Паро и газопроницаемость – 1.6 Паро- и газопроницаемость.

1.6 Паро- и газопроницаемость.

Паро- и газопроницаемость пленочных материалов обусловлены двумя процессами: растворением и диффузией. Пары или газы сначала растворяются в полимере, а затем диффундируют, к другой стороне ма­териала с более низкой концентрацией веществ и испаряются.

Проницаемость полиэтилена, являющегося неполярным полимером, для паров полярных жидкостей очень невелика, но пары неполярных веществ проходят через него гораздо быстрее. Отличительной особен­ностью полиэтилена является его низкая проницаемость для паров воды.

Сочетание последнего свойства и высокой проницаемости для кисло­рода и двуокиси углерода делает полиэтилен очень ценным материалом для изготовления упаковочных пленок. Но высокая проницаемость для паров многих органических соединений ограничивает применение поли­этиленовых бутылей для хранения ряда органических и душистых ве­ществ.

Проницаемость пленок из полиэтилена высокой плотности для па­ров органических жидкостей в 5—10 раз ниже, чем из полиэтилена низкой плотности.

Ниже приводятся данные о газопроницаемости полиэтилена низкой (А) и высокой (Б) плотности для различных газов (в 109мл -см/см2– сек – см рт. ст.):

А Б

Двуокись углерода 1.22 0.214

Водород 0.797 0.199

Кислород 0.276 0.069

Гелий 0.540 0.153

Этан 1.23 0.146

Природный газ 0.343 0.070

Фреон-12 0.866 0.059

1.7 Механические свойства.

Механические свойства полиэтилена зависят от его молекулярного веса и степени кристалличности. С повышением молекулярного веса они улучшаются. Кристалличность также способствует повышению механической прочности. В табл. 2 представлены свойства полиэтилена различной плотности, отличающегося степенью кристалличности и молекулярным весом.

Таблица 2.

Физико-механические свойства полиэтилена различной плотности

Свойства

А

Б

В

Г

Плотность, г/см³

0,92-0,93

0,935-0,95

0,96

0,94-0.955

Предел прочности, кгс/см²

при растяжении

84-175

195-385

280-350

180-285

– при сжатии

125-210

————-

———-

———-

– при изгибе

120-170

————-

———-

———-

Относительное удлинение, %

150-600

100-800

200-400

200-380

Модуль упругости при растяжении, кгс/см²

980-2450

3500-7000

———

———-

Твёрдость по Шору

45-55

63-74

68-70

———

Степень кристалличности, %

40-65

65-85

93

75

Молекулярный вес

15000-30000

25000-100000

30000-140000

————-

В тонких пленках полиэтилен (особенно полиэтилен низкой плотности) обладает большой гибкостью и эластичностью, а в толстых листах приобретает жесткость. Диаграмма напряжение — относительное удлинение имеет характерную форму.

Как видно, кривая зависимости состоит из трех участков, причем один из них является горизонтальным. УчастокI определяет кристаллическое состояние полимера; участок II показывает ориентацию хаотически расположенных кристаллитов и участок III свидетельствует о дополнительном растяжении уже ориентированного кристаллического полимера.

studfiles.net

Паро- и газопроницаемость – это… Что такое Паро

Паро- и газопроницаемость – оценивается с помощью особых коэффициентов, сходных между собой. Они равны количеству водяного пара (или воздуха), которое проходит через слой материала толщиной 1 м, площадью 1 м2 в течении 1ч при разности давлений 10 Па.

[Словарь строительных материалов и изделий для студентов строительных специальностей. Щукина Е.Г. Архинчеева Н.В. Издательство ВСГТУ Улан-Удэ 2002 г]

