Керамическая краска теплоизоляция – может ли термокраска заменить утеплитель внутри или снаружи и как применяется для теплоизоляции наружных стен

видео-инструкция по монтажу своими руками, теплоизоляционное покрытие, фото и цена

Утепление стен фасадов, фундаментов, трубопроводов и других конструкций становится все более актуальным. В ответ на растущий спрос на рынке появляются новые прогрессивные материалы, одним из которых является керамическая теплоизоляция и краска. Мы расскажем о свойствах и практике применения этого материала.

Фасад, утепленный керамической теплоизоляционной жидкостью.

Жидкий керамический теплоизоляционный материал

Производство и состав

Фото структуры керамической теплоизоляционной краски под мощным микроскопом.

Керамическое теплоизоляционное покрытие — достаточно молодой материал, при производстве которого использованы современные методы обработки микроскопических структур различных минералов и соединений. В результате вакуумного вздутия стеклокерамических молекулярных кластерных образований наблюдается возникновение мельчайших микросфер, наполненных разреженным газом, близким по своим свойствам к вакууму.

Размер этих наносфер составляет сотые доли миллиметра, поэтому возникает возможность добиться высокой концентрации вакуумных камер в единице объема жидкости. Таким образом, в одном миллилитре вещества заключены миллионы микроскопических резервуаров. В результате доля содержания практически безвоздушного пространства по отношению к общему объему носителя очень высока.

Далее концентрат растворяют в акриловом связующем, получая эффективную краску с беспрецедентно низким коэффициентом теплопроводности. Кроме того, в состав вводят специальные добавки, которые делают покрытие водонепроницаемым и пожароустойчивым. Также готовая краска содержит микропористые частицы диоксида титана и алюмосиликатные микросферы, наполненные разреженным углекислым газом.

Добавление каучука, пластификаторов различных присадок делает покрытие эластичным и устойчивым к механическим повреждениям. В некоторые виды керамической краски добавляют органические растворители, что позволяет работать с материалом при температурах в  -20° С.

Важно! В целом получается теплоизоляционное покрытие, не выделяющее вредные химические вещества, эластичное, огнеупорное, антикоррозионное, не требующее дополнительных средств фиксации и обладающее отличной адгезией к поверхности. Можно смело называть этот материал жидким вакуумом, так как показатели теплозащиты у него просто фантастические.

Принцип действия

Процесс нанесения жидкой керамики на стену частного дома путем напыления из пульверизатора.

Науке известно три способа передачи тепловой энергии от одного тела другому:

  1. Кондукция, или прямая теплопередача вследствие взаимодействия молекул и атомов;
  2. Конвекция, или перенос тепла потоками газов и жидкостей за счет расширения и разности плотностей нагретых и охлажденных объемов вещества;
  3. Излучение, или распространение тепла посредством электромагнитных волн инфракрасного диапазона.

Наиболее существенным путем потери тепла является именно прямая теплопередача, а также излучение. Для прямой теплопередачи необходим контакт как можно большего количества частиц вещества на единицу площади соприкосновения. Стена получает тепловую энергию от нагретых частиц воздуха, которая далее предается через структуру самой стены и уходит через взаимодействие с частицами атмосферного воздуха.

Краска-теплоизолятор легко наносится на любые поверхности.

Однако если на пути передачи тепловой энергии возникает слой с очень низкой концентрацией частиц на единицу объема и площади контактирующих поверхностей, процесс существенно замедляется.

Как уже говорилось, наличие огромного количества вакуумных резервуаров в составе керамической теплоизоляции позволяет сравнивать этот материал с разреженной средой, в которой как раз и наблюдается весьма низкая концентрация частиц. Это и объясняет механизм торможения передачи тепла сквозь этот теплоизолятор.

Идем далее. Структура самих сфер сформирована таким образом, что молекулярная решетка плохо пропускает инфракрасное излучение.

Ультрафиолетовое излучение, как известно, сквозь стекло не проходит вообще. Следовательно, мы видим препятствие для второго по значимости способа потери тепловой энергии — излучения.

Проблем с избыточной конвекцией, как правило, в современных домах не возникает. Это заслуга пластиковых окон и качественных входных дверей. Также не последнюю роль здесь играет хорошо построенная кровля с ветрозащитой и пароизоляцией.

  Важно! Итак, становится понятно, как именно этот новый материал работает. Причем, в отличие от других теплоизоляторов, керамическая краска подавляет сразу два основных процесса теплопередачи. Это и является причиной столь высокой эффективности данного вида теплоизоляции.

Область применения

Краска создавалась для решения проблем теплоизоляции инженерных систем подачи теплоносителя в жилые и общественные помещения.

За счет жидкой консистенции материал легко наносится на любые поверхности наподобие обычной краски. Это позволяет применять керамический утеплитель очень широко.

Обрабатывать жидкой керамикой можно:

  1. Ограждающие строительные конструкции бетонных и кирпичных сооружений с внешней стороны: фасады зданий и сооружений, цокольные этажи, фундаменты и другие элементы конструкций;
  2. Ограждающие элементы навесных фасадных конструкций и покрытий из металла, пластика (кроме полиэтилена), дерева, полимерных соединений;
  3. Внутренние поверхности стен, перекрытий, полов, потолков и кровельных внутренних обшивок;
  4. Трубопроводы подачи горячей и холодной воды, пара, химических соединений, в том числе агрессивных;
  5. Котлы, нагревательные резервуары, резервуары для хранения жидких и сыпучих субстанций и т.д.

Важно! Как видим, область применения керамического утеплителя охватывает практически все сферы строительства домов, зданий и сооружений, а также инженерных сетей и конструкций хозяйственного и промышленного назначения.

Преимущества

Жидкой керамической изоляцией можно обрабатывать резервуары для перевозки жидкостей.

Уникальные теплофизические качества теплоизоляционной краски позволяют назвать целый ряд бесспорных преимуществ нового материала:

  • Возможность нанесения на труднодоступные поверхности любой формы, в том числе трубы и криволинейные поверхности;
  • Результирующая цена теплоизоляции выгодно отличается от всех остальных видов утеплителей;
  • Покрытие является сверхтонким (от 1 до 5 мм), что позволяет экономить пространство помещений и использовать изоляцию в ограниченных областях и слоях комбинированных материалов, фасадных и кровельных пирогов;
  • Все работы по нанесению материала выполняются своими руками без использования каких-либо механизмов или дорогих инструментов;
  • Эластичность покрытия позволяет использовать краску в условиях значительных механических нагрузок, температурных расширений, вибраций и других динамических воздействий;
  • Возможность нанесения нескольких слоев позволяет точно подобрать необходимую толщину и избежать перерасхода материала и лишних финансовых затрат;
  • Простой способ нанесения и возможность напыления краскопультом или пульверизатором позволяет значительно сократить сроки произведения теплоизоляционных мероприятий;
  • Гидроизоляционные свойства материала позволяют отказаться от дополнительного влагозащитного покрытия, различных мембран и пленок;
  • Антикоррозионные качества входящих в состав компонентов надежно защищают металлические поверхности от преждевременной порчи вследствие электрохимических процессов.

Совет! Как показывает практика, керамическая краска прекрасно справляется с мостиками холода, возникающими в местах стыков других видов изоляции и плит панельных домов.

Нанесение

Материал наносят традиционными для краски способами: валиком, кистью, пульверизатором.

Инструкция по нанесению материала не отличается от таковой для любой другой краски:

  1. Очищаем поверхность от пыли, мусора, старой отделки;
  2. Грунтуем поверхность, металлические изделия очищаем антикоррозионными составами.
  3. Наносим слой краски кистью, валиком или распылителем;
  4. Ждем высыхания слоя, затем, в случае необходимости, наносим следующий.

Жидкую теплоизоляцию можно наносить на гипсокартон.

Совет! В качестве антикоррозионного состава лучше использовать свободные от ортофосфорной кислоты смеси, так как они не нуждаются в гашении и на них лучше ложится керамическая краска.

Вывод

Жидкая керамическая теплоизоляционная краска является инновационным эффективным материалом, позволяющим значительно сократить финансовые и трудовые затраты. Область применения краски охватывает практически все сферы строительства и систем трубопроводной подачи теплоносителей. В представленном видео в этой статье вы найдете дополнительную информацию по данной теме.


pro-uteplenie.ru

инструкция, фото и видео-уроки, цена

Выбирая наиболее эффективный материал для снижения теплопотерь зданиями и трубопроводами, многие предпочитают использовать жидкое теплоизоляционное керамическое покрытие. Этот состав наносится непосредственно на поверхность, которую нужно защитить от потерь тепловой энергии, и обеспечивает достаточно эффективную защиту, особенно при использовании в комплексе с другими утеплителями.

Тонкий слой жидкой керамики иногда эффективнее толстого слоя утеплителя

Керамические материалы для снижения теплопотерь

Особенности состава

Керамическая жидкая теплоизоляция внешне практически не отличается от привычной нам акриловой краски.

На сегодняшний день существует несколько разновидностей утепляющих составов, однако практически все они имеют одинаковую структуру:

  • Основа жидкой керамики – водно-акриловая смесь. Она обеспечивает равномерное распределение утепляющих компонентов по поверхности и способствует закреплению теплоизоляции.
  • В качестве дополнительных компонентов в акриловое связующее могут вводиться различные добавки, улучшающие эксплуатационные характеристики материала. К наиболее популярным добавкам относят искусственные и натуральные каучуки, силикон и т.д.
  • Основной компонент, отвечающий за снижения теплопотерь обработанной поверхностью – керамические гранулы, заполненные сильно разреженным воздухом. Микроскопические размеры гранул и практически идеальная сферическая форма обеспечивает возможность очень тонкого нанесения состава на стену.

Структура материала

Обратите внимание! У качественных разновидностей жидкой керамической теплоизоляции при условии полной полимеризации доля пустот в утепляющем слое составляет около 75-80%. Это позволяет создать на обработанной поверхности сверхтонкий слой с очень высоким показателем сопротивления теплопередаче.

Плюсы и минусы

В сравнении с традиционными утеплителями, жидкий теплоизолятор на основе керамических микросфер обладает рядом достоинств:

  • Во-первых, при утеплении дома снаружи не теряется полезный объем помещения. Тонкий слой окрасочного утеплителя не сравнить с обшивкой из минваты или других пористых материалов, так что для комнат с небольшой площадью применение этого состава может стать отличным решением.

Принцип действия термокраски

  • Во-вторых, нанесенный слой не деградирует со временем. Гарантированный срок эксплуатации керамического покрытия составляет до 15 лет, но при должном уходе (нанесении финишной отделки и своевременной очистке) это время можно увеличить минимум вдвое.
  • В-третьих, масса материала незначительна, благодаря чему не создается дополнительная нагрузка на несущие конструкции. Это достоинство материала особенно ярко проявляется при отделке кровель.
  • Также плюсом можно считать простоту в обработке поверхностей: жидкая керамика наносится не сложнее обычной краски, и потому отлично подходит для утепления сложных архитектурных форм и помещений непрямолинейной конфигурации.

Фото обработанной поверхности

Кроме всего прочего, стоит отметить совместимость большинства представленных на рынке составов с фасадными и интерьерными красками, декоративными штукатурками и т.д. При этом для финишной отделки по керамическому слою грунтовка не требуется!

Обратите внимание! Утепление трубопроводов, хозяйственных построек и т.д. можно проводить и без декоративной отделки – эстетичный внешний вид покрытия после полимеризации это вполне допускает.

Говоря о недостатках керамического утеплителя, чаще всего упоминают достаточно высокую стоимость материала. Однако если ранее, когда на рынке были представлены исключительно зарубежные бренды, это было справедливым, то сегодня ситуация несколько изменилась. Отечественные марки, такие как жидкое керамическое теплоизоляционное покрытие Корунд, можно приобрести по вполне демократичным ценам.

И все же окрасочное утепление многие специалисты рассматривают лишь как дополнительную меру. Если нужно существенно снизить теплопотери, то следует реализовать комплекс мероприятий, одним из которых и будет нанесение жидкой термокраски.

Выбор и использование материала

Советы при покупке

Существенная цена керамических утепляющих составов является причиной, по которой стоит очень внимательно относиться к вопросу приобретения материала в магазине или на строительном рынке.

Инструкция, позволяющая не ошибиться и купить качественный теплоизолятор, приводится ниже:

  • Первое, на что стоит обратить внимание – это плотность смеси. Качественные утеплители характеризуются показателем не более 0,6кг на 1 л продукта. Таким образом, стандартное десятилитровое ведро не должно весить более 7,5 кг. В противном случае мы можем смело утверждать, что теплоизоляционные свойства краски будут невысоки.

«Корунд»  – одна из наиболее популярных марок

  • Посмотрев на емкость с материалом «на просвет», можно увидеть его расслоение. Как правило, более легкая фракция, содержащая керамические сферы, оказывается сверху. Так что чем толще верхний слой, тем эффективнее окрасочная смесь будет сохранять тепло.
  • Третий тест – на определение структуры самой смеси. Берем немного краски и растираем ее между пальцами. Микрогранулы должны ощущаться как небольшие шероховатости, а их отсутствие следует считать поводом для выбора другой марки.

Именно эти микрогрнаулы можно ощутить подушечками пальцев

Также стоит обратить внимание на цвет краски. Абсолютное большинство марок жидкого керамического утеплителя выпускается белого цвета, так что серый или желтоватый оттенок является свидетельством нарушений в технологии изготовления. Естественно, это не касается составов, в которые предварительно был введен цветовой пигмент.

Нанесение на поверхность

Керамическая термокраска достаточно легко наносится на поверхности из самых разных материалов.

Так что если вы решили выполнить работы по окрасочному утеплению своими руками, следует лишь придерживаться некоторых рекомендаций:

  • Окрашиваемую стену необходимо очистить от пыли и мусора. Щели и трещины расшиваем и заполняем ремонтным составом.
  • Бетонные плиты очищаем от «цементного молочка».
  • Непосредственно перед покраской обрабатываем стену пескоструйной машиной, абразивным кругом или металлической щеткой.
  • Поверхности из черного металла обеспыливаем и обезжириваем. Цветные металлы требуют предварительного снятия глянца и нанесения грунтовки типа ВЛ-023 или ВЛ-02.
  • Керамический состав перемешиваем непосредственно перед нанесением на стену. Как правило, перемешивание проводится вручную.

Обратите внимание! Для работы с большими объемами допускается использование строительных миксеров, при этом частота вращения не должна превышать 150-200 оборотов в минуту. При большей скорости движения насадки возможно разрушение керамических гранул и снижение теплосберегающих характеристик.

  • Время перемешивание вручную составляет от 10 до 15 минут, с помощью миксера – 3-8 минут.
  • Некоторые составы предполагают добавление воды перед началом работы. Объем жидкости зависит от марки материала и цели использования утеплителя. Требуемые пропорции обычно указаны на упаковке, также их можно узнать на сайте производителя.

Нанесение состава кистью

Вывод

Жидкокерамическая теплоизоляция – это относительно новый материал, который только начинает приобретать популярность. Но при этом высокие эксплуатационные характеристики жидкого утеплителя дают возможность эффективно применять его в самых разных ситуациях. Главное при этом – правильно выбрать состав и нанести его с соблюдением технологии! В представленном видео в этой статье вы найдете дополнительную информацию по данной теме.


pro-uteplenie.ru

Сегодня Интернет наполнен сообщениями о неких чудодейственных «теплоизоляционных красках», они же — «жидкая теплоизоляция». Производители обещают чудеса. Как одному из разработчиков программы по расчету и проектированию технической тепловой изоляции автору часто приходится слышать от пользователей вопрос: почему же вы не включили в базу данных программы такой замечательный материал? И приходится снова и снова объяснять доверчивым потребителям нашу осторожную позицию, продиктованную здравым смыслом. Ведь грамотные специалисты, мягко говоря, скептически относятся к данному классу материалов как теплоизоляционному и давно обосновали свою позицию в журнальных публикациях{-Матвиевский А.А., Абызова Т.Ю., Александрия М.Г. Жидкокерамические теплоизоляционные покрытия. Сказка о голом короле. Стройпрофиль, № 3 (81), 2010, с. 28−30. Ширинян В.Т. Поход жидко-керамического «супертеплоизоляционного» покрытия по тепловым сетям России. Новости теплоснабжения. № 9 (85), 2007. с. 46−51−} и в многочисленных дискуссиях на профильных интернет-форумах. Ну что ж, давайте повторим эти аргументы еще раз, ведь повторение, как говорится, мать учения — для тех, кто хочет учиться на чужих ошибках, а не на своих.

Рассмотрим подробно, что собой представляет эта так называемая «теплоизоляционная краска».

Искусство жонглирования цифрами

«Жидкая керамическая теплоизоляция», по утверждению ее производителей, представляет собой композицию микрогранул-сфер, внутри которых — разреженный газ (технический вакуум) на основе водных растворов акриловых полимеров. Именно этим вакуумом якобы объясняются их уникальные свойства. Вот что можно прочесть на сайте одного из производителей: «После высыхания образуется эластичное полимерное покрытие, которое обладает уникальными теплоизоляционными свойствами (1 мм Корунд равен 50−60 мм минеральной ваты)”.

Как известно, важнейшим показателем для любой теплоизоляции является коэффициент теплопроводности, измеряемый в Вт/(м*К). Чем он меньше, тем лучше теплоизоляционные свойства. Этот коэффициент на сайте есть: 0,0012 Вт/(м*К). Достаточно этой цифры, чтобы любому инженеру стало ясно: обман! Потому что в известной всем теплотехникам таблице теплопроводности сразу после вакуума (с его принципиальным 0,0000) идет инертный газ ксенон с коэффициентом теплопроводности 0,0052 Вт/(м*К). А ведь краска — не инертный газ, и сколько бы ни было в ней сфер «с вакуумом», сама она отнюдь не вакуум. И имеет весьма существенную плотность: пластиковое ведро (20 литров краски Корунд Классик) весит 9,5 кг. Либо разработчика незаслуженно лишили Нобелевской премии, либо производитель краски Корунд обманывает покупателей. И не только он: такие же цифры можно видеть и на сайтах других производителей: например, для краски АЛЬФАТЕК тоже обещают 0,001 Вт/(м*К). А где же протоколы испытаний, где подтверждающие документы авторитетных лабораторий? Их на сайтах, разумеется, нет, зато есть множество ссылок на пожарные сертификаты, гигиенические заключения, экспертизу промышленной безопасности и прочие, несомненно, важные вещи.

История большого обмана

Впрочем, и других странностей хватает. Продавцы этих материалов демонстрируют в качестве аргумента для «теплоизоляции» трубопроводов такой опыт: половина утюга покрашена «чудо-краской», вторая — чистая. Покрашенную можно трогать рукой, на чистой — кипит вода. Какой же смысл в таком опыте? Ведь способность поверхности к теплоотдаче зависит от большого числа характеристик самой поверхности и окружающей среды, и температура — далеко не главная из них. Чтобы не вдаваться в физические подробности, проиллюстрируем простым примером: в парилке поверхность всех предметов (дерево, металл, материя) имеет одинаковую температуру. Но результат прикосновения к этим материалам будет разный: металл вызовет ожог, дерево можно трогать, а простыню используют для изоляции от нагретого дерева, хотя температуры их равны! Выставленные на сайтах производителей краски «результаты внедрений» тоже прежде всего указывают, что снижается температура обработанной поверхности трубопроводов. Но ведь нужно было бы привести цифры сокращения теплопотерь, а они измеряются не в градусах Цельсия. Или почему столько внимания уделяется теплоотражающей способности краски? Ведь жилье — не сауна, в нем инфракрасное излучение далеко не главная составляющая потерь тепла! Некоторые прямо пишут, что основа эффективности их материала — «волновая». И отражает он (возвращает в помещение) именно тепловое излучение.

Поискав в сети Интернет источники «жидкоизоляционного бума», можно легко восстановить всю его историю. Оказывается, краска эта вовсе не новая разработка. Начинается история аж в далеких 1970-х годах. Существовала тогда в Америке акриловая краска с керамическим пористым наполнителем, с весьма скромным коэффициентом теплопроводности, но с другими полезными в климате южных штатов США свойствами, вроде большого коэффициента отражения солнечного излучения. Применялась она в основном в технике. В 90-х краска вышла за пределы чисто технического применения. Красили ею дома снаружи, красили трубопроводы для предотвращения образования конденсата — неплохо помогала… Но некоторые производители догадались, что ее можно рекламировать как теплоизолирующую, ведь большинство людей не понимает разницы между температурой и количеством тепла, не говоря уж о путях его передачи. Американские контролирующие органы напомнили одной из компаний, что потребителей обманывать нехорошо — и в США краску таким образом рекламировать прекратили. Сегодня американцы честно приводят коэффициенты теплопроводности. Например, измеренная по стандартной методике теплопроводность такой краски марки Mascoat — всего 0,0698 Вт/(м*К).

Зато спустя много лет краску начали активно рекламировать у нас, появились и собственные производители. Некоторые из них и заявляют о коэффициенте теплопроводности 0,001 Вт/(м*К). А упор на «отражение тепла» и температуру поверхности достался им в наследство. Видимо, это попытка хоть в чем-то быть честными. Впрочем, они тоже учатся, и предпочитают говорить о некой «сравнимой теплопроводности» и неприменимости стандартных методов измерения теплопроводности (установленных ГОСТом!) к их материалам. Законы физики у них, очевидно, тоже свои…

Не отстают от них и местные представители заграничных производителей. Пример — на русскоязычном сайте той же Mascoat мы опять видим невероятный коэффициент 0,001 с таким вот пояснением (имеющимся лишь в файле для скачивания!): «В связи с отсутствием методик для определения коэффициента теплопроводности тонких и сверхтонких тепловых изоляторов введено понятие расчетной теплопроводности, учитывающей все факторы, влияющие на термическое сопротивление”. Кем введено? Как учитывает? Чем отличается эта краска от всех прочих материалов в мире? Где хотя бы расчет? Ответа на эти вопросы нет.

А как обстоит дело в действительности? Что касается реального значения теплопроводности таких материалов, то можно принять за точку отсчета показатели, имеющиеся у американцев. Проведенные независимыми экспертами испытания красок наших производителей показывают похожие цифры.

А теперь — о сути процесса теплоизоляции. Стоит ли в принципе применять «чудо-краску» как теплоизоляцию, даже независимо от коэффициента ее теплопроводности?

