Материалы теплоизоляционные высокотемпературные – Теплоизоляция высокотемпературная

Высокотемпературные изоляционные материалы в Украине. Футеровочный огнеупорный материал в Киеве. Тепловая изоляция и футеровка промышленного оборудования.

Экономия энергоресурсов является одной из важнейших задач практически любого производства. На энергоемких предприятиях с такой задачей справляются с помощью применения новейших высокотемпературных теплоизоляционных и огнеупорных материалов при тепловой изоляции и футеровке различного оборудования (печи, котлы, трубопроводы и т. п.). Так, например, футеровка печи легковесными огнеупорными материалами способна сократить расход энергоресурсов до 50%, в сравнении с традиционно применяемыми огнеупорами.

Компания «Инвентум Украина» предлагает наиболее эффективные, долговечные и конкурентоспособные по цене высокотемпературные огнеупорные и теплоизоляционные материалы, проверенные собственным опытом применения при выполнении работ по тепловой изоляции и футеровке: теплоизоляционные огнеупорные маты (одеяла), плиты, бумага, текстиль, волокно навалом, огнеупорные блоки (модули), бетон, кирпич, мертель, мастика, клей, крепеж и многое другое.

“Инвентум Украина” – официальный дистрибьютор и импортер в Украине всемирно известных производителей высокотемпературных теплоизоляционных и огнеупорных материалов для тепловой изоляции и футеровки – Luyang Unifrax Trading Company Limited, Morgan Advanced Materials, Allied Mineral Products, ECTP Refractories и другие (более детальную информацию смотрите на странице “Наши партнеры”).

Продукция компании Luyang Unifrax Trading Company Limited (КНР) пользуется спросом более чем в 60 странах мира, в том числе странах Европейского Союза, США, Японии и Австралии. Объём выпускаемой продукции составляет 100 000 тонн в год. На производственной площади 1 000 000 квадратных метров работает более 2200 сотрудников. В корпорацию Shandong Luyang Share Co входят 6 дочерних предприятий. Компания использует современные инновационные технологии при производстве керамического волокна и изделий на его основе, ей принадлежит 45 патентов и 28 научных и технических достижений. Это позволяет производить продукцию высокого качества и с конкурентоспособной ценой. А внутренние стандарты качества компании признаны общенациональными стандартами для всех производителей высокотемпературной изоляции и огнеупоров на основе керамического волокна.

Morgan Advanced Materials (ЕС) – флагман производства высокотемпературных теплоизоляционных и огнеупорных материалов. Компании принадлежит 34 завода и 50 представительств, расположенных по всему миру. Количество работающих сотрудников превышает 3000 человек. Все производственные процессы автоматизированы с целью достижения максимального качества производимой продукции. Компания производит практически весь спектр высокотемпературных огнеупорных и теплоизоляционных материалов: маты (одеяло), плиты, блоки, бумага на основе керамического волокна, кирпич, бетон, мертель и многое другое. Продукция представлена в широком диапазоне размеров, плотностей, температурных режимов и т. п., что позволяет максимально широко ее применять для решения практически любых технических задач по тепловой изоляции и футеровке. Morgan Advanced Materials не только лидер по производству высокотемпературной изоляции и огнеупоров, но и лидер в техническом, инженерном плане. Практически на каждую задачу, связанную с высокотемпературной тепловой изоляцией и футеровкой, есть готовое техническое решение и специально разработанная для решения такой задачи продукция. Ну, а качество производимых высокотемпературной изоляции и огнеупоров соответствует наивысшим европейским стандартам.

Благодаря тому, что «Инвентум Украина» является официальным дистрибьютором и импортером продукции Luyang Unifrax Trading Company Limited, Morgan Advanced Materials, Allied Mineral Products, ECTP Refractories и других производителей в Украине (смотрите соответствующие сертификаты), клиенты компании имеют возможность приобретать материалы напрямую от производителей по самым низким ценам и им не приходиться оплачивать наценку посредников и перевозчиков. Также клиентам «Инвентум Украина» не нужно беспокоится о подлинности, а значит качестве, продукции. В компании работают высококвалифицированные инженеры, футеровщики и менеджеры по продажам, которые ежегодно проходят обучение у специалистов производителей. Благодаря этому, менеджеры по продажам «Инвентум Украина» могут дать обширную консультацию по свойствам и особенностям применения предлагаемых высокотемпературных огнеупорных и теплоизоляционных материалов, помогут сделать правильный выбор и осуществить поставку, а технические специалисты – разработать проектно-сметную документацию и произвести монтаж.

inventum.com.ua

Интегрированный высокотемпературный теплоизоляционный материал “итом” и способ его производства

Изобретение относится к промышленности строительных материалов и может быть использовано в производстве изделий для теплоизоляции печных агрегатов и энергетического оборудования с температурой изолируемой поверхности до 1100°С. Готовят шихту, содержащую мас.%: вспученный вермикулит – 20-60, огнеупорную глину или каолин – 37-55, пыль от электрофильтров – 1-20, шамот фракции менее 0,063 мм – 1-30, полиэлектролит структурообразователь – 3-5 (сверх 100%), увлажняют водой, приготовленную массу вылеживают в закрытой емкости не менее 24 часов, после чего формуют сырец изделия, сушат его до остаточной влажности не более 5% и обжигают при температуре 1000-1100°С. В качестве структурообразователя используют полиэлектролит с наличием в полимерной молекуле карбоксильных, амидных, нитрильных и эфирных групп. Технический результат: снижение воздушной и огневой усадки, объемных изменений в службе, более высокая температура начала размягчения, упрощение процесса приготовления массы и формования изделий, отсутствие анизотропии физико-химических и теплофизических свойств изделий, предельно низкие значения теплопроводности. 2 н.п. ф-лы, 1 табл.

 

Изобретение относится к промышленности строительных материалов и может быть использовано в производстве изделий для теплоизоляции печных агрегатов и энергетического оборудования с температурой изолируемой поверхности до 1100° С.

Известен высокотемпературный теплоизоляционный материал, изготавливаемый из шихты, описанной в а.с.№1534038, состоящей из вспученного вермикулита, огнеупорной глины, отходов производства электрокорунда, отходов углеобогащения, при следующем соотношении компонентов, мас.%: вспученный вермикулит 26-42, огнеупорная глина 24-44, отходы производства электрокорунда 9-34, отходы углеобогащения 8-14. Известный материал обладает рядом недостатков – низкая прочность, большая воздушная и огневая усадки, приводящие к деформации изделий, что требует выполнения механической обработки для придания изделиям точных размеров и формы.

Известен способ производства теплоизоляционных керамовермикулитовых изделий, описанный в а.с.№ 1583395, включающий приготовление глиняного шликера, введение в него части огнеупорного заполнителя в количестве 25-45 мас.ч. от общего его содержания в массе, перемешивание образовавшейся смеси со вспученным вермикулитом и оставшейся частью огнеупорного заполнителя, подогретого до 80-95° С, выдерживание массы в течение 1,5-2,0 ч, формование, сушку и обжиг, высушенного сырца изделия в печи, предварительно разогретой до температуры 1150° С в течение 75-100 минут. Недостатки предлагаемого способа выражены в его низкой технологичности при организации поточного производства из-за повышенной влажности сырца после его формования, большой воздушной усадки сырца, высоких энергозатрат на его сушку, большой огневой усадки, что приводит к деформации изделий и необходимости дополнительной механической обработки изделий.

Наиболее близким по совокупности признаков (прототипом) к предлагаемому изобретению является высокотемпературный теплоизоляционный материал, изготавливаемый из шихты, описанной в патенте РФ № 2154042, состоящей из вспученного вермикулита, огнеупорной глины, пыли электрофильтров, бентонита и полиэлектролита структурообразователя с наличием в полимерной молекуле карбоксильных, амидных, нитрильных и эфирных групп, при следующем соотношении компонентов, мас.%: вспученный вермикулит 35-60, огнеупорная глина или каолин 36-43, пыль от электрофильтров 1-20, бентонит 1-3, полиэлектролит структурообразователь 0,3-0,6. Использование в качестве дисперсного огнеупорного заполнителя одной только пыли от электрофильтров, склонной к спеканию, повышает объемные усадочные изменения изделий при температуре эксплуатации (около 1000° С). Из-за присутствия низкоплавкого бентонита предельная температура эксплуатации материала снижается до 1000° С.

Наиболее близким по совокупности признаков (прототипом) к предлагаемому способу является способ производства высокотемпературного теплоизоляционного материала, описанный в упомянутом патенте РФ № 2154042, включающий дозирование, перемешивание, увлажнение водным раствором полиэлектролита-структурообразователя в смесителе компонентов массы, состоящей из легковесного и дисперсного огнеупорного заполнителя, огнеупорной глины, обработку ее в ленточном прессе, прессование сырца, сушку и обжиг. Недостатком данного способа является сложность операции прессования заготовки на ленточном прессе из массы, содержащей вспученный вермикулит, обладающей высоким упругим последействием, что приводит к нарушению сплошности сырца и получению дефектных изделий. Кроме того, изделия, полученные прессованием на ленточном прессе, имеют анизотропию физико-механических свойств (прочность, теплопроводность, тепловое расширение), что отрицательно сказывается на долговечности службы изделий.

Предлагаемый теплоизоляционный материал в сравнении с аналогами имеет минимальные (менее 1% при выдержке в течение 8 часов) объемные изменения при температуре службы, более высокую температуру начала размягчения (более 1100° С), что улучшает его эксплуатационные и ресурсные характеристики в службе, а благодаря малым и равномерным линейной и объемной усадке (воздушная 2,0-2,4%, огневая 2,2-2,3%) не происходит деформации изделий в сушке и после обжига. Указанный технический эффект достигается тем, что теплоизоляционный огнеупорный материал изготавливается из шихты, включающей вспученный вермикулит в качестве легковесного заполнителя, огнеупорную глину или каолин, полиэлектролит структурообразователь с наличием в полимерной молекуле карбоксильных, амидных, нитрильных и эфирных групп и дисперсный огнеупорный заполнитель, включающий пыль от электрофильтров вращающихся печей по производству шамота и шамот фракции менее 0,063 мм при следующем соотношении компонентов, мас.%:

Вспученный вермикулит 20-60

Огнеупорная глина или каолин 37-55

Пыль от электрофильтров 1-20

Шамот фракции менее 0,063 мм 1-30

Полиэлектролит структурообразователь 3-5 (сверх 100%)

а количество вводимого полиэлектролита структурообразователя составляет 9% от массы огнеупорной глины или каолина.

В предлагаемом способе, в сравнении прототипом, устранена операция предварительного прессования заготовки ленточным прессом, что упрощает формообразование сырца, значительно уменьшая количество дефектных заготовок, не требует приготовления и использования водного раствора полиэлектролита, создает изотропную интегрированную структуру изделия: в матрицу, образованную огнеупорными материалами (огнеупорная глина или каолин, шамот и пыль от электрофильтров), интегрированы частицы легковесного заполнителя – вермикулита, не имеющие направленной ориентации. Благодаря такой структуре устраняется анизотропия физико-химических и теплофизических свойств изделий, свойственная изделиям, прошедшим стадию предварительного прессования на ленточном прессе, при которой частицы вермикулита получают ориентацию вдоль оси прессования. Указанный технический результат достигается тем, что при реализации заявляемого способа производства теплоизоляционного огнеупорного материала включающего дозирование, перемешивание и увлажнение в смесителе компонентов шихты, состоящей из вспученного вермикулита в качестве легковесного заполнителя, огнеупорной глины или каолина и дисперсного огнеупорного заполнителя, в виде пыли от электрофильтров вращающихся печей по производству шамота и шамот фракции менее 0,063 мм, прессование сырца, его сушку и обжиг, причем при приготовлении массы в нее дополнительно вводится 3-5 мас.% (сверх 100%) порошкообразного полиэлектролита структурообразователя с наличием в полимерной молекуле карбоксильных, амидных, нитрильных и эфирных групп и вылеживание приготовленной массы в закрытой емкости не менее 24 часов.

Пыль от электрофильтров – это отходы производства шамота при обжиге огнеупорных глин и каолинов во вращающихся печах. Она представлена сферическими частицами с внутренней полостью частично дегидратированного глинистого минерала – каолинита. Пыль непластична, ее химический состав, мас.%: Аl

2O3 35,4-42,2, Fе2О3 1,28-3,08, SiO2 52,0-60,2, CaO 0,3-0,5, MgO 0,2-0,5, Nа2О+К2О 0,1-0,5; потери массы при прокаливании 2-8, а гранулометрический состав, мас.%: фракция > 200 мкм 0,3-4,3, фракция 50-200 мкм 40,3-54,1, фракция 10-50 мкм 10,5-14,4, фракция 5-10 мкм 14,3-15,5, фракция 1-5 мкм 1,3-5,8, фракция <1 мкм 10,3-20,4.

Использование пыли от электрофильтров позволяет за счет наличия внутренней полости у ее частиц снизить плотность как сырца, так и готовых изделий, чем облегчается задача получения изделий с низкой плотностью (0,4-0,6 г/см3) и экстремально низкой теплопроводностью (λ =0,1-0,2 Вт/(м· К)) при высокой прочности (σ сж=1,0-2,5 Н/мм2).

Добавление в массу дисперсного шамота (фракции менее 0,063 мм) способствует снижению объемной усадки (воздушная 2,0-2,4%, огневая 2,2-2,3%), сохранению точных геометрических размеров и формы изделий после сушки и обжига.

Введение в массу полиэлектролита структурообразователя в виде сухого твердого порошка позволяет уменьшить ее влажность. Предельное количество полиэлектролита структурообразователя может составлять 9% от массы огнеупорной глины (каолина).

Увеличение содержания вермикулита в шихте приводит к снижению кажущейся плотности и прочности, увеличение суммарного содержания шамота и пыли от электрофильтров при постоянном содержании вермикулита приводит к повышению кажущейся плотности, снижению воздушной и огневой усадки, увеличение содержания огнеупорной глины (каолина) приводит к повышению плотности и прочности изделий.

ПРИМЕР 1. Для производства теплоизоляционных огнеупорных материалов используют шихту следующего состава, маc.%:

Пластичный каолин 37

Вспученный вермикулит 58

Шамот фракции менее 0,063 мм 1

Пыль от электрофильтров 1

Полиэлектролит структурообразователь 3 (сверх 100%)

Предлагаемый способ заключается в следующем: весовым способом в заданном соотношении дозируют компоненты шихты (огнеупорную глину или каолин, вспученный вермикулит, пыль от электрофильтров, шамот фракции менее 0,063 мм, полиэлектролит структурообразователь), загружаютпоследовательно в смеситель (Z-образная мешалка или двухвальный смеситель) и тщательно перемешивают, после чего производят увлажнение водой, перемешивают до получения однородной сыпучей массы, которую выгружают в закрытую емкость и вылеживают не менее 24 часов. При вылеживании вода воздействует на полиэлектролит структурообразователь, вызывая его набухание и пластификацию, повышая тем самым пластичные свойства массы и ее связность. После вылеживания из массы формуют изделия, которые сушат естественной или принудительной сушкой до остаточной влажности не более 5%, высушенные изделия обжигают при температуре 1000-1100° С.

ПРИМЕР 2. Отличается от примера 1 только составом шихты, маc.%:

Пластичный каолин 50

Вспученный вермикулит 48

Шамот фракции менее 0,063 мм 1

Пыль от электрофильтров 1

Полиэлектролит структурообразователь 4,5 (сверх 100%)

ПРИМЕР 3. Отличается от примера 1 только составом шихты, маc.%:

Пластичный каолин 40

Вспученный вермикулит 20

Шамот фракции менее 0,063 мм 25

Пыль от электрофильтров 15

Полиэлектролит структурообразователь – 4 (сверх 100%).

ПРИМЕР 4. Отличается от примера 1 только составом шихты, маc.%:

Пластичный каолин 45

Вспученный вермикулит 25

Шамот фракции менее 0,063 мм 10

Пыль от электрофильтров 20

Полиэлектролит структурообразователь 4,5 (сверх 100%)

Свойства теплоизоляционных огнеупорных материалов, описанных в примерах 1-4, приведены в таблице 1.

Таблица 1.
Основные технические характеристики ИТОМ.
№п/пНаименование показателяЗначения показателей для примеров
№1№2№3№4
1.Кажущаяся плотность, кг/м3420-500600-640850-9001000-1100
2.Предел прочности при сжатии, Н/мм20,9-1,01,0-1,41,4-1,72,0-2,4
3Пористость открытия, %80-8275-7865-6862-65
4.Дополнительная линейная усадка при 1150° С,%1,4-1,51,2-1,41,1-1,31,0-1,2
5.Температура начала размягчения,° С
Под нагрузкой 0,05 Н/мм21109111911351140
Под нагрузкой 0,04 Н/мм21120
Под нагрузкой 0,06 Н/мм21118
Под нагрузкой 0,08 Н/мм21117
Под нагрузкой 0,1 Н/мм21108
6.ТКЛР (α 20-900° С)-градус-1×1069,488,687,627,02
7.Коэффициент теплопроводности, Вт/(м× К)
 При средней температуре 200° С0,0900,1200,1830,230
 При средней темпсратуре 380° С0,1200,1390,1940,250
8.Термостойкость, теплосмен (1000° С-воздух)>100>100>100>100

1. Теплоизоляционный огнеупорный материал, изготовленный из шихты, включающей вспученный вермикулит, огнеупорную глину или каолин, полиэлектролит структурообразователь с наличием в полимерной молекуле карбоксильных, амидных, нитрильных и эфирных групп и дисперсный огнеупорный заполнитель, отличающийся тем, что шихта содержит в качестве дисперсного огнеупорного заполнителя пыль от электрофильтров вращающихся печей по производству шамота и шамот фракции менее 0,063 мм при следующем соотношении компонентов, мас.%:

вспученный вермикулит 20-60,

огнеупорная глина или каолин 37-55,

пыль от электрофильтров 1-20,

шамот фракции менее 0,063 мм 1-30,

полиэлектролит структурообразователь 3-5 (сверх 100%),

причем количество полиэлектролита составляет 9% от массы огнеупорной глины или каолина.

2. Способ производства теплоизоляционного огнеупорного материала, включающий дозирование, перемешивание и увлажнение в смесителе компонентов шихты: вспученного вермикулита, огнеупорной глины или каолина и дисперсного огнеупорного заполнителя, формование сырца, его сушку и обжиг, отличающийся тем, что при приготовлении массы используют в качестве дисперсного огнеупорного заполнителя пыль от электрофильтров вращающихся печей по производству шамота и шамот фракции менее 0,063 мм и дополнительно 3-5 мас.% (сверх 100%) порошкообразного полиэлектролита структурообразователя с наличием в полимерной молекуле карбоксильных, амидных, нитрильных и эфирных групп, а после увлажнения приготовленную массу вылеживают в закрытой емкости не менее 24 ч.

findpatent.ru

Безобжиговый высокотемпературный теплоизоляционный материал и способ его производства

 

Изобретение относится к промышленности строительных материалов и может быть использовано в производстве изделий для теплоизоляции печатных агрегатов и энергетического оборудования с температурой изолируемой поверхности до 1000°С. При получении материала готовят шихту состава, мас.%: вспученный вермикулит 35-60, огнеупорная глина 30-44, высокоглиноземистый цемент 1-3, пыль электрофильтров 1-20, шихту увлажняют водным раствором карбоксиметилцеллюлозы (КМЦ), при этом количество КМЦ составляет (сверх 100% от массы шихты) 1,3-3,5, затем приготовленную массу подают в ленточный пресс, где она дополнительно обрабатывается, уплотняется и экструдируется в валок, из него прессуют изделия, которые подвергают сушке до влажности менее 1%. Технологический результат: улучшение эксплуатационных характеристик материала, вследствие невысокой и равномерной линейной и объемной усадки, исключение деформации изделий при сушке, снижение энергозатрат. 2 с.п. ф-лы.

Изобретение относится к промышленности строительных материалов и может быть использовано в производстве изделий для теплоизоляции печных агрегатов и энергетического оборудования с температурой изолируемой поверхности до 1000oC.

Известен высокотемпературный теплоизоляционный материал (SU 1534039 A1, кл. C 04 B 38/06, 07.01.1990), содержащий в составе шихты, мас.%: вспученный вермикулит 29-48, диатомит 32-49, отходы абразивного производства 11-37. Известен высокотемпературный теплоизоляционный материал, изготавливаемый из шихты (SU 1534038 A1, кл. C 04 B 35/66, 07.01.1990), состоящий из вспученного вермикулита, огнеупорной глины, отходов производства электрокорунда, отходов углеобогащения, при следующем соотношении компонентов, мас.%: Bспученный вермикулит – 26-42 Oгнеупорная глина – 24-44 Oтходы производства электрокорунда – 9-34 Oтходы углеобогащения – 8-14 Известный теплоизоляционный материал обладает рядом недостатков – низкая прочность, большие объемная и линейная усадки в процессе сушки и обжига, что приведет к необходимости дополнительной механической обработки изделий. Наиболее близким аналогом заявленного безобжигового высокотемпературного теплоизоляционного материала является материал, охарактеризованный в описании к SU 757495 A, кл. C 04 B 38/00, 23.07.1980 (описание, с.1, колонка 1), изготовленный из шихты, включающей вспученный вермикулит фракции 0-5 мм с объемной массой не более 125 кг/м3, огнеупорную глину, огнеупорный наполнитель – магнезитовый порошок и сернокислый магний. Известен способ производства теплоизоляционных керамовермикулитовых изделий (SU 1583395 A1, кл. C 04 B 35/56, 07.08. 1990), включающий приготовление глиняного шликера, введение в него огнеупорного заполнителя в количестве 25-45 мас. ч. от всего его содержании, перемешивание смеси со вспученным вермикулитом и оставшейся частью огнеупорного заполнителя, подогретого до 80-95oC, выдерживание массы в течение 1,5-2,0 ч, формование, сушку и обжиг, который осуществляют, помещая в печь с температурой 1000-1050oC, выдерживают их 35-45 мин, повышают температуру до 1150oC и выдерживают 75-105 мин. Недостатком этого способа является его низкая технологичность в условиях организации поточного производства, кроме того, за счет повышенной влажности сырца после его формования имеют место высокие энергозатраты на его сушку и большая линейная и объемная усадки при сушке и обжиге, что может привести к деформации изделий. Известен способ производства легковесных теплоизоляционных огнеупоров (RU 2083528 C1, кл. C 04 B 33/22, 10.07.1997), заключающийся в том, что в смесительном устройстве готовят шихту состава, мас.%: шамот 45-55, огнеупорная глина 45-55, вспененный полистирол не менее 3 (сверх 100% от веса шихты), перманганат калия 0,1-0,4 (сверх 100% от веса шихты), ее увлажняют, обрабатывают массу в ленточном прессе, прессуют заготовки, в них прокалывают отверстия диаметром 3-5 мм, сушат и обжигают при температуре не более 1330oC, причем скорость подъема температуры в печи до 800oC не должна превышать 20oC/ч. Недостатком этого способа является использование в качестве легковесного заполнителя вспененного полистирола, который при нагревании в процессе обжига образует ряд вредных ароматических соединений, опасных для здоровья людей. Наиболее близким аналогом заявленного способа является способ производства безобжигового високотемпературного теплоизоляционного материала, включающий перемешивание в смесителе огнеупорной глины и каолинового волокна, формование изделий и сушку (SU 592805 A, кл. C 04 B 33/00, 13.02.1978). Задачей изобретения является повышение прочности теплоизоляционного материала, улучшение его эксплуатационных и ресурсных характеристик вследствие невысокой и равномерной линейной и объемной усадки, сокращение времени и энергозатрат на сушку изделий. Указанная задача решается за счет того, что безобжиговый высокотемпературнай теплоизоляционный материал изготавливается из шихты, включающей вспученный вермикулит, огнеупорную глину и дисперсный огнеупорный заполнитель, в качестве которого используется пыль от электрофильтров вращающихся печей по производству шамота и дополнительно высокоглиноземистый цемент и карбоксиметилцеллюлозу, при следующем соотношении компонентов, мас.%: Bспученный вермикулит – 35-60 Oгнеупорная глина – 30-44 Пыль электрофильтров – 1-20 Высокоглиноземистый цемент – 1-3
Карбоксиметилцеллюлоза (сверх 100% от массы шихты) – 1,3-3,5
Сформулированная задача решается также за счет того, что в способе производства безобжигового высокотемпературного теплоизоляционного материала, включающем перемешивание в смесителе компонентов шихты, включающей огнеупорную глину и заполнитель и сушку заготовок, компоненты шихты предварительно дозируют, после перемешивания увлажняют в смесителе, полученную смесь обрабатывают в ленточном прессе, прессуют заготовки, при этом в качестве легковесного заполнителя используют вспученный вермикулит, в качестве дисперсного огнеупорного заполнителя – пыль от электрофильтров вращающихся печей по производству шамота, причем при приготовлении массы в нее дополнительно вводят высокоглиноземистый цемент до получения шихты состава, мас.%:
Bспученный вермикулит – 35-60
Oгнеупорная глина – 30-44
Пыль электрофильтров – 1-20
Высокоглиноземистый цемент – 1-3
а карбоксиметилцеллюлозу в количестве (сверх 100% от массы шихты) 1,3-3,5 мас.% вводят при увлажнении шихты в виде водного раствора. Пыль от электрофильтров представлена сферическими частицами с внутренней полостью частично дегидратированного глинистого минерала – каолинита. Пыль непластична (тощий материал или отощитель) и имеет гранулометрический состав, мас.%: фракция > 200 мкм – 0,3-4,2; фракция 5-200 мкм – 40,3-54,1; фракция 10-50 мкм – 10,5-14,4; фракция 5-10 мкм – 14,3-15,5; фракция 1-5 мкм – 1,3-5,8; фракция 2O3 – 35,4-42,2; Fe2O3 – 1,28-3,08; SiO2 – 52,0-60,2; CaO – 0,3-0,5; MgO – 0,2-0,5; Na2O + K2O – 0,1-0,5; потери массы при прокаливании – 2-8. Использование пыли от электрофильтров позволяет за счет наличия внутренней полости у ее частиц снизить плотность как заготовки, так и готовых изделий, чем облегчается задача получения изделий с низкой плотностью ( = 0,2-0,6 г/см3) и экстремально низкой теплопроводностью ( = 0,1-0,4 Вт/(мK) при высокой прочности (изг.= 25-50 кг/см2). Высокоглиноземистай цемент представляет собой тонкомолотую (массовая доля частиц менее 90 мкм – не менее 90%) смесь алюминатов кальция следующего химического состава, мас. %: Al2O3 – 70-75; CaO – 20-28; Fe2O3 – 0,1-0,5; SiO2 – 0,1-1,0; MgO + R2O – остальное. Добавление его в пластичную глинистую массу вместе с карбоксиметилцеллюлозой способствует повышению ее пластичности, снижению водопотребности массы, увеличению отощения, что приводит к снижению как воздушной, так и огневой усадки изделий. Добавка высокоглиноземистого цемента за счет его гидратации и последующего образования цементного камня повышает связующую способность глинистого компонента, способствует увеличению прочности изделий до значения, исключающего последующий обжиг изделий. Карбоксиметилцеллозу вводят в виде водного раствора. Пример. Для производства безобжиговых высокотемпературных теплоизоляционных изделий используют шихту следующего состава, мас.%:
Bспученный вермикулит – 59
Oгнеупорная глина – 34
Пыль электрофильтров – 5
Высокоглиноземистый цемент – 2
Карбоксиметилцеллюлоза (сверх 100% от массы шихты) – 3,0
Изменение соотношения вермикулита и огнеупорной глины, приводит к уменьшению кажущейся плотности и прочности увеличению количества раствора карбоксиметилцеллюлозы, необходимого для увлажнения шихты и к увеличению ее расхода. Увеличение содержания в шихте пыли от электрофильтров при постоянном суммарном количестве отощителя (вермикулита вместе с пылью) приводит к повышению прочности и повышению кажущейся плотности получаемых изделий. Весовым способом в заданном соотношении дозируют компоненты шихты (вспученный вермикулит, огнеупорную глину, пыль электрофильтров, высокоглиноземистый цемент), последовательно загружают в смесительное устройство (бегуны, Z-образная мешалка, двухвальный смеситель), тщательно перемешивают, после чего производят увлажнение водным раствором карбоксиметилцеллюлозы, затем приготовленную массу подают в ленточный пресс, где она дополнительно обрабатывается, уплотняется и экструдируется в валок, из него прессуются изделия, которые подвергают сушке до влажности менее 1%. Полученный в соответствии с изобретением безобжиговый высокотемпературный изоляционный материал характеризуется прочностью при изгибе 27-59 кг/см2, равномерной линейной и объемной усадкой 4-6%.


Формула изобретения

1. Безобжиговый высокотемпературный теплоизоляционный материал, изготовленный из шихты, включающей вспученный вермикулит, огнеупорную глину и дисперсный огнеупорный заполнитель, отличающийся тем, что шихта содержит в качестве дисперсного огнеупорного заполнителя пыль от электрофильтров вращающихся печей по производству шамота и дополнительно высокоглиноземистый цемент и карбоксиметилцеллюлозу при следующем соотношении компонентов, мас.%:
Вспученный вермикулит – 35 – 60
Огнеупорная глина – 30 – 44
Пыль электрофильтров – 1 – 20
Высокоглиноземистый цемент – 1 – 3
Карбоксиметилцеллюлоза (сверх 100% от массы шихты) – 1,3 – 3,5
2. Способ производства безобжигового высокотемпературного теплоизоляционного материала, включающий перемешивание в смесителе компонентов шихты, включающей огнеупорную глину и заполнитель, и сушку заготовок, отличающийся тем, что компоненты шихты предварительно дозируют, после перемешивания увлажняют в смесителе, полученную смесь обрабатывают в ленточном прессе, прессуют заготовки, при этом в качестве легковесного заполнителя используют вспученный вермикулит, в качестве дисперсного огнеупорного заполнителя – пыль от электрофильтров вращающихся печей по производству шамота и дополнительно вводят при приготовлении массы высокоглиноземистый цемент до получения шихты состава, мас.%:
Вспученный вермикулит – 35 – 60
Огнеупорная глина – 30 – 40
Пыль электрофильтров – 1 – 20
Высокоглиноземистый цемент – 1 – 3
а карбоксиметилцеллюлозу вводят при увлажнении шихты в количестве 1,3 – 3,5 мас.% (сверх 100% от массы шихты) в виде водного раствора.

findpatent.ru

Высокотемпературный теплоизоляционный материал и способ его производства

 

Изобретение относится к промышленности строительных материалов и может быть использовано в производстве изделий для теплоизоляции печных агрегатов и энергетического оборудования с температурой изолируемой поверхности до 1000°С. Готовят шихту состава мас.%: вспученный вермикулит 35-60, огнеупорная глина 36-43, пыль электрофильтров 1-20, бетонит 1-3, шихту увлажняют водным раствором, содержащим полиэлектролит структурообразователь в количестве (сверх 100% от массы шихты) 0,3-0,6 мас.%, прессуют заготовки, сушат их до остаточной влажности не более 1% и обжигают при 1000-1050°С. В качестве структурообразователя используют полиэлектролит с наличием в полимерной молекуле карбоксильных, амидных, нитрильных и эфирных групп. Технический результат: повышение прочности теплоизоляционного материала, снижение линейной и объемной усадки его, сокращение времени и энергозатрат при сушке и обжиге изделий. 2 c.п. ф-лы.

Изобретение относится к промышленности строительных материалов и может быть использовано в производстве изделий для теплоизоляции печных агрегатов и энергетического оборудования c температурой изолируемой поверхности до 1000oC.

Известен высокотемпературный теплоизоляционный материал, описанный в а. с. N 1534039, содержащий в составе шихты, мас.%: вспученный вермикулит 29-48, диатомит 32-49, отходы абразивного производства 11-37. Однако данный теплоизоляционный материал обладает рядом недостатков – низкая прочность, большие объемная и линейная усадки в процессе сушки и обжига, что приводит к необходимости дополнительной механической обработки изделий. Известен способ производства теплоизоляционных керамовермикулитовых изделий, описанный в а. с. N 1583395, включающий приготовление глиняного шликера, введение в него огнеупорного заполнителя в количестве 25-45 мас.ч. от всего его содержания, перемешивание смеси со вспученным вермикулитом и оставшейся частью огнеупорного заполнителя, подогретого до 80-95oC, выдерживание массы в течение 1,5-2,0 ч, формование, сушку и обжиг, который осуществляют, помещая в печь с температурой 1000-1050oC , выдерживают их 35-45 мин, повышают температуру до 1150oC и выдерживают 75-105 мин. Недостатком предлагаемого способа является его низкая технологичность в условиях организации поточного производства, кроме того, за счет повышенной влажности сырца после его формования имеют место высокие энергозатраты на его сушку и большая линейная и объемная усадки при сушке и обжиге, что приводит к деформации изделий. Наиболее близким по совокупности признаков (прототипом) к предлагаемому является высокотемпературный теплоизоляционный материал, изготавливаемый из шихты, описанной в а. с. N 1534038, состоящей из вспученного вермикулита, огнеупорной глины, отходов производства электрокорунда, отходов углеобогащения, при следующем соотношении компонентов, мас.%: Вспученный вермикулит – 26-42, Огнеупорная глина – 24-44, Отходы производства электрокорунда – 9-34, Отходы углеобогащения – 8-14. Прототипу присущи те же недостатки, что и приведенному выше аналогу. Наиболее близким по совокупности признаков (прототипом) к описываемому способу является способ производства легковесных теплоизоляционных огнеупоров по патенту РФ N 2083528, заключающийся в том, что в смесительном устройстве готовят шихту состава, мас.%: шамот 45-55, огнеупорная глина 45-55, вспененный полистирол не менее 3 (сверх 100% от веса шихты), перманганата калия 0,1-0,4 (сверх 100% от веса шихты), ее увлажняют, обрабатывают массу в ленточном прессе, прессуют заготовки, в них прокалывают отверстия диаметром 3-5 мм, сушат и обжигают при температуре не более 1330oC, причем скорость подъема температуры в печи до 800oC не должна превышать 20oC/час. Недостатком этого способа является использование в качестве легковесного заполнителя вспененного полистирола, который при нагревании в процессе обжига образует ряд вредных ароматических соединений, опасных для здоровья людей. Предлагаемый теплоизоляционный материал в сравнении с аналогами имеет более высокую прочность (изг= 25-50 кг/см2), что улучшает его эксплуатационные и ресурсные характеристики в службе, благодаря невысокой линейной и объемной усадке (воздушная 4-7%, огневая 0,4-0,8%) не происходит деформация изделий в сушке. Указанный технический результат достигается тем, что высокотемпературный теплоизоляционный материал, изготавливается из шихты, включающей вспученный вермикулит, огнеупорную глину, дисперсный огнеупорный заполнитель в виде пыли от электрофильтров вращающихся печей по производству шамота, дополнительно бентонит и полиэлектролит структурообразователь, с наличием в полимерной молекуле карбоксильных, амидных, нитрильных и эфирных групп, при следующем соотношении компонентов, мас.%: Вспученный вермикулит – 35-60, Огнеупорная глина – 36-43, Пыль электрофильтров – 1-20 Бентонит – 1-3, Полиэлектролит структурообразователь (сверх 100 % массы шихты) – 0,3-0,6. Предлагаемый способ в сравнении с аналогами позволяет за счет снижения влажности перерабатываемой массы сократить время и энергозатраты на сушку изделий, уменьшить линейную и объемную усадки при сушке и обжиге, избежать образования экологически опасных и вредных веществ при переработке ингредиентов в высокотемпературный теплоизоляционный материал, получить низкую теплопроводность изделий (0,1-0,4 Вт/(мК)). Указанный технический результат достигается тем, что при реализации заявляемого способа производства высокотемпературных теплоизоляционных изделий, включающего дозирование, перемешивание, увлажнение в смесителе компонентов массы, включающей легковесный заполнитель, огнеупорную глину, дисперсный огнеупорный заполнитель, обработку ее в ленточном прессе, прессование сырца, сушку и обжиг, в качестве легковесного заполнителя используют вспученный вермикулит; в качестве дисперсного огнеупорного заполнителя – пыль от электрофильтров вращающихся печей по производству шамота, причем для улучшения структурно-механических свойств массы в нее дополнительно вводят бентонит и полиэлектролит структурообразователь до получения шихты состава, мас. %:
Вспученный вермикулит – 35-60,
Огнеупорная глина – 36-43,
Пыль электрофильтров – 1 -20,
Бентонит – 1-3,
а полиэлектролит структурообразователь в количестве (сверх 100% массы шихты) 0,3-0,6 мас.% вводят при увлажнении шихты в виде водного раствора. Пыль от электрофильтров представлена сферическими частицами с внутренней полостью частично дегидратированного глинистого минерала – каолинита. Пыль непластична (тощий материал или отощитель) и имеет гранулометрический состав, мас.%: фракция > 200 мкм 0,3-4,2, фракция 50-200 мкм 40,3-54,1; фракция 10-50 мкм 10,5-14,4, фракция 5-10 мкм 14,3-15,5, фракция 1-5 мкм 1,3-5,8, фракция 2O3 35,4-42,2, Fe2O3 1,28-3,08, SiO2 52,0-60,2; CaO 0,3-0,5, MgO 0,2-0,5, Na2O + K2O 0,1-0,5; потери массы при прокаливании 2-8. Использование пыли от электрофильтров позволяет за счет наличия внутренней полости у ее частиц, снизить плотность как заготовки, так и готовых изделий, чем облегчается задача получения изделий с низкой плотностью ( = 0,2-0,6 г/см3) и экстремально низкой теплопроводностью ( = 0,1-0,4 Вт/(мК)) при высокой прочности (изг = 25-50 кг/см2). Добавление в глинистую массу бентонита вместе с полиэлектролитом структурообразователем обеспечивает повышение пластичности, снижению водозатворения массы и увеличение отощения, что снижает как воздушную (4-7%), так и огневую усадки изделий (0,4-0,8%), сохраняет точность геометрических размеров и формы изделий, повышает связующую способность глинистого компонента, способствует увеличению прочности изделий. Полиэлектролит структурообразователь вводят водным раствором. Пример. Для производства высокотемпературных теплоизоляционных изделий используют шихту следующего состава, мас. %:
Вспученный вермикулит – 57;
Огнеупорная глина – 36
Бентонит – 2;
Пыль электрофильтров – 5;
Полиэлектролит (сверх 100% от массы шихты) – 0,6
Изменение соотношения огнеупорной глины и вермикулита приводит к уменьшению кажущейся плотности и прочности, увеличению потребности количества раствора полиэлектролита. Увеличение содержания в шихте пыли от электрофильтров при постоянном суммарном количестве отощителя (вермикулита вместе с пылью) приводит к повышению прочности и к повышению кажущейся плотности получаемых изделий. Предлагаемый способ заключается в следующем: весовым способом в заданном соотношении дозируют компоненты шихты (огнеупорную глину, вспученный вермикулит, пыль электрофильтров, бентонит), загружают последовательно в смесительное устройство (бегуны, Z-образная мешалка, двухвальный смеситель) и тщательно перемешивают, после чего производят увлажнение водным раствором полиэлектролита структурообразователя, затем приготовленную массу подают в ленточный пресс, где ее дополнительно обрабатывают, уплотняют и экструдируют валок, из которого прессуют изделия, которые затем сушат до остаточной влажности не менее 1% путем естественной или любым способом принудительной сушки, после чего высушенные изделия обжигают при температуре 1000-1050oC. Свойства высокотемпературных теплоизоляционных изделий (факультативно): прочность на изгиб изг = 25-50 кг/см2, плотность кажущаяся каж = 0,2-0,6 г/см3, теплопроводность = 0,1-0,4 Вт/(мK), усадка воздушная 4-7%, усадка огневая 0,4-0,8%.


Формула изобретения

1. Высокотемпературный теплоизоляционный материал, изготовленный из шихты, включающей вспученный вермикулит в качестве легковесного заполнителя, огнеупорную глину и дисперсный огнеупорный заполнитель, отличающийся тем, что шихта содержит в качестве дисперсного огнеупорного заполнителя пыль от электрофильтров вращающихся печей по производству шамота и дополнительно бентонит и полиэлектролит структурообразователь, с наличием в полимерной молекуле карбоксильных, амидных, нитрильных и эфирных групп при следующем соотношении компонентов, мас.%:
Вспученный вермикулит – 35 – 60
Огнеупорная глина – 36 – 43
Пыль электрофильтров – 1 – 3
Полиэлектролит структурообразователь (сверх 100% массы шихты) – 0,3 – 0,6
2. Способ производства высокотемпературных теплоизоляционных изделий, включающий дозирование, перемешивание и увлажнение в смесителе компонентов шихты, включающей огнеупорную глину, легковесный и дисперсный огнеупорный заполнители, обработку ее в ленточном прессе, прессование заготовок, сушку и обжиг, отличающийся тем, что легковесный заполнитель представлен вспученным вермикулитом, в качестве дисперсного огнеупорного заполнителя используется пыль от электрофильтров вращающихся печей по производству шамота, а при приготовлении массы в нее дополнительно вводят бентонит до получения шихты состава, мас.%:
Вспученный вермикулит – 35 – 60
Огнеупорная глина – 36 – 43
Пыль электрофильтров – 1 – 20
Бентонит – 1 – 3
а полиэлектролит структурообразователь, с наличием в полимерной молекуле карбоксильных, амидных, нитрильных и эфирных групп в количестве (сверх 100% массы шихты) 0,3 – 0,6 мас.% вводят при увлажнении шихты в виде водного раствора.

findpatent.ru

Высокотемпературные материалы :: Книги по металлургии

 

В генераторах прямого преобразования тепловой энергии в электрическую Материалы должны работать при весьма высоких температурах (3000—3500° С — для элементов магнитогидродина-мических систем и 1700—2000° С — для термоэлектрогенераторов). Высокотемпературные Материалы применяют в ракетных двигателях с ядерным горючим, поскольку температуры там достигают до 3000—3300° С. Высокотемпературные Материалы используются в установках для определения прочностных, электрических и тешюфизических свойств вновь разрабатываемых сплавов и соединений. Естественно, что свойства конструкционных материалов этих установок, к которым относятся детали крепления образцов, пуансоны, подставки, токоподводы и т. п., должны обладать более высокой стойкостью при высоких температурах, чем испытуемые образцы. Поскольку часто исследуют Материалы при температурах выше 2000° С, то упомянутые элементы должны работать при 2500— 3000° С и даже выше, обеспечивая одновременно возможность испытаний в нейтральных, агрессивных и разреженных средах. Изделия из высокотемпературных материалов в основном изготавливаются методом порошковой металлургии. Только за последние 10—15 лет тугоплавкие металлы частично стали проходить обычный металлургический цикл: плавка, горячая или холодная обработка давлением с получением сортамента и затем изготовление изделий штамповкой, резанием или сваркой. Правда, в самое последнее время (5—7 лет) появились сообщения о получении отливок из тугоплавких металлов в дуговых или электроннолучевых установках с использованием гарниссажа, но эти работы еще широко не применяются в промышленности. Температура обжига высокоогнеупорных окислов тем выше, чем чище исходное сырье. Часто поэтому для получения плотного черепка в керамическую массу добавляют специальные вещества, которые обеспечивают снижение температуры спекания. Но эта добавка снижает качество изделия по его огнеупорности. Все тугоплавкие металлы, а также графит, тугоплавкие карбиды и нитриды обладают весьма малой жаростойкостью и поэтому требуют защиты от кислорода, паров воды, углекислого газа. Такие тугоплавкие металлы, как тантал и ниобий, реагируют, кроме упомянутых газов, с азотом, водородом и другими газами, исключая инертные. Бориды и силициды более стойки к агрессивным газам, а еще более стойкими веществами являются высокоогнеупорные окислы.

В книге рассматриваются наиболее важные высокотемпературные свойства.

Из тугоплавких металлов в книге рассмотрены только наиболее распространенные: вольфрам, молибден, тантал, ниобий. Для справок приведены также некоторые свойства такого сравнительно мало применяемого металла, как рений. Высокоогнеупорные окислы представлены в книге окислами алюминия, циркония, магния, бериллия, тория; двуокись урана, хотя и весьма огнеупорная, здесь не рассматривается ввиду специфичности ее свойств и условий применения. Применению графита посвящен специальный раздел книги; в частности, рассматриваются его антифрикционные свойства. Из тугоплавких соединений достаточное внимание уделено карбидам — как наиболее тугоплавким соединениям. При высокотемпературных исследованиях чрезвычайно важно правильно измерять температуру, поэтому в книгу включен специальный раздел, посвященный особенностям контактных и бесконтактных методов измерения температуры. Авторы надеются, что книга поможет читателю правильно выбирать и применять высокотемпературные Материалы для интенсификации старых и развития новых производственных процессов.

 

markmet.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *