Калькулятор теплопотерь стен дома. Расчет толщины стен для различных регионов.
Калькулятор расчета теплопроводности стен жилых домов разработан в строгом соответствии с СНиП П-03-79. Функционал позволяет рассчитать степень теплопроводности любой стены и сравнить его с требуемой СНИПом величиной. От Вас требуется указать предполагаемый регион строительства и выбрать материал и толщину стен.
Рассмотрим участвующие в вычислениях величины.
Статистические сведения для каждого региона определены в СНиП:
- Темп. наружного воздуха — типичная минимальная температура наружного воздуха в зимний период.
- Ср. темп. отопит. периода – среднесуточная температура наружного воздуха по отопительному периоду.
- Продолжительность отопит. периода – среднестатистическая продолжительность отопительного периода в днях.
- Условия эксплуатации в зонах влажности – зона влажности географического региона (A или B).
Используемые для расчетов константы из ГОСТ и СНиП, характеризующие внутренние жилые помещения (одинаковы для всех регионов):
Для расчетов также используются установленные характеристики для внутренних помещений.
Характеристики внутреннего помещения, используемые в вычислениях
- Темп. внутреннего воздуха – положенная СНиПом минимальная температура внутреннего воздуха для жилых помещений.
- Влажность внутреннего воздуха – предполагаемая влажность внутреннего воздуха помещения. При разной влажности материалы стен обладают различной теплопроводностью.
- Коэффициент теплоотдачи внутренней поверхности – как быстро материал передает тепло вовнутрь помещения.
- Коэффициент теплоотдачи наружной поверхности – как быстро материал передает тепло во внешнюю среду.
- Коэффициент теплотехнической однородности – коэффициент, позволяющий оценить теплотехническую однородность стенового материала.
- Коэффициент полож. наружной поверхности
- Нормируемый температурный перепад
Вышеуказанный СНиП также утверждает методики расчета теплопроводности стен, будь то стена из одного материала, или стеновой пирог из нескольких компонентов. Полученный по формулам коэффициент теплопроводности должен удовлетворять требованиям из этого же СНИП, т.е. быть выше двух коэффициентов, рассчитанным по разным формулам.
Приведем ряд рекомендаций, опубликованных специалистами НАУЧНО-ИССЛЕДОВАТЕЛЬСКОГО ИНСТИТУТА СТРОИТЕЛЬНОЙ ФИЗИКИ (НИИСФ) ГОССТРОЯ СССР.
Рекомендации разработчиков СНиП-II-3-79 по устройству стенового пирога
Рекомендации касаются проектирования ограждающих конструкций зданий и сооружений.
Преимущество при проектировании стеновых конструкций следует отдавать многослойным наружным стенам с использованием эффективного теплоизоляционного материала Однослойные наружные стены показывают некоторую эффективность при использовании легкого бетона плотностью не выше 1000 кг/м3, ячеистого бетона плотностью менее 800 кг/м3. Также хорошо показывает себя кладка из пустотелых керамических или силикатных камней и кирпичей. Пирог многослойных стен необходимо проектировать таким образом, чтобы с теплой стороны (изнутри) располагался материал с большим коэффициентом теплопроводности, что обеспечивает более высокую температуру угла;
Если утеплитель располагается внутри, скажем, кирпичной кладки, его рациональнее располагать ближе к внешней поверхности стены. При проектировании помещений для районов с расчетной скоростью ветра в июле не менее 2 м/с допускается использовать покрытия с вентилируемой воздушной прослойкой. Оптимальная толщина вентилируемой воздушной прослойки в наружных стенах находится в пределах 0,05-0,1 а оптимальная высота – 5-6 м.
Рациональнее организовать в ограждающей конструкции несколько воздушных прослоек малой толщины, чем одну большей толщины, при этом воздушные прослойки должны располагаться ближе к наружной стороне ограждения;
Поскольку переувлажненные материалы стеновых конструкций хуже справляются со своей задачей, слои материалов следует располагать изнутри наружу в порядке увеличения паропроницаемости.
Наружные и внутренние стены следует предохранять от грунтовой влаги путем устройства гидроизоляции. Основная обязательная во всех случаях горизонтальная гидроизоляция в нижней части наружной стены или по всему верху цоколя должна быть расположена выше тротуара или отмостки здания, но ниже отметки пола первого этажа. Дополнительную горизонтальную гидроизоляцию следует предусматривать в стенах зданий с подвалами и цокольными этажами ниже уровня их пола.
Материал стен: | Не выбраноСиликатный кирпич, 1,5 кирпичаСиликатный кирпич, 2 кирпичаСиликатный кирпич, 2,5 кирпичаСиликатный кирпич, 3 кирпичаКирпич глиняный рядовый, 1,5 кирпичаКирпич глиняный рядовый, 2 кирпичаКирпич глиняный рядовый, 2,5 кирпичаКирпич глиняный рядовый, 3 кирпичаКерамический пустотный, 1,5 кирпичаКерамический пустотный, 2 кирпичаКерамический пустотный, 2,5 кирпичаКерамический пустотный, 3 кирпичаГазопенобетон, 400ммГазопенобетон, газосиликат 1000кг/м. куб, 600ммГазопенобетон, газосиликат 1000кг/м. куб, 800ммПенобетон D400, 400ммПенобетон D400, 600ммПенобетон D400, 800ммПенобетон D500, 400ммПенобетон D500, 600ммПенобетон D500, 800ммОцилиндрованное бревно (ель, сосна), 160 ммОцилиндрованное бревно (ель, сосна), 180 ммОцилиндрованное бревно (ель, сосна), 200 ммОцилиндрованное бревно (ель, сосна), 220 ммОцилиндрованное бревно (ель, сосна), 240 ммОцилиндрованное бревно (ель, сосна), 260 ммОцилиндрованное бревно (ель, сосна), 280 ммОцилиндрованное бревно (ель, сосна), 300 ммОцилиндрованное бревно (ель, сосна), 320 ммОцилиндрованное бревно (ель, сосна), 340 ммОцилиндрованное бревно (ель, сосна), 360 ммОцилиндрованное бревно (ель, сосна), 380 ммОцилиндрованное бревно (ель, сосна), 400 ммОцилиндрованное бревно (дуб), 160 ммОцилиндрованное бревно (дуб), 180 ммОцилиндрованное бревно (дуб), 200 ммОцилиндрованное бревно (дуб), 220 ммОцилиндрованное бревно (дуб), 240 ммОцилиндрованное бревно (дуб), 260 ммОцилиндрованное бревно (дуб), 280 ммОцилиндрованное бревно (дуб), 300 ммОцилиндрованное бревно (дуб), 320 ммОцилиндрованное бревно (дуб), 340 ммОцилиндрованное бревно (дуб), 360 ммОцилиндрованное бревно (дуб), 380 ммОцилиндрованное бревно (дуб), 400 ммБрус, толщина 200 ммБрус, толщина 100 ммТермоблок, 25 смСупертермо 38СТСупертермо 38ТСупертермо 51Супертермо 38Супертермо 25Поризованный керамический блок Porotherm 8Поризованный керамический блок Porotherm 38Поризованный керамический блок Porotherm 44Поризованный керамический блок Porotherm 51Воротынский камень поризованный 2,1НФПоризованный керамический блок Braer 10,7 NF M-100Поризованный керамический блок Braer 12,4 NF М-100Поризованный керамический блок Braer 14,3 NFСИП панели толщиной 124мм (толщина ППС 100мм)СИП панели толщиной 174мм (толщина ППС 150мм)СИП панели толщиной 224мм (толщина ППС 200мм) |
---|
Расчет теплопотерь дома: калькулятор онлайн теплотехнического расчета
На чтение 11 мин. Просмотров 3.2k. Обновлено
Для того, чтобы спроектировать систему отопления, которая удовлетворяла бы как требованиям комфортного проживания в доме, так и оптимального расходования ресурсов семьи, необходимо сначала рассчитать его возможные теплопотери.
Расчет теплопотерь — это способ, определить примерное количество теплопотерь, которое теряет дом через ограждающий контур за конкретное время, в самый холодный период пятидневки. Единица измерения теплопотерь — Ватты.
Полученный результат приблизительный, и требует экспериментальной проверки, так как не реально учесть все моменты, которые влияют на тепловые потери: неправильная конструкция перегородок, разница между температурой внутри и снаружи, действие осадков, солнечной радиации и ветра. Зная данные показатели, можно выбирать модель системы отопления нужной мощности для любого дома.
Калькулятор онлайн
Логика расчета
Процентное соотношение теплопотерь дома через элементы его конструкции, указанное на картинке, весьма приблизительно, поскольку сильно зависит от их устройства и используемых материалов. Потери тепла на инфильтрацию происходят в результате утечки воздуха через щели, некачественное уплотнение дверей и окон, принудительной и естественной вентиляции помещений. Уносимое с воздухом тепло приходится компенсировать более интенсивной работой системы отопления.
Расчет теплопотерь в данной программе выполняется отдельно для каждой стены, пола и потолка с учетом общих для всех элементов помещения условий. Это сделано исходя из следующих предположений:
- стены могут как непосредственно соприкасаться с атмосферным воздухом, так и выходить в нетапливаемое или плохо отапливаемые помещения;
- исходя из этого толщина стен и используемый для них материал могут отличаться;
- конструкция окон также может быть неодинакова.
Для расчета теплопотерь помещения в общем случае необходима площадь рассматриваемых элементов, характеристики теплопроводности или сопротивления теплопередаче используемых материалов и их толщина, а также разница между температурой воздуха внутри помещения (20-22 градуса) и температурой воздуха снаружи.
Температура атмосферного воздуха должна приниматься по самому холодному периоду отопительного сезона и указывается в общих условиях для расчета; если для какой-то стены она другая, введите ее в поле “температура воздуха снаружи помещения”. Для потолка температура, отличная от атмосферной, может быть введена в поле “температура над”, а для пола – “температура снизу”(вводится обязательно). Температура над потолком зависит от наличия или отсутствия утепления чердачного помещения; под полом – от наличия или отсутствия подвала и его типа (чаще всего принимается 0-7+ градусов).
Наружные двери могут выходить прямо на улицу или в неотапливаемое помещение; последнее обстоятельство учитывается в программе умножением рассчитанных теплопотерь через дверь на коэффициент 0.7.
Расчетные потери тепла на инфильтрацию воздуха можно регулировать варьируя значения, вводимые в поле “доля объема воздуха в помещении, подлежащая ежечасному обмену”; дело в том, что требуемый СНИПом ежечасный обмен всего объема воздуха, находящегося в доме, на практике считается завышенным и приводящим к большим затратам на отопление.
Коэффициенты теплопроводности используемых в строительстве материалов берутся из соответствующих таблиц или по данным изготовителей. Это касается и сопротивления теплопередачи стеклопакетов и им подобных конструкций. Что касается стеклопакетов, то при их выборе следует обращать внимание на обозначение.
Например, в обозначении стеклопакета 4-10ap-4: 4 -толщина стекла; 10-расстояние между стеклами; ap – указывает, что это пространство заполнено инертным газом аргоном, что повышает его сопротивление теплопередаче.
В обозначении 4-14-4-14-4и “и” указывает,что стекла имеют мягкое низко эмиссионное покрытие; к-стекло имеет более твердое покрытие, защищено от мелких повреждений, его покрытие низко эмиссионное; pi – на стекло нанесена энергосберегающая пленка и др.
Приведенная в правой части рисунка схема относится к случаю, когда под домом нет подвала (“пол на грунте”) для упрощения решения сложной задачи определения теплопотерь через пол в грунт применяется методика разбиения площади ограждающих конструкций на 4 зоны.
Каждая из четырех зон имеет свое фиксированное сопротивление теплопередаче в м2·°с/вт:r1=2,1 r2=4,3 r3=8,6 r4=14,2. Зона 1 представляет собой полосу (при отсутствии заглубления грунта под строением) шириной 2 метра, отмеренную от внутренней поверхности наружных стен вдоль всего периметра; зоны 2 и 3 имеют также ширину 2 метра и располагаются за зоной 1 ближе к центру здания; зона 4 занимает всю оставшуюся центральную площадь.
В действительности же зоны 3 и 4 при небольших размерах дома могут отсутствовать. В заключение следует указать, что в программе используются следующие общепринятые коэффициенты:
- 23 – коэфф. теплоотдачи от стен к наружному воздуху
- 8.7 – коэфф. теплоотдачи от внутреннего воздуха к стенам
- 6 – коэфф. теплоотдачи от внутреннего воздуха к полу
- 12 – коэфф. теплоотдачи от потолка к наружному воздуху если неотапливаемый чердак,
- 1.18 – поправочный коэфф. при расчете теплопотерь пола не на грунте (по снип).
А также доступные в калькуляторе коэфф. теплоотдачи от пола к наружному воздуху/грунту для различных видов подвалов. Необходимо также отметить,что по правилам обмера зданий для расчета теплопотерь длина стен определяется по его наружному периметру, а их высота – от поверхности чистового пола до верхней плоскости потолочного перекрытия. Эту величину следует указывать в поле “высота помещений hp”.
Общие замечания по порядку расчета
- Сначала рассчитываются теплопотери через двери, стены и окна, все сразу, то есть после ввода всех данных по ним, или по отдельности – после ввода параметров, например по одной из стен или двери; затем рассчитываются таким же образом теплопотери через потолок, пол и потери на инфильтрацию.
- Каждый элемент может быть пересчитанный повторно после корректировки его параметров; при этом следует учесть, что если вы изменяете количество слоев материалов, сами материалы, наличие или отсутствие окон, перед всеми этими действиями следует нажать кнопку “сброс входных данных”.
- Расчет теплопотерь через пол, потолок и инфильтрацию возможен только после расчета потерь через стены.
- “Температура воздуха снаружи” (для стен) и “температура над” (для потолка) вводятся в случае, если они отличаются от температуры, указанной в общих условиях для расчета.
- Перед расчетом теплопотерь через стены из их площади вычитается площадь окон и двери.
Значительно повышается экономия тепловой энергии при качественном утеплении контура дома и крыши. Необходимость в энергосберегающем ремонте возникает, когда в течение года тратится 100 кВт электрической энергии или 10 кубов природного газа, из расчёта на 1 кв. метр отапливаемой площади, с учётом перегородок.
Энергосберегающее здание — дом, имеющий сплошную теплоизоляцию по всему каркасу нагретой поверхности. В качестве теплоизолирующего материала отлично подходит пеностекло, фанера, пенопласт, гипсокартон. Металл (сталь), также является отличным проводником тепловой энергии. Приобретая стройматериалы, обязательно нужно обращать внимание на коэффициент теплопроводности, который указан в паспорте.
Варианты выхода нагретого воздуха:
- Крыша — толстый слой теплоизоляционного кровельного материала значительно уменьшит теплопотери.
К сведению: Если строение деревянное, то укладка теплозащиты на крыше затруднительна, так как происходит набухание древесины, и она может повредиться от влажности. - Стены — добиться снижения теплопотерь можно также используя специальное наружное покрытие. При утеплении изнутри, особенно если повышенная влажность, будет образовываться конденсат за изоляцией.
- Пол — в данном случае, практичнее делать утепление изнутри.
- Фундамент — его контакт с холодным грунтом значительно увеличивает теплопотерю на первом этаже.
- Термические мосты — наружные теплопроводники, не редко через них уходит большая часть нагретого воздуха. К ним относятся: бетонное половое покрытие, которое продолжается на балконе, дверные проёмы и окна, особенно классические, двойные. Есть также мосты, относящие к временным, когда перегородки крепятся на металлические элементы.
Современные окна — это стеклопакеты однокамерные и двухкамерные, имеющие специальную отражающую поверхность, что понижает потери излучения. Многослойное остекление более эффективно сохраняет тепло, чем обычное двойное окно.
Тепловые потери на вентиляциюОбычно, у дома есть воздушные утечки — это оконные и дверные проёмы, и крыша, что создаёт воздухообмен. Но в зимнее время, этот вариант приводит к значительному выходу тёплого воздуха, поэтому с помощью новых технологий были разработаны конструкции уменьшающие утечку нагретых воздушных масс наружу.
Современные дома нуждаются в постоянном вентилировании, так как они имеют высокую воздухонепроницаемость. Для уменьшения теплопотерь связанных с вентиляцией, которые составляют от 10 до 40%, используются новейшие модели вентиляционных систем. Калькулятор теплопотерь дома делается по каждой комнате отдельно, Далее, определяется тепловой расход на вентиляцию — его объём и сколько раз происходила его смена в здание.
Рассчитывая теплотехнические вентиляционные потери, при помощи онлайн калькулятора, нужно учитывать предназначение дома. Для ванной комнаты и кухни требуется повышенный уровень вентиляции.
Минимальное утепление наружных стенДля проведения онлайн теплотехнического расчёта для внешних стен существует несколько сложных методик, с учётом конвекционного обмена, излучения и т. д., но эти данные часто бывают излишними и не влияющими на итог.
Однако, есть более простой теплотехнический онлайн калькулятор для расчёта теплопотерь дома. Для большей точности, к данному показателю допустимо добавить 1 — 5%.
Важно! Применяя теплотехнический калькулятор, при расчёте потерь тепла дома, следует учитывать время пребывания человека в каждой комнате, чем оно меньше, тем за основу берутся меньшие температурные показания.
Есть два способа рассчитать расход тепла в доме:
- Метод усреднённых величин — получается приблизительный результат. Расчёт делается по специальной таблице, которая составлена для разных областей с учётом особенностей их климата и средних характеристик здания.
- Теплотехнический онлайн расчёт потерь тепла дома по периметру здания — площади всех внешних перегородок суммируются, и отнимается размер окон и дверей. Отдельно учитывается площадь крыши и пола, стройматериала и штукатурки. В дальнейшем калькулятор, для определения теплопотерь дома выглядит так: Q = S x ΔT/R, где S – размер полученной площади; ΔT – сведения о температурной разнице, внутри и снаружи; R – показатель сопротивления передачи тепла. R = n/λ;, где n – показатель толщины стен; λ – уровень удельной теплопроводности (Вт/м °C). Данное значение следует брать из таблицы, для необходимого стройматериала.
Материал | Коэффициент теплопроводимости | Толщина стен в мм |
Пенополистирол | 0,042 | 124 |
Минеральная вата | 0,046 | 135 |
Дерево, брус или бревно (сосна, ель, дуб) | 0,18 | 530 |
Керамические блоки уложенные на теплоизоляционный клей | 0,17 | 575 |
Керамический пустотный кирпич плотностью 1000 кг/м. кв.(Гост 530) уложенный на цементно-песчаный раствор | 0,52 | 1530 |
Силикатный кирпич на цементно-песчаном растворе | 0,87 | 2560 |
Железобетон | 2,04 | 602 |
Полученные результаты, отдельно рассчитанные для перегородок, полового покрытия и крыши, суммируются, прибавляются вентиляционные потери, и данные об утечке тепла через фундамент. В калькулятор теплотехнического расчёта для фундамента заносится меньшая температурная разница.
Данный метод поможет выбрать мощность котла, но не даёт возможность рассчитать необходимое количество радиаторов для каждой комнаты. Приблизительное минимальное качество утеплителя для стен снаружи в мм. выглядит так.
МАТЕРИАЛ | Высокое | Среднее | Низкое |
Слой из дерева плюс пенополистирол или слой каменной ваты | 300:100 | 300:50 | |
Дерево | 200 | ||
Газо и пенобетонный материал | 500 | 400 | 200 |
Газоблок и пенобетонный пласт плюс полистирол или каменная вата | 300:100 | 300:50 | |
Газовый и пенобетонный блок плюс кирпичная кладка | 100:120 | ||
Слой керамзитобетона плюс полистирол или пласт каменной ваты | 400:100 | 200:100 | |
Слой керамзитобетона | 300 | ||
Кирпичная кладка и полистирол или каменная вата | 250:200 | 250:100 | |
Силикатный кирпич | 250 |
Под точкой росы подразумевается температура воздуха, до которой он должен охладится, чтобы начать насыщаться и преобразовываться в росу. На данный показатель влияет давление воздуха.
Необходимо стараться избегать образования точки росы. Если это невозможно, следует сместить её к наружным пластам, кроме того требуется хорошая вентиляция этих слоёв.
Решение проблемы точки росыОсновная причина образования точки росы — это высокий уровень пустотелов во внутренних пластах, что приводит к повышению давления водяных паров в холодных слоях конструкции. Решить проблему можно путём добавления менее паронепроницаемого материала внутрь конструкции, или сделать вентиляционный зазора с наружной стороны.
Это позволит сдерживать водяные поры и не даст проходить им сквозь стены. Однако, если переусердствовать, то накопившиеся пары понизят качество воздуха внутри дома. Если здание эксплуатируется в суровых условиях (-20 и выше градусов), то следует сделать принудительное поступление прогретого воздуха в дом, используя теплообменники или нагреватели. В этом случае применение герметичных строительных пароизоляционных материалов не приведёт к ухудшению микроклимата в помещение. Использование онлайн расчёта облегчит процесс определения размера теплопотерь.
Онлайн калькулятор расчёта теплопотерь даёт возможность узнать коэффициент теплопроводимости стен дома или отдельного помещения, и правильно выбрать материал для простой или многослойной теплоизоляции. Кроме того, точность результата важна для при выборе бойлера, для выделения эффективного тепла без перегрева дома.
Онлай Калькулятор расчета теплопотерь стен дома
Одним из самых сложных и ответственных этапов в строительстве и оборудовании частного дома, является выбор подходящего отопительного котла. На сегодняшний день в специализированных магазинах можно увидеть котлы различной мощности. Однако не каждый потенциальный владелец дома и даже специалист, может легко и быстро подсчитать, какой именно котел нужен, чтобы во всех помещениях дома всегда было тепло и уютно.
Если снизите теплопотери дома, то вам придется тратить меньше сил и средств на его отопление и обогрев.
Для того нужно подсчитать теплопотери помещения, и только после этого можно приступать к определению оптимальной мощности котла. В этом вам может помочь специальный калькулятор теплопотерь и теплопроизводительности – с ним все подсчеты займут от силы несколько минут.В первую очередь нужно указать, какие именно используются окна. Ведь через них теряется от 20% тепла и более, если установлены некачественные окна, имеющие щели. Вы можете выбрать самостоятельно подходящий вариант – тройной стеклопакет, двойной стеклопакет или же обычные окна.
Следующий пункт – стены. Через них в некоторых случаях может теряться до 50% тепла! Поэтому стены должны быть особенно хорошо теплоизолированы. В данном пункте укажите, какова теплоизоляция стен – хорошая, средняя или плохая.
Также необходимо указать, каким является соотношение площади окон и полов. В большинстве случаев она составляет от 10 до 50%. Выберите подходящее вам значение.
Укажите, до какого предела может опускаться температура снаружи помещения. Это очень важно, ведь котлу отопления придется обогревать ваше жилье как в теплые дни зимы, так и в самые морозные. И вы должны комфортно чувствовать себя при любой погоде.
Специалисты знают, что больше всего тепла теряют внешние стены, то есть те, которые выходят наружу. Укажите, сколько стен в комнате являются внешними.
Не менее важно указать, какое именно помещение вы просчитываете – жилое, обогреваемое помещение, холодный чердак или же теплое чердачное помещение.
Теперь осталось только указать высоту и площадь помещения. Эти данные получить очень легко – достаточно поработать несколько минут с рулеткой. Если при указании площади вам нужно использовать дробные числа, используйте точку, вместо запятой, чтобы калькулятор провел точные вычисления.
После ввода всех данных кликните по кнопке «Рассчитать». Калькулятор тут же выдаст вам, какими будут теплопотери данного помещения, и какую мощность должен иметь отопительный котел, чтобы в помещении всегда было тепло и уютно.
Теплопроизводительность котла
Расчет теплопотерь дома: онлайн-калькулятор точного расчета теплопотерь
Комфортный климат в доме зависит от тепловых потерь. Чтобы не тратить лишние средства на отопление нужно учитывать многие факторы, такие как потеря тепла через стены во внешнюю среду, прогрев пола, материал и установка окон, исправность отопительной и вентиляционной системы и т.д.
Зачем нужен расчет теплопотерь дома?
Расчет теплопотерь дома – это учет всех составляющих, влияющих на потери тепла:
- Внешняя среда;
- Внутренняя составляющая.
Особенно актуально знать потери тепа в холодное время года. Решающим фактором здесь становится разность температур между внешней и внутренней средой. Потери тепла в зависимости от строительного материала необходимо рассчитать перед постройкой здания. Различные материалы характеризуются разной теплопроводностью. Дом, построенный из кирпича и бруса, по-разному задерживают тепло, и, соответственно для них требуется различный расход топлива на обогрев.
Очень большое влияние на сохранение тепла в помещении оказывает площадь. Недаром в Сибири бани строят маленькими, с низкими потолками.
Так же одним из факторов, влияющих на потерю тепла в помещении, является качественная теплоизоляция. Теплоизоляция, выполненная из некачественных материалов или посаженная на неправильный герметик (клей), будет только ухудшать ситуацию. В полостях такого материала может скапливаться вода. А, как известно, вода хорошо проводит тепло и не сохраняет его.
Общая потеря тепла складывается из всех составляющих:
Q=Qстен+Qокон+Qпола+Qкровли Qвытяжных систем
- Рассчитать теплопотерю можно воспользовавшись он-лайн калькулятором. Здесь мы рассмотрим, как рассчитать теплопотери дома, учитывая основные факторы
Расчет теплопотерь дома
Влияние строительных материалов
По требованию СанПина максимальная разница между температурой воздуха и температурой стены должна быть 4°С. Этот показатель зависит от термического сопротивления материала.
Для каждого материала свой показатель термического сопротивления выраженный в °С м2/Вт:
- Кирпичная кладка – 0,73
- Брус – 0,83
- Керамзитная плита – 0,58
Однако это не единственный показатель, влияющий на тепло в доме. Притом что, тепловое сопротивление дома из бруса почти такое же как у кирпичной кладки, он гораздо хуже сохраняет тепло. Связано это с тем, что между бревен находятся зазоры, которые необходимо прокладывать утеплителем. В кирпичной кладке все зазоры закрыты растворов цемента, который увеличивает термическую сопротивляемость почти вдвое. Керамзитная плита теряет тепло за счет швов. Поэтому дополнительные потери также должны быть учтены при подсчете тепловых потерь.
Теплопотери стен
Qcт=Kст*Fст(tвнут-tвнеш), где
- Kст – коэффициент теплопроводности материала, °С м2/Вт;
- Fст – площадь стены, м2;
- tвнут – температура внутри помещения, °С;
- tвнеш – температура снаружи, °С.
Стены дома непосредственно контактируют с внешней средой, поэтому при правильной постройке большая часть тепла будет уходить именно через них. Помимо материала на теплопотери за счет стен влияет внутренняя и наружная отделка, количество слоев стены и их теплопроводность, толщина стены. Слабыми местами в стеновых потерях являются потери на швы между панелями, различные технологические отверстия.
Для того чтобы сократить потери необходимо между слоями стены создать воздушную прослойку или прослойку, утепленную пористым утеплителем, так как воздух плохо проводит тепло и помогает сохранить его в помещении. Технологические отверстия также следует обкладывать утеплителем, для лучшего сохранения тепла.
Тепловые потери за счет крыши или потолка
Потери тепла для потолка и крыши рассчитываются по той же формуле, что и для стен. Теплый воздух поднимается вверх, поэтому, чтобы не отапливать улицу, следует серьезно отнестись к утеплению крыши при строительстве. Основным параметром теплопотерь здесь будет неравномерность стыков. От выбора утепляющего материала тоже будет завесить очень многое. Так, например использование эковаты предполагает отсутствие влаги. А, как известно, вместе с теплым воздухом вверх поднимается и пар, который остывая, будет конденсироваться, оседать на утеплителе, замещая воздух и снижать термическое сопротивление утеплителя.
Тепловые потери окон
Потери тепла за счет окон рассчитываются по следующей формуле:
Qок=Kок*Fок(tвнут-tвнеш), где
- Kок – коэффициент теплопроводности материала, °С м2/Вт;
- Fок – площадь стены, м2;
- tвнут – температура внутри помещения, °С;
- tвнеш – температура снаружи, °С
Так же как и у стен, снизить теплопотери окон можно за счет многослойности стекла. Также огромное влияние оказывают правильно установленные комплектующие и качественный утеплитель. Также большое влияние оказывает качество материалов, из которых изготовлено окно. Большая площадь окон также оказывает негативное влияние. Поэтому не стоит в регионах с холодными зимами устанавливать большие окна.
Утепление пола
Формула расчета для теплопотерь для пола и фундамента идентична представленной выше. Но есть и свои нюансы. Теплопроводность пола будет разной для фундамента поднятого над грунтом и стоящего непосредственно на грунте.
Для фундамента, поднятого над грунтом основным параметром, влияющим на потерю тепла, является высота подъема. Также в расчет принимаются все слои теплоизоляции между полом и неотаплиевым подполом. Необходимым условием сохранения тепла здесь является герметичность стыков и правильно подобранный утеплитель.
Фундамент, стоящий на грунте, имеет другие теплопотери. Его коэффициент рассчитывается исходя в основном из тепловых потерь слоев утеплителя и толщины пола. Также следует учесть, что в этом случае тепловые потери сокращаются от стен к центру здания.
Вентиляционные системы
Вентиляционные системы сами по себе предназначены для сообщения помещения с внешней средой. Однако при правильной установке они не только не сократят теплопотери, но и помогут сохранить тепло в доме. Основная задача вытяжки убрать лишний пар из помещения. Однако при большом захвате воздуха вентилятором могут происходить ощутимые теплопотери.
Чтобы их избежать следует выбирать вентиляторы с обратным клапаном. Лепестки клапана прикрывают вентиляционное отверстие, когда вентилятор не работает, и не позволяют теплу уходить в вентиляционной отверстие.
Система отопления
Еще одним моментом, влияющим на потерю тепла, является работа самой отопительной системы. Чтобы радиатор не отапливал улицу за ним стоит установить отражающий экран из специального материала.
Перед началом нового отопительного сезона нужно стравить воздух из системы, это поможет сохранить фитинги в нормальном рабочем состоянии. Так же необходимо несколько раз промыть систему, чтобы убрать возможные засоры.
Нормальная работа отопительной системы гарантирует комфортные температурные условия в помещении.
Таким образом, расчет теплопотерь помогает сократить расходы на отопление. Основными параметрами, влияющими на тепловые потери являются выбор изоляционных материалов, площадь помещения, разность температур между помещением и окружающей средой, наличие воздушных полостей, а также исправность отопительной и вентиляционной системы.
Расчет теплопотерь здания – готовимся к зимнему периоду
Многие, строя загородный дом, забывают о приближении зимних холодов, из-за чего расчет теплопотерь здания делают в спешке, и в итоге отопление не создает комфортный микроклимат в помещениях. А ведь сделать дом теплым не сложно, нужно лишь учесть ряд нюансов.
На чем основывается расчет теплопотерь здания
Таким свойством, как теплопроводность, обладает любой материал, различается лишь уровень термического сопротивления, то есть пропускная способность. Из любого дома, даже с устроенной по всем правилам термоизоляцией, тепло уходит через окна, двери, стены, пол, потолок (крышу), а также через вентиляцию. При разнице внешней и внутренней температур обязательно возникает так называемая «точка росы», со средним значением. И только от микроклимата в помещениях, материала и толщины стен, а также характеристик термоизоляции зависит, где окажется эта точка: внутри, снаружи или непосредственно в стене, а также какая в ней будет температура.
Если ответственно подходить к задаче и выполнять расчет теплопотерь здания по всем правилам, это займет у вас немало часов и придется составить множество формул, вычисления займут целую тетрадь. Поэтому определим интересующие нас показатели упрощенным методом, либо обратившись за помощью к СНиП и ГОСТам. И, поскольку решено делать подсчеты не слишком углубленно, оставим в стороне определение среднегодовых температуры и влажности по самой холодной пятидневке за несколько лет, как того требуется по СНиП 23-01-99. Просто отметим наиболее морозный день за последний зимний сезон, допустим, это будет -30 оС. Также не будем принимать во внимание среднесезонную скорость ветра, влажность в регионе и длительность отопительного периода.
Калькулятор теплопотерь здания
Укажите размеры и типы стен.Распечатать
Однако из чего же складывается микроклимат в жилой комнате? Комфортные условия для жильцов зависят от температуры воздуха tв, его влажности φв и движения vв, возникающего при наличии вентиляции. И еще один фактор влияет на уровень тепла – радиационное излучение тепла или холода tр, свойственное нагреваемым (охлаждаемым) естественным путем предметам и поверхностям в обстановке. По нему определяется результирующая температура tп, с помощью формулы [tп = (tр + tв)/2]. Все эти показатели для разных помещений можно рассмотреть в приведенной ниже таблице.
Оптимальные параметры микроклимата жилых зданий по ГОСТ 30494-96 [2]
Период года | Помещение | Температура внутреннего воздуха tв , °С | Результирующая температура tп , °С | Относит. влажность внутреннего воздуха φв, % | Скорость движения воздуха v в , м/с |
Не более | |||||
Холодный | Жилая комната | 20-22 | 19-20 | 45-30 | 0,15 |
То же, в районах с t 5 от -31 °С | 21-23 | 20-22 | 45-30 | 0,15 | |
Кухня | 19-21 | 18-20 | НН | 0,15 | |
Туалет | 19-21 | 18-20 | НН | 0,15 | |
Ванная, совмещенный санузел | 24-26 | 23-27 | НН | 0,15 | |
Помещение для отдыха и учебных занятий | 20-22 | 19-21 | 45-30 | 0,15 | |
Межквартирный коридор | 18-20 | 17-19 | 45-30 | 0,15 | |
Вестибюль, лестничная клетка | 16-18 | 15-17 | НН | 0,2 | |
Кладовая | 16-18 | 15-17 | НН | НН | |
Теплый | Жилая комната | 22-25 | 22-24 | 60-30 | 0,2 |
Буквами НН обозначаются ненормируемые параметры.
Делаем теплотехнический расчет стены с учетом всех слоев
Как уже было сказано, каждому материалу свойственно сопротивление теплопередаче, и чем толще стены или перекрытия, тем выше это значение. Однако не стоит забывать и про термоизоляцию, при наличии которой ограждающие помещение поверхности становятся многослойными и намного лучше препятствуют утечке тепла. У каждого слоя свое сопротивление прохождению тепла, и сумма всех этих величин обозначается в формулах как ΣRi (здесь буква i определяет номер слоя).
Поскольку составляющие ограждения помещений материалы с разными свойствами имеют некоторое возмущение температурного режима в своей структуре, высчитывается общее сопротивление теплопередаче. Формула у него следующая: [Ro = Rв + ΣRi + Rн], где Rв и Rн соответствуют сопротивлению на внутренней и наружной поверхностях ограждения, будь то стена или перекрытие. Однако утеплители вносят в теплотехнический расчет стены коррективы, которые базируются на коэффициенте теплотехнической однородности r, определяемом формулой [r = r1 + r2].
Показатели с цифровыми индексами являются, соответственно, коэффициентами внутренних крепежей и соединения расчетного ограждения с любым другим. Первый, то есть r1, отвечает как раз за фиксацию утеплителей. Если коэффициент теплопроводности последних λ = 0,08 Вт/(м·°С), значение r1 будет большим, если же теплопроводность термоизоляции оценивается как λ = 0,03 Вт/(м·°С), то меньшим.
Значение коэффициента внутренних крепежей уменьшается по мере возрастания толщины слоя утеплителя.
В целом, картина складывается следующая. Допустим, термоизоляция монтируется прямым анкерным креплением на трехслойной ячеистобетонной стене, снаружи облицованной кирпичом. Тогда при слое утеплителя в 100 миллиметров r1 соответствует 0,78-0,91, толщина в 150 миллиметров дает коэффициент внутреннего крепежа 0,77-0,90, тот же показатель, но в 200 мм, определяет r1 как 0,75-0,88. Если внутренний слой также из кирпича, то r1 = 0,78-0,92, а если стены помещения железобетонные, то коэффициент смещается до 0,79-0,93. А вот оконные откосы и вентиляция дают значение r2 = 0,90-0,95. Все эти данные следует учитывать в дальнейшем.
Некоторые сведения о том, как рассчитать толщину утеплителя
Для того чтобы приступить к расчету термоизоляции, нам необходимо, прежде всего, высчитать Ro, затем узнать требуемое термическое сопротивление Rreq по следующей таблице (сокращенный вариант).
Требуемые значения сопротивления теплопередаче ограждающих конструкций
Здание/ помещение | Градусо-сутки отопительного периода D d , °С·сут | Приведенное сопротивление теплопередаче ограждений R req , м2·°С/Вт | |||
стены | покрытия | чердачного перекрытия и перекрытия над холодными подвалами | окна и балконной двери, витрины и витража | ||
1 | 2 | 3 | 4 | 5 | 6 |
1. Жилое, лечебно-профилактическое и детское учреждение, школа, интернат | 2 000 | 2,1 | 3,2 | 2,8 | 0,30 |
4 000 | 2,8 | 4,2 | 3,7 | 0,45 | |
6 000 | 3,5 | 5,2 | 4,6 | 0,60 | |
8 000 | 4,2 | 6,2 | 5,5 | 0,70 | |
10 000 | 4,9 | 7,2 | 6,4 | 0,75 | |
12 000 | 5,6 | 8,2 | 7,3 | 0,80 | |
а | — | 0,00035 | 0,005 | 0,00045 | — |
b | — | 1,4 | 2,2 | 1,9 | — |
2. Общественное, административное, бытовое и другие помещения с влажным или мокрым режимами | 2 000 | 1,8 | 2,4 | 2,0 | 0,3 |
4 000 | 2,4 | 3,2 | 2,7 | 0,4 | |
6 000 | 3,0 | 4,0 | 3,4 | 0,5 | |
8 000 | 3,6 | 4,8 | 4,1 | 0,6 | |
10 000 | 4,2 | 5,6 | 4,8 | 0,7 | |
12 000 | 4,8 | 6,4 | 5,5 | 0,8 | |
а | — | 0,0003 | 0,0004 | 0,00035 | 0,00005 |
b | — | 1,2 | 1,6 | 1,3 | 0,2 |
Коэффициенты a и b необходимы для тех случаев, когда значение D d , °С·сут отличается от приведенного в таблице, тогда R req , м2·°С/Вт рассчитывается по формуле R req = a D d + b. Для колонки 6 первой группы зданий существуют поправки: если значение градусо-суток менее 6000 °С·сут, a = 0,000075, а b = 0,15, если тот же показатель в диапазоне 6000-8000 °С·сут, то a = 0,00005, b = 0,3, если же более 8000 °С·сут, то a = 0,000025, а b = 0,5. Когда все данные будут собраны, приступаем к расчету термоизоляции.
Теперь выясним, как рассчитать толщину утеплителя. Здесь придется обратиться к математике, поэтому будьте готовы поработать с формулами. Вот первая из них, по ней определяем требуемое условное сопротивление теплопередаче Roусл. тр = R req/r. Данный параметр нам нужен для определения требуемого сопротивления теплопередачи утеплителя Rуттр = Roусл. тр – (Rв + ΣRт. изв + Rн), здесь ΣRт. изв является суммой термического сопротивления слоев ограждения без учета теплоизоляции. Находим толщину утеплителя δут = Rуттр λут (м), причем λут берется из таблицы Д.1 СП 23-101-2004 [7], и округляем полученный результат в большую сторону до конструктивного значения с учетом номенклатуры производителя.
Оцените статью: Поделитесь с друзьями!Онлайн калькулятор расчета теплопотерь здания
Правильное утепление дома позволяет экономить на расходе ресурсов для отопления, создавать оптимальные условия проживания. Главным показателем сохранения заданных температур является коэффициент теплопотерь. Он позволяет выяснить, насколько качественно проведено отопление и остекление, внешняя или внутренняя защита от холода. Поможет в получении точных данных онлайн калькулятор теплопотерь здания.
Как рассчитать теплопотери дома?
В большой мере на сохранение температур влияет надежность установленных окон и само расположение помещения относительно всей постройки. При указании нужного типа остекления стоит знать, что обычные стекла, а не стеклопакеты могут быть главной причиной теплопотерь. Отсутствие теплоизоляции стен в кирпичном строении недопустимо за счет неплохого сохранения температур материалом, способным поддерживать нужный режим в комнатах. Обычные помещения из железобетонных плит или бетонных блоков в недостаточной мере задерживают тепло.
Специальный калькулятор расчета теплопотерь стен дома учитывает и соотношение площади окон относительно площади пола. Чем выше получаемый процент, тем больше коэффициент потерь тепла. Подсчет производится суммированием площади всех окон в комнате и определением их процентного соотношения относительно площади пола.
Температура снаружи учитывается по средним показателям во время зимнего периода. Количество стен, которые выходят наружу, напрямую сказываются на сохранности заданных температур: именно через стены происходит наибольшая отдача тепла. Поэтому точный расчет теплопотерь дома можно получить только при правильном задании параметров комнаты.
Указание типа помещения, размеров стен, пола и потолка необходимы для корректного расчета потери тепла для каждой плоскости. Это позволит калькулятору провести суммирование и, опираясь на дополнительные данные (количество и тип остекления окон, утепление стен) получить правильный результат.
Зачем нужен точный расчет теплопотерь здания?
Каждый владелец дома должен не только знать, как рассчитать теплопотери, но и чем именно будут полезны полученные сведения. Сравнивая данные калькулятора теплопотерь по разным комнатам, можно определить насколько продуктивным является использование обогревательных систем. При получении оптимальных показателей для нескольких помещений и неудовлетворительных результатов по остальным комнатам можно сделать полезные выводы.
Полученный коэффициент укажет на необходимости дополнительного утепления или замены окон. В помещениях, защищенных от холода, следует установить термостат на систему обогрева. Это позволит регулировать температуру и создать нужные условия для комфортного проживания. Также пригодится точный расчет и владельцам коммерческих построек офисного типа, которые желают создать оптимальную рабочую атмосферу в зимние периоды для своих коллег и подчиненных.
Расчет потерь тепла в стене | EGEE 102: Энергосбережение и защита окружающей среды
Потери тепла с поверхности стены можно рассчитать, используя любую из трех формул, которые мы рассмотрели в части A этого урока.
Потери тепла через стены, окна, крышу и пол следует рассчитывать отдельно из-за различных значений R для каждой из этих поверхностей. Если R-значение стен и крыши одинаково, сумма площадей стен и крыши может использоваться с одним R-значением.
Пример
Дом в Денвере, штат Колорадо, имеет 580 футов 2 окон (R = 1), 1920 футов 2 стен и 2750 футов 2 крыши (R = 22). Стены состоят из деревянного сайдинга (R = 0,81), фанеры 0,75 дюйма, теплоизоляции из стекловолокна 3,5 дюйма, полиуретановой плиты 1,0 дюйма и гипсокартона 0,5 дюйма. Рассчитайте потребность в отоплении дома на отопительный сезон, учитывая, что HDD для Денвера составляет 6 100 единиц.
Решение:
Потребность в отоплении дома = Потери тепла из дома в течение всего года.Чтобы рассчитать теплопотери всего дома, нам нужно отдельно рассчитать теплопотери от стен, окон и крыши и сложить все тепловые потери.
Потери тепла от стен:
Площадь стен = 1 920 футов 2 , HDD = 6 100, и необходимо рассчитать составное R-значение стены.
Материал | R-значение |
---|---|
Деревянный сайдинг | 0.81 |
Фанера 3/4 дюйма | 0,94 |
3,5 дюйма из стекловолокна 3,5 дюйма x 3,7 / дюйм | 12,95 |
1,0 дюйм полиуретановой плиты = 1,0 дюйм x 5,25 / дюйм | 5,25 |
1/2 дюйма Гипсокартон | 0,45 |
Общая R-стоимость стен | 20,40 |
Общие тепловые потери от дома = 13,78 + 84,91 + 18,30 = 116,99 MMBTU в год или потребность в отоплении составляет 116,99 млн BTU в год .
Калькулятор потерь тепла| Калькулятор БТЕ
Вы можете использовать этот калькулятор тепловых потерь, чтобы оценить мощность обогревателя, необходимую для поддержания комфортной температуры в вашей комнате.Из текста вы узнаете, как рассчитать теплопотери и что такое калькулятор отопления BTU.
Зачем нужны системы отопления?
Все материалы проводят тепло. Вы можете согреть свое место до комфортной температуры, но пока температура на улице ниже, в вашем доме будет холоднее. Поток тепла из более теплого места в более холодное практически невозможно остановить, независимо от того, насколько качественные изоляционные материалы вы найдете. Чтобы компенсировать потерю, нам необходимо подавать энергию с постоянной скоростью.Эта мощность представляет собой мощность нагревателя, которую этот калькулятор поможет вам вычислить.
Что влияет на теплопотери?
Потери тепла – это эффект теплопередачи (в ваттах) изнутри наружу. На теплопередачу влияют три фактора:
- Площадь поверхности, через которую проходит тепло
- материал
- разница температур
Первый пункт прост: чем больше поверхность, тем больше тепла может передаваться одновременно.Второй момент касается характеристик материалов. Материалы, используемые в конструкциях, должны соответствовать определенным стандартам. Помимо прочего, это означает, что они должны обладать особыми свойствами в отношении теплопередачи. Общей характеристикой является коэффициент теплопередачи, также называемый U-значением. Он определяет передачу тепла через один квадратный метр материала, деленную на разницу температур. Например, кирпичная стена размером 11 дюймов может иметь U порядка 1 Вт / (м · К), тогда как стандартное окно может иметь значение U в пять раз больше.Последний фактор – разница температур. Тепло течет только между областями с разной температурой, поэтому, если температура одинакова, потока тепла нет. Обычно теплопередача пропорциональна разнице температур.
Как рассчитать теплопотери?
Чтобы вычислить теплопотери, нам нужно просуммировать теплопотери по всем поверхностям комнаты и учесть различные характеристики материалов, используемых в конструкции. Общие потери тепла складываются из потерь через стены, пол и потолок.Мы вычисляем потери через одну поверхность по формуле:
Heat_loss = Площадь * U-значение
,
где
-
Площадь
– площадь поверхности, -
U-значение
– U-значение материала.
Потери тепла через стены можно оценить следующим образом. Во-первых, следует указать тип утеплителя. В нашем калькуляторе предусмотрено 3 варианта:
- без дополнительной изоляции: полнотелая кирпичная стена толщиной 9 дюймов, коэффициент теплопроводности
= 2,2 Вт / (м² · К)
- посредственная изоляция: пустотелая стенка толщиной 11 дюймов, коэффициент теплопроводности
= 1.0 Вт / (м² К)
- очень хорошо изолирована: полая стена толщиной 11 дюймов с дополнительной изоляцией,
коэффициент теплопроводности = 0,6 Вт / (м² · K)
При желании в расширенном режиме вы можете установить значение U вручную.
Нам также нужно знать общую площадь стен. Однако следует учитывать только внешние стены. Наконец, в расширенном режиме вы можете выбрать количество окон и внешних дверей. Через них теряется большое количество тепла. Мы установили коэффициент теплопроводности окон 2,5 Вт / (м² K)
и внешних дверей 2,4 Вт / (м² K)
.
В нашем калькуляторе мы учитываем теплопотери через пол, только если это первый этаж. Показатель U составляет 1 Вт / (м² · К)
. Точно так же мы учитываем потери тепла через потолок, только если комната находится на верхнем этаже. Коэффициент теплопроводности потолка составляет 0,7 Вт / (м² K)
.
Калькулятор теплопотерь
Чтобы воспользоваться калькулятором теплопотерь и определить мощность обогревателя, вам необходимо указать размеры вашей комнаты, указать, на каком этаже она находится и какой тип изоляции имеют стены.Если вы не уверены, какой тип изоляции выбрать, выбирайте изоляцию худшего качества. Безопаснее быть пессимистом. Наконец, вы также должны указать, сколько у вас внешних стен. В расширенном режиме вы также можете указать количество окон и дверей. Имея эту информацию, мы можем вычислить потери тепла (в ваттах, разделенных на разницу температур). Зная теплопотери, мы можем оценить мощность обогревателя. Последняя часть необходимой информации – это разница температур внутри (внутренняя температура) и снаружи (температура окружающей среды).Внутренняя температура зависит от вашего комфорта. Температура окружающей среды должна быть минимальной температурой в вашем регионе.
Вычислитель отопления в БТЕ
В некоторых местах по всему миру для указания мощности системы отопления чаще используется BTU (британская тепловая единица) в час вместо ватт. Если вам интересно, сколько BTU мне нужно, вы можете легко изменить с ватт на BTU в час в нашем калькуляторе.
Передача тепла через элементы здания
Передача тепла через стену здания или аналогичную конструкцию может быть выражена как:
H t = UA dt (1)
где
H т = тепловой поток (БТЕ / час, Вт, Дж / с)
U = общий коэффициент теплопередачи, «U-значение» (БТЕ / час фут 2 o F, Вт / м 2 K)
A = площадь стены (футы 2 , м 2 )
dt = разница температур ( o F, K)
Общий коэффициент теплопередачи – значение U – описывает, насколько хорошо строительный элемент проводит тепло или скорость передачи тепла (в ваттах или БТЕ / час) через одну единицу площади (м 2 или фут 2 ) o f структура, разделенная на разницу температур по всей конструкции.
Онлайн-калькулятор тепловых потерь
Значение U (БТЕ / час фут 2 o F, Вт / м 2 K)
Площадь стены (футы 2 , м 2 )
Разница температур ( o F, o C, K)
Общие коэффициенты теплопередачи некоторых распространенных строительных элементов
Строительный элемент | Коэффициент теплопередачи U-значение | ||
---|---|---|---|
(БТЕ / (час фут 2 o F)) | (Вт / (м 2 K)) | ||
Двери | Одинарный лист – металл | 1.2 | 6,8 |
1 дюйм – дерево | 0,65 | 3,7 | |
2 дюйма – дерево | 0,45 | 2,6 | |
Кровля | Гофрированный металл – неизолированный | 1,5 | 8,5 |
1 дюйм дерева – неизолированный | 0,5 | 2,8 | |
2 дюйма дерева – неизолированный | 0,3 | 1,7 | |
1 дюйм дерева – изоляция 1 дюйм | 0.2 | 1,1 | |
2 дюйма дерево – 1 дюйм изоляции | 0,15 | 0,9 | |
2 дюйма – бетонная плита | 0,3 | 1,7 | |
2 дюйма – бетонная плита – изоляция 1 дюйм | 0,15 | 0,9 | |
Окна | Окно одинарное вертикальное в металлической раме | 5,8 | |
Окно одинарное вертикальное в деревянной раме | 4.7 | ||
Вертикальное окно с двойным остеклением, расстояние между стеклами 30-60 мм | 2,8 | ||
Вертикальное окно с тройным остеклением, расстояние между стеклами 30-60 мм | 1,85 | ||
Вертикальное герметичное окно с двойным остеклением , расстояние между стеклами 20 мм | 3,0 | ||
Вертикальное герметичное окно с тройным остеклением, расстояние между стеклами 20 мм | 1,9 | ||
Вертикальное герметичное окно с двойным остеклением с покрытием Low-E | 0.32 | 1,8 | |
Вертикальное окно с двойным остеклением с покрытием Low-E и наполнением тяжелым газом | 0,27 | 1,5 | |
Вертикальное окно с двойным остеклением с 3 пластиковыми пленками (с покрытием Low-E) и заполнение тяжелым газом | 0,06 | 0,35 | |
Горизонтальное одинарное стекло | 1,4 | 7,9 | |
Стены | 6 дюймов (150 мм) – заливной бетон 80 фунтов / фут 3 | 0.7 | 3,9 |
10 дюймов (250 мм) – кирпич | 0,36 | 2,0 |
Значения U и R
Значение U (или фактор U) является мерой скорости потеря или получение тепла из-за конструкции из материалов. Чем ниже коэффициент U, тем выше сопротивление материала тепловому потоку и тем лучше изоляционные свойства. Значение U – это величина, обратная значению R.
Общее значение U для конструкции, состоящей из нескольких слоев, может быть выражено как
U = 1 / ∑ R (2)
, где
U = коэффициент теплопередачи (БТЕ / hr ft 2 o F, Вт / м 2 K)
R = «R-value» – сопротивление тепловому потоку в каждом слое (hr ft 2 o F / Btu, м 2 K / Вт)
R-значение одного слоя может быть выражено как:
R = 1 / C = s / k (3)
, где
C = проводимость слоя (БТЕ / ч · фут 2 o F, Вт / м 2 K)
k = теплопроводность материала слоя (БТЕ в / час фут 2 o F, Вт / м · К)
s = толщина слоя (дюймы, м)
Примечание! – в дополнение к сопротивлению в каждом строительном слое – существует сопротивление внутренней и внешней поверхности окружающей среде.Если вы хотите добавить поверхностное сопротивление к вычислителю U ниже – используйте один – 1 – для толщины – l t – и поверхностное сопротивление для проводимости – K .
Онлайн
Значение U КалькуляторЭтот калькулятор можно использовать для расчета общего значения U для конструкции с четырьмя слоями. Добавьте толщину – л т – и проводимость слоя – К – для каждого слоя.Если количество слоев меньше четырех, замените толщину одного или нескольких слоев нулем.
1. с (дюйм, м) k (британских тепловых единиц / час фут 2 o F, Вт / м · K)
2. с (дюйм, м) k (британских тепловых единиц дюйм / час фут 2 o F, Вт / мK)
3. с (дюйм, м) k (БТЕ дюйм / час фут 2 o F, Вт / мK)
4. с (дюйм, м) k (БТЕ дюйм / час фут 2 o F, Вт / м · К)
Пример – значение U Бетонная стена
Бетонная стена толщиной 0.25 (м) и проводимость 1,7 (Вт / мК) используется для значений по умолчанию в калькуляторе выше. Сопротивление внутренней и внешней поверхности оценивается в 5,8 (м 2 K / Вт) .
Значение U можно рассчитать как
U = 1 / (1 / (5,8 м 2 K / Вт) + (0,25 м) / (1,7 Вт / м · K))
= 3,13 Вт / м 2 K
R-значения некоторых обычных строительных материалов
Материал | Сопротивление R-значение | |
---|---|---|
(час фут 2 o F / BTU) | (м 2 K / W) | |
Деревянный сайдинг со скосом 1/2 “x 8”, внахлест | 0.81 | 0,14 |
Деревянный сайдинг со скосом 3/4 “x 10”, внахлест | 1,05 | 0,18 |
Штукатурка (на дюйм) | 0,20 | 0,035 |
Строительная бумага | 0,06 | 0,01 |
Фанера 1/4 “ | 0,31 | 0,05 |
Фанера 3/8″ | 0,47 | 0,08 |
Фанера 1/2 “ | 0.62 | 0,11 |
ДВП 1/4 “ | 0,18 | 0,03 |
ДВП, сосна или аналогичный материал 3/4″ | 0,94 | 0,17 |
ДВП, сосна или аналогичный 1 1 / 2 “ | 1,89 | 0,33 |
Мягкая плита, сосна или аналогичный 2 1/2″ | 3,12 | 0,55 |
Гипсокартон 1/2 “ | 0,45 | 0,08 |
Гипсокартон 5/8 “ | 0.56 | 0,1 |
Стекловолокно 2 “ | 7 | 1,2 |
Стекловолокно 6″ | 19 | 3,3 |
Обычный кирпич на дюйм | 0,20 | 0,04 |
R -значения некоторых общих стеновых конструкций
Материал | Сопротивление R-значение | |
---|---|---|
(час фут 2 o F / BTU) | (м 2 K / Вт ) | |
Стенка 2 x 4, неизолированная | 5 | 0.88 |
Стена 2 x 4 с изоляцией из войлока 3 1/2 “ | 15 | 2,6 |
Стена 2 x 4 с жесткой панелью из полистирола 1″, изоляционное покрытие 3 1/2 “ | 18 | 3,2 |
Стена с каркасом 2 x 4 с изоляционной панелью 3/4 дюйма, изоляцией из войлока 3 1/2 дюйма, изоляцией из полиуретана 5/8 дюйма | 22 | 3,9 |
Стена с каркасом 2 x 6 с Изоляционное одеяло 5 1/2 “ | 23 | 4 |
Стена с 2 x 6 стойками с изоляционной панелью 3/4″, изоляция из войлока 5 1/2 “, изоляция из полиуретана 5/8” | 28 | 4 .9 |
Тепловые потери от зданий
Общие тепловые потери от здания можно рассчитать как
H = H t + H v + H i (1)
, где
H = общие потери тепла (Вт)
H т = потери тепла из-за передачи через стены, окна, двери, полы и др. (Вт)
H v = потери тепла из-за вентиляции (Вт)
H i = потери тепла из-за инфильтрации (Вт)
1.Потери тепла через стены, окна, двери, потолки, полы и т. Д.>
Потери тепла или нормативная тепловая нагрузка через стены, окна, двери, потолки, полы и т. Д. Могут быть рассчитаны как
H t = AU (t i – t o ) (2)
где
H t = теплопотери передачи (Вт)
A площадь открытой поверхности (м 2 )
U = общий коэффициент теплопередачи (Вт / м 2 K)
т i = внутренняя температура воздуха ( o C )
t o = температура наружного воздуха ( o C)
Необходимо добавить теплопотери через крышу 15% дополнительно из-за излучения в пространство.(2) можно изменить на:
H = 1,15 AU (t i – t o ) (2b)
Для стен и полов, соприкасающихся с землей (2) следует изменить с помощью температура земли:
H = AU (t i – t e ) (2c)
, где
t e o (температура земли ) C)
Общий коэффициент теплопередачи
Общий коэффициент теплопередачи – U – можно рассчитать как
U = 1 / (1 / C i + x 1 / k 1 + x 2 / k 2 + x 3 / k 3 +.. + 1 / C o ) (3)
где
C i = поверхностная проводимость внутренней стены (Вт / м 2 K)
= толщина материала (м)
k = теплопроводность материала (Вт / мК)
C o = поверхностная проводимость для внешней стены (Вт / м 2 K)
Электропроводность строительного элемента может быть выражена как:
C = k / x (4)
, где
C = проводимость, тепловой поток через единица площади в единицу времени (Вт / м 2 K)
Термическое сопротивление строительного элемента обратно пропорционально проводимости и может быть выражено по формуле:
R = x / k = 1 / C (5)
где
R = тепловое сопротивление (м 2 K / W)
с (4) и (5), (3) можно изменить на
1 / U = R i + R 1 + R 2 + R 3 +.. + R o (6)
где
R i = Поверхность теплового сопротивления внутри стены (м 2 К / Вт)
R 1 .. = тепловое сопротивление в отдельных слоях стены / конструкции (м 2 К / Вт)
9174R o = Поверхность теплового сопротивления снаружи стены (м 2 K / W)
Для стен и полов относительно земли (6) – можно изменить на
1 / U = R i + R 1 + R 2 + R 3 +.. + R o + R e (6b)
где
R e = термическое сопротивление земли
11 K (м / Вт)
2. Тепловые потери при вентиляции
Тепловые потери из-за вентиляции без рекуперации тепла можно выразить как:
H v = c p ρ q v (t i – t o ) (7)
где
H v = тепловые потери вентиляции (Вт)
c p теплый воздух (Дж / кг · К)
ρ = плотность воздуха (кг / м 3 )
q v = объемный расход воздуха (м 3 / с)
т i = внутренняя температура воздуха ( o C)
t = температура наружного воздуха ( o C)
Тепловые потери из-за вентиляции с рекуперацией тепла могут быть выражены как:
H v = (1 – β / 100) c p ρ q v (t i – t o ) (8)
, где
β = эффективность рекуперации тепла (%)
Эффективность рекуперации тепла примерно 50% обычно для обычного теплообменника с перекрестным потоком.Для вращающегося теплообменника КПД может превышать 80% .
3. Потери тепла за счет инфильтрации
Из-за утечек в конструкции здания, открывания и закрывания окон и т. Д. Воздух в здании перемещается. Как показывает практика, количество воздушных смен часто устанавливается равным 0,5 в час. Значение трудно предсказать и зависит от нескольких переменных – скорости ветра, разницы между температурой снаружи и внутри, качества конструкции здания и т. Д.
Потери тепла, вызванные инфильтрацией, можно рассчитать как
H i = c p ρ n V (t i – t o ) (9)
где
H i = инфильтрация потерь тепла (Вт)
c p = удельная теплоемкость воздуха (Дж / кг / К)
ρ = 9017 воздуха (кг / м 3 )
n = количество воздушных смен, сколько раз воздух заменяется в помещении за секунду (1 / с) (0.5 1 / час = 1,4 10 -4 1 / с на практике)
V = объем помещения (м 3 )
т i = температура внутреннего воздуха ( o C)
t o = температура наружного воздуха ( o C)
5-ступенчатый расчет тепловых потерь
Расчет тепловой нагрузки необходим до начала установки системы лучистого отопления, поскольку разные типы систем лучистого отопления имеют разные значения мощности в BTU.
Типичный расчет тепловой нагрузки состоит из расчета потерь тепла на поверхности и потерь тепла из-за инфильтрации воздуха. И то, и другое следует делать отдельно для каждой комнаты в доме, поэтому хорошее начало – это иметь план этажа с размерами всех стен, полов, потолка, а также дверей и окон.
Ниже приведен пример 5-шагового руководства по расчету поверхностных тепловых потерь:
Шаг 1 – Расчет дельты T (расчетная температура):
Дельта T – это разница между расчетной температурой в помещении (T1) и расчетной температурой снаружи (T2), при этом расчетная температура в помещении обычно составляет 68-72 ° F в зависимости от ваших предпочтений, а расчетная температура наружного воздуха является типичным минимумом в течение отопительного сезона.Первый можно получить, позвонив в местную коммунальную компанию.
Предполагая, что T1 равно 72F, а T2 равно –5F, Delta T = 72F - (-5F) = 72F + 5F = 77F
Шаг 2 – Расчет площади поверхности:
Если расчет выполняется для внешней стены с окнами и дверями, расчет теплопотерь окна и двери должен выполняться отдельно.
Площадь стены = Высота x Ширина – Площадь двери – Площадь окна Площадь стены = 8 футов x 22 футов - 24 квадратных футов - 14 квадратных футов = 176 квадратных футов - 38 квадратных футов = 138 квадратных футов
Шаг 3 – Рассчитайте значение U:
Используйте руководство «Типичные значения R и U» для получения значения R стены.
Значение U = 1 / значение R Значение U = 1 / 14,3 = 0,07
Шаг 4 – Расчет теплопотерь поверхности стены:
Потери тепла с поверхности можно рассчитать по следующей формуле:
Поверхностные тепловые потери = U-значение x Площадь стены x Дельта T Поверхностные тепловые потери = 0,07 x 138 квадратных футов x 77F = 744 BTUH
(значение U основано на предположении, что деревянная каркасная стена 2×4 со стекловолокном 3,5 дюйма изоляция)
Шаг 5 – Рассчитайте общую потерю тепла стеной:
Выполните шаги с 1 по 4, чтобы рассчитать теплопотери отдельно для окон, дверей и потолка. Теплопотери двери = 0,49 x 24 кв. Фута x 77F = 906 BTUH
(значение U основано на предположении, что дверь из цельного дерева)
Потери тепла за окном = 0,65 x 14 кв. Футов x 77F = 701 BTUH
(Значение U основано на предположении, что окно состоит из двух панелей)
Потери тепла на потолке = 0,05 x 352 кв. Фута x 77F = 1355 BTUH
(Значение U основано на предположении, что изоляция из стекловолокна 6 дюймов. 22 фута x 16 футов)
Теперь сложите все числа вместе:
Общие тепловые потери стены = Потери стены + Потери окна + Потери двери + Потери потолка
Общие тепловые потери стены = 744 BTUH + 906 BTUH + 701 BTUH + 1352 BTUH = 3703 BTUH
Всегда следует учитывать скорость инфильтрации воздуха.
Для расчета потерь тепла в помещении из-за инфильтрации воздуха можно использовать следующую формулу:
Где объем помещения = длина x ширина x высота
изменения воздуха в час учитывают утечку воздуха в комнату.
Например: Потери тепла при инфильтрации воздуха = (22 фута x 16 футов x 8 футов) x 77F x 1,2 x 0,018 = 4683 BTUH
Для фактических расчетов обратитесь к своему подрядчику или разработчику системы.
Возрождение • Калькулятор тепловых потерь
Узнайте, сколько тепла теряется из вашего дома через стены, крышу, полы и окна, и сколько вы можете сэкономить, используя разные виды утепления.
Введите информацию, которую вы знаете заранее, например, количество комнат, будь то маленькие, средние или большие, и если у вас окна одинарные или двойные. Возможно, вам потребуется проверить, насколько толстым изоляция находится на чердаке, и если у вас сплошная или полая стены.Калькулятор точно подскажет, сколько тепла теряется во всех частях вашего дома, сколько это вам стоит, сколько CO2 выбросы, и лучшие формы изоляции для использования.
Надеемся, вам понравится пользоваться калькулятором, и вы найдете его полезным. Хороший удача!
Приведены примерные значения для типичной трехкомнатной квартиры. двухквартирный дом.
Годовая потеря тепла от вашего дома составляет кВтч
Что это значит? кВтч (киловатт-час) – это единицы энергии.Итак, это количество энергии, теряемой через стены и окна ваш дом каждый год.
РезюмеУровень изоляции | Стоимость | Выбросы CO2 | |
---|---|---|---|
Текущий | £ | кг | |
Хорошо | £ | кг | |
Сохранение | £ | кг |
Применяя хорошую изоляцию, можно сократить потери тепла, топлива счета и выбросы CO2 на
ПодробностиСледующие ниже расходы и выбросы основаны на типичном топливе. цифры.
Потери тепла для дома с существующей изоляцией
Тепловые потери (кВтч) | Процент | Стоимость на человека / кВтч | CO2 (кг) | |
Стены | % | £ | ||
Крыша | % | £ | ||
Окна / двери | % | £ | ||
Первый этаж | % | £ | ||
Черновики | % | £ | ||
Всего | £ |
Потери тепла для того же дома с лучшей изоляцией, установленной в каждой зоне
Тепловые потери (кВтч) | Процент | Стоимость на человека / кВтч | CO2 (кг) | Сохранение | |
Стены | % | £ | % | ||
Крыша | % | £ | % | ||
Окна / двери | % | £ | % | ||
Первый этаж | % | £ | % | ||
Черновики | % | £ | % | ||
Всего | £ | % |
Мукти Кумар Митчелл, Северный Девон, февраль 2009 г.
Какова цель HEAC?
В настоящее время широко признано, что выбросы CO2 являются причиной изменения климата. изменение, которое угрожает природе и цивилизации.Правительство Великобритании стремится к сокращению национальных выбросов CO2 на 20% за счет 2020. Внутреннее потребление энергии вызывает 25% национальных выбросов, и отопление использует 90% энергии в доме. Если бы мы все могли сократить наши теплопотери дома вдвое, что сократит национальные выбросы на 10%. В виде как вы увидите на калькуляторе, разрезать не так уж и сложно потеря тепла из среднего дома вдвое, так как в большинстве старых домов протекает много энергии! Новые дома строятся по более строгим требованиям и тратить меньше энергии.Но большинство домов в Британии должны быть улучшен. Этот калькулятор поможет вам увидеть, какие изменения можно внести в ваш дом, чтобы уменьшить его теплопотери.
Снижение потерь тепла также экономит деньги. Стоимость энергии растет по мере того, как мы переходим к более мелким оставшимся месторождениям нефти. Сохранение тепло снижает потребность в новых источниках энергии, таких как ветряные мельницы или атомные электростанции, делающие страну более красивым и безопасным местом.
Источники включают:
- DEFRA
- Джеймс Карвилл, Справочник инженера-механика, Butterworth Heinemann, 1993
- DIY Данные
Мукти Митчелл
Мукти Митчелл – моряк, плотник, дизайнер окружающей среды и пионер низкоуглеродного образа жизни, живущий на берегу моря в Северном Девоне.Он спроектировал и построил революционную микрояхту Explorer с нулевым уровнем выбросов, которая была номинирована на звание «Инновационная лодка года» 2005 года на церемонии IPC Marine Awards, и основал Mitchell Yachts для их производства. В 2007 году он путешествовал по Великобритании, продвигая низкоуглеродный образ жизни при поддержке Его Королевского Высочества принца Уэльского, Джеймса Лавлока, Джонатона Порритта, Зака Голдсмита, Тима Смита, Тони Джунипера, Сатиша Кумара, Кэролайн Лукас, Стивена Тиндейла и Джонатана Димблби.
КалькуляторБТЕ
Калькулятор БТЕ переменного тока
Используйте этот калькулятор для оценки потребности в охлаждении типичной комнаты или дома, например, для определения мощности оконного кондиционера, необходимого для многоквартирного помещения или центрального кондиционера для всего дома.
Калькулятор БТЕ переменного тока общего назначения или отопления
Это калькулятор общего назначения, который помогает оценить количество БТЕ, необходимое для обогрева или охлаждения помещения. Желаемое изменение температуры – это необходимое повышение / понижение температуры наружного воздуха для достижения желаемой температуры в помещении. Например, в неотапливаемом доме в Бостоне зимой температура может достигать -5 ° F. Для достижения температуры 75 ° F требуется желаемое повышение температуры на 80 ° F. Этот калькулятор может делать только приблизительные оценки.
Что такое БТЕ?
Британская тепловая единица или BTU – это единица измерения энергии. Это примерно энергия, необходимая для нагрева одного фунта воды на 1 градус по Фаренгейту. 1 БТЕ = 1055 джоулей, 252 калории, 0,293 ватт-часа или энергия, выделяемая при сжигании одной спички. 1 ватт составляет примерно 3,412 БТЕ в час.
БТЕ часто используется в качестве отправной точки для сравнения различных видов топлива. Несмотря на то, что они являются физическими товарами и измеряются соответствующим образом, например, по объему или баррелям, их можно преобразовать в БТЕ в зависимости от содержания энергии или тепла, присущего каждому количеству.БТЕ как единица измерения более полезна, чем физическая величина, из-за внутренней ценности топлива как источника энергии. Это позволяет сравнивать и противопоставлять множество различных товаров с внутренними энергетическими свойствами; например, один из самых популярных – это природный газ к нефти.
БТЕ также можно использовать с практической точки зрения как точку отсчета для количества тепла, которое выделяет прибор; чем выше рейтинг прибора в БТЕ, тем выше его теплопроизводительность. Что касается кондиционирования воздуха в домах, хотя кондиционеры предназначены для охлаждения домов, БТЕ на технической этикетке относятся к тому, сколько тепла кондиционер может удалить из окружающего воздуха.
Размер и высота потолка
Очевидно, что меньшая по площади комната или дом с меньшей длиной и шириной требуют меньшего количества БТЕ для охлаждения / обогрева. Однако объем является более точным измерением, чем площадь для определения использования БТЕ, потому что высота потолка учитывается в уравнении; каждый трехмерный кубический квадратный фут пространства потребует определенного количества использования БТЕ для охлаждения / нагрева соответственно. Чем меньше объем, тем меньше БТЕ требуется для охлаждения или нагрева.
Ниже приводится приблизительная оценка холодопроизводительности, которая потребуется системе охлаждения для эффективного охлаждения комнаты / дома, основанная только на площади помещения / дома в квадратных футах, предоставленной EnergyStar.губ.
Охлаждаемая площадь (квадратных футов) | Необходимая мощность (БТЕ в час) |
от 100 до 150 | 5000 |
от 150 до 250 | 6000 |
от 250 до 300 | 7000 |
300–350 | 8000 |
350–400 | 9000 |
400–450 | 10000 |
450–550 | 12000 |
550–700 | 14000 |
от 700 до 1000 | 18000 |
от 1000 до 1200 | 21000 |
от 1200 до 1400 | 23000 |
от 1400 до 1500 | 24000 |
от 1500 до 2000 | 30 000 |
от 2000 до 2500 | 34000 |
Состояние изоляции
Термическая изоляция определяется как уменьшение теплопередачи между объектами, находящимися в тепловом контакте или в диапазоне радиационного воздействия.Важность изоляции заключается в ее способности снижать использование БТЕ за счет максимально возможного управления неэффективным ее расходом из-за энтропийной природы тепла – оно имеет тенденцию течь от более теплого к более прохладному, пока не исчезнет разница температур.
Как правило, новые дома имеют лучшую изоляционную способность, чем старые дома, благодаря технологическим достижениям, а также более строгим строительным нормам. Владельцы старых домов с устаревшей изоляцией, решившие обновить, не только улучшат теплоизоляционные свойства дома (что приведет к более дружественным счетам за коммунальные услуги и более теплым зимам), но и оценят ценность своих домов.
R-значение – это обычно используемая мера теплового сопротивления или способности теплопередачи от горячего к холодному через материалы и их сборку. Чем выше R-показатель определенного материала, тем более он устойчив к теплопередаче. Другими словами, при покупке утеплителя для дома продукты с более высоким значением R лучше изолируют, хотя обычно они дороже.
Принимая решение о правильном вводе в калькулятор состояния изоляции, используйте обобщенные допущения.Бунгало на пляже, построенное в 1800-х годах без ремонта, вероятно, следует отнести к категории бедных. Трехлетний дом в недавно построенном поселке, скорее всего, заслуживает хорошей оценки. Окна обычно имеют более низкое тепловое сопротивление, чем стены. Следовательно, комната с большим количеством окон обычно означает плохую изоляцию. По возможности старайтесь устанавливать окна с двойным остеклением, чтобы улучшить изоляцию.
Требуемое повышение или понижение температуры
Чтобы найти желаемое изменение температуры для ввода в калькулятор, найдите разницу между неизменной наружной температурой и желаемой температурой.Как правило, температура от 70 до 80 ° F является комфортной температурой для большинства людей.
Например, дом в Атланте может захотеть определить использование БТЕ зимой. Зимой в Атланте обычно бывает около 45 ° F с шансом иногда достигать 30 ° F. Желаемая температура обитателей – 75 ° F. Следовательно, желаемое повышение температуры будет 75 ° F – 30 ° F = 45 ° F.
Дома в более суровых климатических условиях, очевидно, потребуют более радикальных изменений температуры, что приведет к увеличению использования БТЕ.Например, для обогрева дома зимой на Аляске или охлаждения дома летом в Хьюстоне потребуется больше БТЕ, чем для отопления или охлаждения дома в Гонолулу, где температура обычно держится около 80 ° F круглый год.
Прочие факторы
Очевидно, что размер и пространство дома или комнаты, высота потолка и условия изоляции очень важны при определении количества БТЕ, необходимого для обогрева или охлаждения дома, но следует учитывать и другие факторы:
- Количество проживающих в жилых помещениях.Тело человека рассеивает тепло в окружающую атмосферу, поэтому требуется больше БТЕ для охлаждения и меньше БТЕ для обогрева комнаты.
- Постарайтесь разместить конденсатор кондиционера в самой тенистой стороне дома, обычно к северу или востоку от него. Чем больше конденсатор подвергается воздействию прямых солнечных лучей, тем тяжелее он должен работать из-за более высокой температуры окружающего воздуха, который потребляет больше БТЕ. Помещение его в более тенистое место не только повысит эффективность, но и продлит срок службы оборудования.Можно попробовать разместить вокруг конденсатора тенистые деревья, но имейте в виду, что конденсаторам также необходим хороший окружающий воздушный поток для лучшей эффективности. Убедитесь, что соседняя растительность не мешает конденсатору, блокируя поток воздуха в агрегат и блокируя его.
- Размер конденсатора кондиционера. Единицы слишком большие, крутые дома слишком быстро. Следовательно, они не проходят запланированные циклы, которые были специально разработаны для работы вне завода. Это может сократить срок службы кондиционера.С другой стороны, если агрегат слишком мал, он будет работать слишком часто в течение дня, а также переутомляясь до истощения, потому что он не используется эффективно, как предполагалось.
- Потолочные вентиляторы могут помочь снизить потребление БТЕ за счет улучшения циркуляции воздуха. Любой дом или комната могут стать жертвой мертвых зон или определенных участков с неправильной циркуляцией воздуха. Это может быть задний угол гостиной за диваном, ванная без вентиляции и большого окна или прачечная. Термостаты, помещенные в мертвые зоны, могут неточно регулировать температуру в доме.Работающие вентиляторы могут помочь равномерно распределить температуру по всей комнате или дому.
- Цвет крыш может повлиять на использование БТЕ. Более темная поверхность поглощает больше лучистой энергии, чем более светлая. Даже грязно-белые крыши (с заметно более темными оттенками) по сравнению с более новыми, более чистыми поверхностями привели к заметным различиям.
- Снижение КПД отопителя или кондиционера со временем. Как и у большинства бытовых приборов, эффективность обогревателя или кондиционера снижается по мере использования.Нередко кондиционер теряет 50% или более своей эффективности при работе с недостаточным количеством жидкого хладагента.