Рубрика термина: Тепловые свойства материалов

Рубрики энциклопедии: Абразивное оборудование, Абразивы, Автодороги, Автотехника, Автотранспорт, Акустические материалы, Акустические свойства, Арки, Арматура, Арматурное оборудование, Архитектура, Асбест, Аспирация, Асфальт, Балки, Без рубрики, Бетон, Бетонные и железобетонные, Блоки, Блоки оконные и дверные, Бревно, Брус, Ванты, Вентиляция, Весовое оборудование, Виброзащита, Вибротехника, Виды арматуры, Виды бетона, Виды вибрации, Виды испарений, Виды испытаний, Виды камней, Виды кирпича, Виды кладки, Виды контроля, Виды коррозии, Виды нагрузок на материалы, Виды полов, Виды стекла, Виды цемента, Водонапорное оборудование, Водоснабжение, вода, Вяжущие вещества, Герметики, Гидроизоляционное оборудование, Гидроизоляционные материалы, Гипс, Горное оборудование, Горные породы, Горючесть материалов, Гравий, Грузоподъемные механизмы, Грунтовки, ДВП, Деревообрабатывающее оборудование, Деревообработка, ДЕФЕКТЫ, Дефекты керамики, Дефекты краски, Дефекты стекла, Дефекты структуры бетона, Дефекты, деревообработка, Деформации материалов, Добавки, Добавки в бетон, Добавки к цементу, Дозаторы, Древесина, ДСП, ЖД транспорт, Заводы, Заводы, производства, цеха, Замазки, Заполнители для бетона, Защита бетона, Защита древесины, Защита от коррозии, Звукопоглащающий материал, Золы, Известь, Изделия деревянные, Изделия из стекла, Инструменты, Инструменты геодезия, Испытания бетона, Испытательное оборудование, Качество цемента, Качество, контроль, Керамика, Керамика и огнеупоры, Клеи, Клинкер, Колодцы, Колонны, Компрессорное оборудование, Конвеера, Конструкции ЖБИ, Конструкции металлические, Конструкции прочие, Коррозия материалов, Крановое оборудование, Краски, Лаки, Легкие бетоны, Легкие наполнители для бетона, Лестницы, Лотки, Мастики, Мельницы, Минералы, Монтажное оборудование, Мосты, Напыления, Обжиговое оборудование, Обои, Оборудование, Оборудование для производства бетона, Оборудование для производства вяжущие, Оборудование для производства керамики, Оборудование для производства стекла, Оборудование для производства цемента, Общие, Общие термины, Общие термины, бетон, Общие термины, деревообработка, Общие термины, оборудование, Общие, заводы, Общие, заполнители, Общие, качество, Общие, коррозия, Общие, краски, Общие, стекло, Огнезащита материалов, Огнеупоры, Опалубка, Освещение, Отделочные материалы, Отклонения при испытаниях, Отходы, Отходы производства, Панели, Паркет, Перемычки, Песок, Пигменты, Пиломатериал, Питатели, Пластификаторы для бетона, Пластифицирующие добавки, Плиты, Покрытия, Полимерное оборудование, Полимеры, Половое покрытие, Полы, Прессовое оборудование, Приборы, Приспособления, Прогоны, Проектирование, Производства, Противоморозные добавки, Противопожарное оборудование, Прочие, Прочие, бетон, Прочие, замазки, Прочие, краски, Прочие, оборудование, Разновидности древесины, Разрушения материалов, Раствор, Ригеля, Сваи, Сваизабивное оборудование, Сварка, Сварочное оборудование, Свойства, Свойства бетона, Свойства вяжущих веществ, Свойства горной породы, Свойства камней, Свойства материалов, Свойства цемента, Сейсмика, Склады, Скобяные изделия, Смеси сухие, Смолы, Стекло, Строительная химия, Строительные материалы, Суперпластификаторы, Сушильное оборудование, Сушка, Сушка, деревообработка, Сырье, Теория и расчет конструкций, Тепловое оборудование, Тепловые свойства материалов, Теплоизоляционные материалы, Теплоизоляционные свойства материалов, Термовлажносная обработка бетона, Техника безопасности, Технологии, Технологии бетонирования, Технологии керамики, Трубы, Фанера, Фермы, Фибра, Фундаменты, Фурнитура, Цемент, Цеха, Шлаки, Шлифовальное оборудование, Шпаклевки, Шпон, Штукатурное оборудование, Шум, Щебень, Экономика, Эмали, Эмульсии, Энергетическое оборудование

Источник: Энциклопедия терминов, определений и пояснений строительных материалов

Энциклопедия терминов, определений и пояснений строительных материалов. – Калининград. Под редакцией Ложкина В.П.. 2015-2016.

construction_materials.academic.ru

Паро-, воздух о- и газопроницаемость – Свойства материалов

Паро-, воздух о- и газопроницаемость определяются количеством пара, воздуха или газа, прошедшего через образец определенных размеров при заданном давлении. В таблице приведены значения коэффициентов паро- и воздухопроницаемости для некоторых материалов.

Коэффициент паро- и воздухопроницаемости

Наименование материалов
Объемный вес а кг/м3
Коэффициент паропроницаемости в г/м * час * мм рт. ст. * 102Коэффициент воздухопроницаемости в кг/м * час * мм рт. ст. * 103
Бетон на гравии22000,60,04
Камышит400650
Мипора15 — 205 — 7,5160
Древесно-волокнистые плиты180 — 2403,65 — 3,250 — 90
Раствор цементный (1:3)230010,06
Раствор цементный (1:6)18001,2
Раствор смешанный (1:1:9)17001,3
Раствор известковый (1:2,5)16001,6
Шлаковая вата4006,5400
Шлак котельный7002,96000

«Материаловедение для штукатуров,
плиточников, мозаичников»,
А.В.Александровский

Прочность — это способность материала сопротивляться разрушению под влиянием внутренних напряжений, возникающих в результате действия внешних нагрузок или других факторов. Внешние воздействия, которым подвергаются строительные материалы, могут вызывать у них напряжения сжатия, растяжения, изгиба, сдвига. Чаще всего строительные материалы работают на сжатие или изгиб. Прочность строительных материалов при сжатии, растяжении и т. п. характеризуется пределом…

Свойства материалов определяются внутренним строением вещества, из которого они состоят. Согласно молекулярно-кинетической теории все тела, как твердые, так и жидкие и газообразные, состоят из мельчайших отдельных частиц — молекул, которые состоят из еще меньших частичек — атомов, а те в свою очередь из еще меньших, так называемых элементарных частиц (электронов, протонов, нейтронов и др.). Мельчайшей…

Предел прочности определяют в лабораториях на прессах или разрывных машинах. В таблице приведены значения пределов прочности при сжатии и растяжении для некоторых строительных материалов. Пределы прочности некоторых материалов при сжатии и растяжении Материалы Предел прочности в кг/см2 при сжатии при растяжении Бетон 25 — 800 3 — 30 Кирпич глиняный обыкновенный 75 — 200 —…

В зависимости от взаимного расположения частичек вещества различают аморфные и кристаллические. В аморфных телах расположение частичек имеет хаотический, случайный характер. В кристаллических телах частички вещества расположены в определенном порядке, присущем данному кристаллу. Такими частичками, составляющими кристаллы, могут быть атомы, молекулы, ионы (атомы или молекулы, имеющие электрический заряд за счет потери или захвата электрона) и группы…

На рисунке схематически показана призма в состоянии изгиба. В своей верхней части она сжата, а в нижней части растянута. Между зоной сжатия и зоной растяжения проходит так называемый нейтральный слой; здесь волокна материала не испытывают ни сжатия, ни растяжения. Наибольшим деформациям, следовательно, наибольшему сжатию и растяжению, подвергаются крайние волокна. Схема работы балки при изгибе Схема…

www.ktovdome.ru

Полиэтилен газопроницаемость – Справочник химика 21

    Производство полиэтилена. Полиэтилен—один из самых распространенных полимерных материалов, находящий широкое применение как в промышленности и сельском хозяйстве, так и в быту. Полиэтилен имеет уникальные физические и химические свойства температура плавления 100—125°С, устойчив к действию концентрированных щелочей и кислот, высокая-эластичность даже при низких температурах примерно минус 50—60Х, абсолютная негигроскопичность, очень высокие диэлектрические свойства и сравнительно малая газопроницаемость пленок. [c.319]
    Благодаря химической стойкости, высоким диэлектрическим свойствам, механической прочности, морозостойкости, низкой газопроницаемости и большой водостойкости, безвредности и легкости переработки полиэтилен находит широкое применение в машиностроении, производстве бытовых изделий, в сельском хозяйстве, производстве искусственных кож и пленочных материалов, в строительной технике, медицине и, т. д. [c.177]

    Упаковку в среде инертного газа применяют для обеспечения сохранности продуктов и выполняют известными способами в камере с инертным газом. При такой упаковке наиболее важны такие свойства пленок, как малая газопроницаемость (особенно по кислороду), способность к свариванию или склеиванию. Для этих целей применяют пленки комбинированные (например, алюминиевая фольга — полиэтилен) или многослойные (полиэтилен—целлофан, полиэтилен—фторопласт и др.). Один из слоев такой пленки должен быть воздухонепроницаемым, другой — иметь хорошую свариваемость. [c.73]

    При исследовании газопроницаемости пленок некоторых частично закристаллизованных полимеров (гуттаперча, полиэтилен НП, полиамид 6) было установлено, что после предельной ориентации газопроницаемость пленок уменьшается либо в связи с дополнительным повышением степени кристалличности полимеров, либо с увеличением плотности упаковки аморфных областей полимеров 2. Возможность увеличения плотности упаковки молекул полиэтилена при растяжении пленок отмечается также в работе [c.149]

    Исследование газопроницаемости пленок полимеров, находящихся в равновесии с сорбированными парами, показало, что при сорбции паров СеНи и U полиэтиленом низкой плотности наблюдается значительное повышение проницаемости полиэтиленовых пленок по отношению к азоту и кислороду . При этом значение коэффициентов газопроницаемости Р полиэтилена линейно возрастает с увеличением весовой концентрации сорбированного гексана, а значение энергии активации Ер остается приблизительно постоянным. Изменение значений Р обусловлено ростом коэффициента диффузии D, в то время как коэффициент растворимости газов а при сорбции пленкой органических растворителей существенно не изменяется. В системе гидрат целлюлозы — вода значение Р для О2 и N2 и в особенности для СО2 быстро возрастает с увеличением относительного давления паров воды. График зависимости Р для Oj от весовой концентрации воды в гидрате целлюлозы имеет два линейных отрезка, пересекающиеся в точке, отвечающей относительной влажности, равной 74%. На значения Р полиэтилена для О2, N2, СО2 относительная влажность газов не влияет. Предполагается, что сорбция паров воды не влияет на содержание кристаллической части и набухание происходит только в аморфных областях полимеров. Газопроницаемость смеси газов часто зависит от высокой растворимости одного из входящих в смесь газов. Так, исследование полиэтилена по отношению к смеси этана с бутаном показало что проницаемость смеси увеличивается с ростом концентрации бутана по сравнению с расчетной (по исходным коэффициентам Р) [c.172]

    Аномалия значений газопроницаемости СОа (как и в случае коэффициента диффузии) связана с большими значениями сорбции углекислого газа полиэтиленом это явление отмечалось и другими исследователями [45, с 459]. [c.84]

    Полиэтилен, получаемый на окиснохромовых катализаторах, по своей структуре является полимером с линейным строением цепей, что обусловливает его высокую кристалличность по сравнению с другими полиэтиленами и высокую плотность. Поэтому он может быть применен везде, где требуется повышенная температура размягчения, большая твердость, вязкость, прочность, химостойкость, малые газопроницаемость и влагопоглощение [1, 2]. Для повышения его эластичности можно модифицировать свойства сополимеризацией на тех же катализаторах с пропиленом и а-бутиленом. [c.281]

    Пентапласт стоек к большинству органических растворителей, слабым и сильным щелочам, слабым и некоторым сильным кислотам на него действуют только сильные окисляющие кислоты, такие, как азотная и дымящая серная [32]. При этом воздействие агрессивных сред значительно меньше влияет на изменение механических свойств пентапласта, чем на изменение свойств фторопласта-3. Пентапласт более стоек, чем полипропилен, к концентрированным минеральным кислотам (30%-ной хромовой и 60%-ной серной) и органическим кислотам (75%-ной уксусной) и особенно к органическим растворителям кетонам, хлорсодержащим и ароматическим углеводородам. Такая повышенная химическая стойкость пентапласта обусловлена его строением — прочностью связи хлорметильных групп с углеродом основной цепи и компактностью его кристаллической структуры. Удачное сочетание физико-механических свойств с повышенной химической стойкостью выгодно отличает пентапласт от других термопластичных материалов. Пленки пентапласта практически непроницаемы для кислорода и азота по сравнению с полиэтиленом они менее газопроницаемы для паров воды и двуокиси углерода, [c.169]

    Окиси фторолефинов легко образуют с виниловыми мономерами блоксополимеры, обладающие повышенной химич. стойкостью, ударной вязкостью, огнестойкостью и низкой газопроницаемостью. Сополимеры гексафтор-ацетона с этиленом проявляют пониженную горючесть по сравнению с полиэтиленом и водоотталкивающие свойства. Их можно использовать для получения защитных покрытий по металлу (например, методом напыления). [c.404]

    Большой интерес представляют смеси натурального, бутадиенстирольного или бутилкаучуков с полиэтиленом низкого давления, представляющие привитые и блок-сополимеры. Вулканизаты из этих смесей имеют повышенное сопротивление разрыву и истиранию, повышенную эластичность и пониженную газопроницаемость [581]. [c.93]

    При малом удельном весе (0,91) полипропилен обладает большей жесткостью и прочностью, чем полиэтилен. Пленки из полипропилена могут изготовляться совершенно прозрачными и отличаются от полиэтиленовых еще меньшей влаге- и газопроницаемостью. Изменяя определенным образом условия синтеза полипропилена, можно получать продукты с различным содержанием стереорегулярной части (мол. в. от 10 ООО до 150 ООО), обладающие вследствие этого различными свойствами, в частности большей или меньшей жесткостью и эластичностью. Полипропилен дает очень прочное волокно. [c.249]

&ens

www.chem21.info

Пищевая пленка ПВХ, дышащая пленка

  1. Главная
  2. Информация
  3. Полимерная упаковка
  4. Пищевая пленка ПВХ

Поступающая в продажу поливинилхлоридная плёнка обладает строго определенными характеристиками. Это достигается за счёт изменения условий полимеризации, введения в материал стабилизаторов и пластификаторов. Таким образом удаётся регулировать такие важные показатели, как паропроницаемость, масло- и жиростойкость, а также добиваться заданной прозрачности, блеска, мягкости и термостабильности. При необходимости пищевую пленку ПВХ окрашивают в нужный цвет или наносят на его поверхность стойкие к смыванию рисунки, надписи и логотипы.

В число достоинств пищевой ПВХ плёнки входит:

  • универсальность использования;
  • стабильность физико-химических параметров;
  • сохранение свежести и товарного вида продуктов в течение длительного времени;
  • достаточная защита содержимого упаковки от механических повреждений, грязи, агрессивной микрофлоры и т.д.;
  • повышение маркетинговой привлекательности товара;
  • селективная паро- и газопроницаемость, позволяющая упаковывать горячие продукты;
  • неограниченный срок хранения самой упаковки;
  • пригодность для использования в автоматических упаковщиках;
  • малая удельная стоимость.

Пластифицированные и непластифицированные плёнки

Упаковочные материалы из обоих типов плёнок изготавливаются одинаково, с герметизацией посредством высокочастотной сварки. В качестве упаковочного материала для пищевых продуктов чаще всего используется плёнка из пластифицированного ПВХ (легко узнать по маркировке PVC).

Для PVC характерна повышенная проницаемость к молекулам кислорода, что очень важно для сохранения свежести и «натуральности» продуктов. Например, мясо, упакованное в тонкую прозрачную плёнку, долго остаётся ярким и сочным. Непластифицированные ПВХ-плёнки используются компанией “Алита” в производстве термоусадочных упаковочных материалов, которые обычно изготавливают в форме полурукавов.

Газопроницаемость. Что такое «дышащая плёнка»

Ассортимент пищевых плёнок из ПВХ позволяет выбрать требуемую по показателям паро и газопроницаемости. Например, низкая проницаемость благоприятна для упаковки в плёнку сыра, копчёностей, колбас, птицы и т.п. В таком варианте при многократном обёртывании обеспечивается практически полная герметичность, что исключает возможность проникновения внутрь и развития там бактерий. Кроме торговли, ПВХ-материалы этого класса широко используются в кафе и ресторанах быстрого питания, а также в пищевой промышленности, например, как средство исключающее потерю влаги при созревании сыров.

Особенно популярна так называемая «дышащая» плёнка, точнее, материал с селективной парогазопроницаемостью. Это означает, что на границе материала и среды образуется барьер, через который в одну сторону свободно проходит водяной пар, углекислый газ и прочие атмосферные компоненты, в другую – только молекулы кислорода. Таким образом внутри упаковки создаётся собственный микроклимат, в результате чего продукты максимально долго остаются свежими.

Что особенно важно, благодаря свойству селективной проницаемости, возможна упаковка только что приготовленных, ещё горячих продуктов: пирожков, булочек и т.п. За счёт быстрого и эффективного удаления водяного пара на поверхности не образуется конденсат, корочка остаётся сухой и ароматной, а сам продукт сохраняется очень долго.

В продажу дышащая плёнка поступает в рулонах различной длины (обычно 1,5 километра) при ширине от 250 до 350 мм и толщине материала 8-14 мкм.

www.fleimina.ru

Паропроницаемость полимеров – Справочник химика 21

    Газо- и паропроницаемость полимеров – способность полимерных материалов пропускать газы или пары при заданной разности химических потенциалов. Движущая сила процесса перепад давления, температуры, концентрации. [c.397]

    Паропроницаемость полимеров см. Газо- и паропроницаемость полимеров. [c.402]

    Установление общих закономерностей газо- и паропроницаемости полимеров в различных средах, а также способности полимеров сорбировать пары жидкостей позволяет правильно выбирать тип полимера применительно к условиям эксплуатации. Например, наименее газопроницаемым эластомером является полиизобутилен и близкий к нему по химической природе бутилкаучук. Поэтому в производстве автомобильных камер, где требуются высокие значения газонепроницаемости и прочности, бутилкаучук является [c.107]


    Характерным для фторопласта является также небольшая газо- и паропроницаемость. Из всех известных полимеров фто-ропласт-4 является единственным устойчивым прн —190 С. [c.431]

    Полиэтилен (-СН2-СНг-)п — карбоцепной термопластичный кристаллический полимер белого цвета со степенью кристалличности при 20°С 0,5—0,9. При нагревании до температуры, близкой к температуре плавления он переходит в аморфное состояние. Макромолекулы полиэтилена (ПЭ) имеют линейное строение с небольшим количеством боковых ответвлений. ПЭ водостоек, не растворяется в органических растворителях, но при температуре выше 70°С набухает и растворяется в ароматических углеводородах и галогенпроизводных углеводородов. Стоек к действию концентрированных кислот и щелочей, однако разрушается при воздействии сильных окислителей. Обладает низкой газо- и паропроницаемостью. Звенья ПЭ неполярны, поэтому он обладает высокими диэлектрическими свойствами и является высокочастотным диэлектриком. Практически безвреден. Может эксплуатироваться при температурах от -70 до 4-бО°С. [c.388]

    В линейных полимерах, отличающихся волокнистой структурой, молекулы слабо разветвлены (например, в нитрате целлюлозы), поэтому путь проникновения молекул воды намного короче, и этот процесс проходит без затруднений. Паропроницаемость цо- [c.115]

    Другими структурными факторами, влияющими на влаго-проницаемость линейных полимеров, являются число и длина замещаемых групп в главной цепи. Боковые цепи, вероятно, препятствуют тесной группировке и кристаллизации молекул, что способствует проникновению влаги через полимер. Повышение влагопроницаемости при увеличении числа и размеров замещаемых групп иллюстрируется последовательным возрастанием влагопроницаемости при переходе от метилметакрилата к этилметакрилату и даже к пропилметакрилату. С увеличением температуры паропроницаемость полимерных пленок возрастает (рис. 7.1). [c.116]

    При увеличении содержания связанного хлора от О до 29% наблюдается монотонное увеличение сопротивления разрыву и уменьшение относительного удлинения [80, 81]. Монотонно снижается паро- и газопроницаемость каучука. При содержании хлора до 29% пленкообразующие свойства выражены очень слабо — пленка плохо снимается или совсем не снимается с подложки. Увеличение содержания связанного хлора от 29 до 30% сопровождается резким, скачкообразным изменением физико-механических свойств полимера увеличением разрушающего напряжения от 20 до 50 МПа, уменьшением относительного удлинения от 1000 до 10% и паропроницаемости от 0,005 до 0,001 кг/м за 24 ч (рис. 5.3 и 5.4), резким изменением плотности полимера (рис. 5.5 и рис. 5.6) увеличением температуры стеклования. Заметно улучшаются пленкообразующие свойства — исчезает липкость, адгезия к стеклу. [c.222]

    Для получения защитных покрытий, отличающихся высокой эластичностью и хорошей химической стойкостью, жидкие полисульфидные полимеры и амин добавляются к смеси жидких и твердых эпоксидных смол [268]. Отливки, приготовленные из эпоксидных смол, модифицированных жидкими полисульфидными полимерами, обладают в 5—10 раз большей удельной вязкостью, меньшей усадкой и паропроницаемостью по сравнению с отливками из немодифицированных эпоксидных смол [270] [c.359]

    Некоторые металлические наполнители придают полимерам специфические свойства, например порошки железа и его сплавы — ферромагнитные свойства чешуйки алюминия, никеля, серебра — низкую газе- и паропроницаемость порошки алюминия и медных сплавов—декоративность. Материалы, наполненные свинцом, кадмием и вольфрамом, пригодны в качестве защиты от излучений высокой энергии [32]. Порошки меди [33] улучшают фрикционные характеристики композиционного материала (рис. П.З). [c.63]

    Жидкие кремнийорганические полимеры пока еще в незначительных количествах, но уже успешно используются в качестве водоотталкивающей пропитки тканей, предназначенных для некоторых видов верхнего платья и головных уборов. Такие пропитки почти совершенно не снижают воздухо- и паропроницаемости тканей. [c.150]

    Если сорбируемые пары инертны по отношению к полимеру, то коэффициент сорбции очень

www.chem21.info

Полиамиды газопроницаемость – Справочник химика 21

    Проницаемость через полиамиды газов очень мала вследствие сильных межмолекулярных взаимодействий между макромолекулами, приводящих к образованию водородных связей. Ниже приведены характеристики газопроницаемости пленки из ПА 6 толщиной 100 мкм при 30 С [5]  [c.81]

    Исследование газопроницаемости пленок некоторых кристаллических полимеров (гуттаперчи, полиэтилена НД и полиамида 6) показа- [c.138]


    При исследовании газопроницаемости пленок некоторых частично закристаллизованных полимеров (гуттаперча, полиэтилен НП, полиамид 6) было установлено, что после предельной ориентации газопроницаемость пленок уменьшается либо в связи с дополнительным повышением степени кристалличности полимеров, либо с увеличением плотности упаковки аморфных областей полимеров 2. Возможность увеличения плотности упаковки молекул полиэтилена при растяжении пленок отмечается также в работе [c.149]

    Кажущаяся энергия активации диффузии аргона и этана не зависит также от тепловой обработки полиэтилена и полипропилена Отмечается, что различие в морфологической структуре полиамидов, в частности в размере сферолитов, сказывается на большинстве физических свойств и в том числе на газопроницаемости этих полимеров .  [c.156]

    Селективность газопроницаемости зависит от многих факторов, влияющих на перенос низкомолекулярных веществ в полимерах. Селективность газопроницаемости возрастает с уменьшением значений. проницаемости При этом селективность проницаемости у жестких полимеров, например у полиамида, выше, чем у эластичного полимера — полиэтилена [c.227]

    Газопроницаемость полиамидов уменьшается при ориентации и повышении кристалличности [1047]. [c.157]

    Газо- и паропроницаемость пленок из привитых и блок-сополимеров зависит как от состава, так и от структуры сополимера. Хаас [115] обнаружил, что влагопроницаемость продуктов прививки оксиэтилена на полиамиды увеличивается с возрастанием степени прививки. Для найлона с привитыми цепями стирола наблюдается обратное соотношение [181]. Майерс [165] нашел, что полиэтиленовая пленка, на которую привит акрилонитрил, имеет пониженную газопроницаемость. Это можно было бы объяснить тем, что привитой полиакрилонитрил является как бы наполнителем с низкой газопроницаемостью, введенным в аморфные области полиэтилена. Майерс противопоставляет этой системе привитые сополимеры, для которых характерна минимальная проницаемость при низких степенях прививки. Увеличение проницаемости при высоких степенях прививки объясняют разрушением кристаллитов в соответствующих областях. [c.201]

    Процесс переноса газа через полимеры, содержащие растворенные жидкости, зависит не только от свойств полимера и жидкости, но от того, каким образом жидкость распределена в полимере. Так, газопроницаемость гидратцеллюлозных пленок очень мала, однако при эксплуатации целлофан обычно увлажняется и его проницаемость очень сильно возрастает. При этом проницаемость гидратцеллюлозных пленок по отношению к парам органических растворителей почти на два порядка ниже проницаемости по отношению к парам воды. Для многих гигроскопичных полимеров, например желатины, полиамидов, поливинилового спирта и других, при увлажнении сильно возрастает газопроницаемость. Введение в состав полимерной композиции пластификаторов, как правило, увеличивает газопроницаемость. Например, повышение содержания диметилфталата в поливинилхлориде сопровождается существенным ростом газопроницаемости материала. Пластификация ацетата целлюлозы диэтил- и дибутилфталатом приводит к аналогичному эффекту. Влияние пластификаторов на газопроницаемость полимеров определяется характером взаимодействия указанных веществ в системе. [c.112]

    ВЛАГОПРОНИЦАЕМОСТЬ полимеров, способность полимерных материалов пропускать водяные пары при наличии перепада давления последних. Зависит от хим. состава и структуры полимера, концентрации воды в нем и т-ры. Коэф. В. (Й ) определяется массой паров воды, прошедшей в единицу времени через единицу площади прн единичных толщине и перепаде давления водяных паров связан с коэф. р-римооти (5) и коэф. диффузии (О) ур-нием W= = 03, Диффузия паров воды в гидрофобных полимерах (полиолефинах, фторопластах, фенопластах и др.) происходит так же, как диффузия инертных газов (см. Газопроницаемость). Гидрофильные полимеры (напр., целлюлоза, поливиниловый спирт, полиамиды) содержат полярные группы, способные образовывать с водой водородные связи. Коэф. диффузии таких полимеров зависят от содержания в них воды. Изменение О с содержанием воды в полимере м.б. оценено с хорошим приближением по формуле  [c.391]

    Основная часть производимых в мире полиамидов перерабатывается на волокно, но благодаря ряду ценных свойств (стойкости к высокому давлению, износу и т. п.) эти материалы перспективны для использования в строительстве и быту. В настоящее время из полиамидов изготовляют водопроводную арматуру, клеи, покрытия [240, с. 179 241, с. 73]. Полиамидные пленки находят применение в сельском хозяйстве для изготовления светопрозрачного покрытия при выращивании ранних овощных культур и в строительстве для пароизоляции внутренних поверхностей панелей кровли, так как они обладают хорошей газопроницаемостью, низкой теплопроводностью, стойкостью к действию бактерий и плесневых грйбков [242], Важнейшим свойством пленок является их способность пропускать УФ-лучи. [c.218]

    Пленки па основе полиамидов, наиболее перспективными из которых считаются пленки из полиамида 11 и полиамида 12. Они отличаются высокой жиростойкостью, стойкостью к высоким и низким температурам, низкой газопроницаемостью. Благодаря способности сохранять гибкость в широком интервале температур, а также выдерживать кипячение и замораживание, пленки из полиамидов используются за рубежом в качестве оболочек для колбас. [c.47]

    В настоящее время разрабатываются й внедряются в производство комбинированные пленочные материалы различного назначения и состава, компонентами которых являются полиэтилен, полипропилен, ПЭТФ, в том числе металлизированный, полиамиды, целлофан, металлическая фо хьга, фторопласты, синтетические и натуральные ткани, стеклянные и капроновые волокна, бумага и другие субстраты. К этим материалам относятся двухслойная эластичная полипропиленпопролиновая пленка, выдерживающая термическую стерилизацию при 120 °С и способная свариваться, комбинированные пленки целлофан — гидрохлорид каучука и бумага — гидрохлорид каучука, обладающие жиростойкостью, низкой паро-, водо- и газопроницаемостью [2, с. 19]. [c.169]

    Так, неполярные газы (На, N3, О2, Не, Аг) обладают незначительной диффузией и растворимостью в таких полярных полимерах, как полиамиды, полиакрилонитрил, ацетали, полисул ьфиды (тиокол) и др. Растворимость же и диффузия полярных газов (аммиак, углекислый газ, сернистый газ, пары воды и др.) в таких полимерах более значительны [125, 278]. Наибольшей газопроницаемостью и сорбцией по отношению к неполярным газам обладают полимеры, не содержащие полярных групп в структуре (силиконы, полиэтилен, полипропилен и др.) к газам противоположной полярности можно отнести такие полимеры, которые обладают более низкими к

www.chem21.info

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *