05-0,062
Пеноблок 171 — 220 кг/м30,057-0,063
Пеноблок 221 — 270 кг/м30,073
Эковата0,037-0,042
Пенополиуретан (ППУ) 40 кг/м30,0290,0310,05
Пенополиуретан (ППУ) 60 кг/м30,0350,0360,041
Пенополиуретан (ППУ) 80 кг/м30,0410,0420,04
Пенополиэтилен сшитый0,031-0,038
Вакуум
0
Воздух +27°C. 1 атм0,026
Ксенон0,0057
Аргон0,0177
Аэрогель (Aspen aerogels)0,014-0,021
Шлаковата0,05
Вермикулит0,064-0,074
Вспененный каучук0,033
Пробка листы 220 кг/м30,035
Пробка листы 260 кг/м30,05
Базальтовые маты, холсты0,03-0,04
Пакля0,05
Перлит, 200 кг/м30,05
Перлит вспученный, 100 кг/м30,06
Плиты льняные изоляционные, 250 кг/м30,054
Полистиролбетон, 150-500 кг/м30,052-0,145
Пробка гранулированная, 45 кг/м30,038
Пробка минеральная на битумной основе, 270-350 кг/м30,076-0,096
Пробковое покрытие для пола, 540 кг/м30,078
Пробка техническая, 50 кг/м30,037

Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей. Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала.

Таблица теплопроводности строительных материалов

Стены, перекрытия, пол, делать можно из разных материалов, но так повелось, что теплопроводность строительных материалов обычно сравнивают с кирпичной кладкой. Этот материал знаю все, с ним проще проводить ассоциации. Наиболее популярны диаграммы, на которых наглядно продемонстрирована разница между различными материалами. Одна такая картинка есть в предыдущем пункте, вторая — сравнение кирпичной стены и стены из бревен — приведена ниже. Именно потому для стен из кирпича и другого материала с высокой теплопроводностью выбирают теплоизоляционные материалы. Чтобы было проще подбирать, теплопроводность основных строительных материалов сведена в таблицу.

Сравнивают самые разные материалы

в сухом состояниипри нормальной влажностипри повышенной влажности
ЦПР (цементно-песчаный раствор)0,580,760,93
Известково-песчаный раствор0,470,70,81
Гипсовая штукатурка0,25
Пенобетон, газобетон на цементе, 600 кг/м30,140,220,26
Пенобетон, газобетон на цементе, 800 кг/м30,210,330,37
Пенобетон, газобетон на цементе, 1000 кг/м30,290,380,43
Пенобетон, газобетон на извести, 600 кг/м30,150,280,34
Пенобетон, газобетон на извести, 800 кг/м30,230,390,45
Пенобетон, газобетон на извести, 1000 кг/м30,310,480,55
Оконное стекло0,76
Арболит0,07-0,17
Бетон с природным щебнем, 2400 кг/м31,51
Легкий бетон с природной пемзой, 500-1200 кг/м30,15-0,44
Бетон на гранулированных шлаках, 1200-1800 кг/м30,35-0,58
Бетон на котельном шлаке, 1400 кг/м30,56
Бетон на каменном щебне, 2200-2500 кг/м30,9-1,5
Бетон на топливном шлаке, 1000-1800 кг/м30,3-0,7
Керамическийй блок поризованный0,2
Вермикулитобетон, 300-800 кг/м30,08-0,21
Керамзитобетон, 500 кг/м30,14
Керамзитобетон, 600 кг/м30,16
Керамзитобетон, 800 кг/м30,21
Керамзитобетон, 1000 кг/м30,27
Керамзитобетон, 1200 кг/м30,36
Керамзитобетон, 1400 кг/м30,47
Керамзитобетон, 1600 кг/м30,58
Керамзитобетон, 1800 кг/м30,66
ладка из керамического полнотелого кирпича на ЦПР0,560,70,81
Кладка из пустотелого керамического кирпича на ЦПР, 1000 кг/м3)0,350,470,52
Кладка из пустотелого керамического кирпича на ЦПР, 1300 кг/м3)0,410,520,58
Кладка из пустотелого керамического кирпича на ЦПР, 1400 кг/м3)0,470,580,64
Кладка из полнотелого силикатного кирпича на ЦПР, 1000 кг/м3)0,70,760,87
Кладка из пустотелого силикатного кирпича на ЦПР, 11 пустот0,640,70,81
Кладка из пустотелого силикатного кирпича на ЦПР, 14 пустот0,520,640,76
Известняк 1400 кг/м30,490,560,58
Известняк 1+600 кг/м30,580,730,81
Известняк 1800 кг/м30,70,931,05
Известняк 2000 кг/м30,931,161,28
Песок строительный, 1600 кг/м30,35
Гранит3,49
Мрамор2,91
Керамзит, гравий, 250 кг/м30,10,110,12
Керамзит, гравий, 300 кг/м30,1080,120,13
Керамзит, гравий, 350 кг/м30,115-0,120,1250,14
Керамзит, гравий, 400 кг/м30,120,130,145
Керамзит, гравий, 450 кг/м30,130,140,155
Керамзит, гравий, 500 кг/м30,140,150,165
Керамзит, гравий, 600 кг/м30,140,170,19
Керамзит, гравий, 800 кг/м30,18
Гипсовые плиты, 1100 кг/м30,350,500,56
Гипсовые плиты, 1350 кг/м30,230,350,41
Глина, 1600-2900 кг/м30,7-0,9
Глина огнеупорная, 1800 кг/м31,4
Керамзит, 200-800 кг/м30,1-0,18
Керамзитобетон на кварцевом песке с поризацией, 800-1200 кг/м30,23-0,41
Керамзитобетон, 500-1800 кг/м30,16-0,66
Керамзитобетон на перлитовом песке, 800-1000 кг/м30,22-0,28
Кирпич клинкерный, 1800 — 2000 кг/м30,8-0,16
Кирпич облицовочный керамический, 1800 кг/м30,93
Бутовая кладка средней плотности, 2000 кг/м31,35
Листы гипсокартона, 800 кг/м30,150,190,21
Листы гипсокартона, 1050 кг/м30,150,340,36
Фанера клеенная0,120,150,18
ДВП, ДСП, 200 кг/м30,060,070,08
ДВП, ДСП, 400 кг/м30,080,110,13
ДВП, ДСП, 600 кг/м30,110,130,16
ДВП, ДСП, 800 кг/м30,130,190,23
ДВП, ДСП, 1000 кг/м30,150,230,29
Линолеум ПВХ на теплоизолирующей основе, 1600 кг/м30,33
Линолеум ПВХ на теплоизолирующей основе, 1800 кг/м30,38
Линолеум ПВХ на тканевой основе, 1400 кг/м30,20,290,29
Линолеум ПВХ на тканевой основе, 1600 кг/м30,290,350,35
Линолеум ПВХ на тканевой основе, 1800 кг/м30,35
Листы асбоцементные плоские, 1600-1800 кг/м30,23-0,35
Ковровое покрытие, 630 кг/м30,2
Поликарбонат (листы), 1200 кг/м30,16
Полистиролбетон, 200-500 кг/м30,075-0,085
Ракушечник, 1000-1800 кг/м30,27-0,63
Стеклопластик, 1800 кг/м30,23
Черепица бетонная, 2100 кг/м31,1
Черепица керамическая, 1900 кг/м30,85
Черепица ПВХ, 2000 кг/м30,85
Известковая штукатурка, 1600 кг/м30,7
Штукатурка цементно-песчаная, 1800 кг/м31,2

Древесина — один из строительных материалов с относительно невысокой теплопроводностью. В таблице даны ориентировочные данные по разным породам. При покупке обязательно смотрите плотность и коэффициент теплопроводности. Далеко не у всех они такие, как прописаны в нормативных документах.

В сухом состоянииПри нормальной влажностиПри повышенной влажности
Сосна, ель поперек волокон0,090,140,18
Сосна, ель вдоль волокон0,180,290,35
Дуб вдоль волокон0,230,350,41
Дуб поперек волокон0,100,180,23
Пробковое дерево0,035
Береза0,15
Кедр0,095
Каучук натуральный0,18
Клен0,19
Липа (15% влажности)0,15
Лиственница0,13
Опилки0,07-0,093
Пакля0,05
Паркет дубовый0,42
Паркет штучный0,23
Паркет щитовой0,17
Пихта0,1-0,26
Тополь0,17

Металлы очень хорошо проводят тепло. Именно они часто являются мостиком холода в конструкции. И это тоже надо учитывать, исключать прямой контакт используя теплоизолирующие прослойки и прокладки, которые называются термическим разрывом. Теплопроводность металлов сведена в другую таблицу.

Бронза22-105Алюминий202-236
Медь282-390Латунь97-111
Серебро429Железо92
Олово67Сталь47
Золото318

Как рассчитать толщину стен

Для того чтобы зимой в доме было тепло, а летом прохладно, необходимо чтобы ограждающие конструкции (стены, пол, потолок/кровля) должны иметь определенное тепловое сопротивление. Для каждого региона эта величина своя. Зависит она от средних температур и влажности в конкретной области.

Термическое сопротивление ограждающих
конструкций для регионов России

Для того чтобы счета за отопление не были слишком большими, подбирать строительные материалы и их толщину надо так, чтобы их суммарное тепловое сопротивление было не меньше указанного в таблице.

Расчет толщины стены, толщины утеплителя, отделочных слоев

Для современного строительства характерна ситуация, когда стена имеет несколько слоев. Кроме несущей конструкции есть утепление, отделочные материалы. Каждый из слоев имеет свою толщину. Как определить толщину утеплителя? Расчет несложен. Исходят из формулы:

Формула расчета теплового сопротивления

R — термическое сопротивление;

p — толщина слоя в метрах;

k — коэффициент теплопроводности.

Предварительно надо определиться с материалами, которые вы будете использовать при строительстве. Причем, надо знать точно, какого вида будет материал стен, утепление, отделка и т.д. Ведь каждый из них вносит свою лепту в теплоизоляцию, и теплопроводность строительных материалов учитывается в расчете.

Сначала считается термическое сопротивление конструкционного материала (из которого будет строится стена, перекрытие и т.д.), затем «по остаточному» принципу подбирается толщина выбранного утеплителя. Можно еще принять в расчет теплоизоляционных характеристики отделочных материалов, но обычно они идут «плюсом» к основным. Так закладывается определенный запас «на всякий случай». Этот запас позволяет экономить на отоплении, что впоследствии положительно сказывается на бюджете.

Пример расчета толщины утеплителя

Разберем на примере. Собираемся строить стену из кирпича — в полтора кирпича, утеплять будем минеральной ватой. По таблице тепловое сопротивление стен для региона должно быть не меньше 3,5. Расчет для этой ситуации приведен ниже.

  1. Для начала просчитаем тепловое сопротивление стены из кирпича. Полтора кирпича это 38 см или 0,38 метра, коэффициент теплопроводности кладки из кирпича 0,56. Считаем по приведенной выше формуле: 0,38/0,56 = 0,68. Такое тепловое сопротивление имеет стена в 1,5  кирпича.
  2. Эту величину отнимаем от общего теплового сопротивления для региона: 3,5-0,68 = 2,82. Эту величину необходимо «добрать» теплоизоляцией и отделочными материалами.

    Рассчитывать придется все ограждающие конструкции

  3. Считаем толщину минеральной ваты. Ее коэффициент теплопроводности 0,045. Толщина слоя будет: 2,82*0,045 = 0,1269 м или 12,7 см. То есть, чтобы обеспечить требуемый уровень утепления, толщина слоя минеральной ваты должна быть не меньше 13 см.

Если бюджет ограничен, минеральной ваты можно взять 10 см, а недостающее покроется отделочными материалами. Они ведь будут изнутри и снаружи. Но, если хотите, чтобы счета за отопление были минимальными, лучше отделку пускать «плюсом» к расчетной величине. Это ваш запас на время самых низких температур, так как нормы теплового сопротивления для ограждающих конструкций считаются по средней температуре за несколько лет, а зимы бывают аномально холодными. Потому теплопроводность строительных материалов, используемых для отделки просто не принимают во внимание.

otoplenie-help.ru

29.От каких факторов зависит теплопроводность материалов?

Теплопровдность – способность материала пропускать через свою толщу тепловой поток от одной поверхности к другой при наличии разных температур на этих поверхностях.

Количественно теплопроводность характеризуется коэффициентом теплопроводности λ Вт/(м»°С), который выражает количество тепла, проходящего через образец материала толщиной 1 м и площадью 1 м2 при разности температур на противоположных поверхностях ГС за 1 час. Теплопроводность строительных материалов напрямую зависит от их плотности, пористости, структуры и формы пор, температуры, влажности, фазового состава влаги и других факторов.

Увеличение количества мелких и замкнутых пор всегда существенно снижает теплопроводность. В крупных порах, а особенно в сообщающихся между собой, возникают конвективные потоки воздуха, снижающие теплоизоляционный эффект пористости. Заметную роль играют не только общая пористость, но и форма, размер и ориентация пор, поскольку направление потока тепла и излучения внутри пор оказывают большое влияние на общую теплопроводность материала.

Существенное значение для теплопроводности имеет химическая природа веществ, входящих в состав материала. Причем, чем тяжелее атомы или атомные группы, образующие кристаллы материала, тем слабее они между собой связаны и тем меньше теплопроводность материала.

30.Лакокрасочные материалы. Водно-известковые, водно-клеевые, водно-эмульсионные краски

Лакокрасочные материалы (ЛКМ) — это композиционные составы, наносимые на отделываемые поверхности в жидком или порошкообразном виде равномерными тонкими слоями и образующие после высыхания и отвердения пленку, имеющую прочное сцепление с основанием. Сформировавшуюся плёнку называют лакокрасочным покрытием, свойством которого является защита поверхности от внешних воздействий (воды, коррозии, температур, вредных веществ), придание ей определённого вида, цвета и фактуры.

ЛКМ подразделяются на следующие группы:

  • краска

  • эмаль

  • лак

  • грунтовка

  • шпатлёвка

  • антисептик

В качестве связующего в строительных красках этого вида применяют водно известковые. Известковую суспензию приготавливают из известкового теста или из свежепогашенной тонкомолотой извести-кипелки. В состав суспензии вводят щелочестойкие пигменты, а также поваренную соль или хлористый кальций с целью предотвращения быстрого высыхания, так как пленки отвердевают главным образом вследствие карбонизации, для протекания которой требуется некоторое количество влаги.

Известковые краски применяют для окраски кирпичных стен и штукатурок.

Водно-клеевые краски – это водные красочные составы, включающие наполнитель (чаще всего мел), пигмент и в качестве связующего клей – растительный, животный, синтетический или же растворимое стекло (краски в том случае называются силикатными).

Клеевые краски изготовляют по рецепту: мел с сегментом 6 кг, 10%-ный раствор клея – 2 л, остальное вода до 10 л.

Пигмент размешивают в небольшом количестве воды и добавляют к предварительно замоченному мелу. Затем вводят 10%-ный раствор клея и остальное вода и процеживают.

Клеевые краски применяют для внутренней отделки оштукатуренных поверхностей. Их наносят на поверхности, предварительно о грунтованные медным купоросом, цинковым купоросом или известковым грунтом.

Казеиновые краски выпускаются в виде порошка и перед употреблением разводятся водой в соотношении 1:1. Краску наносят на известковый грунт или на грунт из «редкой» казеиновой краски. Под казеиновые краски нельзя применять медно-купоросные грунты.

Готовый красочный состав можно использовать в течение двух суток. Казеиновые краски пригодны как для внутренней, так и для наружной отделки оштукатуренных и бетонных поверхностей.

Водоэмульсионные краски у разных производителей могут называться по разному: водно-дисперсионными или по виду связующего – акриловыми, латексными, поливинилацетатными и т.д.

Такие краски представляют собой суспензию пигментов и наполнителей в водных эмульсиях синтетических полимеров с добавлением различных вспомогательных веществ (эмульгаторов, стабилизаторов и т.д.).

Водоэмульсионные краски получили широкое применение и практически вытеснили клеевые. Синтетические водоэмульсионные составы приготавливаются из мельчайших частиц пластической массы, равномерно распределенных в воде. При ее испарении эти частички образуют эластичную и очень прочную пленку.

Водоэмульсионные составы являются экологически чистыми. Работа с ними безопасна, так как в их составе отсутствуют дорогостоящие органические растворители. Одним из достоинств водоэмульсионных красок является то, что они не образуют на поверхности глухую паронепроницаемую пленку. Поверхность, окрашенная такими составами, «дышит», т. е. пропускает пары воды и воздуха. Нанесенные покрытия можно мыть, их пористая пленка практически не горит.

Как правило, все краски выпускаются белого цвета. Для того чтобы получить нужный оттенок, используют колеровочные пасты или краски. Необходимый цвет подбирают сами или заказывают в специальных мастерских, где подбор производят на смешивающем автомате.

Водоэмульсионные краски для внутренних работ не рекомендуется применять для окрашивания помещений с повышенной влажностью (ванны, бани, прачечные и т.д.).

Перед употреблением состав необходимо тщательно перемешать, а при загустении – развести водой.

Такие краски высыхают при температуре 18…22°С за 30 мин, время полного высыхания – 1,5…2 ч.

studfiles.net

Теплопроводность

Теплопроводность

Известно, что процесс распространения теплоты в пространстве неразрывно связан с распределением температуры в нем. Совокупность значений температуры в каждый момент времени для всех точек рассматриваемого пространства называется температурным полем. Математически оно выражается уравнением t = f (х, у, z, τ), где х, у, z – координаты точки, а т – время. Если температура во времени не меняется, то поле называется установившимся, или стационарным. Если температура зависит от времени, поле называется неустановившимся, а протекающие в таких условиях тепловые процессы – нестационарными, например нагревание или охлаждение тел.

Температурное поле может быть функцией трех, двух и одной координаты. Соответственно оно называется трех, двух – и одномерным. Наиболее простой вид имеет уравнение одномерного стационарного температурного поля t = f (х). Все точки пространства, имеющие одинаковую температуру, образуют изотермическую поверхность. Естественно, что изменение температуры в теле может наблюдаться лищь в направлениях, пересекающих изотермические поверхности (например, направление х, рис. 13.1). При этом наиболее резкое изменение получается в направлении нормали n к изотермическим поверхностям. Предел отношения изменения температуры Δt к расстоянию между изотермами по нормали Δn при условии, что Δn = 0, называется температурным градиентом, т.е.

Частная производная применена здесь потому, что в общем случае температура может изменяться не только в пространстве, но и во времени (при нестационарном режиме).

Температурный градиент – это вектор с положительным знаком при возрастании температуры и с отрицательным при ее падении. Градиент температуры численно равен производной температуры по нормали.

Количество переносимой теплоты в единицу времени называют тепловым потоком Q, который измеряется в Дж/с (Вт). Тепловой поток, отнесенный в единице поверхности тела, называют по верхностной плотностью теплового потока (или просто плотностью теплового потока) q = Q/S, которая измеряется в Вт/м2.

Величина q является вектором, направление которого противоположно направлению градиента температуры, так как тепловая энергия самостоятельно распространяется всегда только в сторону убывания температуры (см.рис. 13.1).

Рис. 13.1. К определению температурного градиента и теплового потока.

Исследуя явления теплопроводности в твердых телах, Фурье установил, что тепловая мощность, тока передаваемая теплопроводностью, пропорциональна градиенту температуры пендикулярного направлению теплового потока, т. е.

(13.1)

Множитель пропорциональности λ, входящий в это уравнение, характеризует способность вещества, из которою состоит рассматриваемое тело, проводить теплоту и называется коэффициентом теплопроводности, или просто теплопроводностью. Из уравнения (13.1), которое является математическим выражением основного закона распространения теплоты путем теплопроводности (закон Фурье), следует, что теплопроводность λ, Вт/(м×К), определяет мощность теплового потока, проходящего через 1 м2 поверхности при градиенте температуры 1 К/м.

Для различных тел теплопроводность имеет определенное значение и зависит от структуры, плотности, влажности, давления и температуры веществ этих тел. Точные значения λ определяют на основе специальных лабораторных опытов. При технических расчетах обычно используют ориентировочные значения теплопроводности λ, Вт/(м×К).

Таким образом, наиболее высокая теплопроводность у металлов, значительно ниже у неметаллических строительных материалов и самые низкие значения у пористых материалов, применяемых специально для тепловой изоляции. У теплоизоляционных материалов λ < 0,20 Вт/(м × К).

У большинства металлов с повышением температуры теплопроводность убывает. Содержание примесей в металлах резко снижает их теплопроводность. Например, для стали при 0,1% углерода λ = 53, а при 1% углерода λ = 39 Вт/(м × К). Для строительных и теплоизоляционных материалов теплопроводность возрастает с увеличением температуры (исключение составляют магнезитовые огнеупоры). Зависимость λ от температуры для этих материалов может быть выражена равенством:

λ1 – λ0 °С(1 + βt)

где β – температурный коэффициент, представляющий собой приращение λ материала при повышении его температуры на 1°.

У различных строительных материалов в интервале температур 0 – 100° С β = 0,0025. Для капельных жидкостей с повышением температуры теплопроводность убывает. Исключение составляют лишь вода и глицерин. У газов с повышением температуры теплопроводность возрастает и практически не зависит от давления, за исключением очень высоких (более 200 МПа) и очень низких (менее 0,003 МПа) давлений. На теплопроводность влияют общая пористость материала, размер и степень замкнутости пор. Для пористых материалов теплопроводность находится в обратной зависимости от их общей пористости и в прямой от размеров пор. Это объясняется увеличением передачи теплоты конвекцией и излучением в общем процессе теплообмена пористого материала и свидетельствует о том, что теплоизоляционные материалы, используемые при высоких температурах, должны иметь мелкопористое строение. Поры, сообщающиеся между собой и с поверхностью материала, создают более благоприятные условия для увлажнения материала и тем самым для увеличения его теплопроводности, поэтому теплоизоляционные материалы должны иметь по возможности замкнутые поры.

Для пористых материалов λ является условной величиной, так как наличие пор в материале не позволяет рассматривать его как сплошное тело. Поэтому λ пористых материалов представляет собой теплопроводность некоторого однородного тела, через которое при одинаковых форме, размерах и температурах на границе его поверхности с окружающей средой передается та же тепловая мощность, что и через пористое тело.

Материалы с большей плотностью, как правило, обладают большей теплопроводностью, однако нужно иметь в виду, что теплопроводные свойства материала зависят не только от объема воздуха, заключенного в порах, но главным образом от равномерного распределения воздуха в пористом материале. С этой точки зрения крупнопористый материал будет менее эффективным теплоизолятором, чем мелкопористый материал с той же плотностью. Среди строительных материалов встречаются такие, которые, имея меньшую плотность, обладают большей теплопроводностью, чем материалы с большей плотностью. Примерами могут служить минеральная вата, торфяная крошка, употребляемая в качестве теплоизоляционного сыпучего материала, и др. В частности, в минеральной ваты при плотности около 125 кг/м3 теплопроводность наименьшая. При меньшей плотности теплопроводность возрастает в результате увеличения передачи теплоты конвекцией в порах вследствие меньшего уплотнения ваты.

Теплопроводность строительных материалов резко возрастает при их увлажнении, так как значительно отличаются теплопроводности воздуха и воды: теплопроводность воздуха в порах материала 0,025 – 0,028, а воды 0,55 Вт/(м×К), т. е. почти в 20 раз больше, чем воздуха. Материал становится еще более теплопроводным, если влага, находящаяся в его порах, замерзает, так как теплопроводность льда равна 2,5 Вт/(м×К), т. е. примерное 4 раза выше, чем у воды, и в 80 раз выше, чем у воздуха. Повышение теплопроводности влажных материалов обусловливается также увеличением контактирующих поверхностей частиц основного вещества материала. Это приводит к тому, что теплопроводность влажного материала значительно выше, чем сухого и воды в отдельности. Например, для сухого кирпича λ равна 0,35, для воды 0,55, а для влажного кирпича 1 Вт/(м×К) Поэтому строительные и особенно теплоизоляционные материалы необходимо предохранять от увлажнения, иначе сильно снижаются их теплозащитные свойства.

Для анизотропных материалов, которые имеют неодинаковую структуру в различных направлениях (древесина, волокнистые и прессованные материалы, кристаллы), теплопроводность зависит от направления теплового потока. Например, у сосновой древесины при направлении теплового потока параллельно направлению волокон увеличивается вдвое по сравнению с теплопроводностью при направлении теплового потока перпендикулярно волокнам. Это объясняется тем, что при направлении, перпендикулярном волокнам, тепловому потоку приходится пересекать большое количество воздушных зазоров, находящихся как внутри волокон древесины, так и между ними и оказывающих сопротивление прохождению теплоты. При направлении теплового потока параллельно волокнам влияние воздуха, заключенного в древесине, будет значительно меньше.

www.kotel-kv.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *