Низкая теплопроводность это хорошо или плохо – Низкая теплопроводность это хорошо или плохо

Хорошо или плохо должны проводить тепло стены

Karolinazhitko

18 окт. 2016 г., 11:57:24 (2 года назад)

плохо потому что если будет проводить то зимой будет холодно

Nyaky

18 окт. 2016 г., 14:41:25 (2 года назад)

Смотря из чего сделан дом.Если из блоков,то стены будут проводить лучше холод чем из кирпича.Все зависит от плотности в-ва.

Ankaj

18 окт. 2016 г., 15:18:09 (2 года назад)

Спасибо)

Arayik

18 окт. 2016 г., 16:17:44 (2 года назад)

Не за что)

Вы находитесь на странице вопроса «Хорошо или плохо должны проводить тепло стены вашего дома? Обоснуйте свой ответ. Помогите пожалуйста.«, категории «физика«. Данный вопрос относится к разделу «5-9» классов. Здесь вы сможете получить ответ, а также обсудить вопрос с посетителями сайта. Автоматический умный поиск поможет найти похожие вопросы в категории «физика«. Если ваш вопрос отличается или ответы не подходят, вы можете задать новый вопрос, воспользовавшись кнопкой в верхней части сайта.

Последние годы при строительстве дома или его ремонте большое внимание уделяется энергоэффективности. При уже существующих ценах на топливо это очень актуально. Причем похоже что дальше экономия будет приобретать все большую важность. Чтобы правильно подобрать состав и толщин материалов в пироге ограждающих конструкций (стены, пол, потолок, кровля) необходимо знать теплопроводность строительных материалов. Эта характеристика указывается на упаковках с материалами, а необходима она еще на стадии проектирования. Ведь надо решить из какого материала строить стены, чем их утеплять, какой толщины должен быть каждый слой.  

Что такое теплопроводность и термическое сопротивление

При выборе строительных материалов для строительства необходимо обращать внимание на характеристики материалов. Одна из ключевых позиций — теплопроводность. Она отображается коэффициентом теплопроводности. Это количество тепла, которое может провести тот или иной материал за единицу времени. То есть, чем меньше этот коэффициент, тем хуже материал проводит тепло. И наоборот, чем выше цифра, тем тепло отводится лучше.

Диаграмма, которая иллюстрирует разницу в теплопроводности материалов

Материалы с низкой теплопроводностью используются для утепления, с высокой — для переноса или отвода тепла. Например, радиаторы делают из алюминия, меди или стали, так как они хорошо передают тепло, то есть имеют высокий коэффициент теплопроводности. Для утепления используются материалы с низким коэффициентом теплопроводности — они лучше сохраняют тепло. В случае если объект состоит из нескольких слоев материала, его теплопроводность определяется как сумма коэффициентов всех материалов. При расчетах, рассчитывается теплопроводность каждой из составляющих «пирога», найденные величины суммируются. В общем получаем теплоизоляцонную способность ограждающей конструкции (стен, пола, потолка).

Теплопроводность строительных материалов показывает количество тепла, которое он пропускает за единицу времени

Есть еще такое понятие как тепловое сопротивление. Оно отображает способность материала препятствовать прохождению по нему тепла. То есть, это обратная величина по отношению к теплопроводности. И, если вы видите материал с высоким тепловым сопротивлением, его можно использовать для теплоизоляции. Примером теплоизоляционных материалов может случить популярная минеральная или базальтовая вата, пенопласт и т.д. Материалы с низким тепловых сопротивлением нужны для отведения или переноса тепла. Например, алюминиевые или стальные радиаторы используют для отопления, так как они хорошо отдают тепло.

Таблица теплопроводности теплоизоляционных материалов

Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше  (а лучше — хоть немного больше) рекомендованной для вашего региона.

Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций

При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

В сухом состоянииПри нормальной влажностиПри повышенной влажности
Войлок шерстяной0,036-0,0410,038-0,0440,044-0,050
Каменная минеральная вата 25-50 кг/м30,0360,0420,,045
Каменная минеральная вата 40-60 кг/м30,0350,0410,044
Каменная минеральная вата 80-125 кг/м30,0360,0420,045
Каменная минеральная вата 140-175 кг/м30,0370,0430,0456
Каменная минеральная вата 180 кг/м30,0380,0450,048
Стекловата 15 кг/м30,0460,0490,055
Стекловата 17 кг/м30,0440,0470,053
Стекловата 20 кг/м30,040,0430,048
Стекловата 30 кг/м30,040,0420,046
Стекловата 35 кг/м30,0390,0410,046
Стекловата 45 кг/м30,0390,0410,045
Стекловата 60 кг/м30,0380,0400,045
Стекловата 75 кг/м30,040,0420,047
Стекловата 85 кг/м30,0440,0460,050
Пенополистирол (пенопласт, ППС)0,036-0,0410,038-0,0440,044-0,050
Экструдированный пенополистирол (ЭППС, XPS)0,0290,0300,031
Пенобетон, газобетон на цементном растворе, 600 кг/м30,140,220,26
Пенобетон, газобетон на цементном растворе, 400 кг/м30,110,140,15
Пенобетон, газобетон на известковом растворе, 600 кг/м30,150,280,34
Пенобетон, газобетон на известковом растворе, 400 кг/м30,130,22
0,28
Пеностекло, крошка, 100 — 150 кг/м30,043-0,06
Пеностекло, крошка, 151 — 200 кг/м30,06-0,063
Пеностекло, крошка, 201 — 250 кг/м30,066-0,073
Пеностекло, крошка, 251 — 400 кг/м30,085-0,1
Пеноблок 100 — 120 кг/м30,043-0,045
Пеноблок 121- 170 кг/м30,05-0,062
Пеноблок 171 — 220 кг/м30,057-0,063
Пеноблок 221 — 270 кг/м30,073
Эковата0,037-0,042
Пенополиуретан (ППУ) 40 кг/м30,0290,0310,05
Пенополиуретан (ППУ) 60 кг/м30,0350,0360,041
Пенополиуретан (ППУ) 80 кг/м30,0410,0420,04
Пенополиэтилен сшитый0,031-0,038
Вакуум0
Воздух +27°C. 1 атм0,026
Ксенон0,0057
Аргон0,0177
Аэрогель (Aspen aerogels)0,014-0,021
Шлаковата0,05
Вермикулит0,064-0,074
Вспененный каучук0,033
Пробка листы 220 кг/м30,035
Пробка листы 260 кг/м30,05
Базальтовые маты, холсты0,03-0,04
Пакля0,05
Перлит, 200 кг/м30,05
Перлит вспученный, 100 кг/м30,06
Плиты льняные изоляционные, 250 кг/м30,054
Полистиролбетон, 150-500 кг/м30,052-0,145
Пробка гранулированная, 45 кг/м30,038
Пробка минеральная на битумной основе, 270-350 кг/м30,076-0,096
Пробковое покрытие для пола, 540 кг/м30,078
Пробка техническая, 50 кг/м30,037

Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей. Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала.

Таблица теплопроводности строительных материалов

Стены, перекрытия, пол, делать можно из разных материалов, но так повелось, что теплопроводность строительных материалов обычно сравнивают с кирпичной кладкой. Этот материал знаю все, с ним проще проводить ассоциации. Наиболее популярны диаграммы, на которых наглядно продемонстрирована разница между различными материалами. Одна такая картинка есть в предыдущем пункте, вторая — сравнение кирпичной стены и стены из бревен — приведена ниже. Именно потому для стен из кирпича и другого материала с высокой теплопроводностью выбирают теплоизоляционные материалы. Чтобы было проще подбирать, теплопроводность основных строительных материалов сведена в таблицу.

Сравнивают самые разные материалы

в сухом состояниипри нормальной влажностипри повышенной влажности
ЦПР (цементно-песчаный раствор)0,580,760,93
Известково-песчаный раствор0,470,7
0,81
Гипсовая штукатурка0,25
Пенобетон, газобетон на цементе, 600 кг/м30,140,220,26
Пенобетон, газобетон на цементе, 800 кг/м30,210,330,37
Пенобетон, газобетон на цементе, 1000 кг/м30,290,380,43
Пенобетон, газобетон на извести, 600 кг/м30,150,280,34
Пенобетон, газобетон на извести, 800 кг/м30,230,390,45
Пенобетон, газобетон на извести, 1000 кг/м30,310,480,55
Оконное стекло0,76
Арболит0,07-0,17
Бетон с природным щебнем, 2400 кг/м31,51
Легкий бетон с природной пемзой, 500-1200 кг/м30,15-0,44
Бетон на гранулированных шлаках, 1200-1800 кг/м30,35-0,58
Бетон на котельном шлаке, 1400 кг/м30,56
Бетон на каменном щебне, 2200-2500 кг/м30,9-1,5
Бетон на топливном шлаке, 1000-1800 кг/м30,3-0,7
Керамическийй блок поризованный0,2
Вермикулитобетон, 300-800 кг/м30,08-0,21
Керамзитобетон, 500 кг/м30,14
Керамзитобетон, 600 кг/м30,16
Керамзитобетон, 800 кг/м30,21
Керамзитобетон, 1000 кг/м30,27
Керамзитобетон, 1200 кг/м30,36
Керамзитобетон, 1400 кг/м30,47
Керамзитобетон, 1600 кг/м30,58
Керамзитобетон, 1800 кг/м30,66
ладка из керамического полнотелого кирпича на ЦПР0,560,70,81
Кладка из пустотелого керамического кирпича на ЦПР, 1000 кг/м3)0,350,470,52
Кладка из пустотелого керамического кирпича на ЦПР, 1300 кг/м3)0,410,520,58
Кладка из пустотелого керамического кирпича на ЦПР, 1400 кг/м3)0,470,580,64
Кладка из полнотелого силикатного кирпича на ЦПР, 1000 кг/м3)0,70,760,87
Кладка из пустотелого силикатного кирпича на ЦПР, 11 пустот0,640,70,81
Кладка из пустотелого силикатного кирпича на ЦПР, 14 пустот0,520,640,76
Известняк 1400 кг/м30,490,560,58
Известняк 1+600 кг/м30,580,730,81
Известняк 1800 кг/м30,70,931,05
Известняк 2000 кг/м30,931,161,28
Песок строительный, 1600 кг/м30,35
Гранит3,49
Мрамор2,91
Керамзит, гравий, 250 кг/м30,10,110,12
Керамзит, гравий, 300 кг/м30,1080,120,13
Керамзит, гравий, 350 кг/м30,115-0,120,1250,14
Керамзит, гравий, 400 кг/м30,120,130,145
Керамзит, гравий, 450 кг/м30,130,140,155
Керамзит, гравий, 500 кг/м30,140,150,165
Керамзит, гравий, 600 кг/м30,140,170,19
Керамзит, гравий, 800 кг/м30,18
Гипсовые плиты, 1100 кг/м30,350,500,56
Гипсовые плиты, 1350 кг/м30,230,350,41
Глина, 1600-2900 кг/м30,7-0,9
Глина огнеупорная, 1800 кг/м31,4
Керамзит, 200-800 кг/м30,1-0,18
Керамзитобетон на кварцевом песке с поризацией, 800-1200 кг/м30,23-0,41
Керамзитобетон, 500-1800 кг/м30,16-0,66
Керамзитобетон на перлитовом песке, 800-1000 кг/м30,22-0,28
Кирпич клинкерный, 1800 — 2000 кг/м30,8-0,16
Кирпич облицовочный керамический, 1800 кг/м30,93
Бутовая кладка средней плотности, 2000 кг/м31,35
Листы гипсокартона, 800 кг/м30,150,190,21
Листы гипсокартона, 1050 кг/м30,150,340,36
Фанера клеенная0,120,150,18
ДВП, ДСП, 200 кг/м30,060,070,08
ДВП, ДСП, 400 кг/м30,080,110,13
ДВП, ДСП, 600 кг/м30,110,130,16
ДВП, ДСП, 800 кг/м30,130,190,23
ДВП, ДСП, 1000 кг/м30,150,230,29
Линолеум ПВХ на теплоизолирующей основе, 1600 кг/м30,33
Линолеум ПВХ на теплоизолирующей основе, 1800 кг/м30,38
Линолеум ПВХ на тканевой основе, 1400 кг/м30,20,290,29
Линолеум ПВХ на тканевой основе, 1600 кг/м30,290,350,35
Линолеум ПВХ на тканевой основе, 1800 кг/м30,35
Листы асбоцементные плоские, 1600-1800 кг/м30,23-0,35
Ковровое покрытие, 630 кг/м30,2
Поликарбонат (листы), 1200 кг/м30,16
Полистиролбетон, 200-500 кг/м30,075-0,085
Ракушечник, 1000-1800 кг/м30,27-0,63
Стеклопластик, 1800 кг/м30,23
Черепица бетонная, 2100 кг/м31,1
Черепица керамическая, 1900 кг/м30,85
Черепица ПВХ, 2000 кг/м30,85
Известковая штукатурка, 1600 кг/м30,7
Штукатурка цементно-песчаная, 1800 кг/м31,2

Древесина — один из строительных материалов с относительно невысокой теплопроводностью. В таблице даны ориентировочные данные по разным породам. При покупке обязательно смотрите плотность и коэффициент теплопроводности. Далеко не у всех они такие, как прописаны в нормативных документах.

В сухом состоянииПри нормальной влажностиПри повышенной влажности
Сосна, ель поперек волокон0,090,140,18
Сосна, ель вдоль волокон0,180,290,35
Дуб вдоль волокон0,230,350,41
Дуб поперек волокон0,100,180,23
Пробковое дерево0,035
Береза0,15
Кедр0,095
Каучук натуральный0,18
Клен0,19
Липа (15% влажности)0,15
Лиственница0,13
Опилки0,07-0,093
Пакля0,05
Паркет дубовый0,42
Паркет штучный0,23
Паркет щитовой0,17
Пихта0,1-0,26
Тополь0,17

Металлы очень хорошо проводят тепло. Именно они часто являются мостиком холода в конструкции. И это тоже надо учитывать, исключать прямой контакт используя теплоизолирующие прослойки и прокладки, которые называются термическим разрывом. Теплопроводность металлов сведена в другую таблицу.

Бронза22-105Алюминий202-236
Медь282-390Латунь97-111
Серебро429Железо92
Олово67Сталь47
Золото318

Как рассчитать толщину стен

Для того чтобы зимой в доме было тепло, а летом прохладно, необходимо чтобы ограждающие конструкции (стены, пол, потолок/кровля) должны иметь определенное тепловое сопротивление. Для каждого региона эта величина своя. Зависит она от средних температур и влажности в конкретной области.

Термическое сопротивление ограждающих
конструкций для регионов России

Для того чтобы счета за отопление не были слишком большими, подбирать строительные материалы и их толщину надо так, чтобы их суммарное тепловое сопротивление было не меньше указанного в таблице.

Расчет толщины стены, толщины утеплителя, отделочных слоев

Для современного строительства характерна ситуация, когда стена имеет несколько слоев. Кроме несущей конструкции есть утепление, отделочные материалы. Каждый из слоев имеет свою толщину. Как определить толщину утеплителя? Расчет несложен. Исходят из формулы:

Формула расчета теплового сопротивления

R — термическое сопротивление;

p — толщина слоя в метрах;

k — коэффициент теплопроводности.

Предварительно надо определиться с материалами, которые вы будете использовать при строительстве. Причем, надо знать точно, какого вида будет материал стен, утепление, отделка и т.д. Ведь каждый из них вносит свою лепту в теплоизоляцию, и теплопроводность строительных материалов учитывается в расчете.

Сначала считается термическое сопротивление конструкционного материала (из которого будет строится стена, перекрытие и т.д.), затем «по остаточному» принципу подбирается толщина выбранного утеплителя. Можно еще принять в расчет теплоизоляционных характеристики отделочных материалов, но обычно они идут «плюсом» к основным. Так закладывается определенный запас «на всякий случай». Этот запас позволяет экономить на отоплении, что впоследствии положительно сказывается на бюджете.

Пример расчета толщины утеплителя

Разберем на примере. Собираемся строить стену из кирпича — в полтора кирпича, утеплять будем минеральной ватой. По таблице тепловое сопротивление стен для региона должно быть не меньше 3,5. Расчет для этой ситуации приведен ниже.

  1. Для начала просчитаем тепловое сопротивление стены из кирпича. Полтора кирпича это 38 см или 0,38 метра, коэффициент теплопроводности кладки из кирпича 0,56. Считаем по приведенной выше формуле: 0,38/0,56 = 0,68. Такое тепловое сопротивление имеет стена в 1,5  кирпича.
  2. Эту величину отнимаем от общего теплового сопротивления для региона: 3,5-0,68 = 2,82. Эту величину необходимо «добрать» теплоизоляцией и отделочными материалами.

    Рассчитывать придется все ограждающие конструкции

  3. Считаем толщину минеральной ваты. Ее коэффициент теплопроводности 0,045. Толщина слоя будет: 2,82*0,045 = 0,1269 м или 12,7 см. То есть, чтобы обеспечить требуемый уровень утепления, толщина слоя минеральной ваты должна быть не меньше 13 см.

Если бюджет ограничен, минеральной ваты можно взять 10 см, а недостающее покроется отделочными материалами. Они ведь будут изнутри и снаружи. Но, если хотите, чтобы счета за отопление были минимальными, лучше отделку пускать «плюсом» к расчетной величине. Это ваш запас на время самых низких температур, так как нормы теплового сопротивления для ограждающих конструкций считаются по средней температуре за несколько лет, а зимы бывают аномально холодными. Потому теплопроводность строительных материалов, используемых для отделки просто не принимают во внимание.

otoplenie-help.ru

Почему греет теплая одежда

Чем теплая одежда отличается от холодной? Что или кто согревает нас в шубе, ватнике или пуховике? В этой статье мы расскажем о том, почему одежда «греет», как она это делает, и всегда ли теплая одежда оправдывает наши ожидания

Муки выбора

Выбирая одежду, обувь, белье или головные уборы, мы почти всегда стараемся оценить, насколько вещь теплая. Иногда, например при выборе летней рубашки, такая оценка происходит почти незаметно и вряд ли сильно влияет на покупку. Но часто способность одежды согревать выходит на первый план, и тогда этому вопросу мы уделяем немало времени. Ведь нам необходимо убедиться, что мы не замерзнем, когда полезем штурмовать Эверест или попытаемся добраться на велосипеде до Северного полюса.

Мы придирчиво рассматриваем одежду, оцениваем ее фактуру, толщину и плотность, разглядываем изнаночную сторону, щупаем и мнем, чтобы понять, что у нее внутри. Что же мы ищем, производя эти почти шаманские манипуляции? Неужели секретные источники тепла, которые, словно добрый самаритянин, спасут нас в непогоду? Конечно, большинство из нас, выбирая одежду для города, может вообще не задумываться об этом. Какая разница, почему одежда греет. Тепло, и ладно. А будет холодно — наденем что-нибудь другое.

Но ситуация меняется, когда необходимо подобрать одежду для похода, экспедиции, восхождения или длительного путешествия. В этом случае правильный выбор экипировки становится задачей номер один, ведь мы не можем взять с собой слишком много верблюжьих одеял, бабушкиных носков, овчинных тулупов и шаляпинских шуб. Они, конечно же, гарантированно согреют нас в любую погоду если не порознь, то вместе, но сколько шерпов надо нанять, чтобы они весь этот груз хотя бы спустили на лифте, прежде чем мы потащим его в горы?

 В ожидании шерпов

Согрей самого себя

Разумеется, мало кто из нас действительно думает, что греющая одежда греет сама по себе, если, конечно, речь не идет о довольно экзотичных видах экипировки с электроподогревом.

Источником тепла человеческого организма является сам организм, а задачей теплой одежды является пассивное удержание этого тепла рядом с телом. Или, иными словами, роль теплой одежды заключается в замедлении теплообмена между организмом человека и окружающей средой, чтобы исключить чрезмерные потери тепла и предотвратить переохлаждение.

Мерзнущий человек — это тот, чье тело слишком активно делится с окружающей средой своим теплом.

Для обычного человека, обладающего гомеостазом, — то есть способностью поддерживать температуру тела неизменной при незначительных колебаниях температуры окружающей среды, — нормальным является температурный диапазон этой среды от 27 до 32 °C. То есть для человека одинаково плохи как переохлаждение, так и перегрев.

Источником тепла человеческого организма является сам организм, а задачей теплой одежды является пассивное удержании этого тепла рядом с телом

Заметим, что если температура тела в норме слегка колеблется вокруг известных с детства тридцати шести и шести, то температура окружающей среды — это сплошной акт творческой непредсказуемости Юпитеров, Посейдонов и прочих Кецалькоатлей. Поэтому одежды, подходящей для любых климатических условий, не существует, если вы, конечно, не степной кочевник, спасающийся и от холода, и от солнцепека одной и той же меховой шапкой — малахаем. Да, от жары, оказывается, тоже можно спастись с помощью теплой одежды. Ведь если шуба замедляет отток тепла от тела, то точно так же она поступает и с теплом, стремящимся проникнуть в обратном направлении — от чрезмерно нагретой окружающей среды к организму человека. Такую же работу выполняет забавная войлочная панамка, которая, наряду с березовым веником, является одним из важнейших предметов экипировки любителя попариться в сауне.

Из всего этого следует важный факт: никакая одежда не должна полностью блокировать теплообмен организма с окружающей средой. В противном случае она станет похожа на непроницаемый космический скафандр, к которому подключают специальный кондиционер для поддержания нормального микроклимата. Несчастный космонавт вынужден всюду волочить за собой этот ящик со шлангами, пока не сядет в ракету для совершения подвига. Но мы подвиги космического масштаба пока не совершаем, поэтому вряд ли потащим с собой на восхождение бытовой кондиционер.

 Если парень в горах — не ах…

Итак, одежда, какой бы теплой она ни была, должна, с одной стороны, препятствовать излишнему оттоку тепла от организма, а с другой — все-таки позволять этому оттоку происходить в контролируемых объемах для избежания перегрева.

Обычно это решается комплексно. Во-первых, существенное значение имеет базовый выбор одежды, подходящей для планируемых условий ее эксплуатации. Во-вторых, такая одежда должна быть по возможности модифицируемой, то есть она должна позволять использовать дополнительные утепляющие слои или подстежки. В-третьих, такая одежда должна иметь эффективные средства вентиляции: расстегивающиеся клапаны, специальные вентиляционные отверстия, дышащие материалы и т. д. Все это необходимо для того, чтобы расширить температурный диапазон, при котором данный вид одежды обеспечивал бы человеку комфортные условия.

Мерзнущий человек — это тот, чье тело слишком активно делится с окружающей средой своим теплом

Немного физики для лириков

Но вернемся к вопросу, который мы сформулировали в начале: как греет теплая одежда? Ответ на него дает физика, точнее один из ее разделов — термодинамика, — изучающий, в частности, процессы переноса тепла от одного тела к другому. Так как в этой статье мы рассматриваем принципы действия утеплителей, то нас интересует не общий случай переноса тепла от более нагретого к менее нагретому телу, а частный случай переноса тепла от человеческого организма в окружающую среду, имеющую существенно более низкую температуру.

Физика утверждает — и мы не будем с ней спорить, — что существует три основных способа теплопередачи. Два из них — теплопроводность и конвекция — осуществляются при прямом или опосредованном контакте участвующих в теплообмене тел, а один — тепловое излучение — для переноса тепла использует электромагнитные волны.

На практике это выглядит следующим образом. Прямой контакт теплого тела с холодным приводит к тому, что молекулы более нагретого тела передают свою энергию молекулам менее нагретого тела напрямую, при непосредственном взаимодействии. Так, например, происходит, когда мы берем голой рукой холодный камень или кусок льда. Молекулы более теплого тела, то есть руки, передают свою энергию менее «энергичным» молекулам льда до тех пор, пока их температура не сравняется. При этом лед лишь слегка подтает, а вот руке придется несладко. Многие, наверное, знают  жестокую детскую шутку про язык и металлический поручень на морозе: достаточно лишь на мгновение прикоснуться языком к сильно охлажденному металлу, как влага, содержащаяся на языке, передаст свое тепло железке, охладится, замерзнет и ужасно трагично, смешно и нелепо приморозит язык к какому-нибудь предмету посреди заснеженного двора — турнику или качелям.

 Перенос тепла при непосредственном контакте тел с различной температурой

Опосредованный контакт предполагает, что между телами, участвующими в теплопередаче, есть посредник — вода, воздух или другая более или менее плотная среда, через которую осуществляется передача. В этом случае молекулы более нагретого тела сначала вступают в контакт с молекулами посредника и передают им часть своей энергии. Затем «горячие» молекулы посредника достигают поверхности менее нагретого тела и делятся с его молекулами энергией, полученной от первого тела. Иными словами, молекулы посредника передают тепло перемещаясь от одного тела к другому.

Транспортировка тепла посредником

Скорость передачи тепла зависит от материала тела посредника и называется теплопроводностью. Чем выше теплопроводность материала, тем быстрее он нагревается и остывает и тем эффективнее транспортирует тепло.

Теплая одежда — это одежда, которая создает между поверхностью человеческого тела и окружающей средой зону с низким коэффициентом теплопроводности

От теплой одежды требуется замедлить отток тепла от организма человека в окружающую среду. Для этого необходимо выполнить два условия:

  1. Устранить прямой контакт поверхности человеческой кожи с окружающей средой путем введения посредника — одежды;
  2. Подобрать посредника (одежду) с таким коэффициентом теплопроводности K, который обеспечивал бы поддержание комфортного температурного уровня организма при определенной разнице температур между телом человека и окружающей средой.

Коэффициент теплопроводности

Таким образом, перенос тепла от более нагретого тела к менее нагретому через посредника тем медленнее, чем меньше молекул посредника участвуют в передаче энергии. Иными словами, человеку тем теплее, чем ниже коэффициент теплопроводности посредника. Учитывая это, можно предположить, что самая теплая одежда-посредник — это вакуум, то есть среда, в которой отсутствуют молекулы, переносящие тепло.

Вот такой забавный вывод: самая теплая одежда — это полное ее отсутствие, прослойка полной молекулярной пустоты, вакуума, между телом человека и окружающей средой. Изобретатель, который откроет способ удержания небольшого слоя вакуума вокруг живого и активного человека, наверное, получит Нобелевскую премию, но пока ничего более подходящего, чем обычный термос, в этой области не изобретено. Представить восхождение на Монблан в термосе так же трудно, как и штурм Эвереста с кондиционером, поэтому до появления нобелевского варианта придется рассмотреть более трезвые решения этой задачи.

Кто-нибудь хочет полезть в этом на Эверест?

 Итак, теплая одежда — это одежда, которая создает между поверхностью человеческого тела и окружающей средой зону с низким коэффициентом теплопроводности.

Мы уже знаем, что самым низким K обладает вакуум — среда, практически не содержащая частиц какого-либо вещества. Коэффициент теплопроводности вакуума равен нулю. Единственный вид теплопередачи, возможный  в вакууме, — это электромагнитное излучение. Именно поэтому колбы термоса делают зеркальными. Зеркальное покрытие отражает излучение, и теплопередача внутри вакуумной зоны термоса становится еще менее интенсивной. Но поскольку надеть термос на себя мы пока не можем, остается рассмотреть другие варианты.

Физика утверждает, что довольно низким K обладает воздух. В отличие от вакуума с практически нулевым K, воздух имеет K = 0,026 Вт/(м·К). Это значит, что воздух плохо проводит тепло. Если воздушную прослойку достаточной толщины поместить между телом человека и окружающей средой, то мы получим одну из самых теплых одежд, не считая, естественно, термоса. При этом такая воздушная прослойка должна находиться в замкнутом объеме, чтобы не происходило перемешивание ее воздуха с холодным воздухом окружающей среды. Еще лучше, если таких замкнутых объемов будет несколько, чтобы воздух внутри прослойки также не перемешивался.

По правде говоря, представить себе одежду в виде воздушного шара, каким-то чудом скроенную по фигуре человека, не намного проще, чем застегивающийся термос. Воздух не обладает механической прочностью, поэтому в воздушной прослойке должно быть что-то еще, какой-то материал, который, с одной стороны, будет создавать и поддерживать пространственную структуру прослойки, препятствовать перемешиванию содержащегося в ней воздуха, а с другой — не будет значительно влиять на теплопередачу за счет собственного K, то есть не будет создавать так называемые «мостики холода».

 

Такие материалы известны. На сегодняшний день лидером по удерживанию тепла, то есть материалом, обладающим наиболее низким K, считается гагачий пух. Его значение K =0,008 Вт/(м·К) — и это даже меньше, чем у воздуха. Для сравнения: вата, широко использовавшаяся ранее в качестве утеплителя, имеет K = 0,055 Вт/(м·К), это почти в семь раз выше, чем у пуха гаги.

Конечно, такие экстремальные значения K требуются в основном  для снаряжения, эксплуатируемого в не менее экстремальных условиях. В обычных обстоятельствах  достаточно теплой одеждой будет та, в которой K наполнителя не сильно отличается от K воздуха, а таких материалов немало — от искусственных утеплителей до обычной перопуховой смеси, используемой в большинстве пуховых изделий. Величина K для всех этих материалов лежит в примерном диапазоне от 0,024 до 0,039 Вт/(м·К), поэтому все они подходят для изготовления теплой одежды. 

На сегодняшний день лидером по удерживанию тепла, то есть, материалом, обладающим наиболее низким коэффициентом теплопроводности, считается гагачий пух

Если мы обратим внимание на то, какие материалы человечество использовало исторически для сохранения тепла, то при всем их разнообразии — от шерсти животных до современных синтетических материалов и даже аэрогелей — обнаруживается, что их основным свойством является способность связывать и удерживать в неподвижности объемы содержащегося в них воздуха, сохраняя при этом структурную целостность. Эту способность мы и оцениваем, тщательно ощупывая одежду перед покупкой. Меховой ворс шубы, толстые шерстяные свитера, упругие валики пуховика или бутерброды синтетических утеплителей — все подвергается анализу на способность удерживать теплый воздух у горячо любимого организма.

Кроме того, чтобы теплая одежда сохраняла свои греющие характеристики, требуется обеспечить такие условия ее эксплуатации, которые кардинально не изменяют К утепляющего наполнителя. Например, не рекомендуется допускать увлажнения утеплителя, так как вода, во-первых, обладает К = 0,6 Вт/(м·К), что в десятки раз выше К воздуха, а во-вторых, может изменить пространственную структуру утеплителя. Современные утеплители при увлажнении сохраняют свою структуру, но в случае с пухом его намокание и слипание приводят к тому, что про ставшие бесполезными промокший пуховый спальник или куртку легче на время забыть, чем пытаться высушить их в походных условиях.

Резюме

  • Теплая одежда греет человека его собственным теплом.

  • Чем меньше коэффициент теплопроводности утеплителя К, тем теплее одежда при прочих равных условиях. Лучшим утеплителем по этому показателю считается гагачий пух.

  • Для одежды с эффективным утеплителем нужна такая же эффективная система вентиляции, предотвращающая перегрев.

  • Следует избегать увлажнения утеплителя, особенно утеплителей на основе натурального пуха.

 

 

 

membra.ru

Помиогите физика. У какого вещества самая маленькая теплопроводность

Вы задали вопрос, который в школе подробно не изучается. Теплопроводность есть процесс передачи тепла от нагретой части к холодной. Осуществляется этот процесс при столкновении молекул. “Быстрые” молекулы при столкновениях передают часть своей энергии “медленным”. Понятно, что в различных веществах этот процесс происходит неодинаково. Но, если молекул не будет совсем, то энергия передаваться таким способом не будет. Поэтому, самая маленькая теплопроводность у ВАКУУМА, у пустоты! Там нет молекул, некому и тепло передавать! Сравнивая теплопроводности веществ, можно опытным путем установить, что у металлов теплопроводность очень большая, а у дерева – очень маленькая, у жидкостей она тоже неодинаковая. Керосин хуже передает тепло, чем вода. Самая маленькая теплопроводность у газов. Но и в этих средах тепло распространяется по-разному. Водород и углекислый газ хуже проводят тепло, чем воздух. Для газов установлены закономерности распространения тепла. Коэффициент теплопроводности пропорционален удельной теплоемкости газа, его плотности, средней арифметической скорости и длине свободного пробега молекул. Подводя итог, можно сказать, что самая маленькая теплопроводность у вакуума, а затем – у газов. Поэтому и делают на окнах двойные рамы. Находящийся между ними воздух плохо передает тепло зимой из комнаты на улицу.

чем больше расстояние меж моллекул тем хуже проводит тепло

touch.otvet.mail.ru

Теплопроводность Википедия

Теплопрово́дность — способность материальных тел проводить энергию (теплоту) от более нагретых частей тела к менее нагретым частям тела путём хаотического движения частиц тела (атомов, молекул, электронов и т. п.). Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества.

Теплопроводностью называется также количественная характеристика способности тела проводить тепло. В сравнении тепловых цепей с электрическими это аналог проводимости.

Количественно способность вещества проводить тепло характеризуется коэффициентом теплопроводности. Эта характеристика равна количеству теплоты, проходящему через однородный образец материала единичной длины и единичной площади за единицу времени при единичной разнице температур (1 К). В Международной системе единиц (СИ) единицей измерения коэффициента теплопроводности является Вт/(м·K).

Исторически считалось, что передача тепловой энергии связана с перетеканием гипотетического теплорода от одного тела к другому. Однако с развитием молекулярно-кинетической теории явление теплопроводности получило своё объяснение на основе взаимодействия частиц вещества. Молекулы в более нагретых частях тела движутся быстрее и передают энергию посредством столкновений медленным частицам в более холодных частях тела.

В установившемся режиме плотность потока энергии, передающейся посредством теплопроводности, пропорциональна градиенту температуры:

q→=−ϰgrad(T),{\displaystyle {\vec {q}}=-\varkappa \,\mathrm {grad} (T),}

где q→{\displaystyle {\vec {q}}} — вектор плотности теплового потока — количество энергии, проходящей в единицу времени через единицу площади, перпендикулярной каждой оси, ϰ{\displaystyle \varkappa } — коэффициент теплопроводности (удельная теплопроводность), T{\displaystyle T} — температура. Минус в правой части показывает, что тепловой поток направлен противоположно вектору grad(T){\displaystyle \mathrm {grad} (T)} (то есть в сторону скорейшего убывания температуры). Это выражение известно как закон теплопроводности Фурье.[1]

В интегральной форме это же выражение запишется так (если речь идёт о стационарном потоке тепла от одной грани параллелепипеда к другой):

P=−ϰSΔTl,{\displaystyle P=-\varkappa {\frac {S\Delta T}{l}},} [Вт/(м·К) · (м2·К)/м = Вт/(м·К) · (м·К) = Вт]

где P{\displaystyle P} — полная мощность тепловых потерь,

ruwikiorg.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *