Мастика битумная каучуковая применение: МАСТИКА БИТУМНО-КАУЧУКОВАЯ МГХ-К ХОЛОДНАЯ ГРИДА

Содержание

технические характеристики каучуко-битумной продукции, бутилкаучуковая холодная гидроизоляция «МГХ-К» и «Ребакс-М»

Покрытие различных поверхностей, придание им необходимых свойств обеспечивается при помощи специальных мастик. Особое место на практике имеет битумно-каучуковая мастика (БКМ), знать свойства которой полезно практически всем. Область применения этого вещества очень разнообразна, но чаще всего оно может использоваться для гидроизоляции строительных конструкций.

Особенности

Битумно-каучуковая мастика отличается:

  • отменной эластичностью;
  • стойкостью к нагреву;
  • превосходным уровнем склеивания;
  • наилучшим сопротивлением растягивающему разрыву;
  • выдержкой механической и ударной нагрузки минимум в 500 кПа.

Все эти ценные свойства качественная мастика сохраняет и при -50, и при +130 градусах. Она не повреждается водой и не растрескивается при контакте с жидкостью, что и позволяет использовать такие смеси, как гидроизоляцию. Опытным путем было установлено, что мастика помогает защитить от воды оцинкованный материал, используемый на поверхностях, наклоненных от 0 до 45 градусов. Смесь на основе битума реализуется в ведрах из металла, масса нетто составляет от 3 до 42 кг, что позволяет подобрать идеальную порцию. Да и применение состава сильно различается.

Где используется мастика?

Технические характеристики позволяют с помощью этого материала:

  • класть рулонные конструкции на основе битума;
  • клеить черепицу;
  • монтировать линолеум и деревянные материалы под паркет;
  • наклеивать плиты ЭППС.

Все эти работы могут выполняться и в небольшом ремонте, и при крупном строительстве. Сохранение заявленных изготовителем свойств гарантировано до 12 месяцев подряд.

Важно: применение мастики допускается лишь при наружных работах или в основательно вентилируемом помещении. В процессе работы нельзя курить и разводить открытый огонь. Специфика есть и у каждого подвида составов, содержащих каучук.

Виды

МГББ расшифровывается как мастика гидроизоляционная битумно-бутилкаучуковая. С помощью этого средства можно герметизировать не только крышу, но и фундаменты, и границы между различными плитами, панелями. Преимуществом МГББ является устойчивость к широкому кругу вредных факторов: морозу, кислотам, озону, природному газу. Непроницаемость для световых лучей и пара позволяет обеспечить максимально высокую защиту основания.

Состав образован:

  • бутилкаучуком;
  • вулканизирующими добавками;
  • наполнителями.

Наносить МГББ можно как в нагретом, так и в холодном виде.

Разогретый состав сохнет не более 20 часов, а когда он затвердевает, усадки не происходит. Сцепление охлажденной МГББ с поверхностью достигается за 24 – 36 часов, допустимые температуры не ниже — 50 и не выше +80 градусов.

Смесь МГХ-К предназначена для обеспечения гидроизоляции кровли. В дополнение к битуму, в нее входят растворитель органической природы, термопластичный полимер и резиновая крошка мелкой фракции.

Малая вязкость и другие характеристики делают МГХ-К идеальным решением для отделки бетона. На 1 кв. м поверхности расходуется 1 кг мастики. Время сушки составляет 24 часа, пограничные температуры: -30 и 180 градусов.

Благодаря столь широкому полю допустимых условий МГХ-К позволяет:

  • изолировать от воды неодинаковые по структуре и числу пор материалы, от металла до кирпичей;
  • закрыть швы и закупорить трещины между отделочными плитами;
  • приклеить рулонную изоляцию на кровлю;
  • отремонтировать кровельные конструкции;
  • починить дороги;
  • остановить действие влаги на фундаменты, на стены подвала и гаража;
  • уплотнить стекло в раме из металла или дерева.

Еще один привлекательный вид мастики — это «Ребакс-М». Основным ее предназначением является гидроизоляция кровли. Поставка потребителям осуществляется в таре по 20 и 50 кг. Кроме работ на крышах, при помощи «Ребакс-М» можно защищать от воды фундаменты, заглубляемые в землю строительные конструкции из дерева или железобетона. Допускается также обработка изделий из металла.

Химический состав включает:

  • битум;
  • добавки, повышающие адгезию;
  • каучук;
  • вещества, подавляющие коррозию.

Точные пропорции всех этих компонентов и их правильное взаимодействие между собой достигаются за счет применения органического растворителя. Наносить «Ребакс-М» можно при помощи наливного и распылительного оборудования, но если более привычна работа валиком или кистью, проблем тоже не возникнет.

Распыление затруднено еще и потому, что потребуется очень тщательно подбирать вязкость состава. Минимальная рабочая температура 0 градусов, при этом влажность воздуха более 80% сказывается негативно на результате. Рекомендуется наносить два или три слоя мастики.

Сушка после нанесения каждого слоя продолжается минимум 12 часов, а прилипать материал перестает только на пятые сутки. Окончательные свойства покрытие получает через неделю после монтажа. При кровельных работах тратится от 4 до 6 л мастики на 1 кв. м. Для антикоррозийной защиты требуется куда меньше материала, всего лишь 600 – 1000 г. Стандартный цвет черный, при контакте с ненасыщенным соляным раствором мастика сохранит свои качества минимум 30 суток, она способна впитать не более 0,5% воды от собственной массы.

Обзор свойств

Холодная каучуковая мастика лучше горячей уже потому, что применение ее более быстрое, а также при этом уменьшается пожарная опасность. Способ нанесения тот же самый, что и у лаков или красок. Когда растворитель из созданного слоя испарится, покрытие застынет, сформировав крепкий слой, надежно останавливающий воду. Смеси, полученные на основе растворителя, позволяют отделывать различные поверхности даже на морозе. Но у них есть и ахиллесова пята — окончательная готовность нанесенного слоя наступает примерно через неделю, и то в благоприятных условиях.

Водная эмульсия безопасна для людей и природы, и уже через несколько часов покрытие готово к применению.

Эти положительные моменты уравновешиваются отрицательными: как использовать, так и хранить битумные мастики на основе воды можно только при положительных температурах воздуха.

Те смеси, которые не включают полимеров и иных присадок, подходят преимущественно для фундаментов. А вот кровельные работы лучше проводить модифицированными составами, которые устойчивее к сильному нагреву и колебаниям температур. Полимерная мастика также отличается усиленной адгезией, способна удерживать даже рулонный материал.

Добавление непереработанного каучука резко повышает эластичность и другие физико-механические параметры.

Важно: стойкость мастики с каучуком вырастает настолько, что она может выступить в качестве финишного покрытия кровли.

Какая бы смесь ни использовалась, основание требуется:

  • очищать от всевозможных засорений;
  • высушивать;
  • по возможности обрабатывать битумным праймером.

Модифицированные составы, если в них добавить растворитель, могут иметь самую разную консистенцию. Срок службы покрытия может быть больше 25 лет, при этом мастика пригодна для отделки каких угодно поверхностей. Отпадает необходимость в специализированном оборудовании, можно обойтись традиционными шпателями, валиками или малярными кистями. Но модификация мастики заметно удорожает ее по сравнению с простым материалом. И любая холодная смесь усаживается сильнее, нежели подобная ей горячая гидроизоляция.

Повышенная пожарная опасность при использовании горячей мастики вполне оправдывается ее позитивными свойствами.

Так, наличие в маркировке буквы «А» свидетельствует о присутствии антисептических добавок. А если на упаковке есть обозначение «Г», значит, состав имеет гербицидные свойства. Наносить смесь, прогретую до 160 – 190 градусов, нужно только на поверхности, которые предварительно прогрунтованы. Горячая мастика не имеет пор, но применять ее весьма трудоемко.

Для гидроизоляции днища автомобиля часто применяют мастики полимерного состава с добавками эпоксидных смол. Такое покрытие уверенно противостоит даже удару гравием либо мелкими кусками асфальта. Применение битумно-каучуковой смеси в принципе неспособно обеспечить такой эффект.

В качестве химической защиты, гасящей небольшие очаги коррозии, а не только отсекающей металл механически, обычно применяется ортофосфорная кислота. Там, где она есть, неустойчивые окислы не могут образоваться, потому что уже изначально присутствует стабильное химическое соединение.

Из видео ниже вы узнаете, как применять гидроизоляционную мастику Bitumast.

резиновая, каучуковая, полимерная, гидроизоляционная, универсальная

Мастика является довольно сильным связующим строительным материалом. С ее помощью можно выполнять герметизацию стен, потолков, полов, окон, делать укладку плитки и гидроизоляцию. Производится мастика в жидкой или пастообразной форме, а также в виде густой клеевой массы. На современном рынке часто встречается готовый порошковый состав, который остается только развести водой перед непосредственным применением.

Виды битумных составов

Абсолютно все виды мастик обладают высокими адгезионными свойствами и большинство из них сходны по своему составу. Для выбора необходимого вида материала следует для начала оценить поверхность и вид работ.

Битумная мастика – это современный и удобный в работе гидроизоляционный материал, который широко используется при устройстве кровли, гидро- и пароизоляции, а также при обработке межэтажных перекрытий. Этот вид состоит из битумного вяжущего вещества, гербицидов, антисептиков и наполнителей.

У битумной мастики есть много достоинств, а именно:

  • эластичность, хорошая растягиваемость и восстанавливаемость;
  • высокая термоустойчивость;
  • долговечность и надежность.

Гидроизоляционная. Создается на основе битумной мастики в виде полужидкой пасты готовой к применению. В ее состав входят различные минералонаполнители, битумные эмульсии, специальные добавки на основе синтетических смол.

Этот материал обладает всеми характеристиками битумной мастики, однако его механическая прочность гораздо выше. Материал используется для проведения гидроизоляции стен, крыш, фундаментов, балконов, труб, цементных или металлических желобов.

Холодная битумно-кукерсольная. Изготавливается из лака кукерсоля и раствора сланцевой смолы. Для улучшения характеристик, в состав битумных мастик вводят латексные эмульсии на основе диспергированного каучука. Такие материалы называются битумно-латексными и используются для крепления кровельных покрытий.

Кровельная. Также называется наливной кровлей и может использоваться как самостоятельный кровельный материал. Мастика производится в виде вязкой однородной массы, которая наносится на поверхность с помощью распылителя или кистью.

При использовании кровельной мастики не остается стыков и швов, поскольку создается сплошное, монолитное покрытие. Этим изоляционным материалом может покрываться сталь, рубероид, бетон и прочие материалы. Также кровельной мастикой выполняют ремонт старой кровли, герметизацию стыков и швов.

Покрытие из данного материала обладает следующими достоинствами:

  • высокая прочность;
  • устойчивость атмосферным воздействиям;
  • стойкость к солнечному свету и температурным перепадам;
  • эластичность;
  • антикоррозийность;
  • незначительный вес.

Битумно-каучуковая. Выпускается в виде однородной массы черного цвета готовой к применению. В состав входит смесь сортов нефтяного битума, синтетический каучук, резиновая крошка мелкой фракции, минеральные наполнители, природные смоляные кислоты, целевые добавки и различные растворители.

Этот материал довольно эластичен, обладает хорошей теплостойкостью и выдерживает температурные перепады от -30˚C — +130˚C. Также он используется для ремонта мастичных кровель и выполняет функцию клеящего состава при использовании рулонных кровельных материалов и для создания гидроизоляции конструкции и сооружений.

Полимерная мастика. Это быстросохнущий экологически чистый битумный материал на водной основе, улучшенный специальными полимерами. Используется для обмазочной гидроизоляции подземных сооружений, герметизации канализации и колодцев. После нанесения на поверхность мастика образует водонепроницаемую резиновую пленку, которая имеет очень длительный срок эксплуатации.

Герметизирующая мастика. Производится в виде густой белой массы, используемой для герметизации стыков, щелей, трещин и швов в железобетонных и бетонных конструкциях. Обладает отличной адгезией к металлу, дереву и бетону. После полного высыхания мастики ее можно обработать лакокрасочными покрытиями.

Огнеупорная. Данная мастика производится в форме вязкой пластичной массы серого цвета. Изготавливается из вяжущего неорганического вещества с добавлением силикатных добавок и минеральных наполнительных. Данная мастика используется для изоляции печей и газоходов и выдерживает температуру до +1600˚C.

Нетвердеющая герметизирующая мастика. Однородная вязкая масса, состоящая из нескольких разновидностей каучука, наполнителей и пластификаторов. Продается в брикетах и используется для герметизации наружных стен, уплотнения дверных и оконных блоков в местах примыкания к стене.

Универсальная. Это однородная масса из битума и различных наполнителей. Мастика предназначается для проведения гидроизоляционных и кровельных работ, создания антикоррозийной защиты различных конструкций и трубопроводов. Также посредством универсальной мастики можно склеивать различные стройматериалы.

Шумоизоляционная. Распыляемая масса, обладающая хорошими вибропоглащающими и звукоизоляционными характеристиками, произведенная на основе водной дисперсии синтетических смол с добавление противовоспламенителных компонентов.

Мастика бутил-каучуковая. Этот материал производится из экологически безопасных компонентов и не подвержен гнилостным процессам. Мастику широко используют для создания изоляции вентиляционных систем.

Акриловая гидроизоляционная. Наиболее востребованный материал, который создает при нанесении на поверхность водонепроницаемую пленку и защищает покрытие от плесени, сырости и ржавчины. Обладает высокой прочностью, легкость использования и используется только для герметизации внутри помещений.

Эпоксидная. Данный вид материала производится в форме густой массы из битумной смолы, растворенной в органическом разжижителе, сухого пигмента и наполнителя с пластификатором. Перед непосредственным применением в мастику добавляют отвердитель. Благодаря такому материалу получаются очень прочные и износостойкие полы производственных цехов, а также он используется в качестве клеевого средства.

Полиуретановая двухкомпонентная. Жидкая масса белого цвета, не имеющая запаха и образующая после нанесения крепкое эластичное покрытие. Двухкомпонентная полиуретановая мастика используется для гидроизоляции резервуаров питьевой воды, водопроводных труб и помещений с повышенной влажностью.

Нанесение мастики

Битумные мастики могут наноситься как ручным способом, при помощи кисти или валика, так и механическим, с применением специального воздушного распылителя.

Оба эти способа нанесения являются довольно технологичными и дают хорошую возможность производить работы, связанные с устройством кровли, достаточно легко и быстро вне зависимости от угла уклона поверхности крыши. Это особенно заметно при устройстве кровель, обладающих большим количеством примыканий и различных элементов.

Во время покрытия на крыше шахт, труб, несущих конструкций и так далее рулонными материалами требуется тратить много времени и сил на кройку кусков материала иногда очень сложной конфигурации, в то время как мастики в этом случае позволяют выполнять покрытие точно так же, как и на ровных поверхностях. Поэтому мастики в этом отношении имеют определенные преимущества перед рулонными материалами.

Расход битумной мастики на 1м²

Невозможно нормально спланировать работы и составить смету, не зная, сколько материала необходимо для обработки 1м². Чтобы определить расход мастики, проще всего посмотреть на этикетку, а в случае если на ней этих данных нет, то, по крайней мере, пишется рекомендуемый минимум материала для нанесения одного слоя. Поэтому несложно будет самостоятельно посчитать требуемое количество материала. В основном мастики на 30-70% состоят из летучих растворителей, что означает такой же процент усадки битумного состава после его нанесения.

Средний расход материала на 1м²

Гидроизоляция фундамента

2-4 кг/м2

Устройство кровли

3,5-6 кг/м2

Приклеивание рубероида

1-2 кг/м2

Техника безопасности

Поскольку многие растворители, используемые для создания мастик, довольно токсичны и очень легко воспламеняются, то при работе с такими материалами следует придерживаться определенных мер безопасности. Битумные мастики должны готовиться в помещении с хорошей приточно-вытяжной вентиляционной системой или на отрытом воздухе.

При работе с битумными мастиками на открытом воздухе обязательно использование защитных очков и респиратора, а в закрытых помещениях – противогазы. После каждого часа работы в закрытых помещениях следует делать перерыв на 15-20 минут и проводить его на свежем воздухе.

Чтобы предотвратить повышенное туманообразование при механизированном способе работы с мастиками, необходимо распылитель держать строго перпендикулярно поверхности и не дальше чем 0,5 метра от нее. После работы с такими материалами следует хорошо вытереть руки, после чего вымыть их с мылом и теплой водой.

Внимание! Курение на участках работы с битумными мастиками категорически запрещено.

Работы, вызывающие искрение или требующие использование открытого огня должны выполняться на расстоянии не менее 25 метров от места использования битумных составов. В помещениях, в которых выполняются работы с мастиками, требуется применение электрооборудования только взрывобезопасного типа.

Битумно-каучуковая мастика ЭКСПЕРТ. ДЕКАРТ – производство и реализация лакокрасочных материалов

Битумно-каучуковая мастика холодного отверждения применяется для монтажа и ремонта ­кровли, наружной гидроизоляции бетонных, металлических, деревянных и других строительных конструкций, защиты от коррозии металлических конструкций, для дорожных ­работ, а также склеивания строительных материалов.

Доступность: Доступно к заказу через 1-3 дня

Артикул:

Габариты (Д x Ш x В), вес брутто:

Гарантия лучшей цены

386,00 ₽

≈157,94 ₽ за 1 кг

Стоимость доставки:
По Москве в пределах МКАД – от 300₽ за 3 часа!
По Московской области – от 1000₽ за 5 часов!
По Москве и МО при заказе от 5000₽ – БЕСПЛАТНО!
По России* при заказе от 10000₽ – БЕСПЛАТНО!
* ознакомьтесь с условиями или рассчитайте доставку в Телеге

В список желаний

ОСОБЕННОСТИ
  • Для наружных  работ
  • Однокомпонентная мастика
  • Наносится на бетонные, металлические, деревянные поверхности
РАСХОД 

Гидроизоляционные работы 2-3 кг / кв. м. Склеивание строительных материалов 0,7-1 кг / кв.м.

ПОДГОТОВКА ПОВЕРХНОСТИ

Поверхность должна быть прочной, чистой и сухой. Рекомендуется предварительное грунтование битумным праймером «Эксперт».

СПОСОБ НАНЕСЕНИЯ

Перед применением тщательно перемешать. Допускается разбавление сольвентом, ксилолом, растворителем №646 до требуемой консистенции. Мастику наносить шпателем, валиком или кистью. Для приклеивания достаточно 1 слоя, для гидроизоляции необходимо 3 слоя. Толщина каждого слоя – 0,7-1 мм. Температура при проведении работ не должна опускаться ниже –20°C. При необходимости рекомендуется подогреть мастику до +30-50°C. Время высыхания «на отлип» при температуре +20°C и относительной влажности воздуха 65% примерно 5-6 часов, после чего можно наносить следующий слой. Время полного высыхания — не менее 24 часов.

характеристики и сфера применения материала

Ассортимент рынка гидроизоляционных материалов обширен. Существует множество водоотталкивающих покрытий, каждое из которых надежно защищает конструкции от контакта с влагой. Битумные составы пользуются особой популярностью. Они универсальны, сцепляются со всеми видами оснований, применяются для обустройства гидро-, пароизоляции, крепления рулонных материалов. Битумно-резиновая мастика – один из наиболее практичных гидроизоляторов.

Битумно-резиновые составы всех марок отличаются хорошими адгезионными свойствами. Они долговечны, эластичны, не лопаются при усадке зданий, отлично растягиваются, сопротивляются механическим нагрузкам. При выборе конкретной марки учитывают особенности основания и виды запланированных работ. Какими свойствами обладает готовое покрытие? Какие виды материала пользуются особой популярностью у отечественных строителей?

Битумно-резиновая мастика

  • Однородность. Состав должен иметь однородную структуру без посторонних включений. Необходимо, чтобы каждая частица наполнителя была пропитана вяжущим веществом.
  • Практичность и удобство нанесения. Гидроизоляционные работы приходится проводить в самых разных условиях. Материал должен хорошо ложиться на поверхность, не расслаиваться, намертво прилипать.
  • Экологичность. Сырье, из которого изготовлены мастики, должно быть экологически безопасным. Недопустимо испарение вредных веществ в атмосферу.
  • Теплостойкость. Материал должен хорошо переносить нагрев до температуры не менее 70°С, сохраняя свои свойства и эксплуатационные характеристики.
  • Биостойкость. Готовое покрытие должно быть гигиеничным, чтобы на нем не размножались грибки, бактерии, плесень.
  • Водонепроницаемость. Это главное требование к любому гидроизолятору. Он должен надежно защищать основание от попадания влаги.
  • Долговечность. Срок службы материалов во многом зависит от условий эксплуатации. Необходимо правильно подбирать мастики с учетом всех особенностей объектов. Также стоит покупать только высококачественные составы, которые хорошо зарекомендовали себя на рынке.

Нанесение мастичного покрытия на основание

Битумно-резиновые мастики (МБР) выпускаются в виде составов, готовых к применению. Материал представляет собой черную однородную массу густой консистенции, которую можно сразу же использовать по назначению. Некоторые мастики выпускают в виде смесей, которые нужно разводить растворителями.

Мастика состоит из нескольких сортов нефтяного битума, резиновой крошки, наполнителей, растворителей и различных добавок. Количество и тип компонентов определяются назначением каждого конкретного вида материала.

Готовое мастичное покрытие эластично, благодаря чему отличается такими свойствами:

  • хорошо переносит высокие и низкие температуры;
  • не лопается, не дает трещин в случае резких температурных перепадов;
  • сохраняет свои свойства при температуре окружающей среды от -30˚C до +130˚C.

Материал применяют для гидроизоляции кровельных конструкций, бетонных сооружений. Его используют в качестве клеевого состава и дополнительного герметика при укладке рулонных гидроизоляторов.

Мастика холодного нанесения

Плюсы гидроизоляционного материала ↑

  • Высокий уровень адгезии. Составы хорошо сцепляются со всеми видами оснований, подходят для вертикальной и горизонтальной гидроизоляции.
  • Стойкость к негативным факторам окружающей среды. Битумно-резиновые смеси не боятся осадков, ветра, бактерий, грибков. Они не гниют, не разлагаются под воздействием химических веществ.
  • Защита от коррозии. Битумно-резиновые покрытия подходят для обработки металлических поверхностей. Прилипая к материалам, они надежно защищают их от сырости.
  • Биозащита. В состав мастик добавляют специальные компоненты с антибактериальными свойствами. Покрытия защищают не только от влаги, но и от грибков, плесени.
  • Выравнивание поверхностей. При нанесении на поверхности мастики равномерно растекаются по основаниям, выравнивая их и маскируя небольшие дефекты.
  • Экономный расход. Точный расход материала на 1 м.кв. площади зависит от его консистенции. Каждая марка имеет свои особенности, поэтому при расчете следует ориентироваться на рекомендации производителя.

Состав горячего нанесения

Несколько минусов битумно-резиновых мастик ↑

  • Требования к погодным условиям. Из-за особенностей состава мастик их не рекомендуют применять, если температура окружающей среды ниже -5°С, идет дождь или снег.
  • Пожароопасность. Мастики горячего нанесения потенциально опасны, поэтому при их применении следует строго придерживаться правил техники безопасности, иначе не исключено возгорание.
  • Ограничения в применении. Теоретически битумно-резиновые составы можно использовать внутри помещений, однако на практике их применяют преимущественно для наружных работ.
  • Некоторые трудности при нанесении. Материал можно наносить вручную – валиком, щеткой – или с помощью механических приспособлений. Второй способ предпочтительней, т.к. равномерно нанести состав, используя валик, довольно сложно. Могут образоваться «наплывы» и неровности.

Гидроизоляционные работы

Для обозначения битумно-резиновой мастики применяют аббревиатуру МБР. Рядом с буквами обычно указана цифра. Она указывает температуру, при которой состав размягчается и готов к применению. В зависимости от этого различают марки мастик – МБР 65, 75 и т.д. Каждый состав имеет собственные особенности и сферу применения. Буква Х после цифры обозначает способ нанесения состава – холодный.

Составы разных марок

Мастики МБР 65 и 90: характеристики и сфера применения ↑

Битумно-резиновая мастика МБР 65 подходит для изоляции инженерных систем, трубопроводов, гидрозащиты бетонных и железобетонных конструкций, бассейнов, резервуаров. Ее наносят горячим способом, нагревая до температуры не ниже 65°С и не выше 220°С.

Готовое покрытие выдерживает низкие температуры (до -25°С) без изменения своих свойств. Способно растягиваться до 5 см. Проникает вглубь до 40 мм. Для получения прочного и долговечного покрытия требуется тщательно подготовить поверхность – очистить, обеспылить, осушить.

Мастику МБР 90 можно наносить холодным и горячим способом. Материал уступает в эластичности МБР 65: растягивается на 3 см, проникает на 20 мм. Готовое покрытие может дать трещины при температуре ниже -15°С. Состав применяют для укладки рулонных изоляторов, защиты коммуникаций, трубопроводов, подземных сооружений, резервуаров.

Мастика производства компании BITUMEKS

Битумно-резиновые мастики содержат токсичные и огнеопасные растворители. При работе с ними следует придерживаться правил техники безопасности (СНиП 12-04-2002). Мастера должны иметь соответствующие навыки, пройти инструктаж. Применение средств индивидуальной защиты обязательно.

Гидроизоляционные работы проводят вдали от источников огня, а рядом должны находиться средства, необходимые для тушения пожаров. Если горячий материал попадет на кожу, его следует удалить специальным средством, а рану обработать препаратом от ожогов.

Внимание! Курение в местах приготовления и применения битумных мастик строго запрещено.

Нанесение мастики вручную

Наибольшей популярностью у наших соотечественников пользуются битумно-резиновые мастики торговых марок «Технониколь», Bitumast, AquaMast. Это высококачественные материалы, проверенные временем. Они универсальны, подходят для обработки оснований разных типов, образуют высокопрочные покрытия на поверхностях. Перед применением следует ознакомиться с рекомендациями изготовителя, а во время работ придерживаться правил техники безопасности.

Мастика битумно-каучуковая «Универсальная»

Описание товара

ДСТУ Б В.2.7-108-2001

 

Описание материала:

Мастика представляет собой полностью готовый к применению материал, состоящий из смеси нефтяных битумов, модифицированной синтетическим каучуком, минеральных наполнителей и органического растворителя. После высыхания образует покрытие с широким диапазоном температур эксплуатации, которое значительно увеличивает срок службы защищаемых конструкций.

  

Способ применения:

Мастику рекомендуется наносить на обрабатываемую поверхность щетками, шпателем или наливом с разравниванием.

Диапазон температур применения от -20ºС до + 40ºС.

Перед использованием мастики, рабочая поверхность обрабатывается праймером.

При низких температурах окружающей среды, для удобства нанесения мастику рекомендуется выдержать в теплом помещении не менее 12 часов или разбавить органическим растворителем до необходимой консистенции, но не более 8% от массы.

 

Сфера применения и средние нормы расхода

Сфера применения

Устройство наружной гидроизоляции в 1 слой

1,0-1,5

Устройство новых кровель (с применением армирующего слоя из стекловолокна или стеклосетки)

от 4,0

Ремонт старых кровель (с применением армирующего слоя из стекловолокна или стеклосетки)

от2,0

Приклеивание битумных рулонных материалов ⃰

1,0-1,5

Приклеивание пенополистирола и кровельной минваты⃰

1,0-1,5

* — на горизонтальные поверхности.

 

Хранение:

Хранить в сухом, защищенном от попадания прямых солнечных лучей месте при температуре от -20ºС до + 35ºС. Гарантийный срок хранения — 24 месяца.

 

Основные физико-механические показатели: 

Наименование показателя

Мастика “Универсальная”

Условная прочность, кгс / см², не менее

2,0

Относительное удлинение при разрыве,%, не менее

100

Прочность на сдвиг клеевого соединения, кгс / см, не менее

2,0

Прочность сцепления между слоями, кгс / см², не менее

2,0

Водонепроницаемость в течение 10 мин при давлении 0,03 МПа

выдерживает

Гибкость на брусе радиусом 5,0 ± 0,2 мм,
при температуре ºС

-15

Прочность сцепления с основанием, кгс / см², не менее

3,0

Массовая доля нелетучих веществ,%, не менее

60

Водопоглощение в течении 24 ч,% по массе, не более

0,2

Теплостойкость, ºС, не менее

+80

Время высыхания, ч, не более

24

Битумно каучуковая мастика для гидроизоляции

Эта статья поможет понять, что такое мастика битумная холодного применения. В чем заключается разница между холодной и горячей мастикой. Где ее используют. Как правильно выбрать материал по свойства и качествам, для требующихся работ.

Битум – это твердая смола, на его основе изготавливается мастика. Для того, чтобы материал стал пластичным его температуру повышают, что значительно увеличивает время работ и имеет явный недостаток – риск пожара.

По этой причине гораздо удобнее использовать мастику холодного применения. Благодаря растворителям присутствующим в составе, гидроизоляционный материал находится в жидком состоянии и для использования не требуется нагрев.

Горячую и холодную мастики используют для достижения полной гидроизоляции. Растворитель испаряется, материал застывает. Получается высокопрочный гидроизоляционный слой.

Общие сведения о битумной мастике

Существует два вида битумной мастики холодного применения

Первый вид

Изготавливается на основе растворителей. Это полностью готовые для работ смеси. Мастика, изготовленная на основе растворителя пригодна для использования при минусовой температуре.

Схватывается данный вид гидроизоляции в течение 24 часов. Полное затведевание мастики и приобретение свойств гидроизоляции, требует неделю.
Обычно данный вид материала применяют в кровельных работах.

Второй вид битумного гидроизоляционного покрытия

Изготавливают на водной основе – что характеризует материал, как не несущий вреда экологии.
Покрытие не имеет резкого запаха, высыхает за пару часов.

Гидроизоляцию изготовленную на водной основе нельзя применять при пониженной температуре. Хранить материал также стоит в теплом помещении.

Битумная мастики имеет разные модификации

Немодифицированная гидроизоляция. Состав не содержит полимеров и иных компонентов, повышающих свойства материала. Для крыш это вид не подойдет, для фундамента идеальный вариант. Гидроизоляция примененная для фундамента не испытывает атмосферных перегрузок.

Мастику без полимеров применять для кровельных работ не рекомендуется.

Битумно-полимерная мастика. Из названия материала понятно, что этому виду гидроизоляции присущи высокие показатели. Прекрасно адаптирован к большому диапазону температуры. Очень хорошая молекулярная связка (адгезия), что позволяет применять мастику для приклеивания рубероида и аналогичных материалов.

Битумно–полимерная мастика благодаря своим качествам, обширно применяется для покрытия плоских крыш.

Битумно–резиновая мастика. В составе присутствует крошка из резины. Обладает достойными антикоррозийным свойством. Применяют для покрытия конструкций из металла.

Для кровельных работ битумно – резиновая мастика НЕ подходит.

Битумно–каучуковая гидроизоляция, она же жидкая резина — очень эластичная с высокими физико – механическими показателями. Данные качества увеличивают износостойкость покрытия. Прекрасно подходит для покрытия крыши.

Каучуковая мастика способна стать самостоятельным кровельным покрытием. Практически не подвержена, атмосферному влиянию.

Тип мастики напрямую связан с содержащимися в ней компонентами.

Однокомпонентная – готовое к работе покрытие.

Двухкомпонентная мастика перед началом работ требует смешивания с отвердителем. Используется в профессиональных целях. Обладает хорошими показателями.

При использовании двухкомпонентной мастики ВАЖНО точно следовать инструкции по смешиванию. Не правильные пропорции приведут к увеличению срока застывания.

Основные достоинства битумной мастики холодного применения

  • Сокращает время работ по гидроизоляции
  • Мастику можно развести растворителем, что сделает ее нужной консистенции
  • Срок эксплуатации более 25 лет
  • Покрытие можно применять на поверхностях из разного материала
  • Легкое нанесение.
  • Самостоятельное использование

Минусы данного материала

  • Высокая стоимость.
  • Битумно – полимерная мастика дает большую усадку, что сказывается на расходе материала.

Применение

  • Кровельные работы. Применяют для ремонта кровельного покрытия, для монтажа черепицы(мягкой), для связки с рулонными материалами.
  • Для гидроизоляционной обработки фундамента. Покрытие делается, как на ленточном фундаменте, так и на свайном.
  • Битумный материал используют, как гидроизоляцию под стяжку. Прекрасно подходит для полов в ванной, подвале, гараже.
  • При сооружении бассейнов и террас. В этих случаях для работ применяют резиновую мастику.

Битумная мастика холодного применения расход материала:

  1. Для склеивания 0,8 – 1 кг на квадратный метр
  2. Для гидроизоляционного слоя 2 – 3,8 кг на квадратный метр

На рынке лидируют два производителя:

  1. Мастика битумная ТЕХНОНИКОЛЬ
  2. Битумная мастика ЭКСПЕРТ

Оба производителя отвечают всем требованиям. Возможна разница в стоимости. И некоторых нюансах, таких как расход материала и время высыхания.

Важно помнить. Перед применением мастики необходимо очистить поверхность от мусора, грязи. Обрабатываемая площадь обязательно должна быть сухой. Если поверхность пористая ее необходимо предварительно обработать праймером.

Покрытие различных поверхностей, придание им необходимых свойств обеспечивается при помощи специальных мастик. Особое место на практике имеет битумно-каучуковая мастика (БКМ), знать свойства которой полезно практически всем. Область применения этого вещества очень разнообразна, но чаще всего оно может использоваться для гидроизоляции строительных конструкций.

Особенности

Битумно-каучуковая мастика отличается:

  • отменной эластичностью;
  • стойкостью к нагреву;
  • превосходным уровнем склеивания;
  • наилучшим сопротивлением растягивающему разрыву;
  • выдержкой механической и ударной нагрузки минимум в 500 кПа.

Все эти ценные свойства качественная мастика сохраняет и при -50, и при +130 градусах. Она не повреждается водой и не растрескивается при контакте с жидкостью, что и позволяет использовать такие смеси, как гидроизоляцию. Опытным путем было установлено, что мастика помогает защитить от воды оцинкованный материал, используемый на поверхностях, наклоненных от 0 до 45 градусов. Смесь на основе битума реализуется в ведрах из металла, масса нетто составляет от 3 до 42 кг, что позволяет подобрать идеальную порцию. Да и применение состава сильно различается.

Где используется мастика?

Технические характеристики позволяют с помощью этого материала:

  • класть рулонные конструкции на основе битума;
  • клеить черепицу;
  • монтировать линолеум и деревянные материалы под паркет;
  • наклеивать плиты ЭППС.

Все эти работы могут выполняться и в небольшом ремонте, и при крупном строительстве. Сохранение заявленных изготовителем свойств гарантировано до 12 месяцев подряд.

Важно: применение мастики допускается лишь при наружных работах или в основательно вентилируемом помещении. В процессе работы нельзя курить и разводить открытый огонь. Специфика есть и у каждого подвида составов, содержащих каучук.

МГББ расшифровывается как мастика гидроизоляционная битумно-бутилкаучуковая. С помощью этого средства можно герметизировать не только крышу, но и фундаменты, и границы между различными плитами, панелями. Преимуществом МГББ является устойчивость к широкому кругу вредных факторов: морозу, кислотам, озону, природному газу. Непроницаемость для световых лучей и пара позволяет обеспечить максимально высокую защиту основания.

Состав образован:

  • бутилкаучуком;
  • вулканизирующими добавками;
  • наполнителями.

Наносить МГББ можно как в нагретом, так и в холодном виде.

Разогретый состав сохнет не более 20 часов, а когда он затвердевает, усадки не происходит. Сцепление охлажденной МГББ с поверхностью достигается за 24 – 36 часов, допустимые температуры не ниже — 50 и не выше +80 градусов.

Смесь МГХ-К предназначена для обеспечения гидроизоляции кровли. В дополнение к битуму, в нее входят растворитель органической природы, термопластичный полимер и резиновая крошка мелкой фракции.

Малая вязкость и другие характеристики делают МГХ-К идеальным решением для отделки бетона. На 1 кв. м поверхности расходуется 1 кг мастики. Время сушки составляет 24 часа, пограничные температуры: -30 и 180 градусов.

Благодаря столь широкому полю допустимых условий МГХ-К позволяет:

  • изолировать от воды неодинаковые по структуре и числу пор материалы, от металла до кирпичей;
  • закрыть швы и закупорить трещины между отделочными плитами;
  • приклеить рулонную изоляцию на кровлю;
  • отремонтировать кровельные конструкции;
  • починить дороги;
  • остановить действие влаги на фундаменты, на стены подвала и гаража;
  • уплотнить стекло в раме из металла или дерева.

Еще один привлекательный вид мастики — это «Ребакс-М». Основным ее предназначением является гидроизоляция кровли. Поставка потребителям осуществляется в таре по 20 и 50 кг. Кроме работ на крышах, при помощи «Ребакс-М» можно защищать от воды фундаменты, заглубляемые в землю строительные конструкции из дерева или железобетона. Допускается также обработка изделий из металла.

Химический состав включает:

  • битум;
  • добавки, повышающие адгезию;
  • каучук;
  • вещества, подавляющие коррозию.

Точные пропорции всех этих компонентов и их правильное взаимодействие между собой достигаются за счет применения органического растворителя. Наносить «Ребакс-М» можно при помощи наливного и распылительного оборудования, но если более привычна работа валиком или кистью, проблем тоже не возникнет.

Распыление затруднено еще и потому, что потребуется очень тщательно подбирать вязкость состава. Минимальная рабочая температура 0 градусов, при этом влажность воздуха более 80% сказывается негативно на результате. Рекомендуется наносить два или три слоя мастики.

Сушка после нанесения каждого слоя продолжается минимум 12 часов, а прилипать материал перестает только на пятые сутки. Окончательные свойства покрытие получает через неделю после монтажа. При кровельных работах тратится от 4 до 6 л мастики на 1 кв. м. Для антикоррозийной защиты требуется куда меньше материала, всего лишь 600 – 1000 г. Стандартный цвет черный, при контакте с ненасыщенным соляным раствором мастика сохранит свои качества минимум 30 суток, она способна впитать не более 0,5% воды от собственной массы.

Обзор свойств

Холодная каучуковая мастика лучше горячей уже потому, что применение ее более быстрое, а также при этом уменьшается пожарная опасность. Способ нанесения тот же самый, что и у лаков или красок. Когда растворитель из созданного слоя испарится, покрытие застынет, сформировав крепкий слой, надежно останавливающий воду. Смеси, полученные на основе растворителя, позволяют отделывать различные поверхности даже на морозе. Но у них есть и ахиллесова пята — окончательная готовность нанесенного слоя наступает примерно через неделю, и то в благоприятных условиях.

Водная эмульсия безопасна для людей и природы, и уже через несколько часов покрытие готово к применению.

Эти положительные моменты уравновешиваются отрицательными: как использовать, так и хранить битумные мастики на основе воды можно только при положительных температурах воздуха.

Те смеси, которые не включают полимеров и иных присадок, подходят преимущественно для фундаментов. А вот кровельные работы лучше проводить модифицированными составами, которые устойчивее к сильному нагреву и колебаниям температур. Полимерная мастика также отличается усиленной адгезией, способна удерживать даже рулонный материал.

Добавление непереработанного каучука резко повышает эластичность и другие физико-механические параметры.

Важно: стойкость мастики с каучуком вырастает настолько, что она может выступить в качестве финишного покрытия кровли.

Какая бы смесь ни использовалась, основание требуется:

  • очищать от всевозможных засорений;
  • высушивать;
  • по возможности обрабатывать битумным праймером.

Модифицированные составы, если в них добавить растворитель, могут иметь самую разную консистенцию. Срок службы покрытия может быть больше 25 лет, при этом мастика пригодна для отделки каких угодно поверхностей. Отпадает необходимость в специализированном оборудовании, можно обойтись традиционными шпателями, валиками или малярными кистями. Но модификация мастики заметно удорожает ее по сравнению с простым материалом. И любая холодная смесь усаживается сильнее, нежели подобная ей горячая гидроизоляция.

Повышенная пожарная опасность при использовании горячей мастики вполне оправдывается ее позитивными свойствами.

Так, наличие в маркировке буквы «А» свидетельствует о присутствии антисептических добавок. А если на упаковке есть обозначение «Г», значит, состав имеет гербицидные свойства. Наносить смесь, прогретую до 160 – 190 градусов, нужно только на поверхности, которые предварительно прогрунтованы. Горячая мастика не имеет пор, но применять ее весьма трудоемко.

Для гидроизоляции днища автомобиля часто применяют мастики полимерного состава с добавками эпоксидных смол. Такое покрытие уверенно противостоит даже удару гравием либо мелкими кусками асфальта. Применение битумно-каучуковой смеси в принципе неспособно обеспечить такой эффект.

В качестве химической защиты, гасящей небольшие очаги коррозии, а не только отсекающей металл механически, обычно применяется ортофосфорная кислота. Там, где она есть, неустойчивые окислы не могут образоваться, потому что уже изначально присутствует стабильное химическое соединение.

Из видео ниже вы узнаете, как применять гидроизоляционную мастику Bitumast.

На рынках любого города, а уж тем более в авто магазинах (про интернет вообще молчу) ассортимент антикоррозийных средств просто огромен. Как понять, что необходимо именно Вам, и какие типы антикора бывают, попробую донести в этом посте. Конечно я не специалист и создавал это сообщество в том числе с целью почерпнуть новые знания. Так что сильно не пинайте. Проанализировав кучу материала выделил для себя несколько основных типов средств. Итак начнем.
1. Битумно-каучуковые мастики

Битумно-каучуковые мастики – это вязкий изолирующий материал, применяемый в гидроизоляции кровли, стен, подземных строений. Многокомпонентная жидкая смесь мастики формируется на основе битума и каучука, синтетического растворителя или воды. Битум формирует влагозащитные свойства, каучук предупреждает растрескивание изоляции при низких температурах. Дополнительные свойства обеспечивают полимеры и наполнители. Битумно-каучуковая мастика является обмазочной гидроизоляцией. Вязкую жидкость наносят на изолируемую поверхность, после полимеризации и затвердевания она превращается в эластичный монолитный гидростойкий слой.
Битумно-каучуковая мастика для кровли обладает широким интервалом рабочих температур и обязательной морозостойкотью. Присутствие каучука позволяет снизить эксплуатационные температуры, уменьшить растрескивание изолятора при значительном минусе. Полимерная каучуковая мастика – содержит полимеры, обеспечивающие морозоустойчивость и эксплуатацию в широком температурном интервале. Битумно-полимерные смеси получили название жидкой резины. Они качественно изолируют поверхности любых оснований, заделывают стыки и трещины.
Битумно-бутилкаучуковая холодная мастика – готова к применению. Сфера использования холодных мастик – наружные строительные поверхности. Холодные мастики имеют длительное время высыхания и дают значительную усадку при отвердевании. Битумно-бутилкаучуковая горячая мастика – отличается более низкой ценой. Горячее покрытие не создаёт усадки при отверждении, быстро высыхает и лучше наносится при минусовых температурах. Однако в работе этот вариант менее удобен — он требует приготовления: нагрева до высокой температуры, способной расплавить битум.
2. Сланцевые или резинобитумные мастики

Резинобитумная мастика — состав на основе высококачественного изоляционного битума, мелкодисперсной резиновой крошки,
органического растворителя, пластификатора, наполнителя, ингибитора коррозии и антисептика. Если говорить проще — многокомпонентная масса, смесь дёгтя или нефтяного битума.

К ним относятся разнообразное количество продающихся на рынке мастик. Представляют собой смесь, состоящую из битумного раствора и резины (каучука) с наполнителями из алкидной смолы и пластификаторов. Наиболее распространенные – это МПБ-97, «Кордон», БПМ-1, «Корд» и т.д. К сожалению, подобные мастики не являются высококачественными и ряд требований они не выполняют. Главным условием при выборе является твердое конечное состояние мастики, когда она высыхает. Мастики, которые длительное время остаются в полужидком состоянии, в первую очередь – антикоры. Главным их достоинством является цена.
Кроме того, надо отметить и тот факт, что многие применяют такие мастики и с целью обесшумливания.
Состав наносится при помощи кисти, шпателя или краскораспылителя в 2- 3 слоя, между которыми следует делать перерыв в течение 1 часа, для сушки. После нанесения последнего слоя авто должно находиться в покое в течение суток. «Кордон» используется как антикоррозийная защита не только кузовных деталей авто, но и других металлических изделий. Технические характеристики антикора «Кордон» предполагают его расход на 1 м2 – 800-1000 грамм. Для обработки одного автомобиля среднего класса необходимо около 4 кг антикоррозийного состава.
3. Мовиль

Мовиль — традиционное название одного из составов для автоконсервации автомобилей, им обрабатываются скрытые полости кузова изнутри. Название происходит от названий городов Москва-Вильнюс в НИИ которых он был разработан.
Принцип действия этого средства был основан на полной герметизации и изоляции поверхности металла. Именно это позволяет ему контактировать с влагой и воздухом, которые как раз и являются основными причинами возникновения коррозии кузовов автомобилей. Кроме этого, он содержит в своем составе ингибитор, который сразу же начинает активно бороться с очагами ржавчины.

Мовиль для авто уникален тем, что его можно спокойно наносить на поверхность, не убирая битумную или мастичную изоляцию. После его обработки создается дополнительный слой, отталкивающий влагу.
Данный препарат не совместим с синтетической мастикой. При попадании на такую мастику антикоррозионное средство ее разрыхляет.
Мовиль для авто хорош еще тем, что он совместим с любым видом лакокрасочного покрытия. Он не оказывает на краску никакого негативного влияния.
4. Жидкий локер

Полимерный прочный эластичный материал, способный надежно защитить арки колес от абразивного воздействия. Часто применяется, как альтернатива обычным подкрылкам, но тут стоит помнить, что как и любое средство оно требует практически ежегодного обновления.

5. Консерванты скрытых полостей и пороговые автоконсерванты

Автомобиль имеет множество скрытых полостей. Это пороги, стойки, лонжероны, усилители пола, усилители крышки багажника. Доступ в них возможен только через специальные технологические отверстия.
Консерванты скрытых полостей — это жидкие маловязкие материалы (по консистенции похожи на моторное масло), которые содержат ингибиторы коррозии.

Образуют полувысыхающую пленку на стенках скрытых полостей. Обладают высокой проникающей способностью — гарантированно попадают во все щели и стыки. Ещё одно важное свойство — они способны вытеснять воду с поверхности металла.
6. Составы на парафиновой основе

Находящиеся в них ингибиторы коррозии работают, до тех пор пока антикор пребывает в жидкой фазе. В тот время, когда растворитель сам исчезает из состава антикора, следовательно, ингибиторы коррозии уже почти не действуют. Когда составы высохли на наружностях деталей внутренних полостей кузова авто получается эластичная восковая пленка (это значительно при определенных температурных колебаниях), которая в следствии перекрывает доступ воды и кислорода к оголенному металлу. У составов на восковой основе механическая прочность не слишком большая, исходя из этого, они используются исключительно для предохранения внутренних полостей

Ну и отдельно стоит средство, про которое ходят легенды в гаражных кооперативах, таксопарках и которое нахваливают дедушки. Итак — пушсало.
Пушечное сало — смазка ПВК пушечная — консервационная (защитная) смазка; нефтяное масло, загущённое петролатумом и церезином; содержит антикоррозионную присадку.

Лично от себя замечу — средство прошло испытание временем на лично моем автомобиле. Волга 31029 (гнить умеет и любит) за 20 лет имеет все родное железо без намека на гниль и ржу. В порогах и внутрянке именно пушсало в смеси с нигролом. Говоря про данный антикор, нужно понимать, что многое тут зависит от года выпуска, и если есть возможность искать надо именно “дедушкины запасы”.

Мастика битумно резиновая АльфаТехМаст, Цены, стоимость, сертификаты, расход на м2

Описание материала: Однокомпонентная мастика готовая к применению. Не требует нагревания и разбавления растворителем. Состоит из нефтяного строительного битума, минерального наполнителя, резиновой крошки, органических растворителей, пластификатора и технологических добавок.

Область применения: для ремонта всех видов кровель, для обработки бетонных, кирпичных, деревянных, металлических и других поверхностей. Благодаря повышенной (по сравнению с гидроизоляционной мастикой) теплостойкости слой битумно-резиновой мастики не теряет своих свойств под воздействием солнечных лучей. Высокая адгезия и вязкость позволяют мастике одинаково хорошо держаться не только на горизонтальных гладких, но и на вертикальных поверхностях со структурными углублениями. Довольно пластичный состав хорошо заполняет швы, трещины, сколы и другие  дефекты обрабатываемых строительных материалов. Так же резино-битумная мастика используется для защиты металлических конструкций от коррозии. Обработка мастикой днищ и арок автомобиля так же позволяет повысить их ударопрочность. Продукт полностью высыхает в течение суток и имеет оптимальную консистенцию. Мастика легко наносится, но при слое в 1-2 мм не  стекает по вертикальной поверхности. Расход: для кровли – 1,5 – 2 кг/м2 на один слой, для приклеивания – 1 кг/м2, для гидроизоляции – 1 кг/м2 на один слой.

Способ применения и меры предосторожности: Рабочую поверхность необходимо высушить, максимально очистить от грязи и загрунтовать битумным праймером. Перед применением мастику перемешать. Рекомендуемый диапазон рабочих температур от -20ºС до +45ºС. При температуре ниже +5ºС мастику перед применением выдержать в теплом помещении не менее суток. Мастику наносят шпателем, кистью, щёткой, либо наливом с разравниванием специальными гребками. Мастику рекомендуется наносить в 2 слоя. Время высыхания напрямую зависит от толщины слоя, поэтому очень важно наносить материал послойно, не превышая нормы расхода. Работы рекомендуется проводить на открытом воздухе или в хорошо вентилируемых помещениях. Не допускать попадания мастики в глаза и на кожу.

Основные показатели:

Наименование показателя

Значение

Массовая доля нелетучих веществ, %, не менее

75

Относительное удлинение при разрыве, %, не менее

100

Прочность сцепления с основанием, МПа, не менее, с бетоном

0,5

Прочность сцепления с основанием, МПа, не менее, со сталью

0,5

Теплостойкость, °С, не ниже

90

Водопоглощение в течение 24 часов, %, по массе

0,4

Прочность на сдвиг клеевого соединения, кН/м, не менее

4

Гибкость на брусе радиусом 5,0 ± 0,2 мм при температуре – 5°С

трещины отсутствуют

Водонепроницаемость в течение 72 часов при давлении 0,001 МПа

протечки воды отсутствуют

Заполнитель трещин | Герметик для швов | Заполнитель для асфальтовых трещин | Герметик для трещин

Что такое герметик для швов на основе битумно-резиновой мастики?

Битумно-резиновый мастичный герметик – однокомпонентный герметик на основе битумно-резиновой мастики холодного нанесения на основе растворителя. Герметик при отверждении образует прочное и гибкое уплотнение. он имеет отличную адгезию к бетону, кирпичной кладке, асфальту и большинству строительных материалов. Мастичный герметик модифицирован безасбестовыми волокнами, чтобы сделать герметик тиксотропным и не оседающим при нанесении на вертикальные поверхности.

Заполнитель трещин, Ремонт трещин, Заполнитель трещин в асфальте, Герметик для трещин

Герметик для трещин – это общий термин для материалов, которые используются для заполнения и, таким образом, герметизации трещин и стыков в поверхностях асфальтовых и цементных покрытий. Материалы для ремонта трещин иногда также называют такими терминами, как, например, горячая заливка; трещина уплотнения; герметик для трещин; герметик для трещин; заполнение трещин; наполнитель трещин; шовная пломба; герметик для швов; герметик для швов ; заполнение швов; заполнитель швов; клеи для холодных швов; маркерные клеи; и другие композиции асфальт / смола / полимер. В настоящем описании и в прилагаемой формуле изобретения будет использоваться исключительно термин «герметик для трещин», но следует понимать, что этот термин охватывает все материалы, имеющие одинаковый общий состав, использование и / или свойства. Заполнитель для трещин в асфальте широко используется для заполнения и герметизации трещин и стыков на автомагистралях, улицах, парковках и проездах от проникновения воды. Использование герметика для трещин продлевает срок службы таких поверхностей дорожного покрытия.

Применение битумно-резиновой мастики для герметика швов:

Герметик для гибких швов

Устойчивость при высоких температурах окружающей среды

Отличная адгезия, прочное прочное соединение

Однокомпонентный

Где можно использовать герметик для швов битумно-резиновой мастики?

Шовный герметик на основе битумно-резиновой мастики идеально подходит для заделки и заполнения щелей и швов на крышах, заделки горизонтальных бороздок для гидроизоляционных мембран и войлоков. Уплотнение вокруг кровли / трубопроводов для влажной уборки. Указание между кирпичной кладкой и кровельной кровлей. Заделка трещин в асфальтовых и бетонных покрытиях. Заполнение горизонтальных швов в бетоне и асфальте там, где не ожидается подвижек.

Как использовать герметик для швов на битумной резиновой мастике?

Подготовка поверхности

Поверхность должна быть очищена от грязи, пыли и рыхлых материалов. Любые масляные и жировые загрязнения необходимо полностью удалить. Перед нанесением герметика поверхность необходимо высушить.

Маскировка

Перед нанесением грунтовки и герметика нанесите малярную ленту на соседние стороны швов, чтобы получить аккуратную отделку и избежать растекания герметика по краям.

Грунтовка

В нормальных условиях грунтовка не требуется. Однако для очень сухих и пористых поверхностей рекомендуется нанести один слой битумной грунтовки на основе растворителя. Аналогичным образом рекомендуется грунтование швов, подвергающихся постоянному погружению.

Приложение

Битумно-резиновый мастичный герметик для швов можно наносить шпателем или шпателем. Поскольку продукт растворен, рекомендуется перемешать содержимое ведра лопастным миксером в течение нескольких минут перед нанесением, чтобы обеспечить однородное перемешивание. Нанесение герметика должно начинаться с нижней части стыка / канавки и продолжаться до верха. Немедленно обработайте стык шпателем или шпателем, чтобы разгладить и сжать герметик для обеспечения полного контакта с поверхностями стыка.Шпатель необходимо смочить чистящим растворителем, чтобы герметик не приставал к ножу и не получал гладкую и аккуратную поверхность. Если для поддержания чистоты поверхностей здания использовалась малярная лента, рекомендуется удалить ее сразу после заполнения герметиком.

Герметик для заполнения трещин горячим битумом

Hot Crack Filler – однокомпонентный прорезиненный асфальтовый герметик для трещин и швов горячего нанесения. Заполнитель горячих трещин специально разработан как для плавильных печей с прямым огнем, так и для плавильных печей с масляной рубашкой. Он термостабилизирован, чтобы выдерживать температуры до 450 ° F без деградации полимера. При расплавлении и правильном применении он образует эластичный герметик для трещин как для асфальтовых, так и для цементных покрытий.

Время отверждения мастики битумно-резиновой мастики для швов

Герметик затвердевает при выделении растворителя. Первоначальное снятие пленки с поверхности произойдет в течение 24-48 часов, однако полное отверждение зависит от относительной влажности. При глубине уплотнения 10 мм отверждение обычно происходит в течение 14–21 дня при 23 ° C и относительной влажности 50%.

Технические характеристики мастики битумно-резиновой мастики

Недвижимость

Значения

Цвет

Черный

Форма

паста

Содержание твердых частиц, [%]

> 80

Спад

Нет

Плотность, [г / см3]

1. 1 ± 0,05

мАФ, [%]

± 10

начальная установка при стандартных условиях [час]

24-48

Полное отверждение при стандартных условиях [дни]

14-21 дней (10мм)

Химическая стойкость

Морская вода, хлориды и сульфат-ионы.

Рабочая температура, [° C]

от 0 до 80

Температура нанесения, [° C]

от 5 до 45

Очистка

Инструменты и оборудование следует промыть чистящим растворителем сразу после использования. Затвердевшие материалы можно очистить только механически

Хранение и срок годности

Ведра и бочки должны храниться в закрытом, сухом и затененном месте, вдали от прямых солнечных лучей, ультрафиолета и других источников тепла и в защищенном от экстремальных температур. Срок годности герметика для швов на основе битумно-резиновой мастики составляет до 12 месяцев при соблюдении рекомендаций. Чрезмерное воздействие солнечных лучей и ультрафиолета приведет к ухудшению качества продукта и сокращению срока его хранения.

MSDS мастики битумно-резиновой мастики для швов

Герметик на основе битумно-резиновой мастики содержит нефтяной дистиллят, легко воспламеняется. Беречь от огня, искр или других источников возгорания. Надевайте защитную одежду, резиновые перчатки, маску и защитные очки.

1. Пожар – Воспламеняется во влажном состоянии.

2. Кожа – Избегайте повторного или продолжительного контакта. Удалите пятна битума с помощью подходящего очистителя, способного удалить масло или жир, а затем очистите водой с мылом.

3. Глаза – Контакт может вызвать раздражение. Промойте обильным количеством чистой воды.

4. Вдыхание – может вызвать головокружение. если затруднение дыхания сохраняется, введите кислород.

Оценка

Теоретический расход: погонный метр на кг герметика

Глубина соединения (мм)

6

10

12

15

20

25

30

40

6

27.7

16,6

14

11

8,3

6,6

8

12,5

10.4

8,3

6,2

5

4,1

10

10

8,3

6.6

5

4

3,3

2,5

12

6,9

5,5

4. 1

3,3

2,7

2

15

4,4

3,3

2,6

2.2

1,6

20

2,5

2

1,6

1,3

Как произвести герметик для швов на битумной резиновой мастике?

Процесс производства мастики битумно-резиновой , герметика и герметиков выглядит следующим образом:

1.Обработанная бентонитовая глина от 4% до 11% должна была быть добавлена ​​в чистую воду в смесителе. Когда глина диспергируется или измельчается в коллоидной мельнице, после смешивания она превращается в глиняную суспензию. Вязкость глинистой суспензии составляет от 20 000 до 180 000 сантипуаз (сПз) при 77 градусах. F.

2. Асфальтобетонный битум состоит из 60-80 процентов асфальта и 20-40 процентов минерального спирта, растворителя Стоддарда.

3. Глиняная суспензия и асфальтобитум смешиваются вместе, образуя растворимую систему.

4. Добавляется добавка для повышения стабильности растворимой системы.

5. Неасбестовое волокно добавлено для усиления растворимых системных мастик и прочности герметизирующей пленки. Он также обеспечивает дополнительную вязкость и текстуру.

Включает целлюлозную бумагу, стекловолокно, минеральное волокно, полимерное волокно, включая полипропилен и полиэтилен.

6. К инертным наполнителям, обычно называемым наполнителями пигментов, относятся, например, природная или кальцинированная глина, слюда и кремнеземный порошок, сланцевый порошок, угольная зола, летучая зола и т. д.добавляются в систему для улучшения прочности пленки и консистенции продукта.

7. Эластомеры придают составам буферизацию, а также прочность на разрыв и удлинение и включают SBR, SBS, SIBS, акрил, стирол, неопрен, поливинил и т. Д.

ПРИМЕР 1 Приготовление герметика для швов на битумной резиновой мастике

% по весу

Суспензия обработанной бентонитовой глины

3-60

Асфальтобитум Cutback

20-90

Волокна

2-10

Наполнители

3-15

Добавки

0.2-1,0

100,0

Этот состав используется для ямочного ремонта, ремонта и установки кровельных покрытий.

ПРИМЕР 2 Приготовление герметиков для швов на основе битумно-резиновой мастики

% по весу

Суспензия обработанной бентонитовой глины

3-60

Асфальтобитум Cutback

20-90

Волокна

2-6

Наполнители

3-10

Добавки

0.2-1,0

100,0

Этот состав используется для повторного нанесения кистью на фундаментные стены, крышу, металл, дерево, бетон и другие строительные материалы.

ПРИМЕР 3 Приготовление битумных неволокнистых герметиков

% по весу

Суспензия обработанной бентонитовой глины

3-60

Асфальтобитум Cutback

20-90

Наполнители

3-10

Добавки

.2-1,0

100,0

Этот состав используется аналогично Примеру 2, за исключением нанесения распылением.

ПРИМЕР 4 Приготовление эластомерных битумных неволокнистых мастик

% по весу

Суспензия обработанной бентонитовой глины

3-60

Асфальтобитум Cutback

20-90

Волокна

2-10

Наполнители

3-15

Добавки

0. 2-1,0

Эластомеры (эластомерные полимеры)

0,5-5

100,0

Подходит как для кровли, так и для фундаментов.

ПРИМЕР 5 Приготовление эластомерных битумных герметиков

% по весу

Суспензия обработанной бентонитовой глины

3-60

Асфальтобитум Cutback

20-90

Волокна

2-6

Наполнители

3-10

Добавки

0. 2-1,0

Эластомеры

0,5–3

100,0

ПРИМЕР 6 Приготовление эластомерного неволокнистого герметика

% по весу

Суспензия обработанной бентонитовой глины

3-60

Асфальтобитум Cutback

20-90

Наполнители

3-10

Добавки

0.2-1,0

Эластомеры (эластомерные полимеры)

0,5-6

100,0

С учетом вышеизложенного, диапазоны и описания компонентов составляют около:

% по весу

Буровой раствор бентонитовый

. 5-11

Вода

3-55

Асфальт битум

20-90

Cutback, содержащий от 60 до 80 мас. % асфальта и

20-40 мас.% минерального спирта Stoddard Solvent

Добавки

.2-1

Неасбестовое волокно

0-10

Наполнители

3-15

Эластомер

0-8

Конечно, отдельные суммы выбираются так, чтобы обеспечить 100% итоговую сумму.

NURMASTIC (Прорезиненный битумный герметик) представляет собой однокомпонентный, готовый к использованию битумный герметик с выбранным сортом асфальта, с высоким содержанием эластомерного каучука, волокон, минерального наполнителя, агента против провисания и быстро испаряющегося растворителя. NURMASTIC можно использовать для герметизации и гидроизоляции стыков, трещин, отверстий и т. Д. После отверждения NURMASTIC образует черный эластичный герметик с отличной адгезией к большинству строительных материалов.

Нурмастик используется в

  • Герметизация швов с низкой деформацией в бетонных покрытиях, мостах, строительных конструкциях и т. Д.
  • Герметизация стыков концевых канавок гидроизоляционной мембраны, заполнение зазоров и герметизация между кирпичной кладкой и кровельным покрытием
  • Герметик для плитки, шифера, крышек люков, вокруг входов труб, стыков труб, дамб, подземных переходов и подвальных сооружений
  • Заполнение трещин в кровельных материалах, таких как войлок, свинец, цинк, сталь, гофрированные цементные листы
Преимущества использования NURMASTIC (Прорезиненный битумный герметик)
  • Однокомпонентный, готовый к использованию состав.
  • Предварительный нагрев не требуется
  • Отличные адгезионные и адгезионные свойства
  • Хорошие свойства расширения и сжатия
  • Хорошие механические свойства
  • Легко наносится инструментом или пистолетом
  • Устойчив к бактериальным атакам
NurMastic (прорезиненный битумный герметик) – типичные характеристики и информация о продукте

СОБСТВЕННОСТЬ

СТАНДАРТНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Цвет

Черный

Внешний вид

Полужесткая паста

Плотность, [г / см3]

1. 1 ± 0,05

Точка воспламенения

60 ° С

Химическая и водостойкость

Стойкость к: большинству солевых растворов, разбавленным кислотам и щелочам, воде и спирту.
Неустойчив к: маслам, растворителям и некоторым моющим растворам

ИНФОРМАЦИЯ О ПРИМЕНЕНИИ

Температура нанесения

от + 5 ° C до + 35 ° C

Время схватывания

от 24 до 48 часов.в зависимости от условий воздействия

Фактор аккомодации движения

10% (для стыковых соединений)

ИНФОРМАЦИЯ О ПРОДУКТЕ

Срок годности

12 месяцев со дня изготовления в плотно закрытой, неповрежденной таре.

Условия хранения

Следует хранить при умеренной температуре (от + 10 ° C до + 40 ° C).

* Все значения указаны с допуском 5-10%

Покрытие

1 кг. NURMASTIC примерно соответствует следующей длине.

Ширина шва (мм)

Глубина соединения (мм)

Длина в закрытом состоянии (метры)

10

5

16

15

8

8.5

20

10

5

25

12

3,5

30

15

2.2

Упаковка

  • NurMastic : металлические ведра по 20 кг

Инструкции по применению

Подготовка поверхности

Все поверхности должны быть очищены от мусора, грязи и жира. NURMASTIC можно наносить на сухие или влажные, но не мокрые поверхности.

Глубина стыка не должна превышать ширину.В идеале ширина должна быть вдвое больше глубины. Во всех случаях ширина шва должна быть не менее 6 мм.

Рекомендуемая максимальная ширина не должна превышать 30 мм.

Рекомендуется использовать битумную грунтовку для герметизации NURMASTIC в пыльных условиях или на пористых поверхностях.

Смешивание

Тщательно перемешайте продукт перед использованием. Товар будет готов к употреблению.

Приложение

NURMASTIC можно наносить шпателем, шпателем, скребком или шпателем.Перед нанесением грунтовки необходимо устранить пустоты и соты по бокам и внизу шва.

Если требуется хорошая отделка шва, используйте малярную ленту перед грунтованием, чтобы закрыть края. Удалите ленту сразу после нанесения герметика.

Нанесите NURMASTIC на шов плотно, чтобы обеспечить полный контакт с поверхностями шва.

Для заполнения швов в бетонных покрытиях рекомендуется оставлять герметики на несколько минут ниже уровня дорожного покрытия.

Очистка инструментов

Инструменты можно чистить уайт-спиритом. Любые пролитые жидкости следует стереть с поверхностей до того, как битумная краска схватится.

Герметики для строительства


TAGS: Герметики

В строительстве используются различные материалы, такие как металлы, бетон и т. Д.а также многие сборные детали, такие как:

  • Сэндвич-панели
  • Окна и двери (металл, дерево, ПВХ и др.)
  • Перегородки (часто гипсокартонные)
  • Сборные бетонные плиты для полов, наружных стен и т. Д.

Герметики используются для соединения и соединения различных частей и материалов с основной конструкцией и с самими собой. Они помогают закрыть зазоры между элементами и поверхностями конструкции и, таким образом, предотвращают прохождение жидкостей и других веществ через поверхности и механические соединения.

Герметики выполняют следующие основные функции в строительстве:

  • Заполнение промежутка между двумя или более компонентами
  • Обеспечивает защитный непроницаемый барьер , через который вещества не могут проходить
  • Сохранение герметизирующих свойств в течение ожидаемого срока службы в условиях эксплуатации и средах, для которых они предназначены

Кроме того, еще одним важным требованием к герметизирующей смеси является высокая гибкость , чтобы выдерживать движения между различными используемыми материалами.Эти движения могут происходить из-за:
  • Расширение или усадка из-за изменений температуры,
  • Изменение размеров из-за изменения содержания влаги,
  • Прогиб под нагрузкой,
  • Ветровое давление и т. Д.


Различные типы перемещений стыков и герметиков

Эти движения обычно возникают из-за различных термических коэффициентов расширения материалов, как показано в таблице ниже.

Материал Коэффициент линейного расширения
(м / м- ° C x 10 -6 )
Глина кладочная (кирпич, глина или сланец)
Кирпич, огнеупорная глина от 5 до 6
Плитка, глина или сланец 6.0
Плитка, огнеупорная глина Материал 4,5
Бетон
Гравийный заполнитель 10,0
Легкие конструкции 8,1
Бетон, кладка
Шлаковый агрегат 5,6
Плотный заполнитель 9,4
Керамзитовый заполнитель 7.7
Пеношлаковый агрегат 8,3
Вулканическая пемза и заполнитель 7,4
Ячеистый бетон 11,0
Металлы
Алюминий 23,8
Латунь, красная 230 18,6
Медь 16,5
Утюг
Серый литой 10.6
Кованые 13,3
Свинец, общий 29,3
Монель 14,0
Нержавеющая сталь
Тип 302, 304 17,0
Конструкционная сталь 11,5
Цинк 36,0
Стекло, тарелка 8,0
Гипс
Гипсовый заполнитель 13.7
Гипсокартон 12,0
Пластмассы, композиты
Акрил 80,0
Lexan® (поликарбонат) 67,0
Flexiglas® 70,0
Полиэфиры, армированные стекловолокном 18-25
ПВХ 59,0
Натуральные камни
Гранит 8.0
Известняк 6,5
Мрамор 13,0
Базальт 9,0
Коэффициенты линейного расширения обычных строительных материалов
Следовательно, для достижения желаемых характеристик и функций необходимо подобрать наиболее подходящий герметик к материалам основы, которые будут соединяться, то есть такой, который будет иметь адекватные связывающие свойства и быть достаточно гибким, чтобы выдерживать ожидаемое движение, и так далее.

Виды строительных герметиков


Обычно герметики классифицируются в соответствии с:
  • . Их химические типы, такие как полиуретаны, полисульфиды, силиконы, акрилы и т. Д.
  • Их эластичность, такая как герметики (не выдерживающие деформации), пластомерные герметики и эластомерные герметики,
  • Их форма, такая как те, которые поставляются в картриджах, которые экструдируются на месте, предварительно сформованные герметики (поставляемые в виде сухих лент, лент или экструдированных форм) или термоплавкие герметики.

Давайте изучим каждый класс отдельно.

Традиционные герметики или замазки


Ранее (до 1950-х годов) стыки между различными материалами, такими как стекло, металлы, дерево, бетон и т. Д., Заполнялись некоторыми традиционными герметиками на основе:
  • Олеорезины, такие как льняное масло или
  • Битум и гудрон в строительных работах.

Эти составы могли выдерживать лишь несколько процентов удлинения при разрыве, и, кроме того, они обладали плохой стойкостью к атмосферным воздействиям.
Материал Характеристики
Шпатлевки на льняном масле
  • Содержат от 10 до 15% льняного масла с минеральными наполнителями ( карбонат кальция, ).
  • Льняное масло высыхает за счет окисления на воздухе.
  • Окисление продолжается всю жизнь, и через несколько лет продукт становится довольно твердым, хрупким и негибким с очень небольшой подвижностью.
  • Их использовали в основном для остекления стеклянных окон в деревянные или металлические створки.
l Улучшенные масляно-смоляные замазки или герметики
  • Они были основаны на выдувном соевом или льняном масле, наполнены карбонатом кальция и волокнистым тальком, и были добавлены некоторые пластификаторы для улучшения пластичности (например, жирные кислоты, DOP …).
  • В лучшем случае удлинение при разрыве могло достигать 5%, что было недостаточно для заводских технологий.

Составы на основе битума – В гражданском строительстве зазоры между частями или конструкциями могут быть довольно большими, поэтому полимеры с высокими эксплуатационными характеристиками были бы слишком дорогими для заполнения больших объемов. Также инженеры-строители привыкли использовать битум и гудрон.

Таким образом, во многих областях все еще используются битумные или гудроновые герметики, но их составы часто улучшались, начиная с семидесятых годов , путем добавления каучуков, стирольных полимеров, таких как SBS, или полиуретанов в небольших количествах.Чистый битум или гудроновые смеси могут выдерживать лишь несколько процентов удлинения при разрыве, а лучшая модифицированная формула может достигать 10-15%, а эксплуатационные возможности движения составляют только 20-25% удлинения при разрыве, чтобы быть безопасным.

Быстрое развитие сборных деталей в строительстве и разработка новых синтетических полимеров привело к исчезновению этих герметиков с рынка в 1950-1975 годах.

Герметики на основе синтетических полимеров и каучуков


Синтетические полимеры позволяют производить герметики с высокими эксплуатационными характеристиками, очень высокой эластичностью и длительным сроком службы. могут быть «адаптированы» к любым конкретным требованиям за счет соответствующей рецептуры.Некоторые классы полимеров обсуждаются в таблице ниже.
Материал Характеристики
Полибутен
  • Это низкомолекулярный полимер, жидкий, липкий, не высыхающий и дешевый.
  • Эти полимеры часто смешивают с наполнителями (карбонат кальция, тальк, глины) и жирными кислотами. Для контроля вязкости можно добавить небольшое количество растворителя.
  • Составы герметиков на основе полибутена затвердевают только после высыхания растворителя.
  • Они используются в строительстве для изготовления неотверждаемых герметиков для навесных стен, соединений металла с металлом, когда эластичность не важна. Также из них изготавливают готовые ленты и ленты для остекления, постельные принадлежности окон.
  • Полибутены часто смешивают с бутилкаучуком, чтобы действовать как пластификатор.
Полиизобутилен (ПИБ)
  • Это постоянно липкий полимер, который используется только для модификации других герметиков, таких как масляно-смоляной каучук или бутилкаучук.
  • Герметики PIB также могут использоваться в составах для постельных принадлежностей в стекольной промышленности.
Бутилкаучук
  • Бутилкаучук – сополимер изобутилена и изопрена. Он содержит 2 мол. Процента ненасыщенности.
  • Бутилкаучук непроницаем для газов, обладает довольно хорошей атмосферостойкостью и кислородной стойкостью. Обладает некоторой эластичностью (удлинение при разрыве до 40%, поэтому может использоваться в суставах с движениями до 15%.
  • Составы включают:
    • 20% бутилкаучук,
    • Смолы, повышающие клейкость, от 5 до 10%, такие как модифицированная или гидрогенизированная канифоль или углеводородная смола, необходимые для обеспечения хорошей адгезии к металлам и стеклу,
    • От 50 до 60% минеральных наполнителей (карбонат кальция, волокнистый тальк, глина и др.) И
    • От 20 до 25% растворителей, таких как уайт-спирит и другие растворители, для растворения и смешивания всех компонентов и получения необходимой вязкости.
    • Полибутен часто добавляют в качестве пластификатора.
  • Герметики бутилового оружейного качества могут высыхать и схватываться за счет испарения растворителя и абсорбции растворителя на пористых и абсорбирующих основаниях (дерево, бетон), но есть также типы отверждения, которые отверждаются за счет некоторого медленного сшивания через определенный период времени.
  • Экструдированные ленты и ленты на 100% состоят из твердого вещества, поэтому усадка отсутствует.
Бутиловые и полиизобутиленовые герметики-расплавы
  • Это специальные продукты, которые используются в качестве герметиков для уплотнения двойных (утепленных) окон от проникновения влаги (в пространство между двумя стеклянными панелями).

Акриловые герметики


Акриловые герметики бывают двух видов:
  • На эмульсионной основе
  • На основе растворителей

Акриловые эмульсионные герметики

Они обладают хорошей адгезией к впитывающим материалам, таким как дерево, бетон, гипс, а также имеют довольно хорошую адгезию к металлам и стеклу, хотя и не так хорошо, как силиконы на стекле.

Они только пластомерные, с максимальной подвижностью от 10 до 15%.

Содержание сухих веществ варьируется от 80 до 85%, поэтому при сушке они демонстрируют усадку от 10 до 20% за счет испарения содержащейся в них воды.

Они обладают устойчивостью к погодным условиям от средней до хорошей, поскольку чувствительны к воде. Можно ожидать 15-летнего срока службы при использовании вне помещений.

Они обладают очень хорошей устойчивостью к ультрафиолетовому излучению и обесцвечиванию, и могут быть составлены в большом разнообразии цветов, чтобы соответствовать цветам или материалам (коричневый, как дерево, белый для пластиковых окон или плитки, серый, как бетон или алюминий, как окна).

»Просмотреть все имеющиеся в продаже акриловые полимеры, подходящие для герметиков!

Акриловые герметики на основе растворителей

Герметики на основе акриловых растворителей обладают превосходной адгезией ко многим материалам, таким как бетон, алюминий, сталь, дерево и т. Д. Они обладают отличной атмосферостойкостью, устойчивы к УФ-излучению и образованию пятен.

Акриловые герметики на основе растворителей являются только пластомерными, их подвижность составляет всего 10% при длительной эксплуатации вне помещений. Обычно они используются для соединений, например:

  • Стыки навесных стен, наружная обшивка,
  • Сборные панели для каменной кладки,
  • Соединения металла с бетоном, такие как стыки между металлическими окнами и бетоном,
  • Швы между деревом и бетоном (между деревянными окнами и бетоном).

В этих герметиках базовый полимер обычно представляет собой раствор акрила на 80% твердых веществ, что составляет 50% от общего веса формулы. Также имеется около 50% наполнителей (в основном карбонат кальция плюс некоторое количество пирогенного диоксида кремния, силиката магния и / или талька или глины), может быть добавлено небольшое количество пластификатора, такого как DOP, DBP, в качестве наполнителя может быть добавлено сосновое масло. диспергатор и добавляется немного растворителя, чтобы отрегулировать вязкость.

Максимальное содержание твердых веществ обычно составляет 85%, так что при сушке наблюдается некоторая усадка, поэтому необходимо начать с эластомерного акрилового полимера и добавить немного пластификатора, чтобы усадка не вызывала слишком больших напряжений на границе раздела между герметиком. и соединяемые материалы.


Общие добавки, используемые в акриловых герметиках
  • Наполнители усиливают и увеличивают объем герметика и снижают стоимость. Обычно в качестве наполнителей используются карбонат кальция, глины, сульфат бария и коллоидальный диоксид кремния. Тиксотропный наполнитель – коллоидный диоксид кремния – уменьшает провисание и улучшает пригодность для распыления.
  • Пластификаторы , такие как фталаты, дибензоаты, алкилфениловый эфир пропиленгликоля и т. Д., Увеличивают гибкость и удлинение, а также снижают температуру стеклования, что улучшает гибкость при низких температурах.
  • Диспергирующие добавки улучшают включение наполнителей, а также улучшают вязкость и стабильность упаковки (при отсутствии диспергирующих добавок наполнители будут медленно абсорбировать полимер на его поверхности, и, следовательно, вязкость будет увеличиваться в течение срока хранения). Соли низкомолекулярных поликарбоновых кислот можно использовать в качестве диспергирующих агентов.
  • Силаны также можно использовать для улучшения адгезии к непроницаемым субстратам, таким как металлы и стекло.Акриловые герметики, содержащие небольшое количество силанов, часто называют силиконизированными акрилами.

»Вдохновляйтесь созданием акриловых герметиков с использованием начальных составов

Эластомерные герметики


Четыре химических типа герметиков, демонстрирующих эластомерные свойства, следующие:

Эти герметики можно рассматривать как герметики с высокими эксплуатационными характеристиками, потому что они
обладают высокой подвижностью, удлинением при эксплуатации от 15 до 40%.

Полисульфидные герметики

Эти герметики были разработаны в 60-х годах в США корпорацией THIOKOL и были первыми эластомерными герметиками. Они основаны на полимерах с концевыми группами -SH со средней молекулярной массой 4000.

Одним из таких примеров является THIOKOL LP® 32, имеющий следующую формулу:

HS (–C 2 H 4 OCH 2 OC 2 H 4 –SS–) C 2 H 4 OCH 2 C 2 H 4 –SH


Свойства полисульфидных герметиков

Отверждение – Отверждение происходит путем преобразования -SH-конца в дисульфидные связи.Это достигается с помощью окислителей, таких как пероксиды, PbO 2 и MnO 2 . Ускоряется щелочной средой.

Однокомпонентный полисульфид имеет ограниченную стабильность упаковки. Сухая на ощупь кожа образуется через 30 минут – 1 час при 20 ° C и относительной влажности от 50 до 60%, а затем отверждение будет проходить вглубь герметика со скоростью, которая зависит от толщины шва. температура и влажность окружающего воздуха. Отверждение полисульфида происходит медленно: для достижения 50% максимальной прочности требуется одна неделя.Усадка после отверждения незначительна.

Твердость – В зависимости от состава, твердость может варьироваться от 20 по Шору, равной для мягкой резины, для вертикальных швов, таких как навесные стены, до 50 (твердость твердой резины) для сильно заполненных составов, для швов пола и бетона или взлетно-посадочных полос самолетов. , где стыки должны выдерживать проникновение и движение.

Устойчивость к растворителям, топливу и маслу – Они обладают отличной стойкостью, поэтому полисульфид широко используется и до сих пор используется для стыков взлетно-посадочных полос в аэропортах.

Водостойкость и атмосферостойкость – Полисульфидные герметики обладают отличной стойкостью к воде, окислению, солнечному свету и атмосферным воздействиям. Они сохраняют отличную адгезию после воздействия ультрафиолета и воды. Ожидается, что при нормальных условиях срок службы на открытом воздухе составит 20 лет. Полисульфиды водонепроницаемы для водяного пара, поэтому их используют для окон с двойной изоляцией для внешнего уплотнения.

Модуль, предельное удлинение, удлинение при эксплуатации – Большинство полисульфидов имеют высокий модуль упругости и довольно высокое удлинение при разрыве (от 100 до 200%).Поскольку модуль упругости высок, эти герметики будут создавать высокие напряжения при удлинении, поэтому рекомендуется использовать полисульфид только при эксплуатационном удлинении от 15 до 25%. У них плохая стойкость к проколам.

Ползучесть и релаксация напряжений – Испытание на ползучесть – это регистрация удлинения в зависимости от времени при постоянной нагрузке. На рисунке 1 показана типичная кривая ползучести для полисульфидных герметиков. Мы можем видеть, что полисульфиды частично эластичны, а частично вязки или пластичны, а после разгрузки возникает необратимая деформация в результате пластической ползучести.Эластичное восстановление составляет всего от 60 до 80%.

Применение полисульфидных герметиков: Поскольку они не являются на 100% эластичными, а их цены довольно высоки, полисульфидные герметики используются все реже и реже, и их заменяют силиконы и полиуретаны. Тем не менее, некоторые вакансии все еще используют его:

  • В строительстве: стыков полов между бетонными и / или металлическими элементами, компенсаторы, стыки навесных стен, стыки между сборными панелями (бетонные панели…), окна с двойной изоляцией.
  • В гражданском строительстве: стыков между бетонными плитами взлетно-посадочных полос аэропортов, стыков в бетонных мостах.

»Изучите все полисульфидные полимеры, подходящие для герметиков!
Силиконовые Герметики

Силиконовые герметики на основе полидиоргано-силоксановых полимеров, которые имеют следующую общую формулу:
Например, PDMS:
Два основных типа силиконовых герметиков:

Однокомпонентный силиконовый герметик получают путем смешивания и реакции в безводных условиях полисилоксана с силанольными функциональными группами с избытком гидролизуемого трифункционального силана RSiX 3 , как показано здесь под номером

.
Когда герметик экструдируется, атмосферная влага реагирует с гидролизуемыми группами, и силанол конденсируется.Эта реакция продолжается до тех пор, пока не сформируется трехмерная сеть. Побочными продуктами отверждения могут быть уксусная кислота (придающая типичный запах), оксимы, амиды, спирты.

Двухкомпонентные силиконы используются только для архитектурного остекления, поскольку это остекление производится на заводе для получения предварительно остекленных окон и панелей.


Эти герметики представляют собой двухкомпонентные продукты с нейтральным отверждением, которые имеют:
  • Очень хорошая адгезия к стеклу и металлам,
  • Предел прочности до 1 МПа,
  • Отличное сопротивление разрыву,
  • Умеренное удлинение при разрыве (от 100 до 160%),
  • Твердость по Шору А от 35 до 45,
  • Отличная стойкость к озону, ультрафиолету, старению, нагреву (рабочая температура от -40 ° до + 150 ° C).

Операция герметизации может быть произведена только на заводе перед установкой на месте, чтобы гарантировать отличное соединение для максимальной безопасности.

Многие силиконовые герметики, используемые в строительстве, являются однокомпонентными продуктами,
потому что пользователи не хотят смешать 2 компонента на месте, и
существуют однокомпонентные силиконы разных типов


Силиконовые герметики для архитектурного остекления
Силиконовые герметики – самые успешные герметики с семидесятых годов, поскольку они обладают сочетанием многих отличных и важных характеристик, таких как:
  • Превосходная устойчивость к воде, химическим веществам, атмосферным воздействиям, старению, нагреву, температурным циклам (жара и холод) и, как следствие, отличная долговечность до 40 лет.
  • Модуль упругости может быть низким или более высоким в зависимости от состава, удлинение при разрыве очень высокое, до 500%, так что относительное удлинение при эксплуатации может достигать от 25 до 50%, что является наилучшими значениями, достижимыми для всех герметиков.
  • Цена сейчас очень умеренная, потому что они производятся в очень больших количествах.
Полиуретановые герметики

Есть 2 вида полиуретановых герметиков:
  • Однокомпонентные герметики с концевыми изоцианатными группами -NCO и реагируют с влажностью окружающей среды,
  • 2-компонентные герметики , в которых часть A представляет собой полимер с концевыми группами -NCO, а часть B – полимер с концевыми гидроксильными группами -OH, причем эти 2 группы взаимодействуют вместе в нескольких хорошо известных режимах и реакциях.

Варьируя полимерный состав, соотношение NCO / OH, катализатор, можно получить широкий спектр продуктов и свойств.

Общие свойства полиуретановых герметиков

Все полиуретановые герметики имеют:

  • Хорошее удлинение при разрыве: от 250 до 600%,
  • Модуль упругости от низкого до высокого: от 0,25 до 1 МПа
  • Превосходное упругое восстановление более 90%
  • Превосходная стойкость к истиранию и разрыву, их устойчивость к вдавливанию делает их лучшими герметиками для швов полов,
  • Диапазон эксплуатационного удлинения от 12 до 25% в зависимости от рецептуры
  • Отличная адгезия к самым разным основаниям: бетон, металлы (желательно с грунтовкой), дерево, ПВХ
  • Хорошая водостойкость (некоторые составы могут быть чувствительны к гидролизу), отличная стойкость к старению, срок службы 20 лет может быть достигнут или ожидается

К недостаткам можно отнести:
  • Медленное отверждение (кожа с течением времени от 5 до 20 минут при 20 ° C и относительной влажности 50%, полное отверждение через 2-7 дней со скоростью 2 мм / день)
  • Устойчивость к ультрафиолетовому излучению хорошая
  • Умеренная устойчивость к химическим веществам, маслам, растворителям, кислотам и щелочам и умеренная устойчивость к гидролизу

Некоторые виды применения полиуретановых герметиков в строительстве
  • Герметик заливной для швов полов
  • Однокомпонентный герметик для швов навесных стен
  • Однокомпонентный герметик для сборных бетонных панелей
  • Другие области применения однокомпонентных полиуретановых герметиков: установка деревянных и металлических окон в кладку, герметизация крыш, компенсационные швы в кирпичной кладке.

»Откройте для себя имеющиеся в продаже полиуретаны, подходящие для герметиков!

MS Полимеры Герметики

Это относительно новые продукты. Это простые полиэфиры с концевыми силильными группами . Большинство этих герметиков представляют собой один компонент, который отверждается в результате реакции с влажностью окружающего воздуха. Они затвердевают со скоростью 3 мм / день, быстрее, чем однокомпонентный полиуретан. Ключевые свойства и приложения перечислены ниже.
Недвижимость Приложения
  • Кожа с течением времени от 15 до 20 минут,
  • Эксплуатационное удлинение 25%, удлинение при разрыве от 150 до 350%, упругое восстановление более 70%,
  • Предел прочности при растяжении 1 МПа, модуль упругости 0,8 МПа,
  • они соответствуют стандарту ISO 11600g, класс 25hm (высокий модуль) Обладают отличной адгезией к металлам, пластмассам, дереву, керамике, без грунтовки.
  • Отличная стойкость к атмосферным воздействиям и воде, они могут выдерживать срок службы не менее 15 лет, но у нас пока нет более длительного опыта, за исключением Японии.
  • Хотя они обладают хорошей адгезией к стеклу, они не рекомендуются для этого, потому что длительное воздействие ультрафиолета может ухудшить эту адгезию.
  • Твердость по Шору около 40
  • Деформационные швы по бетону и металлу,
  • Соединения вокруг окон и дверей,
  • Стыки на натуральных камнях, потому что они не пачкают эти камни,
  • Остекление между окнами с двойной изоляцией и металлическими, ПВХ или деревянными рамами,
  • Склеивание и соединение деревянных паркетов внутри и снаружи (палубы кораблей).

Пройдите курс « Полимеры, модифицированные силилом в адгезивах, герметиках и покрытиях для повышения эффективности и безопасности », чтобы разработать высокоэффективные и безопасные составы с глубоким пониманием силанов.

Пенные герметики с пропиткой


Это полоски из пенополиуретана и полиэстера, пропитанные различными герметизирующими липкими составами (бутил, PIB …), чтобы получить герметизирующую ленту, которую необходимо сжать между герметизируемыми частями.

Применяется для герметизации сборных бетонных панелей, навесных стен, установки окон (деревянных, алюминиевых или ПВХ), деревянных панелей.

Запасные материалы


Вспомогательные материалы обычно представляют собой полоски пенопласта круглого или прямоугольного сечения, которые вставляются в нижнюю часть швов перед нанесением герметика. Это имеет 2 цели:
  • Для контроля глубины герметика в стыке
  • Для поддержки герметика в горизонтальных швах

Герметик не должен прилипать к опорному материалу, а растворители герметика не должны влиять на опорный материал.

Резервные материалы обычно представляют собой пенополиуретан или полиэтилен, иногда пенопласт и другие материалы.

Пены могут быть с открытыми или закрытыми ячейками: выбор между ними зависит от типа используемого герметика и условий на рабочей площадке. Пользователи будут обращаться к поставщику герметика за советом.


Различные типы перемещений швов и герметики

Технические характеристики герметиков при использовании


Герметик, поставляемый в оригинальной упаковке (картриджах или иногда бочках), представляет собой пасту.Эту пасту наносят в зазор между 2 частями конструкции, затем ее необходимо выровнять, после чего она высохнет или затвердеет при температуре окружающей среды и превратится в пластиковый или эластомерный шов, обладающий необходимыми свойствами: заполнение зазора, эластичность, адгезия к основание, водонепроницаемость и т. д.

Мы изучим эти свойства в хронологическом порядке по мере их появления на месте во время установки.

Температура и влажность при нанесении


Строительные герметики наносятся на месте при различной температуре, в зависимости от климата и времени года.Большинство герметиков не отверждаются должным образом, если наружная температура слишком низкая (менее 5-10 ° C), и они высыхают или быстро схватываются, если температура слишком высока (более 40 ° C). Таким образом, рабочий должен соблюдать инструкции производителя по условиям труда. Герметики

PUR – единственные, которые допускают некоторую влажность на поверхности / или внутри основания, потому что PUR вступает в реакцию с влажностью. Для других герметиков эта влажность пагубна, поскольку препятствует адгезии.

Вязкость, противоскользящие свойства или сопротивление оседанию


Стеновые герметики не должны провисать, потому что при нанесении на стены они должны оставаться на месте без какой-либо деформации, растекания или провисания. Европейский стандарт EN 27390 или ISO 7390 предоставляет метод испытаний на устойчивость к вертикальному провисанию и оговаривает, что в этом конкретном испытании оно должно быть менее 3 мм.

Герметики для полов должны течь в стыки, но ровно настолько, чтобы заполнить стык, потому что в любом случае рабочий с помощью подходящего инструмента вдавит их в стык.

С другой стороны, герметик должен легко выдавливаться из ручных картриджей с помощью пистолета или иногда пневматического пистолета.

Герметики представляют собой тяжелые густые пасты, поэтому их вязкость (обычно в диапазоне от 80000 до 400000 мПа · с) не имеет значения для конечного пользователя.

Поэтому производители герметиков используют тест для измерения скорости потока: стандарт ASTM C 603 измеряет это путем выдавливания 200 граммов герметика через отверстие 5 мм под давлением 3 бара при различных температурах.

Режим и время схватывания / отверждения


Большинство современных герметиков, используемых в строительстве, в настоящее время представляют собой однокомпонентные герметики, которые затвердевают и отверждаются в результате химической реакции с влажностью воздуха. Это относится к герметикам из силикона, полиуретана и МС полимеров. Эта реакция протекает со скоростью 1 мм внутри массы герметика за несколько часов, и, таким образом, для полного отверждения по всей толщине шва потребуется от 1 до нескольких дней. Эти герметики относятся к эластомерному (каучуковому) типу.

Некоторые герметики представляют собой пластмассовые полимеры, которые затвердевают только при высыхании, например, акриловые герметики на водной основе, старые масляно-смоляные герметики или герметики на основе каучука / растворителя. Здесь сушка происходит за счет испарения воды или растворителя, так что поверхность герметика будет сухой на ощупь через 30-60 минут, а затем сушка будет медленно прогрессировать вглубь шва.

В строительстве можно использовать двухкомпонентные герметики, но очень редко (полиуретан, силиконы или тиоколы), потому что их неудобно использовать на месте.Они застывают быстрее, чем однокомпонентные герметики. У них ограниченная «жизнеспособность», то есть максимальное время, в течение которого рабочий может ждать между смешиванием и нанесением.

Прошлые олеорезины или битумные герметики имели 100% твердых частиц, и они оставались пластичными до тех пор, пока не окислялись в результате старения на воздухе и не становились твердыми. Тогда они в конце концов треснут.

Готовые замазки-герметики – это пластмассовые полимерные сухие продукты на основе бутила или олеорезинов, 100% твердых веществ, изготовленные производителями в виде лент, шнуров или канатов, диаметром от 5 до 15 мм.Они не высыхают и не высыхают, они всегда остаются пластичными и имеют лишь удовлетворительную устойчивость к старению благодаря своему составу.

Последний тип – это предварительно отформованные резиновые прокладки, которые вдавливаются также между герметизируемыми частями: они часто используются для установки оконных стекол в оконные рамы. Мы не будем здесь изучать эти прокладки, потому что это не герметики.

Поперечное сечение и ширина герметика


Некоторые герметики являются эластомерными и допускают большие вариации ширины шва, некоторые – только пластиковые и не выдерживают больших перемещений.

Следовательно, чтобы компенсировать движения сустава, желательно иметь широкие суставы.

Глубина герметика


Глубина герметика всегда должна быть меньше его ширины, чтобы минимизировать напряжения, возникающие в результате деформации поверхности герметика.

Используются следующие правила:

  • Минимальные размеры 5 x 5 мм,
  • Для ширины от 5 до 12 мм глубина должна быть немного меньше ширины,
  • Для ширины от 12 до 25 мм глубина должна быть от 8 до 12 мм,
  • Для ширины более 25 мм глубина должна составлять от 12 до 18 мм в зависимости от химического типа шва и предпочтительно должна составлять половину ширины.

Глубина стыков регулируется с помощью вспомогательного материала, который обычно представляет собой полосу пенопласта, вставленную и сжатую между двумя кромками стыка.

Расход


Зависит от поперечного сечения стыка и удельного веса.

Время «высыхает на ощупь»


Выше мы объясняли, что после нанесения герметик высохнет или застынет на поверхности через определенное время и станет сухим на ощупь: это может занять от 20 минут до 1-2 часов в зависимости от типа герметика, режима отверждения, температура и влажность.

ASTM C 2377-84 обеспечивает испытание для измерения времени высыхания герметиков и герметиков.

Усадка


Когда герметики отверждаются в результате химических реакций и содержат 100% твердых частиц, они не деформируются при отверждении.

Но другие герметики, которые высыхают за счет испарения воды или растворителей и содержат гораздо менее 100% твердых веществ, будут иметь некоторую усадку во время высыхания, поскольку удаление летучих соединений приведет к уменьшению объема.

Стандарт ASTM C 733 может использоваться для измерения усадки.

Физико-механические характеристики герметиков


Адгезия к основанию


Адгезия герметиков к различным основаниям зависит от типа герметика и от поверхностей.
  • Герметики PUR обладают очень хорошей адгезией ко многим различным материалам: металлам, бетону, цементу, дереву, стеклу, пластмассам, таким как ПВХ.
  • В случае силикона может потребоваться грунтовка для получения хорошей адгезии к некоторым металлам и пластмассам, адгезия к стеклу всегда отличная.Используются силановые грунтовки.

Производители герметиков должны четко указывать в своих технических паспортах адгезию герметиков к различным материалам, используемым в строительстве и гражданском строительстве, с грунтовками и без них.
Обратитесь к разделу «Типы химикатов», чтобы получить подробную информацию о адгезии различных типов герметиков к различным поверхностям.
Методы испытаний для измерения адгезии

Когда герметик подвергается нагрузке во время увеличения ширины стыка, если герметик имеет высокий модуль упругости, связи с кромками стыка подвергаются высоким напряжениям растяжения, и это может нарушить связь.Поэтому были разработаны стандартные методы испытаний для измерения адгезии к основанию при растягивающем напряжении. Упомянем, например, европейские стандарты:
  • ISO 9046 или EN 29046: измерение адгезии и когезии при постоянной температуре,
  • ISO 9047 и EN 85 519: измерение адгезии и когезии при переменной температуре.

Это испытание на растяжение также необходимо проводить после погружения в воду и искусственного атмосферного воздействия (например, с помощью оборудования, называемого метеометром, в котором реализовано несколько циклов: распыление воды при различных температурах, ультрафиолетовое излучение, сушка и снова распыление воды…).

Давайте еще раз упомянем некоторые стандарты ISO и США:

  • ISO 10591, Определение прочности на растяжение после погружения в воду,
  • ISO 10590, Определение прочности на растяжение при поддерживаемом растяжении после погружения в воду,
  • ASTM C 1135 Определение адгезионных свойств структурных герметиков при растяжении.

Испытание на растяжение может проводиться до разрыва соединения (стандарт ISO 28339), и согласовано, что герметик должен подвергаться нагрузке только до 25% этого напряжения при разрушении, но мы увидим, что стандарт ISO 11600 установил особые требования и классификация герметиков по максимальному сроку службы.

Модуль упругости или модуль упругости при растяжении


На рисунке ниже показаны типичные кривые зависимости напряжения от деформации.
Кривые напряжения / деформации для различных химических типов герметиков
(испытательный образец из стали или алюминия 25 x 9,5 мм, толщина шва 1,4 мм (испытание на сдвиг)

Обычно модуль упругости определяется как напряжение, измеренное при удлинении на 50 или 100%. Модуль упругости измеряется в соответствии со стандартом ISO 8339: Определение свойств при растяжении. Модуль упругости дает очень полезную информацию о напряжениях, которые действуют на выступы сустава, когда он удлинен.

Для уменьшения этих напряжений рекомендуется использовать герметики с низким модулем упругости, такие как силикон с низким модулем упругости, показанный на рисунке.

В стандарте ISO эластомерные герметики DIS 11600 классифицируются в соответствии с их секущим модулем упругости при растяжении, помимо других спецификаций, которые мы обсудим ниже.

Классы Метод испытаний
Недвижимость 25 лм 25HM 20 лм 20HM 12.5E 12,5P 7,5
Упругое восстановление,% ≥70 ≥70 ≥60 ≥60 ≥40 ISO 7389
Свойства при растяжении
Модуль упругости при секущем растяжении при 23 ° C, МПа ≤0,4> 0.4 ≤0,4> 0,4 ​​ ISO 8339
при 20 ° C, МПа ≤0,6> 0,6 ≤0,6> 0,6
при продлении,% 200 200 160 160
Относительное удлинение при разрыве,% ≥200
≥120
ISO 8339
Адгезионные / когезионные свойства при переменной температуре нф нф нф нф нф ISO

при постоянной температуре нф нф ISO

Прочность на растяжение при поддерживаемом удлинении нф нф нф нф нф ISO 8340
Свойства при растяжении при сохранении продления после погружение в воду нф нф нф нф нф ISO 10590
Свойства при растяжении после погружения в воду Относительное удлинение при разрыве,% ≥100 ≥20 ISO 10591
Потеря объема,% ≤10 ≤10 ≤10 ≤10 ≤ 25 ≤ 25 ≤ 25 ISO 10563
Требования ISO / DIS 11600 к строительным герметикам
* Максимальное изменение объема на 25% (после отверждения) для латексных герметиков на водной основе

Подробное описание условий испытаний см. В ISO / DIS 11600

Вид отказа: nf: нет отказа (все три образца проходят испытание) Образец не прошел испытание, если сумма разрушений клея и когезии превышает 5% герметика / межфазная площадь субстрата (600 мм2).В ISO TC 59 / SC8 продолжается обсуждение того, как определить критерий отказа. Вероятно, что для испытаний на циклическое движение (ISO 9046 и ISO 9047) значение 5% будет служить пределом для отказа после первого цикла движения. Образцы, прошедшие первый цикл перемещения, считаются не прошедшими испытание, если сумма дополнительных разрушений адгезии или когезии в последующих циклах перемещения превышает 100%.

Упругое восстановление и пластический поток


Когда напряжения, вызвавшие удлинение, снимаются, герметик может вернуться к своей первоначальной ширине (полное восстановление) или может показывать только частичное восстановление.Это называется упругим восстановлением и измеряется в соответствии с ISO 7389 и NF EN 27389 (июль 1991 г.): Герметики, определяющие упругое восстановление. Стандарты испытаний

ISO 7389 и ASTM C 736-82 могут использоваться для определения упругого восстановления и измерения восстановления при растяжении и адгезии латексного герметика после искусственного атмосферного воздействия.

Хорошие эластомерные герметики, такие как силиконы и полиуретан, почти полностью возвращаются к своим первоначальным размерам. С другой стороны, пластиковые герметики (такие как бутил, акрил…) не возвращаются к исходному размеру, как показано на рисунке, и демонстрируют некоторую пластическую текучесть и остаточную деформацию.


Типичная кривая пластической текучести

Стандарт ISO 11600 считает, что герметики являются эластомерными, если их упругое восстановление согласно стандарту ISO 7389 превышает 60%. Обычно для измерения релаксации напряжений герметик удлиняют на 25 или 50%, затем образец для испытаний выдерживают при этом удлинении и измеряют напряжения во времени, что дает кривую, показанную на рисунке ниже.


Типовая кривая релаксации напряжений для герметика

Удлинение при разрыве


Эластомерные герметики, такие как силиконы, могут выдерживать очень высокое удлинение при разрыве от 400 до 500%.Таким образом, относительное удлинение при разрыве используется в ISO 11600 только для дифференциации различных пластиковых герметиков. Относительное удлинение при разрыве измеряется в соответствии с ISO 8339.

Максимальное рабочее удлинение


Это относительное удлинение при эксплуатации, которое данный герметик может выдержать при длительном воздействии на открытом воздухе с учетом фактора безопасности для воздействия погодных условий / старения. Европейский стандарт и стандарт ISO 11600 определили до 7 классов строительных герметиков в зависимости от максимального срока службы, а также 9 других свойств, которые мы изучили выше.

Сопротивление сжатию


Этот тест оценивает поведение герметика при сжатии: он не должен вытекать из стыка при сжатии. Построена кривая «деформация от напряжения сжатия».

ISO 11432 используется для измерения свойств сжатия.

Твердость, сопротивление вдавливанию и разрыву


Это важно для герметиков для полов, которые должны выдерживать движение. ASTM C 661 используется для измерения твердости твердометром в соответствии с твердостью по Шору A или D.

Устойчивость к воздействию тепла, холода и температурных циклов


Наружные герметики должны выдерживать колебания температуры в зависимости от климата и страны, в которой они установлены. Жара, дождь и солнечный свет могут разрушить герметики из-за окисления, выделения с низким молекулярным весом, экстракции добавок, таких как пластификаторы и т. Д., В этих случаях герметик затвердеет, разложится и, в конечном итоге, потрескается.

Было разработано несколько стандартов для измерения эффектов этих агентов:

  • Французский стандарт NF P 85-512 измеряет диффузию некоторых компонентов герметика,
  • ASTM C 793-80 Испытание на эффекты ускоренного атмосферного воздействия эластомерных герметиков для швов,
  • ISO 10563: Определение изменения веса и объема,
  • ASTM C 765-84, испытание на низкотемпературную гибкость предварительно отформованных герметизирующих лент и т. Д.

Прочность


Водостойкость – Конечно, все современные полимеры, которые используются для герметиков, обладают хорошей водостойкостью при внешнем воздействии дождя. Но вода может проникнуть между герметиком и основанием, и если эта основа является цементной, щелочные условия и вода могут ухудшить адгезию герметика. Пользователь должен узнать у производителя герметика о его стойкости в таких условиях, какие грунтовки следует использовать.

Мы указали выше стандарты, которые используются для измерения адгезии / когезии после погружения в воду.ASTM C 1247 может использоваться для измерения долговечности герметиков, подвергающихся постоянному погружению в жидкости.

Устойчивость к атмосферным воздействиям – ASTM C 793-80 обеспечивает испытание для измерения воздействия ускоренного атмосферного воздействия на эластомерные герметики.

Устойчивость к солнечному свету, УФ – Старые герметики и замазки, такие как олеорезины и бутиловые герметики, имеют плохую стойкость к солнечному свету, УФ-излучению и внешнему старению. Они окисляются на воздухе, становятся хрупкими и со временем трескаются.

Современные герметики (полиуретан, силикон, тиокол) обладают длительной стойкостью к внешним воздействиям.

Стандарт ISO 11431 и ASTM C 718-83 предоставляют методы испытаний для измерения адгезии и когезии после воздействия света через стекло. Стандарт ASTM C 718 также позволяет измерять стойкость к УФ-излучению герметиков

Устойчивость к росту плесени – Герметики должны иметь защиту от роста плесени, входящую в состав.

Стойкость к циклам тепло-холод – Эти чередующиеся циклы могут повредить герметик после нескольких циклов.См. Те же стандарты, которые были упомянуты выше. Подводя итог, скажем, что долговечность при внешнем воздействии можно приблизительно оценить, объединив некоторые из вышеперечисленных тестов. Лучшие герметики могут прослужить до 40 лет на открытом воздухе или даже больше, но у нас еще нет такого длительного опыта.

Конструкция соединений – основные моменты


Какими бы ни были движения, герметик должен выдерживать их без сбоев, и поэтому он должен быть эластичным, как мы видели в свойствах выше.Поэтому конструкция швов и выбор типа герметика для удовлетворения этих требований к перемещению очень важны.

Обычно архитектор, проектировщик или подрядчик назначают 2 или 3 начальных и основных требования:

  • Размеры и формы здания и его компонентов: каркас, панели, сборные панели, перекрытия, перегородки, двери, окна и т. Д.
  • Типы материалов, которые будут использоваться: наливной или сборный бетон, каменная кладка или металлические или деревянные конструкции, бетонные или металлические полы, металлические, ПВХ или деревянные окна и двери, кирпич или перегородки из гипсокартона и т. Д.
  • Формы соединений, которые могут быть квадратными или прямоугольными или иметь другое сечение, чтобы приспособить его к формам конструктивных элементов и контактным поверхностям.

Исходя из этих требований, подрядчик по стыкам должен:
  • Вычислите максимально ожидаемые движения суставов,
  • Выберите тип герметика, который выдержит такие движения,
  • Спроектируйте и рассчитайте размеры шва, чтобы герметик не подвергался чрезмерным нагрузкам и деформациям.

Эти 3 задачи выполняются вместе, потому что ширина шва зависит
от ожидаемых перемещений, а также от эластичности выбранного герметика.

Глубина стыков


Максимальные напряжения находятся на стыке между подложками и герметиком, и в этих стыках напряжения могут быть в 2-4 раза выше, чем в глубине герметика. Также очень важно отметить, что тонкая полоска герметика будет давать гораздо меньшие нагрузки, чем толстая герметизирующая полоска.

Следовательно, существует правило, согласно которому толщина или глубина герметика не должна превышать 50-70% его ширины.

Общие правила относительно глубины стыков следующие:

  • Минимальные размеры стыков 5 x 5 мм,
  • При ширине шва от 5 до 12 мм глубина всегда должна быть меньше ширины,
  • Для ширины от 12 до 25 мм глубина должна быть около 12 мм,
  • Для ширины более 25 мм желательно, чтобы глубина была меньше половины ширины.

Дополнительный материал (например, пена) используется для контроля глубины шва.

Герметик должен прилипать только к двум поверхностям, а не ко дну стыка, чтобы он мог свободно менять свою форму. Если он будет прилипать с трех сторон, это приведет к увеличению напряжений, и он разорвется. Поэтому перед выдавливанием герметика следует установить съемную ленту, как показано на рисунке.


Герметик должен прилипать только к 2 сторонам шва:
a) Без резервной ленты: при увеличении шва герметик оторвется. свободно менять форму; меньше стрессов и нет риска разрывов.

Также важно отметить, что существует множество правил в соответствии с видами работ, странами и методами, которые также следует учитывать при проектировании суставов.

Области применения строительных герметиков


Как подробно упоминалось выше, герметики обычно используются для заполнения трещин и отверстий и герметизации швов, а также в качестве барьера для воздуха, воды, влаги, газа, шума, пыли и дыма. Таким образом, строительная промышленность включает многочисленные области применения герметика.Ключевые области применения обсуждаются ниже.
Соединения в традиционной кладке

Герметики для кладки


Каменная кладка может быть выполнена из бетона, кирпича, бетонных блоков, иногда из ячеистого бетона, в соответствии с методами строительства, принятыми в каждой стране. Хотя эти материалы не имеют высоких коэффициентов расширения, смещения швов могут стать большими, когда части конструкции (панели, целые стены, многоэтажные конструкции…) имеют большие размеры.

В кладке бывает несколько видов швов:

  • Деформационные и усадочные соединения
  • Разделительные швы
  • Швы полов в плитах и ​​стяжках


Некоторые типичные области применения герметиков

Когда бетонная стена или пол имеют очень большие размеры, могут появиться трещины в результате усадки бетона после полного высыхания, а расширение в результате забора воды также будет проблемой. Таким образом, он должен быть разделен на более мелкие секции, разделенные пустотами или швами, чтобы бетон мог изменять размеры без неблагоприятных последствий.Эти стыки необходимо заполнить подходящим герметиком.

Герметики для сборных железобетонных панелей и плит


Сборные или сборные железобетонные элементы (панели, плиты перекрытия) устанавливаются с пустотными стыками между элементами.

Эти сборные железобетонные элементы не очень большие: всего несколько метров в ширину и высоту, следовательно, их движения ограничены и требуют только пластиковых герметиков, таких как бутил, ПИБ, акрил.

Однако, если здание очень большое, необходимо сложить расширение и усадку каждого элемента, чтобы общее перемещение могло стать большим, и в этом случае необходимо использовать эластомерные герметики, такие как полиуретаны или полимеры MS, которые имеют очень хорошую адгезию к бетону.


Герметики для сборных железобетонных панелей и плит

Герметики для швов навесных стен


Здесь много разных типов соединений:
  • Вертикальные и горизонтальные стыки между сэндвич-панелями или декоративными сайдинговыми панелями и конструкцией, между двумя панелями, между сэндвич-панелями и окнами. В этих случаях материалы часто сильно различаются с точки зрения теплового линейного расширения: например, в стыках между стеклянными панелями и металлическими панелями.
  • Стыки между навесной стеной и полом (последние могут быть бетонными или стальными в многоэтажных зданиях)
  • Стыки между металлической обшивкой стен и конструкцией (которая может быть стальной или бетонной)

Эти соединения требуют больших перемещений, поэтому можно использовать только высокопроизводительные эластомерные герметики .

Кровельные герметики


Крыши, плоские или наклонные, подвергаются воздействию дождя, снега, который может застаиваться на террасах плоских крыш, поэтому гидроизоляция должна быть отличной, а герметики должны выбираться в соответствии с климатом и ожидаемыми движениями.

Требования к герметикам крыш


Крыши могут быть построены из различных компонентов и материалов (черепица, шифер, черепица, металлические панели, кровельные гидроизоляционные материалы, желоба, навесы, окна Velux, дымоходы), которые необходимо герметизировать.
  • Бетонные плиты крыши – Стыки между бетонными плитами крыши должны быть заделаны в соответствии с техникой кладки. Поверх этих плит есть кровельные материалы, которые также герметизируются различными методами:
    • Кровельные листы и изоляционные панели могут быть склеены и герметизированы битумом или битумными композициями, усиленными добавлением эластомеров,
    • Кровельные мембраны из ПВХ, EPDM, гипалона тщательно склеиваются между собой соответствующими клеями ( клеи на резиновой основе , PUR), поставляемые поставщиками кровельных мембран,
    • Всю поверхность террасы можно покрыть толстым гидроизоляционным покрытием, наносимым напылением, обычно полиуретановыми покрытиями.

  • Гидроизоляция между выступающими частями и крышей – Выходящие части, такие как дымоходы, навесы, металлические вентиляционные каналы, должны быть герметизированы пластиковыми или эластомерными герметиками. Полиуретаны и полимеры MS, которые демонстрируют отличную адгезию ко многим материалам, являются лучшим выбором.

  • Гидроизоляция и герметизация кровельных профнастилов – Здесь можно использовать 2 вида продукции:
    • Предварительно отформованные ленты из бутила или PIB, которые необходимо сжать между краями панелей,
    • Акриловые или бутиловые герметики: при нанесении из картриджей большого диаметра (8 мм) валик герметика сжимается во время установки между двумя панелями.

Герметики для структурного остекления


При структурном остеклении стеклянные панели прочно и надежно прикрепляются к металлической конструкции фасадов зданий. Ветровая нагрузка и вес стеклянных панелей передаются на металлическую конструкцию через клей / герметик, который всегда представляет собой силиконовый продукт. Это очень сложное применение, потому что вся система зависит от адгезии и внутренней когезии клея / герметика, и существует риск, если стеклянная панель упадет с высокого уровня.

По этой причине соединение между стеклянными панелями и их металлическими каркасами выполняется на заводе, чтобы тщательно контролировать все параметры: очистку поверхностей перед приклеиванием, нанесение силиконового продукта, контроль качества и испытания на адгезию и долговечность.

Кроме того, добавлены некоторые механические крепления для обеспечения дополнительной безопасности.

Сначала проектировщик должен рассчитать все напряжения, которые будут возникать в соединениях:

  • Напряжения из-за давления ветра и депрессии,
  • Вес стеклянных панелей: их вес должен выдерживаться некоторыми механическими приспособлениями (такими как зажимы, прокладки или распорки), поскольку силиконовый клей / герметик не должен выдерживать эту постоянную нагрузку,
  • Движения стыков: общие движения конструкции должны поглощаться металлическими соединениями между конструкцией и рамой стеклянных панелей.Единственно допустимые перемещения – это те, которые возникают в результате разного расширения и сжатия стекла и металлических рам. Эти движения вызовут сдвиг клея / герметика.

Исходя из рассчитанного максимального перемещения, проектировщик выберет тип герметика и его подвижность, а затем рассчитает толщину структурного шва (между стеклом и рамой).

Герметики для оконных стекол


Это самый большой объем использования герметиков, если мы включаем герметизацию окон с двойной или тройной изоляцией. Различные операции по герметизации, которые необходимо выполнить для полной установки окон и окон.

Изолированные окна с двойным или тройным остеклением


Что касается герметичности, стеклопакеты имеют двойное уплотнение (см. Рисунок выше).
  • Внутренний герметик в основном представляет собой полиизобутилен (PIB) или бутиловый герметик , потому что эти продукты имеют очень низкую проницаемость для водяного пара или паропропускания влаги (MVT): например, проницаемость для водяного пара Герметики PIB JS 780 и JS 680 от TREMCO.Менее 0,02 г / м 2 / час для толщины 2 мм, измеренной в соответствии с европейским стандартом EN 1279-4C.
  • Другие герметики в этом отношении неприемлемы, например, MVT полисульфидов или полиуретанов составляет от 2 до 6 г / м 2 / день, а для силиконов – от 10 до 20 г / м 2 / день,
  • Наружный герметик представляет собой эластомерный герметик, который действует как клей, соединяющий 2 стеклянные панели, и как герметик от воды, воздуха и насекомых.Этот герметик может быть на основе полисульфида, полиуретана, силикона или термоклея .


Изолированная двойная стеклянная панель

Оконные рамы вставляются в основную раму здания, и для этого требуется хорошее уплотнение между оконной рамой, сделанной из дерева, металла или ПВХ, и основной рамой, которая может быть каменной кладкой (бетон, кирпич или навесные стены, а иногда и в странах Северной Европы и США – деревянные рамы

Для этого можно использовать множество различных герметиков: эластомерный полиуретан, пластик, акриловый герметик (на водной основе или на основе растворителя), , бутиловые герметики, а также пенополиуретан.Дифференциальные перемещения не так важны, потому что обычно размеры окон ограничены (от 1 до 3 метров, не более) и не требуют эластомерных герметиков.

Проектировщик или подрядчик должны спроектировать ширину стыка в соответствии с ожидаемыми перемещениями как основной рамы, так и оконных или дверных коробок.

Герметики для керамической плитки и сантехники


Это простое и хорошо известное применение: швы между двумя плитами обычно выполняются с помощью растворов на основе цемента, но когда необходимо заделать шов между двумя большими плиточными участками, герметик должен быть достаточно гибким, чтобы выдерживать большие движения.

В ванных комнатах, душевых, кухнях, бассейнах и т. Д. Наблюдается высокая влажность и вода, разлитая по полам и стенам, и необходимо обязательно герметизировать плиточную поверхность от проникновения воды в стены и полы, а затем в соседние комнаты. . Это можно сделать с помощью водостойкого клея для плитки или гидроизоляционного покрытия или мембраны, но в любом случае водонепроницаемый шов между плитками также очень полезен.


Герметики для керамической плитки и сантехники
Кроме того, коэффициент расширения керамической плитки низкий, при очень большой плиточной поверхности (например, более 10 м2) эта поверхность действует как монолитная поверхность, и на стыке между двумя плиточными секциями могут быть некоторые движения, например Например, когда стена или перегородка сделаны из ДСП или гипсокартона, которые имеют большее расширение под действием влажности.После высыхания на стыке могут образоваться трещины, поэтому стыки необходимо заполнить эластомерным герметиком, который не позволит воде проникнуть в эти трещины и стыки.

В этом случае силиконовые герметики – лучший выбор, потому что они сочетают в себе высокую водонепроницаемость, устойчивость к большим движениям, долговечность, они могут быть изготовлены с множеством разных цветов, которые могут соответствовать цветам плитки и сантехники, их цвета не соответствуют со временем меняются, и их легко применять даже непрофессиональным пользователям.

Однако силиконовый герметик должен противостоять росту плесени, который может стать быстрым из-за использования горячей воды в ванных комнатах. Некоторые сорта содержат составы против роста плесени для этого использования.

Герметики для строительных работ


В гражданском строительстве некоторые части конструкции могут быть довольно большими, например, участки бетонных мостов, плотин или даже бетонные плиты дорог или аэропортов, длина которых может достигать 10 метров.
Следовательно, ожидаемые перемещения также могут быть большими, и, таким образом, подрядчики по гражданскому строительству используют герметики, которые отличаются от тех, что используются в строительстве, потому что ширина и сечение швов здесь больше.Они предпочитают следующие типы герметиков:
Модифицированные каучуком асфальтовые и битумные герметики

  • Асфальтовые герметики, модифицированные резиной, стоят недорого.
  • Эти изделия разливаются горячим способом при температуре от 150 до 200 ° C.
  • Эти мастики начинают ползать при 40 ° C.
  • 85% всех дорог и взлетно-посадочных полос по-прежнему покрыты модифицированным резиной асфальтом.
  • Они должны соответствовать американским спецификациям ASTM D 3405 и федеральным требованиям SS-S 1401 B.
  • .
Смола – соединения полиуретана

  • Это полиуретановые герметики, в которые производитель добавляет смолу для снижения ее стоимости.
  • У них хорошие характеристики и относительно более дешевая цена, что вполне приемлемо.
  • Они обладают хорошей стойкостью к керосину и выбросу горячего воздуха реактивных самолетов, поэтому их можно использовать на взлетно-посадочных полосах аэропортов даже в начале взлетно-посадочной полосы, где пилот пробует полную мощность двигателей.
Пластизоль ПВХ – Гудрон

Горячее литье при 150 ° C, дороже, чем асфальт, модифицированный каучуком, но с более высокими характеристиками (стойкость к керосину, но не к выхлопу горячей струи, выдерживает удлинение от 10 до 15%), они соответствуют американской спецификации SS-S 1614, а в США имеют 5% рынка гражданского строительства и используются для взлетно-посадочных полос аэропортов, дорог и автобусных терминалов.
Силиконы

Однокомпонентные силиконы занимают только 5% рынка, они используются для взлетно-посадочных полос аэропортов и некоторых мостов, когда заказчику требуются высокие характеристики, такие как низкий модуль упругости, высокое удлинение, долговечность. Двухкомпонентные силиконы используются редко.

Примечание: В некоторых случаях подрядчики могут ошибаться, используя дешевый герметик, потому что ему потребуется гораздо больший шов, и, поскольку стоимость нанесения одинакова, герметики с высокими эксплуатационными характеристиками могут оказаться вполне конкурентоспособными по сравнению с дешевыми. или даже дешевле по полной стоимости.

Эластомерные резиновые профили и предварительно отформованные уплотнения

  • Они используются, когда ширина стыка очень велика: от 2 до 10 см (например, для больших мостов, водохранилищ…) и когда две стороны стыка идеально параллельны и плоские.
  • Их сжимают между двумя кромками шва, так что их ширина должна быть примерно вдвое больше средней ширины шва.
  • Обычно они довольно дорогие, например 10 евро за погонный метр при ширине 5 см.
Эпоксидные склеивающие и герметизирующие материалы

На самом деле это не герметики, а жесткие клеи, которые связывают и герметизируют бетон с бетонными швами, например, в сегментарных мостах, где бетонные полые сегменты склеиваются и герметизируются вместе с помощью эпоксидных клеев или эпоксидных смол , используемых для ремонта трещин путем инъекции.

Найдите подходящие добавки или полимеры для рецептуры строительного герметика здесь …

Клеи для строительства – узнать больше

Составы герметика для начала строительства

Гидроизоляция, герметики и мембраны | MasterSeal


Как работает MasterSeal


Ассортимент продуктов MasterSeal для ручной и распыляемой гидроизоляции разработан для предотвращения утечек воды и проникновения влаги в различные новые и существующие конструкции.Наши универсальные, ведущие на рынке и инновационные технологии подходят для гидроизоляции всех типов конструкций, включая автостоянок , проезжей части , промышленных площадок, водохозяйственных сооружений питьевой воды и сточных вод, труб и подземных сооружений.

Что делает MasterSeal уникальным решением для клиентов?

Местный опыт строительства в сочетании с более чем 100-летним опытом производства продукции привели к бесчисленным успехам в строительстве и гидроизоляции во всем мире.Наша глобальная сеть экспертов предоставляет владельцам, инвесторам, спецификаторам и разработчикам технические решения, необходимые для выполнения сложных проектов.

В сложных применениях, таких как парковочные площадки , мосты и , стадионы , где конструкции постоянно подвергаются воздействию элементов и абразивных условий, наши высокоэффективные гидроизоляционные мембраны обеспечивают исключительную долговечность и долговечность. жизненные циклы.

Строительная промышленность извлекает выгоду из наших подробных знаний о коррозионной среде на очистных сооружениях, а также более чем столетних знаний в области ремонта и защиты бетона. Благодаря этому Master Builders Solutions становится мировым лидером в области решений для управления водными ресурсами. Наши передовые технологии проходят тщательные испытания, чтобы гарантировать соответствие местным стандартам и высокую производительность в местных условиях окружающей среды.

Водонепроницаемые универсальные решения для всех конструкций


Наши индивидуальные комбинации продуктов включают самые быстрые и простые в установке доступные технологии.Мы создаем комплексное системное решение, в результате чего получается наиболее экономичное и эффективное по времени решение по гидроизоляции для каждого отдельного проекта.

Консультации экспертов и совместимость продуктов между гидроизоляционными и ремонтными системами имеют важное значение для успешного проекта.

  • Транспортировка
  • Управление водными ресурсами
  • Подземные системы

Продукты MasterSeal


Выбор подходящего герметика для трещин для работы

Вот и конец истории: как правило, лучший выбор для битумной заделки трещин – это эластичная, модифицированная полимером, прорезиненная смесь асфальта, которая прилипает к стенкам трещины и ограничивает проникновение воды, но сохраняет способность расширяться и сжиматься.Вот почему.

В последние годы наука обращает внимание на квантовые исследования, то есть на то, как объекты ведут себя на мельчайших единицах – молекулярных уровнях. Этот тип исследования особенно полезен для оценки того, как различные герметики выходят из строя. В конце концов, трещиноватое уплотнение начинает разрушаться на крошечном уровне, когда две крошечные молекулы лопаются.

Все мы знакомы с асфальтом как с гибким покрытием, которое расширяется и сжимается при изменении температуры. Именно эта гибкость может вызвать растрескивание.Это крошечная ситуация с единственной каплей дождя, когда трещины возникают под действием дождя или стока, обеспечивающего энергию, которая первоначально ослабляет сцепление с асфальтом. При повторении с течением времени трещина увеличивается и пропускает еще больше влаги, пока трещина не станет угрозой для целостности дорожного покрытия и ее необходимо отремонтировать.

Асфальт нерастворим в воде, но он не защищен от давления движения воды – например, образование льда может сдавливать асфальтовое соединение и вызывать трещины. На долю проникновения воды приходится около 90 процентов разрушений дорожного покрытия.

Поскольку небольшие трещины легче и дешевле ремонтировать, лучше их обнаружить как можно раньше.

При рассмотрении того, почему герметики работают или не работают, необходимо учитывать ряд факторов: форма трещины, размер, шероховатость поверхности, содержание влаги и наличие рыхлых частиц, а также техника ремонта – все это способствует успешному проекту герметизации трещин.

Чтобы найти лучший герметик для работы, важно знать, что двумя наиболее важными свойствами герметика являются адсорбция и блокировка.Адсорбция – это когда молекулы герметика накапливаются на поверхности асфальтовой смеси. Это не абсорбция, когда вещество превращается в жидкость или твердое тело с образованием раствора. При адсорбции частицы связаны физическим или химическим притяжением.

ASTM, Американское общество испытаний и материалов, разработало широко используемые спецификации испытаний для герметиков из модифицированного полимером и асфальтного каучука.
Существует три семейства герметиков:
• термопластичный битумный материал холодного нанесения
• термопластичные битумные материалы горячего нанесения
• термореактивные материалы химического отверждения

К продуктам холодного нанесения относятся жидкие битумные эмульсии и жидкий битум, модифицированный полимерами.Холодные аппликации – это просто заполнители трещин, которые просто не обеспечивают склеивания и постоянной гибкости горячих аппликаций.

Продукты химического отверждения относительно новы на рынке в виде самовыравнивающегося силикона.

Варианты горячего нанесения включают такие вещи, как волокнистый асфальт, асфальтобетон или прорезиненный асфальт. Волокна, включенные в смесь, придают эластичность и невосприимчивы к изменениям температуры, поэтому, как правило, их содержание подходит для герметика трещин.Но самыми эффективными герметиками на рынке сегодня по-прежнему остаются прорезиненные формулы. Процент вулканизированного каучука в смеси увеличивает гибкость, а присутствие полимеров увеличивает эластичность ремонта.

Полимеры в основном определяются их удлиненной молекулярной структурой. Есть натуральные полимеры, такие как целлюлоза, шеллак, янтарь и каучук. Также существуют синтетические полимеры, такие как нейлон, неопрен, ПВХ и силикон. По сути, полимеры связаны со связкой, растяжением и защитой – например, целлюлоза является основным ингредиентом древесины, который скрепляет ее.

Таким образом, в асфальтовых герметиках модификация полимера добавляет полимеры в асфальт, чтобы помочь удерживать молекулы вместе, обеспечивая при этом гибкость, обеспечивающую длительный ремонт.

Согласно отчету Федерального управления шоссейных дорог, в этом разница между герметизацией трещин и заполнением трещин:

Уплотнение трещин – Размещение специальных материалов для обработки над рабочими трещинами или в них с использованием уникальных конфигураций для предотвращения проникновения воды и несжимаемых веществ в трещину.

Заполнение трещин – Размещение обычных материалов для обработки в нерабочих трещинах для существенного уменьшения проникновения воды и усиления прилегающего покрытия

Обычно рабочая трещина имеет горизонтальное движение более 3 миллиметров в год.

В отчете также указывается, что это десять основных факторов, которые следует учитывать при выборе герметика:

1. Короткое время подготовки
2. Быстро и легко укладывается (хорошая удобоукладываемость)
3.Короткое время отверждения
4. Адгезия
5. Когезия
6. Устойчивость к размягчению и текучести
7. Гибкость
8. Эластичность
9. Устойчивость к старению и атмосферным воздействиям
10. Устойчивость к истиранию

В этой таблице показаны типы материалов, которые имеют следующие десять основных характеристик:

А в этой таблице приведены характеристики различных типов материалов:

Действительно, результаты недавнего исследования по обработке трещин SHRP H-106 (Стратегический исследовательский проект автомобильных дорог) показывают:

• Эмульсионные и асфальтоцементные наполнители, помещенные заподлицо в неразрезанные, нерабочие трещины, удовлетворительно работают в течение двух-четырех лет,

• Асфальтовые наполнители, модифицированные каучуком и волокном, размещенные заподлицо или заделанные в одни и те же трещины, служат от шести до восьми лет.

• Прорезиненные асфальтовые герметики, помещенные заподлицо или заделанные в проложенные рабочие трещины, служат от пяти до девяти лет, в то время как, помещенные в рабочие трещины без заделки, они обычно обеспечивают срок службы от двух с половиной до пяти лет.

• Самовыравнивающийся силикон, помещенный в углубление в фрезерованных / распиленных рабочих трещинах, удовлетворительно работает в течение как минимум четырех-шести лет.

• Волокнистый асфальт, уложенный поверх неровных рабочих трещин, обеспечивает максимальный срок службы до двух лет.

В конечном итоге подрядчики должны учитывать свой собственный опыт и результаты любого выбора лечения. Ваш особый климат, ваши методы нанесения, ваше оборудование, состояние дорожного покрытия, ваш объем и ваши затраты – все это должно быть учтено в уравнении наилучшего выбора. Опять же, как мы сказали в первом предложении, согласно анализу SHRP, наиболее рентабельные и долгосрочные результаты получаются при использовании модифицированного прорезиненного асфальта, укладываемого за бортом в проложенные трещины.

Герметик для асфальта (тиксофальт) | Shell Global

Название: 82217_TIXO_v3.1_HD_1080p_210416_

Продолжительность: 1:52 минуты

Описание:

Shell Tixophalte Wet, Seal and Fix – это готовая к применению битумная смесь, которую можно наносить в холодном виде в качестве шпатлевки. герметик или клей для самых разных работ, от крупномасштабных промышленных до бытовых, а его гидроизоляционные свойства означают, что его можно наносить под водой.

82217_TIXO_v3.1_HD_1080p_210416_ Стенограмма

[Играет фоновая музыка]

Ритмичная инструментальная музыка.

[Графика]

Желтый вертикальный прямоугольник с центром на белом экране, логотип Shell отображается вверху с текстом, отображаемым под логотипом, и дополнительный текст, отображаемый во вставленном синем прямоугольнике с красной рамкой.

[Отображение текста]

Shell Tixophalte

Используется специалистами по влажной герметизации и ремонту

[Видеозапись]

Снимок с точки зрения человека, приближающегося к открытой двери черного автомобиля.Ящик для инструментов стоит на сиденье, ближайшем к двери, а в одном из его внешних мешочков находится банка Tixophalte. Рука в перчатке пытается схватить ручку ящика с инструментами, а затем крупным планом ящик с инструментами, который держит в руке мужчина.

Крупный план руки, закрывающей дверь автомобиля, его отражение видно на черной окраске дверной панели. Он одет в желтую защитную одежду.

В середине кадра мужчина держит банку с тиксофальтом перед камерой.Основное внимание уделяется банке крупным планом, на заднем плане размыта фигура мужчины.

Крупный план пяти банок Tixophalte на размытом фоне.

[Рассказчик]

Это Shell Tixophalte Wet, Seal and Fix.

[Видеозапись]

Общий снимок человека, уходящего от камеры с банкой в ​​руке, крупным планом – банка, которая держится на поясе с инструментами рядом с его ногами в джинсах.

Вид с воздуха на человека, наносящего герметик на металлическую решетку, установленную в бетоне, с крупным планом – только его руки, наносящие герметик на поверхность.

Взгляд Червя на высокое здание и солнце в облачном небе наверху.

[Рассказчик]

Высокоэффективный герметик и клей на битумной основе.

[Видеозапись]

Общий снимок человека, приближающегося к высокой стремянке, прислоненной к зданию, банка на поясе с инструментами, резка, крупный план, вид сзади человека, поднимающегося по стремянке, переключение на вид спереди – очень крупный план его туфель на ступеньках лестницы.

Крупный план сопла, прикрепляемого к баллончику для нанесения.

Вид под большим углом на герметик, наносимый в водянистую неглубокую корыто, срезание для более близкого обзора сопла, погруженного в воду во время нанесения.

[Рассказчик]

Это нетоксичный профессиональный герметик с ключевым преимуществом – его можно наносить во влажных условиях…

[Разделенный экран]

Верхняя рамка слева – крупный план вода льется из водосточной трубы.

Нижний каркас-левая панель – вода капает с угла крыши.

Рамка правая панель – крупный план руки мужчины, наносящего герметик под кусок ткани в водянистом желобе, и его рука в перчатке, прижимающая ткань вниз. На этом изображении мы возвращаемся в полноэкранный режим.

[Рассказчик]

… и даже под водой.

[Видеозапись]

Крупным планом – пара рук, поднимающая предмет с лабораторной рабочей поверхности, банка с тиксофальтом видна на рабочей поверхности.

[Сплит-экран]

Панели справа от рамки – виды канала, цемента и различных строительных поверхностей.

Кадр-левая панель – вид сзади в середине кадра человека в белом лабораторном халате, который управляет дисками на высоком стоящем элементе оборудования, и на этом изображении мы вернулись в полноэкранный режим.

[Отображение текста]

Архивные кадры 1980-х годов

[Рассказчик]

Shell Tixophalte – продукт, рожденный 20-летним опытом инноваций и опыта в битумной технологии.

[Видеозапись]

Крупным планом под малым углом сопла, наносящего герметик в желоб для воды, как описано ранее.

Крайний крупный план сопла, наносящего герметик на влажную поверхность.

Крупный план рук в перчатках, которые наносят герметик на кусок ткани и затем прижимают его, чтобы запечатать.

[Отображение текста]

Последовательность сокращена; затраченное время 42 секунды.

[Экранный диктор]

Содержит ключевые химические ингредиенты, которые активно отталкивают воду, создают правильные характеристики текучести и обеспечивают адгезию к большинству поверхностей.

[Видеозапись]

Панорама до крупного плана части водосточного желоба, разрезая под большим углом снимок герметика, наносимого на водосточный желоб.

Аэрофотоснимок герметика, наносимого на черепицу, разрез крупным планом на сопло, наносящее герметик.

[Разделенный экран]

Рамка правая панель – вид моста через реку под небольшим углом.

Рама-левая нижняя панель – Вода течет в желоб.

Рамка на левой верхней панели – изображение просмоленного дорожного покрытия, проходящего над водой, рядом с нанесенным черным герметиком крупным планом.

[Рассказчик]

Если вам нужно исправить трещину в желобе, наклеить черепицу под дождем или даже заделать стык на мосту, это не проблема.

[Видеозапись]

Вид спереди человека, приближающегося к камере, банка в руке, видна только нижняя половина его тела.

Крупный план трубы [?], Зацементированной в бетон, очень крупный разрез герметика, наносимого на основание трубы.

[Экранный диктор]

Shell Tixophalte Wet Seal and Fix – идеальное решение.

[Видеозапись]

Крупным планом – пять банок Shell Tixophalte.

Крупным планом – герметик, наносимый на поверхность.

[Экранный диктор]

Легко наносится и готов к использованию, не требует смешивания или предварительной подготовки.

[Видеозапись]

Вид под большим углом строительных лесов на строительной площадке, панорама вниз до человека, который, как описано выше, стоит на коленях, чтобы нанести герметик на металлическую решетку, установленную в бетоне.Это позволяет получить очень крупный план герметика, наносимого вокруг металлической решетки.

[Экранный диктор]

Его можно использовать во множестве приложений…

[Разделенный экран]

Серия изображений отображается на нескольких панелях в различных комбинациях.

Средний снимок лаборанта, закрывающего шкафчик, а также вид сзади рабочих, стоящих перед высокой стеной плотины.

Высокий угол обзора группы рабочих, работающих на механизме плотины с многочисленными трубами, отходящими от оборудования, который дает широкий обзор рабочих, работающих на большой стене плотины.Наряду с этим появляются изображения шлюзовых ворот плотины и вид с воздуха на водный канал.

[Отображение текста]

Архивные кадры 1980-х годов

[Рассказчик]

… с многолетней проверенной эффективностью, обеспечивающей гидроизоляцию и герметизацию стыков на объектах плотин и водных каналов…

[Видеозапись]

Крупный план герметика, наносимого на крышу, с приведенным ниже изображением дома с красной крышей с воздуха.

Вид спереди мужчины в световой одежде, приближающегося к камере с банкой в ​​руке, при выходе из кадра видны только его туловище и ноги.

[Рассказчик]

… для кровли, асфальтовых покрытий и настилов мостов.

[Видеозапись]

Увеличенное изображение герметика вокруг металлической решетки.

Панорама, чтобы увеличить пять банок Shell Tixophalte.

[Разделенный экран]

Левая панель кадра – Панорамный снимок строительной конструкции, описанный повсюду в точке обзора, с банкой Shell Tixophalte на переднем плане, являющейся фокусом кадра

Кадр справа – еще один крупный план ящика с инструментами, когда его несут, видны банки Shell Tixophalte.

[Экранный диктор]

Независимо от размера проекта, Shell Tixophalte Wet Seal and Fix – отличный выбор.

[Видеозапись]

Крупным планом – лаборант в защитных очках, крупным планом, другой лаборант, крупный план.

Крупный план герметика, наносимого под слоем воды.

Общий снимок строительной площадки, размывающийся на заднем плане, поскольку кадр фокусируется на пяти банках Shell Tixophalte на переднем плане в правом кадре.

[Отображение текста]

Асфальт

Пластик

Картон

Цемент

Бетон

Кирпич

Металл

Стекло

специально

[Рассказчик]

Формулировка гибкая, прочная и прилипать к большинству влажных или сухих материалов.

[Видеозапись]

Крупный план: рука в перчатке наливает жидкость в емкость на белой поверхности.

[Разделенный экран]

Панели слева в кадре – средний план торса лаборанта, его / ее руки в перчатках просовывают пробирку среди других пробирок.

Рамка-правая нижняя панель – крупный план лаборанта в защитных очках, глаза сосредоточены на потоке черной жидкости на переднем плане.

[Видеозапись]

Крупным планом стакан с водой.

[Рассказчик]

Не токсичен и разрешен для использования в контакте с питьевой водой.

[Графика]

Вид с воздуха на дом с прудом с одной стороны и рекой с другой. Перед домом проходит дорога, которая переходит через мост через реку. В воде видна лодка. Текст отображается рядом с линиями, указывающими на различные элементы изображения.

[Отображение текста]

Бетонные настилы моста

Каналы и водные пути

Лодки

Дренажные трубы и трубы

Дымоходы

Водосточные желоба и дренажные системы

Кровля [неразборчиво]

000

Damp4000 [Рассказчик]

Он также предназначен для защиты от ржавчины, влаги, коррозии и УФ-лучей.

[Видеозапись]

Крупный план банки Shell Tixophalte на размытом фоне. Рабочий в светлой одежде входит в кадр слева, хватает банку и уходит с ней.

[Отображается текст]

Shell.com/bitumen

Эмблема Shell, Shell и Tixophalte являются товарными знаками Shell Group.

[Рассказчик]

Чтобы узнать больше о Shell Tixophalte Wet, Seal and fix, посетите наш веб-сайт.

[Аудио]

Shell Jingle

[Графика]

Логотип Shell

[Отображение текста]

© Shell International Limited 2016

Оценка рабочих характеристик модифицированного каменной мастикой асфальтового покрытия из каменной крошки в Малайзия

Для предотвращения повреждений дорожного покрытия существуют различные решения, такие как принятие новых конструкций смесей или использование добавок для асфальта. Основная цель этого исследования состояла в том, чтобы изучить влияние добавления резиновой крошки шин в качестве добавки на эксплуатационные свойства смеси SMA.В этом исследовании изучались основные аспекты модифицированных асфальтовых смесей, чтобы лучше понять влияние модификаторов CRM на объемные, механические свойства и свойства жесткости смеси SMA. В этом исследовании использовался первичный битум со степенью пенетрации 80/100, модифицированный резиновой крошкой (CRM) на пяти различных уровнях модификации, а именно 6%, 12%, 16% и 20%, соответственно, от веса битума. Было обнаружено, что подходящее количество добавленного CRM составляет 12% по массе битума. Этот процент обеспечивает максимальный уровень стабильности.Модуль упругости (Mr) модифицированных образцов SMA, включающих различные процентные содержания CRM, был явно выше по сравнению с немодифицированными образцами.

1. Введение

Битум считается термопластичным вязкоупругим клеем и используется для изготовления дорожных покрытий и дорожных покрытий, прежде всего из-за его хорошей цементирующей способности и водонепроницаемости [1]. Сложность химического состава битумных продуктов в первую очередь обусловлена ​​сложным составом нефтяной сырой нефти, из которой получают битумные продукты.Из-за присущих обычному битуму недостатков, которые привели к высоким затратам на техническое обслуживание дорожных систем, возникла необходимость в модификации битума. Модификация / усиление битумного вяжущего возможна на разных этапах его использования, либо между производством вяжущего и процессами смешивания, либо перед производством дорожной смеси [2].

Каменно-мастичный асфальт (SMA) – это смесь для горячего асфальта, разработанная в Германии в середине 1960-х годов [3] для обеспечения максимального сопротивления колейности, вызванной шипованными шинами на европейских дорогах.В знак признания его превосходных характеристик в 1984 году в Германии был установлен национальный стандарт. Поскольку SMA распространилась по всей Европе, Северной Америке и Азиатско-Тихоокеанскому региону, несколько отдельных стран в Европе теперь имеют национальный стандарт для каменно-мастичного асфальта, а CEN, Европейский орган по стандартизации находится в процессе разработки европейского стандарта на продукцию. Сегодня SMA широко используется во многих странах мира в качестве покрытия или покрытия для сопротивления наведенной нагрузке, и его популярность растет среди дорожных властей и асфальтовой промышленности.

Повышенный спрос на автомобильные дороги может снизить их прочностные характеристики и сделать дороги более подверженными постоянным повреждениям и поломкам. Как правило, эксплуатационные свойства дорожного покрытия зависят от свойств битумного вяжущего; Известно, что обычный битум имеет ограниченный диапазон реологических свойств и долговечности, которых недостаточно для того, чтобы противостоять повреждениям дорожного покрытия. Поэтому исследователи и инженеры битума ищут различные типы модификаторов битума с превосходными реологическими свойствами, которые напрямую влияют на характеристики асфальтового покрытия.Во всем мире существует множество добавок, используемых в качестве армирующего материала в битумных смесях, таких как стирол-бутадиен-стирол (SBS), синтетический каучук-стирол-бутадиен (SBR), натуральный каучук, волокно и модификатор резиновой крошки (CRM). Использование коммерческих полимеров, таких как SBS и SBR, в строительстве дорог и тротуаров увеличит стоимость строительства, поскольку они являются очень дорогими материалами. Однако при использовании альтернативных материалов, таких как модификатор резиновой крошки (CRM), это определенно будет экологически выгодным и не только может улучшить свойства и долговечность битумного вяжущего, но также потенциально может быть экономически эффективным [4]. .

Резиновая крошка или отработанная резина покрышек представляет собой смесь синтетического каучука, натурального каучука, технического углерода, антиоксидантов, наполнителей и масел типа наполнителей, которые растворимы в классе для горячего дорожного покрытия. Прорезиненный асфальт получают путем включения резиновой крошки из измельченных шин в асфальтовое связующее при определенных условиях времени и температуры с использованием любого метода сухого процесса, который добавляет гранулированный или модификатор резиновой крошки (CRM) из утильных шин в качестве замены процентного содержания заполнителя. в асфальтобетонной смеси, а не в составе асфальтобетонного вяжущего или в мокрых процессах (метод модификации асфальтового вяжущего с помощью CRM из утильных шин перед добавлением вяжущего для образования асфальтобетонной смеси).Существует два довольно разных метода использования резины для шин в битумных связующих: во-первых, растворение резиновой крошки в битуме в качестве модификатора связующего, во-вторых, путем замены части мелких заполнителей измельченной резиной, которая не полностью реагирует с битумом [5]. В 1840-х годах самые ранние эксперименты включали включение натурального каучука в асфальтовое связующее для повышения его технических характеристик. Процесс модификации асфальта с использованием натурального и синтетического каучука был введен еще в 1843 году [6].В 1923 г. модификации натурального и синтетического каучука в битумах были дополнительно усовершенствованы [7, 8]. По словам Йилдрима [8], разработка резинобитумных материалов, используемых в качестве герметиков, заплат и мембран, началась в конце 1930-х годов. Первая попытка модифицировать битумные связующие путем добавления каучука была сделана в 1898 году Гаудмбергом, который запатентовал процесс производства резинового битума. Затем Франция получила признание за установку первой дороги с прорезиненным битумным покрытием [9].Применение модифицированного каучуком асфальта началось на Аляске в 1979 году. Сообщалось о укладке семи прорезиненных покрытий общей протяженностью 4 км дороги с использованием сухого процесса Plus Ride в период с 1979 по 1981 год. Были описаны характеристики этих разделов в отношении перемешивания, уплотнения, долговечности, усталости, стабильности и текучести, а также сцепления шин с дорогой и сопротивления скольжению. Прорезиненный битум мокрым способом был впервые применен на Аляске в 1988 году [10]. Lundy et al. (1993) [11] представили три тематических исследования с использованием резиновой крошки как для мокрого, так и для сухого процесса на Mt.Проект Сент-Хеленс, Орегон-Дот и Портленд, Орегон. Результаты показали, что даже после десяти лет эксплуатации изделия из резиновой крошки обладают отличной стойкостью к термическому растрескиванию. Несмотря на то, что асфальтобетонные смеси могут быть успешно изготовлены, для обеспечения хороших характеристик необходимо поддерживать контроль качества.

Ассоциация по производству резиновых покрытий обнаружила, что использование резины для шин в смеси с открытым слоем связующего может снизить шум шины примерно на 50%. Кроме того, при нанесении распылением частицы резины разных размеров обладают лучшим звукопоглощением [12].Кроме того, еще одним преимуществом использования асфальтовой резины является увеличение срока службы дорожного покрытия. Однако были даны рекомендации по оценке экономической эффективности асфальтовой резины [5].

В Малайзии использование резиновой крошки в качестве добавки для строительства дорожных покрытий предположительно началось в 1940-х годах, но не было никаких официальных записей о такой практике. О первом зарегистрированном испытании с использованием технологии прорезиненного битума было сообщено в 1988 году, и был использован процесс влажного смешивания с добавлением резиновых добавок в виде латекса в битумное связующее [13].В 1993 году в Негери-Сембилане было проведено еще одно испытание прорезиненных материалов на дороге с использованием использованных перчаток и натурального латекса [14]. Кроме того, Малайзия производит около 10 миллионов утильных шин в год, и, к сожалению, они утилизируются экологически вредным образом. Чтобы свести к минимуму повреждение дорожного покрытия, такое как сопротивление колейности и усталостному растрескиванию, асфальт необходимо модифицировать выбранным полимером, таким как модификатор резиновой крошки (CRM), и это определенно будет экологически благоприятным, а также улучшит свойства битума, долговечность и снижает стоимость реабилитации [15–19].

Постановка проблемы и цель исследования : первичный битум со степенью проникновения 80/100 широко используется в Малайзии, и, кроме того, он подвергается высокой транспортной нагрузке и жарким погодным условиям. Погодные условия в Малайзии приводят к колебаниям температуры от 55 ° C на поверхности до 25 ° C на земляном полотне в жаркие дни. Из-за увеличения плотности обслуживающего движения, нагрузки на оси и низких эксплуатационных расходов дорожные конструкции пришли в негодность и поэтому быстрее выходят из строя.Основная цель этого исследования состояла в том, чтобы изучить влияние добавления резиновой крошки шин в качестве добавки на эксплуатационные свойства смеси SMA. В этом исследовании изучались основные аспекты модифицированных асфальтобетонных смесей, чтобы лучше понять влияние модификаторов CRM на объемное, механическое сопротивление, а также сопротивление свойствам жесткости смеси SMA.

2. Материалы и методы

Экспериментальная программа в этом исследовании направлена ​​на изучение влияния CRM на реологические характеристики прорезиненного битума и механические свойства смесей прорезиненного SMA.

2.1. Материалы

Использовался битум со степенью пенетрации 80/100 и средней температурой размягчения 47 ° C. Таблицы 1 и 2 иллюстрируют некоторые физические свойства и химический состав битума соответственно. В данном исследовании градации резиновой крошки нет. 40 (0,45 мм). Плотность резиновой крошки составляет около 1,15 (г / см3). Модификатор резиновой крошки (CRM), полученный механическим измельчением при температуре окружающей среды, был получен от Rubberplas Sdn. Bhd. (Поставщик из Малайзии).Химические компоненты CRM показаны в таблице 3.


Испытание битума Марка битума Стандартные методы испытаний
80/100

Вязкость @ 135 ° C (мПа · с) 306,7 ASTM D4402
Пластичность при 25 ° C> 100 ASTM D113
Температура размягчения при 25 ° C 47 ASTM D36
Пенетрация при 25 ° C 88 ASTM D5
Удельный вес при 25 ° C 1.02 ASTM D70
Температура вспышки при ° C 305 ASTM D92

938 938 938 938/900


Насыщенный 5,4
Ароматический 72,5
Смола 15,5
Асфальтены 6.6


Химические компоненты Результат теста

Ацетоновый экстракт (%)

Каучук углеводородный (%)
46,6
Содержание технического углерода (%) 25,08
Содержание натурального каучука (%) 43.85
Зольность (%) 5,2
Размер частиц (µ) 425

Гранитный щебень с агрегатами SMA 14 был доставлен из карьера Каджанг (около Куала-Лумпур, столица Малайзии) использовался на протяжении всего исследования. Совокупная градация принятого агрегата соответствует стандарту JKR Malaysia [20], как показано в таблице 4.

96

4,7

B.Сито% Проходит% Остаток Вес (G)
Мин. Макс. Сред.

12,5 100 100 100 0 0
9,5 72 83 77,5 22,5 25 38 31,5 46 506
2.36 16 24 20 11,5 126,5
0,6 12 16 14 6 66
0,368 12 13,5 0,5 5,5
0,075 8 10 9 4,5 49,5
Поддон 0 0 0 9 9968

100 1100

2.2. Подготовка образцов и метод испытаний

Метод расчета Маршалла был использован для модифицированных и немодифицированных асфальтобетонных смесей. Для включения каучука в битумную смесь был проведен сухой процесс. В сухом процессе добавка (CRM) смешивается с заполнителем перед добавлением связующего в смесь. Содержание связующего, использованное в этом исследовании, составляет 5%, 5,5%, 6%, 6,5% и 7% от веса всей смеси. Модификатор резиновой крошки добавляют в смесь в различных концентрациях 6%, 12%, 16% и 20% веса связующего.В данном исследовании использовался 5% наполнитель. Для приготовления смесей SMA 1100 г смешанного заполнителя помещали в печь при 160 ° C на 2 часа. Битум также нагревали до 120 ° C перед смешиванием с частицами заполнителя. В качестве метода сухого процесса модификатор резиновой крошки добавляли непосредственно в смесь. Температура перемешивания поддерживалась постоянной на уровне от 160 до 165 ° C. Смесь переносили в форму Маршалла. Термометр из нержавеющей стали помещали в центр формы, и смесь была готова к уплотнению при температуре 160 ± 5 ° C.Все образцы были подвергнуты 50 ударам уплотнения с помощью молотка Маршалла с каждой стороны образца при температуре 145 ° C. Лабораторные испытания, использованные для исследования и оценки эксплуатационных свойств битумной смеси SMA, модифицированной образцами CRM, представляли собой Стандартный метод испытаний на сопротивление пластическому течению битумных материалов с использованием аппарата Маршалла [21] и Стандартный метод испытаний для испытания битумных смесей на прочность при косвенном растяжении [ 22].

3. Результаты и обсуждение
3.1. Результаты теста Маршалла
3.1.1. Стабильность по Маршаллу

Результаты, полученные для различного содержания CRM для каждого содержания связующего, показаны в таблице 5 и проиллюстрированы на рисунках 1 и 2.

80

Содержание связующего
5% 5,5% 6% 6,5% 7%

CR 0% 11.99 13,10 12,5 11,40 10,8
CR 6% 11,50 12,90 11,9 10,89 10,7
CR 12% 103896
CR 12

8

103896 11,4 10,90 9,8
CR 16% 10,40 10,40 11,99 9,4 9,4
CR 20% 8.9 9,30 10,89 9,7 8,3



Стабильность по Маршаллу означает максимальное сопротивление нагрузки, увеличивающееся во время процедуры испытания при 60 ° C при нагрузке скорость 50,8 мм / мин, до разрушения уплотненного образца. Стабильность по Маршаллу определяется «как измерение восприимчивости битумной смеси к деформации, обеспечивающей защиту от частых и тяжелых транспортных нагрузок.”

На рисунках 1 и 2 показано значение стабильности по Маршаллу в зависимости от содержания CRM для различного содержания связующего. На диаграммах показаны значения стабильности для разного содержания связующего, изменяющегося вместе с содержанием CRM. После добавления CRM значение стабильности повысилось до максимального уровня, который составлял примерно 12% от используемого CRM, но затем оно начало снижаться. По сравнению с контрольной смесью (смесь с 0% CRM) значения стабильности по Маршаллу в целом были выше. Тем не менее, дальнейшее введение битума в смесь привело к снижению значения стабильности, поскольку применение избыточного битума снижает точку контакта крупного заполнителя внутри смеси.Единственной смесью с более низким значением стабильности была смесь с 20% CRM. Стабильность повышается за счет добавления вяжущих CRM к асфальтовой смеси из каменной смеси, поскольку между материалами в смеси развивается лучшая адгезия [9, 23].

3.1.2. Marshall Flow

Flow можно понимать как измерение постоянной деформации, которая имеет место в тесте Маршалла при отказе. Было указано, что параметр потока, полученный из теста Маршалла, довольно неудачен, поскольку более высокое значение потока не обязательно означает более высокую тенденцию к течению или деформации под нагрузкой [23].Результаты, полученные для различного содержания CRM для каждого содержания связующего, показаны в таблице 6 и проиллюстрированы на рисунках 3 и 4.



На рисунке 3 показано значение потока по Маршаллу в зависимости от содержания связующего для каждого содержания CRM.Результаты показали, что величина текучести увеличивается с увеличением содержания битума в смеси; то есть значение текучести SMA имеет тенденцию к увеличению с более высоким содержанием связующего. Это связано с процентным содержанием дополнительного битума, который позволяет заполнителям плавать в смеси, что приводит к увеличению потока.

В случае взаимосвязи между потоком Маршалла и содержимым CRM (рисунок 4) значение потока SMA с CRM выше по сравнению с SMA без CRM. Как показано на рисунке 4, присутствие CRM в смеси увеличивает ее расход.Кроме того, это показывает, что увеличение содержания CRM в смеси SMA не обязательно увеличивает значения расхода. Добавление большего количества содержимого CRM увеличило поток до оптимального уровня и с дальнейшим добавлением CRM в смесь; было отмечено очевидное снижение. Более высокие значения расхода могут быть связаны с увеличением воздушных пустот (требуется большее уплотнение) за счет использования большего количества CRM в смеси, что приводит к более гибкой смеси [9, 23].

3.1.3. Плотность уплотненной смеси (CDM)

Полученные результаты показали, что содержание связующего влияет на характеристики уплотнения смесей SMA, таким образом оказывая значительное влияние на плотность смеси.Таблица 7 и рисунки 5 и 6 показали, что при любом конкретном содержании связующего плотность уплотненной смеси постепенно увеличивается по мере увеличения содержания битума в смеси. Это происходит из-за того, что битум заполняет пустоты частиц заполнителя.


Содержание связующего
5% 5,5% 6% 6,5% 7%

CR 0% 3,0 3,2 3,5 4 4.4
CR 6% 3,4 3,4 3,7 4,7 5,6
CR 12% 3,5 4,1 4,1 4,4 5,2
CR 16% 2,4 3,2 3 3,6 4,4
CR 20% 2,2 2,3 2,5 2,8 3,3

11 CR 12%

Содержание связующего
5% 5,5% 6% 6,5% 7%


3939 0%
2.32 2,33 2,35 2,34 2,35
CR 6% 2,30 2,32 2,33 2,33 2,35
2,28 2,31 2,32 2,33
CR 16% 2,29 2,29 2,30 2,31 2,32
CR 20% 2,27 2.27 2,29 2,30 2,31



Результаты показали более низкую плотность смесей с включением резиновой крошки. Оценка результатов, касающихся влияния содержания битума в CDM (рис. 5), показала, что значение CDM увеличивается с увеличением содержания битума в смеси SMA. Основная причина этого – заполнение битумом пустот частиц заполнителя.Однако после заполнения пустот чрезмерное процентное содержание битума могло привести к значительному увеличению плотности смеси.

Рисунок 6 показывает, что при любом содержании связующего плотность уменьшается по мере увеличения резиновой крошки в смесях SMA. Увеличение содержания CRM подразумевает увеличение количества битума, абсорбированного CRM, вызывая большее количество пустот с частицами заполнителя, следовательно, снижение плотности смеси. Объяснение различной плотности смесей связано с влиянием вязкости на совместимость смесей.Увеличение вязкости может быть результатом количества асфальтенов в битуме, которое улучшает вязкую текучесть модифицированного образца битума во время процесса взаимодействия. Более высокая вязкость полученного связующего обеспечивает лучшее сопротивление при уплотнении смеси, что приводит к более низкой плотности модифицированной смеси. Это согласуется с предыдущим выводом Мареза [23], который показал, что для идеальной смеси для дорожного покрытия требуется хорошая корреляция между вязкостью вяжущего и усилием уплотнения.

3.1.4. Пустоты в смеси (VIM)

Прочность битумного покрытия зависит от пустот в смеси (VIM) или пористости. Как правило, чем ниже пористость, тем менее проницаема смесь, и наоборот. Слишком много пустот в смеси (высокая пористость) обеспечит проходы через смесь для проникновения вредного воздуха и воды. Слишком низкая пористость может привести к промывке, когда излишки битума выдавятся из смеси на поверхность. Влияние содержания CRM для различного содержания связующего на пористость исходной смеси и смеси SMA показано в Таблице 8 и на Рисунках 7 и 8.


Содержание связующего
5% 5,5% 6% 6,5% 7%


3939 0%
6,24 5,38 4,19 3,36 2,25
CR 6% 7,34 6,37 4,78 4,19 3.45
CR 12% 7,56 6,65 5,28 4,45 3,56
CR 16% 7,57 6,98 5,43 4,89

20%
7,83 7,40 5,81 5,10 3,96



Цифры 7 и 8 показывают, что для любого использованного содержания связующего M увеличение за содержанием в смеси следует увеличение VIM, что связано с точкой контакта между агрегатами, которая ниже, когда содержание CRM увеличивается.Большое количество частиц резиновой крошки абсорбирует связующее, которое требуется для инкапсуляции заполнителя и последующего заполнения пустот между заполнителями. Высокая пористость битумной смеси означает, что имеется много пустот, обеспечивающих проходы для проникновения вредного воздуха и воды через смесь. С другой стороны, при низкой пористости происходит промывание водой, в результате чего битум выдавливается из смеси на поверхность [23]. Однако результаты на Рисунке 7, касающиеся влияния битума, показывают, что любое увеличение содержания битума в смеси приводит к снижению значения VIM, что происходит из-за чрезмерного заполнения битумом воздушного кармана между агрегатами [24]. .Поэтому очень важно производить смесь с достаточно низким уровнем пустот, чтобы она была непроницаемой и, следовательно, долговечной, но с достаточным количеством пустот, чтобы предотвратить деформацию битума.

3.2. Результаты испытаний на непрямое растяжение (модуль жесткости)

Для определения модуля жесткости был проведен модуль упругости образцов в соответствии с [22] при 25 ° C. В образцах асфальта в результате избыточной деформации возникли трещины по отношению к пределу прочности при растяжении, которые в основном представляли собой микротрещины.Эти трещины были перпендикулярны направлению максимального растягивающего напряжения; объединение этих микротрещин за счет увеличения деформации приводит к образованию макротрещин. Эти трещины вместе с исследованиями привели к образованию зоны разрушения в образце. Длина этой зоны разрушения может рассматриваться как параметр материала и может быть истолкована как результат энергии разрушения материала. Температура и процентное содержание битума – два основных параметра, которые существенно влияют на характеристики асфальта.

Таблица 9 и рисунки 9 и 10 показывают изменение модуля жесткости (Mr) в зависимости от содержания битума для асфальтовых смесей, армированных различным содержанием CRM, и неармированной асфальтовой смеси (содержащей 0% CRM). Как показано на рисунках 9 и 10, существует заметная разница между усиленными и неармированными образцами в модуле жесткости (Mr). Повышенный битум оказывает значительное влияние на модуль жесткости образцов с различным содержанием CRM из-за того, что оптимальный процент битума ниже в неармированных образцах.В образцах армированного асфальта с CRM содержание резиновой крошки поглощает часть битума, что приводит к увеличению оптимального процента связующего. По мере увеличения содержания резиновой крошки поглощается больше битума, что, в свою очередь, увеличивает оптимальное содержание связующего в смеси. Очевидно, что модуль жесткости армированных образцов асфальта выше, чем неармированных образцов.

0

3900

Содержание связующего
5% 5.5% 6% 6,5% 7%

CR 0% 3850 3160 4400 3200 3270
CR 6% 3550 4530 3320 3600
CR 12% 4384 4200 4740 4130 4370
CR 16% 4496 70 4870 4510 4489
CR 20% 4570 4410 4990 4810 4600


9384 93

0


что, помимо большей жесткости, они более устойчивы к деформации.Однако следует проявлять осторожность со смесями очень высокой жесткости из-за их более низкой способности к деформации при растяжении до разрушения; то есть такие смеси с большей вероятностью разрушатся из-за растрескивания, особенно при укладке на фундаменты, которые не могут обеспечить адекватную поддержку [23].

4. Заключение и рекомендации для будущих исследований

На основании проведенного исследования можно сделать следующие выводы: (1) Стабильность повышается за счет добавления вяжущих веществ CRM к асфальтовой смеси из камня по мере развития лучшей адгезии.По сравнению с контрольной смесью (смесь с 0% CRM), значения стабильности по Маршаллу в целом были выше. (2) Независимо от количества включенного CRM, добавление CRM в смесь увеличивает VIM смеси при одновременном уменьшении ее плотности. . (3) Модуль жесткости образцов SMA, содержащих различное содержание CRM, значительно выше по сравнению с неармированными образцами. (4) Подходящее количество добавленного CRM составляет 12% по массе битума.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *