Коэффициент теплового сопротивления материалов таблица: Термическое или тепловое сопротивление материалов.

Термическое или тепловое сопротивление материалов.

Вот как это объясняет « Википедия»:  «Термическое сопротивление — тепловое сопротивление, способность конструкции (его поверхности или какого-либо слоя) препятствовать распространению теплового движения молекул.»

 Коэффициент теплового сопротивления отражает свойства любого материала и выражается как толщина слоя материала, делённая на теплопроводность. (м²*°С)/Вт

Проще говоря: Тепловое сопротивление – величина обратная теплопроводности. (Хорошо проводит тепло – значит, слабо теплу сопротивляется. Следовательно, обладает высокой теплопроводностью  и низким теплосопротивлением).

 

Прежде всего, хотелось бы заметить, что мы не ставим цель вести научные дебаты о  таком понятии, как термическое сопротивлении. Цель этой статьи лишь в том, чтобы показать неоспоримые преимущества сип панели в сравнении с традиционными строительными материалами в плане сохранении тепла.

ВОПРОС: Чем SIP-170 панели, изготовленные «Строй Дом UA», лучше традиционных строительных материалов?                                                                                                                                                                             ОТВЕТ: В первую очередь, высоким показателем коэффициента теплового сопротивления!                                                                  Сравнительный анализ значений сопротивления теплопередачи SIP панелей и различных строительных материалов. При норме для 1 температурной зоне (Харьковская обл.) R min.

3,3 м2*К/Вт (Согласно ДБН В.2.6-31:2016) Больше информации о стоимости отопления дома из сип панелей, Вы можете узнать из отзыва владельца такого дома, перейдя по ссылке: «Сип панельный дом и газ.»

МатериалКоэффициент теплопроводности

 

Вт/(м·K)

Толщина слоя мм.Теплосопротивление

 

(м²*°С)/Вт

  
1SIP 220 2205,57
2SIP 170 1704,22
3
Кирпич, силикатный0,812500,3
4Кирпич красный глин. 0,562500,45
5Кирпич керамич. пуст.0,522500,48
6Газобетон D5000,293002,1
7Железобетон1,693000,18
8Керамзитобетон
0,663000,45

ВЫВОД: Из этой таблицы видно очевидное, тепловое сопротивление SIP-170 панели превышает показатель распространенных строительных материалов от 3 до 20 раз. Так что выбор за Вами 🙂                                                            Чтобы наглядно продемонстрировать разницу в энергоэффективности кирпича и сип панели, приводим фото наших телевизионных исследований нашего СИП панельного дома, и объекта, куда нас пригласили провести исследование тепловизором на предмет утечек тепла.      Вывод: Дом из сип панелей с фасадной термопанелью 116 мм,  в 9 раз теплее, чем кирпичный, с толщиной стены в 2 кирпича 500 мм. При этом толщина кирпичного дома  в два раза больше.          

Вот как это выглядит на практике. Стена толщиной 17 см. (СИП панель 170) имеет такой же показатель коэффициента теплового сопротивления, как, к примеру, кирпичная стена 2500 мм. Вывод делайте сами! Больше информации о свойствах СИП панелей Вы сможете найти по ссылке: «Сип панели»

То есть, при строительстве лучше использовать материалы с низкой теплопроводностью (высоким теплосопротивлением) для лучшего сохранения тепла. Если Вам интересно, Вы можете увидеть строительство некоторых объектов из сип панелей в рубрике «Галерея», перейдя по ссылке: Галерея

 

Таблица требуемого сопротивления теплопередачи стен жилых зданий для регионов России

№ п/п

Город РФ

Условия эксплуатации

Градусосутки

Требуемое термосопротивление Rоreq, м2·°С/Вт

1

Архангельск

Б

6170

3,56

2

Астрахань

А

3540

2,64

3

Анадырь

Б

9500

4,72

4

Барнаул

А

6120

3,54

5

Белгород

А

4180

2,86

6

Благовещенск

Б

6670

3,74

7

Брянск

Б

4570

3,00

8

Волгоград

А

4350

2,9

9

Вологда

Б

5570

3,35

10

Воронеж

А

4530

3,0

11

Владимир

Б

5000

3,3

12

Владивосток

Б

4680

3,04

13

Владикавказ

А

3410

2,59

14

Грозный

А

3060

2,47

15

Екатеринбург

А

6210

3,57

16

Иваново

Б

5230

3,23

17

Игарка

Б

9660

4,78

18

Иркутск

А

6480

3,79

19

Ижевск

Б

5680

3,39

20

Йошкар-Ола

Б

5520

3,33

21

Казань

Б

5420

3,30

22

Калининград

Б

3650

2,68

23

Калуга

Б

4810

3,08

24

Кемерово

А

6540

3,69

25

Вятка

Б

5870

3,45

26

Кострома

Б

5300

3,25

27

Краснодар

А

2680

2,34

28

Красноярск

А

6340

3,62

29

Курган

А

5980

3,49

30

Курск

Б

4400

2,95

31

Кызыл

А

7880

4,16

32

Липецк

А

4730

3,06

33

Магадан

Б

7800

4,13

34

Махачкала

А

2560

2,30

35

Москва

Б

5027

3,16

36

Мурманск

Б

6380

3,63

37

Нальчик

А

3260

2,54

38

Нижний Новгород

Б

5180

3,21

39

Новгород

Б

4930

3,13

40

Новосибирск

А

6600

3,71

41

Омск

А

6280

3,60

42

Оренбург

А

5310

3,26

43

Орел

Б

4650

3,03

44

Пенза

А

5070

3,17

45

Пермь

Б

5930

3,48

46

Петрозаводск

Б

5540

3,34

47

Петропавловск-Камчатский

Б

4760

3,07

48

Псков

Б

4580

3,0

49

Ростов-на-Дону

А

3520

2,63

50

Рязань

Б

4890

3,11

51

Самара

Б

5110

3,19

52

Санкт-Петербург

Б

4800

3,08

53

Саранск

А

5120

3,19

54

Саратов

А

4760

3,07

55

Салехард

Б

9170

4,61

56

Смоленск

Б

4820

3,09

57

Ставрополь

А

3210

2,52

58

Сыктывкар

Б

6320

3,61

59

Тамбов

А

4760

3,07

60

Тверь

Б

5010

3,15

61

Томск

Б

6700

3,75

62

Тула

Б

4760

3,07

63

Тюмень

А

6120

3,54

64

Ульяновск

А

5380

3,29

65

Улан-Удэ

А

7200

3,92

66

Уфа

А

5520

3,33

67

Хабаровск

Б

6180

3,56

68

Ханты-Мансийск

А

7200

3,92

69

Чебоксары

Б

5400

3,29

70

Челябинск

А

5780

3,43

71

Чита

А

7600

4,06

72

Элиста

А

3670

2,68

73

Южно-Сахалинск

Б

5590

3,36

74

Якутск

А

10400

5,04

75

Ярославль

Б

5300

3,26

 

Таблица удельных сопротивлений

Таблица удельных сопротивлений
999 9000 2,650013
22
0022 -8 9000
Material
Resistivity ρ
(ohm m)
Temperature
coefficient α
per degree C
Conductivity σ
x 10 7 /Ωm
Ref
Silver
1,59
x10 -8
. 0038
6.29
3
Copper
1.68
x10 -8
.00386
5.95
3
Copper, annealed
1,72
x10 -8
.00393
5,81
2
Aluminum 9000 2,65
x10 -8
.00429
3.77
1
Tungsten
5.6
x10 -8
.0045
1,79
1
Iron
9,71
X10 -8
. 0013
1
Platinum
10.6
x10 -8
.003927
0.943
1
Manganin
48.2
x10 -8
.000002
0,207
1
ВЫДЕЛА
22
X109
X10
0.45
1
Mercury
98
x10 -8
.0009
0.10
1
Нихром
(Ni, Fe, Cr Alloy)
100
x10 -8
. 0004
.0004
.0004
.0004
.0004. 1
Constantan
49
x10 -8
0.20
1
Carbon*
(graphite)
3 -60
x10 -5
-.0005
1
Germanium*
1-500
x10 -3
-.05
1
Silicon*
0.1-60
. ..
-.07
1
Glass
1-10000
x10 9
1
Quartz
(fused)
7.5
x10 17
1
Hard rubber
1-100
x10 13
1

*Удельное сопротивление полупроводников сильно зависит от наличия примесей в материале, что делает их полезными в твердотельной электронике.

Каталожные номера:

1. Giancoli, Douglas C., Physics, 4th Ed, Prentice Hall, (1995).

2. Справочник CRC по химии и физике, 64-е изд.

3. Википедия, Удельное электрическое сопротивление и проводимость.

Обсуждение удельного сопротивления
Удельное сопротивление и проводимость элементов
Индекс

Столы

Артикул
Giancoli

  Гиперфизика***** Электричество и магнетизм Назад

Температурный коэффициент сопротивления – электрический…

Вы могли заметить в таблице для удельных сопротивлений, что все цифры были указаны при температуре 20 o Цельсия. Если вы подозревали, что это означает, что удельное сопротивление материала может меняться в зависимости от температуры, вы были правы!

Значения сопротивления проводников при любой температуре, отличной от стандартной температуры (обычно указывается 20 градусов Цельсия) в таблице удельных сопротивлений, должны определяться по еще одной формуле:

Константа «альфа» (α) известна как температурный коэффициент сопротивления и символизирует коэффициент изменения сопротивления на градус изменения температуры. Так как все материалы имеют определенное удельное сопротивление (при 20 o С), они также изменяют сопротивление в зависимости от температуры на определенные величины. Для чистых металлов этот коэффициент является положительным числом, означающим, что сопротивление увеличивается на с повышением температуры. Для элементов углерода, кремния и германия этот коэффициент является отрицательным числом, что означает, что сопротивление уменьшается с повышением температуры. Для некоторых металлических сплавов температурный коэффициент сопротивления очень близок к нулю, а это означает, что сопротивление почти не меняется при изменении температуры (хорошее свойство, если вы хотите построить прецизионный резистор из металлической проволоки!). В следующей таблице приведены температурные коэффициенты сопротивления для нескольких распространенных металлов, как чистых, так и легированных:

Таблица температурных коэффициентов: ниже

Температурный коэффициент (α) на градус C:

Материал Элемент/сплав Темп. coefficient
Nickel Element 0.005866
Iron Element 0.005671
Molybdenum Element 0.004579
Tungsten Element 0.004403
Aluminum Элемент 0,004308
Copper Element 0.004041
Silver Element 0.003819
Platinum Element 0.003729
Gold Element 0.003715
Zinc Элемент 0,003847
Сталь* Сплав 0,003
Нихром Сплав0009 0.00017
Nichrome V Alloy 0.00013
Manganin Alloy 0. 000015
Constantan Alloy ±0.000074
* = S teel сплав с содержанием железа 99,5%, углерода 0,5%0465

Суммарное сопротивление проводов этой цепи (провод 1 + провод 2) составляет 30 Ом при стандартной температуре. Составив таблицу значений напряжения, силы тока и сопротивления, получаем:

При 20 o по Цельсию получаем 12,5 вольт на нагрузке и всего 1,5 вольта (0,75 + 0,75) на сопротивлении провода. Если бы температура поднялась до 35 o по Цельсию, мы могли бы легко определить изменение сопротивления для каждого отрезка провода. Предполагая использование медной проволоки (α = 0,004041), получаем:

Пересчитав значения нашей схемы, мы видим, какие изменения принесет это повышение температуры:

Как видим, напряжение на нагрузке понизилось (с 12,5 вольт до 12,42 вольт), а падение напряжения на проводах увеличилось (с 0,75 В). вольт до 0,79 вольт) в результате повышения температуры. Хотя изменения могут показаться небольшими, они могут быть значительными для линий электропередач, протянувшихся на километры между электростанциями и подстанциями, подстанциями и нагрузками. На самом деле энергетическим компаниям часто приходится учитывать изменения сопротивления линий, возникающие в результате сезонных колебаний температуры, при расчете допустимой нагрузки системы.