Немного здравого смысла

Сначала напомним основные понятия. Теплопроводность — это способность материала передавать тепло от одной своей части к другой в процессе теплового движения и взаимодействия частиц. Передача тепла осуществляется теплопроводностью (путем контакта частиц материала), конвекцией (движением воздуха или другого газа в порах материала) и тепловым излучением, преимущественно в инфракрасном диапазоне. Основная задача теплоизоляции — препятствовать теплопередаче. Зимой — передаче тепла из помещения на улицу, летом — от разогреваемой солнцем наружной стороны стен к внутренним поверхностям. Для трубопроводов и оборудования — от горячего продукта к холодной окружающей среде. Или наоборот (для криогенных трубопроводов) — от окружающего воздуха к низкотемпературному продукту. Именно поэтому СНиП 41−03−2003 регламентирует допустимую величину плотности теплового потока.

Предположим, нам нужно уменьшить теплопотери помещения зимой. На улице — минус 20, в помещении — плюс 20. Внутренние поверхности стен при этом нагреты почти до той же температуры, что и воздух в помещении. Во всяком случае, должны быть нагреты — ведь иначе, при существенном перепаде температур, мы получим выпадение конденсата на стенах. За счет чего они нагреваются? Как правило, практически полностью за счет конвекции, при движении нагретого воздуха. Камины с инфракрасным излучением не слишком распространены, а излучение ламп накаливания незначительно по сравнению с энергией, получаемой от радиаторов отопления.

Спрашивается, зачем производители «чудо-красок» предлагают красить стены изнутри, «предотвращая тепловое излучение», которое играет крайне незначительную роль в общих теплопотерях? Ну, а если их краску считать утеплителем и полагать, что он предотвращает не только теплопередачу излучением, то возникает другой вопрос. Краска эта считается паропроницаемой. Даже если для чудесного материала не действуют законы физики, они не прекращают действовать для стен из бетона или кирпича. Ведь известно, что утеплять дом изнутри не рекомендуется: в этом случае водяной пар будет конденсироваться внутри стен. Именно там будет располагаться «точка росы». Нет, красить стены изнутри явно не стоит.

Но предположим, мы покрасили дом снаружи. Под краской, например, кирпичная кладка. В этом случае температура внутри кирпичной стены должна довольно медленно падать от внутренней к внешней стороне — эта закономерность известна, как и тепловое сопротивление стены. Но тогда в слое краски толщиной в несколько миллиметров должен быть резкий скачок? Ведь этот слой, по заверениям производителей, выполняет функцию хорошего слоя каменной ваты или пенополистирола. Если температура внутреннего слоя краски даже на несколько градусов выше, чем температура внешнего, что должно стать с акриловой основой, какие бы туда ни добавлялись «вакуумные сферы»? Очевидно, она должна отслоиться и разрушиться.

Но важнее другое. Передача тепла от внутренних поверхностей стен слою краски осуществляется почти исключительно посредством теплопроводности и переноса с водяным паром! Вклад теплового излучения ничтожен, и польза от его возможного отражения минимальна. Значит, мы должны предъявлять к «чудо-краске», как бы это ни было обидно производителям, те же физические требования, что и к обычным утеплителям. И ее коэффициент теплопроводности будет зависеть от толщины, пористости и теплопроводности материала, в котором эти поры расположены. Поскольку теплопроводность в твердых телах во много раз выше, чем в пористых, тепло будет передаваться по самому твердому материалу, склеивающему пресловутые «сферы», и через саму керамику, которая, безусловно, обладает теплопроводностью гораздо большей, чем воздух и вакуум. А сколько «вакуума» (внутри тех самых сфер) может быть в слое краски толщиной 1−2−3 мм? Ведь какими бы «высокотехнологичными» ни были сферы, доля собственно вакуума в общем составе краски не может быть высока (что подтверждается ее плотностью), а слой тонок — следовательно, их влияние на теплопроводность невелико.

Ну, а дальше все просто: тепло излучается в виде инфракрасных волн (меньшая часть теплопотока!) и уносится в воздух путем конвекции (большая его часть!). И теплообмен с воздухом у теплой поверхности краски точно такой же, как и у любой другой.

Зачем белить трубопровод?

Что касается окраски трубопроводов, то известно, что для неизолированной трубы потери тепла путем теплового излучение составляют около 15−20 процентов от общих теплопотерь. Так что и тут рассуждения о «волновой природе» эффективности краски — не более чем рекламный трюк. А в отношении теплопередачи конвективной (уноса тепла воздухом) справедливо все изложенное выше для стен домов. Конечно, белый цвет краски придает ей хорошую отражающую способность, и она вполне может годится для окраски разных резервуаров с целью защиты их от солнца. И это, пожалуй, единственная реальная область ее применения.

Что же касается трубопроводов «горячих» (например, тепловых сетей), то тут применение такой краски сталкивается с серьезными проблемами. Прежде всего, надо учесть неопределенность (даже в нормах самих производителей!) температурных пределов применения. Реальный диапазон температур, в которых возможна эксплуатация таких красок, намного ýже заявленных многими производителями. Впрочем, что принимать за «заявленные производителем величины», тоже неясно. Даже в пределах одного документа могут фигурировать абсолютно разные температуры. В преамбуле к ТУ 5768−001−54965774−2004, например, для применения покрытия на трубопроводах есть указание: от -43 до +260°С. В том же ТУ (в таблице «Основные технические показатели») область рабочих температур определена уже от -43 до +180°С, а далее (Приложение. «Характеристики покрытия») температура эксплуатации: от -60 до +204°С. Вот такая точность определения верхней границы применимости — плюс-минус 80 градусов. Чему верить — выбирайте сами. А лучше задумайтесь: сколько продержится при 260 градусах акриловая основа краски? Ведь большинство специалистов назовут для таких красок гораздо более низкие температуры применения.

Да и цена их для таких целей весьма высока. Производители обещают эффект от 2−3 слоев, но рассчитывать на это так же наивно, как и на обещания «теплоизолирующего эффекта» от этой краски. В реальности же, для обеспечения требования СНИПа по температуре на поверхности теплоизоляции трубопроводов надземной прокладки необходимо от 20 до 40 слоев краски (в зависимости от температуры теплоносителя, естественно)! Добавим сюда многие другие проблемы: например, горючесть акриловых красок, неизвестный срок службы (вернее, для красок такого рода он известен — и почему бы вдруг он стал больше, да еще при работе в жестких условиях эксплуатации?).

Надо сказать, что богатый опыт использования в нашей стране различных покрытий для тепловых сетей позволяет утверждать, что применение здесь краски — отнюдь не лучший вариант.

Коротко о главном

В заключение — краткое резюме: где можно и где нельзя применять такую краску. Именно краску, ведь теплоизоляцией ее называть, как мы уже выяснили, нельзя. Ответ прост: там же, где и любую другую белую или серебристую краску.

  • У вас дом в жарком климате, и вы хотите снизить его нагрев летом? Вам нужно предотвратить нагрев какого-то резервуара? Вы хотите защититься от ожога о горячий резервуар или трубопровод? Краска поможет, но, не доверяясь слепо производителю, тщательно проверьте, применима ли она. И подумайте, не обойдется ли в вашем случае использование такой краски значительно дороже простой белой эмали, которая обеспечит тот же самый эффект.
  • Вы хотите сэкономить тепло, изолировать стену, крышу, фундамент дома или трубопровод, сберечь энергию? Здесь краска не поможет, ведь это — не теплоизоляция. Применяйте решения, предусмотренные строительными нормами.

Ну и, разумеется, если уж вы решили приобрести именно такую краску — стоит обратить внимание на сертификаты и другие документы. Причем проверьте их особо тщательно. Ведь если люди склонны к «корректировкам» реальных свойств своей продукции, это плохой показатель. И риск тут гораздо выше, чем при использовании любых других материалов.

www.cadmaster.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *