Паропроницаемость строительных материалов
В современном строительстве применяется множество видов строительных материалов. Одни из них прочны, другие долговечны, некоторые хорошо «держат» тепло или прекрасно выглядят. Важную роль при выборе стройматериала для стен дома имеет паропроницаемость – способность «дышать» и создавать комфортные условия для проживания. Разберемся, что это такое и какие материалы стоит выбрать для этого.
Что такое паропроницаемость
Паропроницаемостью материалов называют их способность пропускать или, наоборот, задерживать водяные пары, находящиеся в воздухе. Этот эффект объясняется за счет различия парциального (то есть создаваемого отдельными компонентами воздуха) давления водяного пара внутри и снаружи помещений.
Материалы с высокой паропроницаемостью будут эффективно пропускать влагу. При проектировании зданий используется количественная оценка этого показателя – коэффициент паропроницаемости µ («мю»), который измеряется в мг/(м·ч·Па) и показывает, какое количество паров (в мг) пропустит 1 метр данного материала за 1 час при данном давлении. Чем больше этот показатель, тем выше паропроницаемость материала.
При строительстве практическое значение имеет сравнительная оценка коэффициентов паропроницаемости для правильного выбора различных стеновых и отделочных материалов, и их сочетания в многослойных конструкциях стен современных домов. Ошибки в расчете паропроницаемости могут привести к негативным последствиям при эксплуатации построенного здания.
На что влияет паропроницаемость материалов
Важнейшим фактором комфортности дома для проживания является хороший микроклимат в помещениях. За его поддержание отвечает способность стен «дышать» – то есть сохранять влажностный режим воздуха, при необходимости поглощая или выделяя влагу в комнатах. А эта способность, в свою очередь, как раз и определяется паропроницаемостью материала, из которого сделаны стены.
При проживании в доме в зимний период важное значение для влажностного режима приобретает разница наружной и внутренней температуры. Водяные пары, выходя из помещения сквозь материалы стен, могут конденсироваться внутри стены, если паропроницаемость наружных слоев будет меньше, чем внутренних.
Задержка излишней влаги на внутренней поверхности или в толще стены может приводить к образованию плесени, которая не только портит внешний вид, но и наносит вред здоровью проживающих в доме людей. Кроме того, излишняя влажность повышает вероятность разрушения строительных конструкций.
При достаточно высоком содержании влаги в материале снижается его морозоустойчивость, так как при понижении температуры вода замерзает, образующийся лед распирает микропоры и растрескивает стены. Поэтому при строительстве домов из паропроницаемых материалов необходимо дополнительно принимать меры для защиты конструкций от промерзания.
Сравнение паропроницаемости строительных материалов
Ниже приводятся значения коэффициентов паропроницаемости µ для различных строительных материалов, а также их общая характеристика. Напомним, что чем выше «мю», тем большей паропроницаемостью обладает материал:
Материал |
К. паропроницаемости µ, мг/(м·ч·Па) |
дерево |
0,06 – 0,30 |
газобетон |
0,17 – 0,24 |
кирпич |
0,11 – 0,17 |
бетон, железобетон |
0,03 |
Паропроницаемость дерева варьируется в широких пределах, что делает его универсальным строительным материалом. В зависимости от плотности древесины и расположения волокон, для деревянной стены можно добиться как низкой, так и высокой паропроницаемости. Поэтому деревянные дома хорошо «дышат», при этом оставаясь теплыми, комфортными и экологически безопасными.
Газобетон по своей паропроницаемости вплотную приближается к древесине, при этом обладая значительно большей прочностью и технологичностью. Из всех вариантов искусственного камня с ним могут сравниться по этому показателю только другие разновидности ячеистого бетона. Однако паропроницаемость газобетона в меньшей степени зависит от его плотности, тогда как для пенобетона эта зависимость выражена.
Характеристики пенобетона в значительной степени определяются применяемой технологией изготовления. Наилучшей паропроницаемостью обладают пенобетонные блоки с более крупными порами, имеющие малую плотность и, как следствие, меньшую прочность. Высокопрочные марки обладают мелкими порами, и по паропроницаемости ближе к классическому кирпичу, чем к газобетону.
Кирпич до сих пор остается наиболее универсальным и практичным строительным материалом, обладающим множеством положительных качеств. Но, к сожалению, хорошая паропроницаемость кирпичным стенам не свойственна. Только некоторые пустотелые виды керамического кирпича и современная «теплая» керамика приближаются по этому показателю к нижней границе паропроницаемости газобетона.
Классический железобетонный монолит не обладает почти никакой паропроницаемостью, уступая газобетону и дереву по этому показателю в 5-10 раз. Поэтому многие панельные дома, построенные в 70-е и 80-е годы, отличаются таким ужасным микроклиматом. В современном домостроении монолит используют в сочетании с мощной системой вентиляции, а в индивидуальном строительстве – только как силовые элементы дома.
Выбирая, какому материалу стоит отдать предпочтение при возведении стен вашего будущего дома, нужно учитывать не только его прочность, долговечность или внешний вид. Для индивидуального жилищного строительства важнейшее значение имеет создание комфортного микроклимата, экологическая чистота и безопасность для проживания.
С этой точки зрения непревзойденными стройматериалами остаются классическое дерево и современный газобетон. Только эти материалы позволяют стенам дома «дышать», а вам оставаться здоровыми, полными сил и энергии. При этом оба этих варианта отличаются отличной теплоизоляционной способностью, удобны в применении и экономичны в строительстве.
sivco.ru
Паропроницаемость – это… Что такое Паропроницаемость?
- Паропроницаемость
Паропроницаемость
μ, мг/(м·ч·Па), – способность материала пропускать водяные пары, содержащиеся в воздухе, под действием разности их парциальных давлений на противоположных поверхностях слоя материала.3.4 паропроницаемость (water vapour permeability) δ: Произведение относительной паропроницаемости и толщины образца. Паропроницаемость однородного изделия характеризует свойство материала и определяется как количество пара, проходящего в единицу времени через единицу площади образца при разности давления пара на лицевых гранях и толщине образца, равных единице.
14. Паропроницаемость – способность материала пропускать водяные пары, содержащиеся в воздухе, под действием разности их парциальных давлений на противоположных поверхностях слоя материала. Паропроницаемость измеряется в мг/(м×ч×Па).
3.10. Паропроницаемость : свойство материалов ограждающей конструкции пропускать влагу под действием разности парциальных давлений водяного пара на ее наружной и внутренней поверхностях.Смотри также родственные термины:
3.3. Паропроницаемость ограждающей конструкции
–
–
3.3. Паропроницаемость ограждающей конструкции
–
–
Словарь-справочник терминов нормативно-технической документации. academic.ru. 2015.
- паропроницае мый герметик
- Паропроницаемость ограждающей конструкции
Смотреть что такое “Паропроницаемость” в других словарях:
паропроницаемость — паропроницаемость … Орфографический словарь-справочник
Паропроницаемость — d – произведение относительной паропроницаемости и толщины образца. Паропроницаемость однородного изделия характеризует свойство материала и определяется как количество пара, проходящего в единицу времени через единицу площади образца при… … Энциклопедия терминов, определений и пояснений строительных материалов
паропроницаемость — pralaidumas garui statusas T sritis Standartizacija ir metrologija apibrėžtis Medžiagos gebėjimas praleisti vandens garus. atitikmenys: angl. water vapor permeability; water vapour permeability vok. Wasserdampfdurchlässigkeit, f rus.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas
паропроницаемость — pralaidumas garui statusas T sritis chemija apibrėžtis Medžiagos gebėjimas praleisti vandens garus. atitikmenys: angl. water vapor permeability; water vapour permeability rus. паропроницаемость … Chemijos terminų aiškinamasis žodynas
паропроницаемость — pralaidumas garui statusas T sritis fizika atitikmenys: angl. water vapor permeability; water vapour permeability vok. Wasserdampfdurchlässigkeit, f rus. паропроницаемость, f pranc. perméabilité à la vapeur d’eau, f … Fizikos terminų žodynas
паропроницаемость, m, мг/(м × ч × Па) — 3.4 паропроницаемость, m, мг/(м × ч × Па): Способность материала пропускать водяные пары, содержащиеся в воздухе, под действием разности их парциальных давлений на противоположных поверхностях слоя материала; Источник: СП 61.13330.2012: Тепловая… … Словарь-справочник терминов нормативно-технической документации
Паропроницаемость защитного покрытия — способность пропускать или задерживать водяной пар в результате разности парциального давления водяного пара при одинаковом атмосферном давлении на обеих сторонах защитного покрытия, характеризуемая величиной коэффициента паропроницаемости или… … Официальная терминология
паропроницаемость защитного покрытия — Способность пропускать или задерживать водяной пар в результате разности парциального давления водяного пара при одинаковом атмосферном давлении на обеих сторонах защитного покрытия, характеризуемая величиной коэффициента паропроницаемости или… … Справочник технического переводчика
паропроницаемость кожи — Показатель качества, характеризующийся способностью кожи пропускать пары воды при создании разницы в упругости паров по обе стороны испытуемого образца. [ГОСТ 3123 78] Тематики кожевенное производство Обобщающие термины показатели качества … Справочник технического переводчика
Паропроницаемость защитного покрытия — – способность пропускать или задерживать водяной пар в результате разности парциального давления водяного пара при одинаковом атмосферном давлении на обеих сторонах защитного покрытия, характеризуемая величиной коэффициента… … Энциклопедия терминов, определений и пояснений строительных материалов
normative_reference_dictionary.academic.ru
Паропроницаемость материалов
Паропроницаемость — измеряется количеством водяного пара, проходящим через 1м2 площади, толщиной 1метр, в течении 1 часа, при разности давлений 1 Па. (согласно СНиПа 23-02-2003). Чем ниже паропроницаемость, тем лучше теплоизоляционный материал.
Коэффициент паропроницаемость (DIN 52615) (мю, (мг/(м*ч*Па)) это отношение паропроницаемости слоя воздуха толщиной 1 метр к паропроницаемости материала той же толщины
Паропроницаемость воздуха можно рассмотреть как константу, равную
0,625 (мг/(м*ч*Па)
Сопротивляемость слоя материала зависит от его толщины. Сопротивляемость слоя материала определяется путем деления толщины на коэффициент паропроницаемости. Измеряется в (м2*ч*Па) /мг
Согласно СП 50.13330.2012 “Тепловая защита зданий”, приложение Т, таблица Т1 “Расчетные теплотехнические показатели строительных материалов и изделий” коэффициент паропроницаемость (мю, (мг/(м*ч*Па)) будет равна:
Сталь стержневая, арматурная (7850кг/м3), коэфф. паропроницаемости мю = 0;
Алюминий (2600) = 0; Медь (8500) = 0; Стекло оконное (2500) = 0; Чугун (7200) = 0;
Железобетон (2500) = 0,03; Раствор цементно-песчаный (1800) = 0,09;
Кирпичная кладка из пустотелого кирпича (керамический пустотный с плотностью 1400кг/м3 на цементном песчаном растворе) (1600) = 0,14;
Кирпичная кладка из пустотелого кирпича (керамический пустотный с плотностью 1300кг/м3 на цементном песчаном растворе) (1400) = 0,16;
Кирпичная кладка из сплошного кирпича (шлакового на цементном песчаном растворе) (1500) = 0,11;
Кирпичная кладка из сплошного кирпича (глиняного обыкновенного на цементном песчаном растворе) (1800) = 0,11;
Плиты из пенополистирола плотностью до 10 – 38 кг/м3 = 0,05;
Рубероид, пергамент, толь (600) = 0,001;
Сосна и ель поперек волокон (500) = 0,06
Сосна и ель вдоль волокон (500) = 0,32
Дуб поперек волокон (700) = 0,05
Дуб вдоль волокон (700) = 0,3
Фанера клееная (600) = 0,02
Песок для строительных работ (ГОСТ 8736) (1600) = 0,17
Минвата, каменная (25-50 кг/м3) = 0,37; Минвата, каменная (40-60 кг/м3) = 0,35
Минвата, каменная (140-175 кг/м3) = 0,32; Минвата, каменная (180 кг/м3) = 0,3
Гипсокартон 0,075; Бетон 0,03
Статья дана в ознакомительных целях
prof-il.ru
Паропроницаемость (паропрозрачность) стен и материалов
Существует легенда о “дышащей стене”, и былинные сказания о “здоровом дыхании шлакоблока, которое создает неповторимую атмосферу в доме”. На самом деле, – все это сказки. Паропроницаемость стены не большая, количество пара проходящего через нее не значительно, и гораздо меньше, чем количество пара переносимое воздухом, при его обмене в помещении.
Паропроницаемость – один из важнейших параметров, используемых при расчете утепления. Можно сказать, что паропроницаемость материалов определяет всю конструкцию утепления.
Что такое паропроницаемость
Движение пара через стену происходит при разности парциального давления по сторонам стены (различная влажность). При этом разности атмосферного давления может и не быть.
Паропроницаемость – способность материла пропускать через себя пар. По отечественной классификации определяется коэффициентом паропроницаемости m, мг/(м*час*Па).
Сопротивляемость слоя материала будет зависеть от его толщины.
Определяется путем деления толщины на коэффициент паропроницаемости. Измеряется в (м кв.*час*Па)/мг.
Например, коэффициент паропроницаемости кирпичной кладки принят как 0,11 мг/(м*час*Па). При толщине кирпичной стены равной 0,36 м, ее сопротивление паропроницанию составит 0,36/0,11=3,3 (м кв.*час*Па)/мг.
Какая паропроницаемость у строительных материалов
Ниже приведены значения коэффициента паропроницаемости для нескольких строительнных материалов (согласно нормативного документа), которые наиболее широко используются, мг/(м*час*Па).
Битум 0,008
Тяжелый бетон 0,03
Автоклавный газобетон 0,12
Керамзитобетон 0,075 – 0,09
Шлакобетон 0,075 – 0,14
Обожженная глина (кирпич) 0,11 – 0,15 (в виде кладки на цементном растворе)
Известковый раствор 0,12
Гипсокартон, гипс 0,075
Цементно-песчаная штукатурка 0,09
Известняк (в зависимости от плотности) 0,06 – 0,11
Металлы 0
ДСП 0,12 0,24
Линолеум 0,002
Пенопласт 0,05-0,23
Полиурентан твердый, полиуретановая пена
0,05
Минеральная вата 0,3-0,6
Пеностекло 0,02 -0,03
Вермикулит 0,23 – 0,3
Керамзит 0,21-0,26
Дерево поперек волокон 0,06
Дерево вдоль волокон 0,32
Кирпичная кладка из силикатного кирпича на цементном растворе 0,11
Данные по паропроницанию слоев обязательно нужно учитывать при проектировании любого утепления.
Как конструировать утепление – по пароизоляционным качествам
Основное правило утепления – паропрозрачность слоев должна увеличиваться по направлению наружу. Тогда в холодное время года, с большей вероятностью, не произойдет накопление воды в слоях, когда конденсация будет происходить в точке росы.
Базовый принцип помогает определиться в любых случаях. Даже когда все “перевернуто вверх ногами” – утепляют изнутри, несмотря на настойчивые рекомендации делать утепление только снаружи.
Что бы не произошло катастрофы с намоканием стен, достаточно вспомнить о том, что внутренний слой должен наиболее упорно сопротивляться пару, и исходя из этого для внутреннего утепления применить экструдированный пенополистирол толстым слоем – материал с очень низкой паропроницаемостью.
Или же не забыть для очень “дышащего” газобетона снаружи применить еще более “воздушную” минеральную вату.
Другой вариант применения принципа паропрозрачности материалов в многослойной конструкции – разделение наиболее значимых слоев пароизолятором. Или применение значимого слоя, который является абсолютным пароизолятором.
Например, – утепление кирпичной стены пеностеклом. Казалось бы, это противоречит вышеуказанному принципу, ведь возможно накопление влаги в кирпиче?
Но этого не происходит, из-за того, что полностью прерывается направленное движение пара (при минусовых температурах из помещения наружу). Ведь пеностекло полный пароизолятор или близко к этому.
Поэтому, в данном случае кирпич войдет в равновесное состояние с внутренней атмосферой дома, и будет служить аккумулятором влажности при резких ее скачках внутри помещения, делая внутренний климат приятнее.
Принципом разделении слоев пользуются и применяя минеральную вату – утеплитель особо опасный по влагонакоплению. Например, в трехслойной конструкции, когда минеральная вата находится внутри стены без вентиляции, рекомендуется под вату положить паробарьер, и оставить ее, таким образом, в наружной атмосфере.
Международная классификация пароизоляции материалов
Международная классификация материалов по пароизоляционным свойствам отличается от отечественной.
Согласно международному стандарту ISO/FDIS 10456:2007(E) материалы характеризуются коэффициентом сопротивляемости движению пара. Этот коэффициент указывает во сколько раз больше материал сопротивляется движению пара по сравнению с воздухом. Т.е. у воздуха коэффициент сопротивляемости движению пара равен 1, а у экструдированного пенополистирола уже 150, т.е. пенополистирол в 150 раз пропускает пар хуже чем воздух.
Яндекс.Директ
Также в международных стандартах принято определять паропроницаемость для сухих и увлажненных материалов. Границей между понятиями «сухой» и «увлажненный» выбрана внутренняя влажность материала в 70%.
Ниже приведены значения коэффициента сопротивляемости движению пара для различных материалов согласно международным стандартам. Сначала приведены данные для сухого материала, а через запятую для увлажненного (более 70% влажности).
Воздух 1, 1
Битум 50 000, 50 000
Пластики, резина, силикон – >5 000, >5 000
Тяжелый бетон 130, 80
Бетон средней плотности 100, 60
Полистирол бетон 120, 60
Автоклавный газобетон 10, 6
Легкий бетон 15, 10
Искусственный камень 150, 120
Керамзитобетон 6-8, 4
Шлакобетон 30, 20
Обожженная глина (кирпич) 16, 10
Известковый раствор 20, 10
Гипсокартон, гипс 10, 4
Гипсовая штукатурка 10, 6
Цементно-песчаная штукатурка 10, 6
Глина, песок, гравий 50, 50
Песчаник 40, 30
Известняк (в зависимости от плотности) 30-250, 20-200
Керамическая плитка ∞, ∞
Металлы ∞, ∞
OSB-2 (DIN 52612) 50, 30
OSB-3 (DIN 52612) 107, 64
OSB-4 (DIN 52612) 300, 135
ДСП 50, 10-20
Линолеум 1000, 800
Подложка под ламинат пластик 10 000, 10 000
Подложка под ламинат пробка 20, 10
Пенопласт 60, 60
ЭППС 150, 150
Полиурентан твердый, полиуретановая пена 50, 50
Минеральная вата 1, 1
Пеностекло ∞, ∞
Перлитовые панели 5, 5
Перлит 2, 2
Вермикулит 3, 2
Эковата 2, 2
Керамзит 2, 2
Дерево поперек волокон 50-200, 20-50
Нужно заметить, что данные по сопротивляемости движению пара у нас и “там” весьма различаются. Например, пеностекло у нас нормируется, а международный стандарт говорит, что оно является абсолютным пароизолятором.
Откуда возникла легенда о дышащей стене
Очень много компаний выпускает минеральную вату. Это самый паропроницаемый утеплитель. По международным стандартам ее коэффициент сопротивления паропроницаемости (не путать с отечественным коэффициентом паропроницаемости) равен 1,0. Т.е. фактически минеральная вата не отличается в этом отношении от воздуха.
Действительно, это “дышащий” утеплитель. Что бы продать минеральной ваты как можно больше, нужна красивая сказка. Например, о том, что если утеплить кирпичную стену снаружи минеральной ватой, то она ничего не потеряет в плане паропроницания. И это абсолютная правда!
Коварная ложь скрывается в том, что через кирпичные стены толщиной в 36 сантиметров, при разности влажностей в 20% (на улице 50%, в доме – 70%) за сутки из дома выйдет примерно около литра воды. В то время как с обменом воздуха, должно выйти примерно в 10 раз больше, что бы влажность в доме не наращивалась.
А если стена снаружи или изнутри будет изолирована, например слоем краски, виниловыми обоями, плотной цементной штукатуркой, (что в общем-то «самое обычное дело»), то паропроницаемость стены уменьшиться в разы, а при полной изоляции – в десятки и сотни раз.
Поэтому всегда кирпичной стене и домочадцам будет абсолютно одинаково, – накрыт ли дом минеральной ватой с “бушующим дыханием”, или же “уныло-сопящим” пенопластом.
Принимая решения по утеплению домов и квартир, стоит исходить из основного принципа – наружный слой должен быть более паропроницаем, желательно в разы.
Если же это выдерживать почему-либо не возможно, то можно разделить слои сплошной пароизоляцией, (применить полностью паронепроницаемый слой) и прекратить движение пара в конструкции, что приведет к состоянию динамического равновесия слоев со средой в которой они будут находиться.
при не верном размещении утеплителя или выбора его типа возмможно образоване конденсата в стене или на границе стены с утеплителем при этом снижая срок жизни (морозостойкость) метериала стены
ниже приведены примеры расчетов
olymp.in
4. Паропроницаемость и защита от переувлажнения ограждающих конструкций
Отсутствие конденсата на внутренней поверхности ограждений не предотвращает увлажнения материала ограждения ввиду возможности конденсации водяных паров в его толще.
В зимнее время, вследствие более высокой упругости водяного пара внутри помещения, нежели снаружи, водяной пар проникает через ограждения наружу и тем самым способствует увлажнению материалов ограждения. Этот процесс носит название диффузии пара через ограждение.
При
диффузии водяного пара через слой
материала ограждения, последний оказывает
потоку пара сопротивление, называемое
сопротивлением паропроницанию ,
м2 ч Па/мг, которое показывает количество
водяного пара в миллиграммах, проникающего
в течение 1 ч через 1 м2 плоской однородной стенки толщиной 1 м
при разности упругости пара с внутренней
и наружной сторон ограждения в 1 Па.
Сопротивление
паропроницанию отдельного слоя
ограждающей конструкции ,
м2 ч Па/мг, определяется по формуле
=
,
(16)
где –
толщина слоя материала ограждения, м;
–коэффициент
паропроницаемости, мг/(м ч Па), принимаемый
по приложению Д свода правил СП 23-101-04.
Сопротивление паропроницанию многослойной ограждающей конструкции определяется как сумма сопротивлений паропроницанию отдельных слоев по формуле
, (17)
где ,
,
–
сопротивления паропроницанию отдельных
слоев ограждающей конструкции, м2 ч Па/мг.
Сопротивление паропроницанию листовых материалов принимается по табл. 8.
Таблица 8
Сопротивление паропроницанию листовых материалов и тонких слоев пароизоляции.
№ п.п | Материал | Толщина слоя, мм | Сопротивление
паропроницанию | № п.п | Материал | Толщина слоя, мм | Сопротивление
паропроницанию |
1 | Картон обыкновенный | 1,3 | 0,016 | 9 | Окраска эмалевой краской | – | 0,48 |
2 | Листы асбоцементные | 6 | 0,3 | 10 | Покрытие изольной мастикой за один раз | 2 | 0,60 |
3 | Листы гипсовые обшивочные (сухая штукатурка) | 10 | 0,12 | 11 | Покрытие битумно-кукерсольной мас тикой за один раз | 1 | 0,64 |
4 | Листы древесно-волокнистые, жесткие10 | 10 | 0.11 | 12 | Покрытие битумно-кукерсольной мастикой за два раза | 2 | 1,1 |
5 | Листы древесноволокнистые мягкие | 12,5 | 0,05 | 13 | Пергамин кровельный | 0,4 | 0,33 |
6 | Окраска горячим битумом за один раз | 2 | 0,3 | 14 | Полиэтиленовая пленка | 0,16 | 7,3 |
7 | Окраска горячим битумом за два раза | 4 | 0,48 | 15 | Рубероид | 1,5 | 1,1 |
8 | Окраска масляная за два раза с предварительной шпатлевкой и грунтовкой | – | 0,64 | 16 | Толь кровельный | 1,9 | 0,4 |
17 | Фанера клееная трехслойная | 3 | 0,15 |
Внутри ограждающих конструкций конденсация водяного пара обычно не наблюдается. Она возможна лишь при повышенной влажности внутреннего воздуха в помещении и при очень плотном наружном отделочном слое, который препятствует диффузии водяного пара из ограждения в атмосферу.
В многослойных ограждающих конструкциях водяного пара может наблюдаться внутри ограждения в виду неправильного расположения конструктивных слоев из пористых и плотных материалов. Если, обращенный в помещение слой выполнен из пористого материала, а наружный слой – из плотного, то на границе этих слоев может возникнуть конденсация влаги и наоборот, когда внутренний слой выполнен из плотного материала, обладающего незначительной паропроницаемостью, а наружный слой – из пористого материала, то такое расположение слоев гарантирует ограждающую конструкцию от конденсации влаги внутри ограждения.
Для
защиты наружных ограждающих конструкций
от переувлажнения необходимо проводить
проверочный расчет, который сводится
к определению сопротивления паропроницанию ,
м2 ч Па/мг, части ограждающей конструкции
в пределах от внутренней поверхности
до плоскости возможной конденсации и
сравнения его с нормируемым сопротивлением
паропроницанию
,
м2 ч Па/мг. При этом необходимо добиваться,
чтобы сопротивление паропроницанию
,
м2 ч Па/мг, ограждающей конструкции должно
быть не менее наибольшего из следующих
нормируемых сопротивлений паропроницанию:
–
нормируемого сопротивления паропроницанию ,
м2 ч Па/мг (из условия недопустимости
накопления влаги в ограждающей конструкции
за годовой период), определяемого по
формуле
=
,
(18)
–
нормируемого сопротивления паропроницанию ,
м2 ч Па/мг, (из условия ограничения влаги
в ограждающей конструкции за период с
отрицательными средними месячными
температурами наружного воздуха)
определяемого по формуле
=
,
(19)
где –
парциальное давление водяного пара
внутреннего воздуха, Па , при расчетной
температуре и относительной влажности
этого воздуха, определяемое по формуле
=
,
(20)
где –
парциальное давление насыщенного
водяного пара, Па, при температуреtint, оС,
принимаемое по приложению С свода
правил СП 23-101-04;
–относительная
влажность внутреннего воздуха, %.
–парциальное
давление водяного пара, Па, в плоскости
возможной конденсации за годовой период
эксплуатации, определяемое по формуле
, (21)
где ,
,
–
парциальное давление водяного пара,
Па, принимаемое по температуре в плоскости
возможной конденсации
,
устанавливаемой при средней температуре
наружного воздуха соответственно
зимнего, весенне-осеннего и летнего
периодов;
,
,
–
продолжительность, мес., зимнего,
весенне-осеннего и летнего периода
года, определяемая по табл. 3 СНиП 23-01-99
с учетом следующих условий:
а) к зимнему периоду относятся месяцы со средними температурами наружного воздуха ниже минус 5 оС;
б) к весенне-осеннему периоду относятся месяцы со средними температурами наружного воздуха от минус 5 до плюс 5 оС;
в) к летнему периоду относятся месяцы со средними температурами воздуха выше плюс 5оС.
–сопротивление
паропроницанию, м2 ч Па/мг, части ограждающей конструкции,
расположенной между наружной поверхностью
ограждающей конструкции и плоскостью
возможной конденсации;
–среднее
парциальное давление водяного пара
наружного воздуха, Па, за годовой период,
определяемое по таблице 5* СНиП 23-01-99;
–продолжительность,
сут., периода влагонакопления, принимаемая
равной периоду с отрицательными средними
месячными температурами наружного
воздуха по табл. 3 СНиП 23-01-99;
–парциальное
давление водяного пара, Па, в плоскости
возможной конденсации, определяемое
по средней температуре наружного воздуха
периода месяцев с отрицательными
средними месячными температурами;
–плотность
материала увлажняемого слоя, кг/м3,
в сухом состоянии;
–толщина
увлажняемого слоя ограждающей конструкции,
м;
–предельно
допустимое приращение расчетного
массового отношения влаги в материале
увлажняемого слоя, %, за период
влагонакопления zo,
принимаемое по табл. 9.
Таблица 9.
studfiles.net
Таблица паропроницаемости различных строительных материалов
В отечественных нормах сопротивление паропроницаемости (сопротивление паропроницанию Rп, м2ч Па/мг) нормируется в главе 6 “Сопротивление паропроницанию ограждающих конструкций” СНиП II-3-79 (1998) “Строительная теплотехника”.
Международные стандарты паропроницаемости строительных материалов приводятся в стандартах ISO TC 163/SC 2 и ISO/FDIS 10456:2007(E) – 2007 год.
Показатели коэффициента сопротивления паропроницанию определяются на основании международного стандарта ISO 12572 “Теплотехнические свойства строительных материалов и изделий – Определение паропроницаемости”.
Показатели паропроницаемости для международных норм ISO определялись лабораторным способом на выдержанных во времени (не только что выпущенных) образцах строительных материалов. Паропроницаемость определялась для строительных материалов в сухом и влажном состоянии.В отечественном СНиП приводятся лишь расчетные данные паропроницаемости при массовом отношении влаги в материале w, %, равном нулю.Поэтому для выбора строительных материалов по паропроницаемости при дачном строительстве лучше ориентироваться на международные стандарты ISO, котрые определяют паропроницаемость “сухих” строительных материалов при влажности менее 70% и “влажных” строительных материалов при влажности более 70%. Помните, что при оставлении “пирогов” паропроницаемых стен, паропроницаемость материалов изнутри-кнаружи не должна уменьшаться, иначе постепенно произойдет “замокание” внутренних слоев строительных материалов и значительно увеличится их теплопроводность.
Паропроницаемость материалов изнутри кнаружи отапливаемого дома должна уменьшаться: СП 23-101-2004 Проектирование тепловой защиты зданий, п.8.8:Для обеспечения лучших эксплуатационных характеристик в многослойных конструкциях зданий с теплой стороны следует располагать слои большей теплопроводности и с большим сопротивлением паропроницанию, чем наружные слои.
По данным Т.Роджерс (Роджерс Т.С. Проектирование тепловой защиты зданий. / Пер. с англ.
– м.: си, 1966) Отдельные слои в многослойных ограждениях следует располагать в такой последовательности, чтобы паропроницаемость каждого слоя нарастала от внутренней поверхности к наружной. При таком расположении слоев водяной пар, попавший в ограждение через внутреннюю поверхность с возрастающей легкостью, будет проходить через все спои ограждения и удаляться из ограждения с наружной поверхности. Ограждающая конструкция будет нормально функционировать, если при соблюдении сформулированного принципа, паропроницаемость наружного слоя, как минимум, в 5 раз будет превышать паропроницаемость внутреннего слоя.
Механизм паропроницаемости строительных материалов:
При низкой относительной влажности влага из атмосферы транспортируется через поры строительных материаловв виде отдельных молекул водяного пара. При повышении относительной влажности поры строительных материалов начинают заполняться жидкостью и начинают работать механизмы смачивания и капиллярного подсоса. При повышении влажности строительного материала его паропроницаемость увеличивается (снижается коэффициент сопротивления паропроницаемости).
Пример пренебрежения паропроницаемостью строительных материалов в многослойных стенах: укрытие деревянных стен паронепроницаемым рубероидом привело к биологическому разрушению дерева в условиях постоянного увлажнения. При укрытии ячеистых бетонов паронепроницаемыми материалами(кирпичная кладка, ЭППС) происходит переувлажнение стен и их постепенное разрушение при периодическом промерзании.
Показатели паропроницаемости “сухих” строительных материалов по ISO/FDIS 10456:2007(E) применимы для внутренних конструкций отапливаемых зданий. Показатели паропроницаемости “влажных” строительных материалов применимы для всех наружных конструкций и внутрених конструкций неотапливаемых зданий или дачных домов с переменным (временным) режимом отопления.
ТАБЛИЦА СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ
Таблицаплотности, теплопроводности ипаропроницаемости различных строительныхматериалов.Основные эффективные теплоизоляционные,гидроизоляционные и пароизоляционныематериалы выделены.
Приведенысредние значения для материалов различныхпроизводителей. Более точные данные потеплоизоляционным материалам см. тут.
Материал Плотность, кг/м3 Теплопроводность, Вт/(м*С) Паропроницаемость,Мг/(м*ч*Па) Эквивалентная1(при сопротивлении теплопередаче = 4,2м2*С/Вт) толщина, м Эквивалентная2(при сопротивление паропроницанию =1,6м2*ч*Па/мг) толщина, м Железобетон 2500 1.69 0.03 7.10 0.048 Бетон 2400 1.51 0.03 6.34 0.048 Керамзитобетон 1800 0.66 0.09 2.77 0.144 Керамзитобетон 500 0.14 0.30 0.59 0.48 Кирпич красный глиняный 1800 0.56 0.11 2.35 0.176 Кирпич, силикатный 1800 0.70 0.11 2.94 0.176 Кирпич керамический пустотелый (брутто1400) 1600 0.41 0.14 1.72 0.224 Кирпич керамический пустотелый (брутто1000) 1200 0.35 0.17 1.47 0.272 Пенобетон 1000 0.29 0.11 1.22 0.176 Пенобетон 300 0.08 0.26 0.34 0.416 Гранит 2800 3.49 0.008 14.6 0.013 Мрамор 2800 2.91 0.008 12.2 0.013 Сосна, ель поперек волокон 500 0.09 0.06 0.38 0.096 Дуб поперек волокон 700 0.10 0.05 0.42 0.08 Сосна, ель вдоль волокон 500 0.18 0.32 0.75 0.512 Дуб вдоль волокон 700 0.23 0.30 0.96 0.48 Фанера клееная 600 0.12 0.02 0.50 0.032 ДСП, ОСП 1000 0.15 0.12 0.63 0.192 ПАКЛЯ 150 0.05 0.49 0.21 0.784 Гипсокартон 800 0.15 0.075 0.63 0.12 Картон облицовочный 1000 0.18 0.06 0.75 0.096 Минвата2000.0700.490.300.784Минвата1000.0560.560.230.896Минвата500.0480.600.200.96ПЕНОПОЛИСТИРОЛЭКТРУДИРОВАННЫЙ330.0310.0130.130.021ПЕНОПОЛИСТИРОЛ ЭКТРУДИРОВАННЫЙ450.0360.0130.130.021Пенополистирол1500.050.050.210.08Пенополистирол1000.0410.050.170.08Пенополистирол400.0380.050.160.08Пенопласт ПВХ 125 0.052 0.23 0.22 0.368 ПЕНОПОЛИУРЕТАН800.0410.050.170.08ПЕНОПОЛИУРЕТАН600.0350.00.150.08ПЕНОПОЛИУРЕТАН400.0290.050.120.08ПЕНОПОЛИУРЕТАН300.0200.050.090.08Керамзит 800 0.18 0.21 0.75 0.336 Керамзит 200 0.10 0.26 0.42 0.416 Песок 1600 0.35 0.17 1.47 0.272 Пеностекло 400 0.11 0.02 0.46 0.032 Пеностекло 200 0.07 0.03 0.30 0.048 АЦП 1800 0.35 0.03 1.47 0.048 Битум 1400 0.27 0.008 1.13 0.013 ПОЛИУРЕТАНОВАЯ МАСТИКА14000.250.000231.050.00036ПОЛИМОЧЕВИНА11000.210.000230.880.00054Рубероид, пергамин 600 0.17 0.001 0.71 0.0016 Полиэтилен 1500 0.30 0.00002 1.26 0.000032 Асфальтобетон 2100 1.05 0.008 4.41 0.0128 Линолеум 1600 0.33 0.002 1.38 0.0032 Сталь 7850 58 0 243 0 Алюминий 2600 221 0 928 0 Медь 8500 407 0 1709 0 Стекло 2500 0.76 0 3.19 0
1- сопротивление теплопередаче ограждающихконструкций жилых зданий в Московскомрегионе, строительство которых начинаетсяс 1 января 2000 года.2 – сопротивлениепаропроницанию внутреннего слоя стеныдвухслойной стены помещения с сухимили нормальным режимом, свыше которогоне требуется определять сопротивлениепаропроницанию ограждающей конструкции.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- Дата: 31-03-2015Просмотров: 189Комментариев: Рейтинг: 22
Паропроницаемость материала выражена в его способности пропускать водяной пар. Данное свойство противостоять проникновению пара или позволять ему проходить сквозь материал определяется уровнем коэффициента паропроницаемости, который обозначается µ.Это значение, которое звучит как «мю», выступает в качестве относительной величины сопротивления переносу пара в сравнении с характеристиками сопротивления воздуха.
Диаграмма паропроницаемости наиболее распространенных строительных материалов.
Существует таблица, которая отражает способность материала к паропереносу, ее можно увидеть на рис. 1.
Таким образом, значение мю для минеральной ваты равно 1, это указывает на то, что она способна пропускать водяной пар так же хорошо, как и сам воздух. Тогда как это значение для газобетона равно 10, это означает, что он справляется с проведением пара в 10 раз хуже воздуха. Если показатель мю умножить на толщину слоя, выраженную в метрах, это позволит получить равную по уровню паропроницаемости толщину воздуха Sd (м).
Из таблицы видно, что для каждой позиции показатель паропроницаемости указан при разном состоянии. Если заглянуть в СНиП, то можно увидеть расчетные данные показателя мю при отношении влаги в теле материала, приравненном к нулю.
Рисунок 1. Таблица паропроницаемости стройматериаловПо этой причине при приобретении товаров, которые предполагается использовать в процессе дачного строительства, предпочтительнее брать в расчет международные стандарты ISO, так как они определяют показатель мю в сухом состоянии, при уровне влажности не более 70% и показателе влажности более 70%.При выборе строительных материалов, которые лягут в основу многослойной конструкции, показатель мю слоев, находящихся изнутри, должен быть ниже, в противном случае со временем внутри расположенные слои станут намокать, вследствие этого они потеряют свои теплоизоляционные качества.При создании ограждающих конструкций нужно позаботиться об их нормальном функционировании.
Для этого следует придерживаться принципа, который гласит, что уровень мю материала, который расположен в наружном слое, должен в 5 раз или больше превышать упомянутый показатель материала, находящегося во внутреннем слое.При условиях незначительной относительной влажности частички влаги, которые содержатся в атмосфере, проникают сквозь поры строительных материалов, оказываясь там в виде молекул пара. В момент увеличения уровня относительной влажности поры слоев накапливают воду, что становится причиной намокания и капиллярного подсоса.В момент повышения уровня влажности слоя его показатель мю увеличивается, таким образом, уровень сопротивления паропроницаемости снижается.Показатели паропроницаемости неувлажненных материалов применимы в условиях внутренних конструкций построек, которые имеют отопление. А вот уровни паропроницаемости увлажненных материалов применимы для любых конструкций построек, которые не отапливаются.Схема прибора для определения паропроницаемости.Уровни паропроницаемости, которые являются частью наших норм, не во всех случаях эквивалентны показателям, которые принадлежат к международным стандартам.
Так, в отечественных СНиП уровень мю керамзито- и шлакобетона почти не отличается, тогда как по международным стандартам данные отличаются между собой в 5 раз. Уровни паропроницаемости ГКЛ и шлакобетона в отечественных нормах практически одинаковы, а в международных стандартах данные отличаются в 3 раза.Существуют различные способы определения уровня паропроницаемости, что касается мембран, то можно выделить следующие способы:Американский тест с установленной вертикально чашей.Американский тест с перевернутой чашей.Японский тест с вертикальной чашей.Японский тест с перевернутой чашей и влагопоглотителем.Американский тест с вертикальной чашей.В японском тесте используется сухой влагопоглотитель, который расположен под тестируемым материалом. Во всех тестах используется уплотнительный элемент.Вернуться к оглавлениюНекоторые производители указывают на зависимость атмосферы легкости в доме от показателей паропроницаемости строительных материалов.
Однако если даже вы возьмете в расчет данные таблиц, в которых отражены уровни мю каждого материала, и выберете тот, который обладает наиболее высоким показателем, то через стены станет удаляться лишь 4% всего объема удаляемого из помещения пара, тогда как 96% станут устраняться посредством вытяжек и окон.А вот если помещение обклеено виниловыми или флизелиновыми обоями, то стены и вовсе не способны пропускать влагу.Если после строительства не был использован утеплительный материал, то в ветреную погоду или сильный мороз из комнат будет уходить тепло. Кроме того, долговечность стен, которые имеют высокую степень паропроницаемости и низкую плотность, гораздо ниже. Ведь при более высоком уровне паропроницаемости материал больше способен накапливать влагу, которая замерзает при морозах, уменьшая морозостойкость.Производители материалов по типу газобетона или пенобетона хитрят, когда указывают конечную теплопроводность, так как при расчетах используется материал в идеально сухом состоянии.
Если блок, выполненный из газобетона, наберет влагу, то его способности к теплоизоляции будут снижены в 5 раз, таким образом, стены в доме, которые выстроены из этого материала, будут отлично выпускать теплый воздух из помещений. Ситуация ухудшится, если температура снизится, это станет причиной смещения точки росы внутрь стены, конденсат, который образовался в стене, замерзнет.Жидкость, замерзая, увеличится в размерах и станет способствовать разрушению материала. Через некоторое количество циклов замерзания и оттаивания материал полностью придет в негодность.
Поэтому не во всех случаях стоит выбирать тот материал, который имеет высокую степень паропроницаемости.Существует легенда о «дышащей стене», и сказания о «здоровом дыхании шлакоблока, которое создает неповторимую атмосферу в доме». На самом деле паропроницаемость стены не большая, количество пара проходящего через нее незначительно, и гораздо меньше, чем количество пара переносимое воздухом, при его обмене в помещении.Паропроницаемость — один из важнейших параметров, используемых при расчете утепления. Можно сказать, что паропроницаемость материалов определяет всю конструкцию утепления.
Что такое паропроницаемость
Движение пара через стену происходит при разности парциального давления по сторонам стены (различная влажность). При этом разности атмосферного давления может и не быть.
Паропроницаемость — способность материла пропускать через себя пар. По отечественной классификации определяется коэффициентом паропроницаемости m, мг/(м*час*Па).
Сопротивляемость слоя материала будет зависеть от его толщины.Определяется путем деления толщины на коэффициент паропроницаемости. Измеряется в (м кв.*час*Па)/мг.
Например, коэффициент паропроницаемости кирпичной кладки принят как 0,11 мг/(м*час*Па). При толщине кирпичной стены равной 0,36 м, ее сопротивление движению пара составит 0,36/0,11=3,3 (м кв.*час*Па)/мг.
Какая паропроницаемость у строительных материалов
Ниже приведены значения коэффициента паропроницаемости для нескольких строительных материалов (согласно нормативного документа), которые наиболее широко используются, мг/(м*час*Па).Битум 0,008Тяжелый бетон 0,03 Автоклавный газобетон 0,12Керамзитобетон 0,075 — 0,09Шлакобетон 0,075 — 0,14Обожженная глина (кирпич) 0,11 — 0,15 (в виде кладки на цементном растворе) Известковый раствор 0,12 Гипсокартон, гипс 0,075Цементно-песчаная штукатурка 0,09 Известняк (в зависимости от плотности) 0,06 — 0,11Металлы 0ДСП 0,12 0,24Линолеум 0,002 Пенопласт 0,05-0,23Полиурентан твердый, полиуретановая пена0,05 Минеральная вата 0,3-0,6 Пеностекло 0,02 -0,03Вермикулит 0,23 — 0,3Керамзит 0,21-0,26Дерево поперек волокон 0,06 Дерево вдоль волокон 0,32
Кирпичная кладка из силикатного кирпича на цементном растворе 0,11
Данные по паропроницанию слоев обязательно нужно учитывать при проектировании любого утепления.
Как конструировать утепление — по пароизоляционным качествам
Основное правило утепления — паропрозрачность слоев должна увеличиваться по направлению наружу. Тогда в холодное время года, с большей вероятностью, не произойдет накопление воды в слоях, когда конденсация будет происходить в точке росы.
Базовый принцип помогает определиться в любых случаях. Даже когда все «перевернуто вверх ногами» – утепляют изнутри, несмотря на настойчивые рекомендации делать утепление только снаружи.
Чтобы не произошло катастрофы с намоканием стен, достаточно вспомнить о том, что внутренний слой должен наиболее упорно сопротивляться пару, и исходя из этого для внутреннего утепления применить экструдированный пенополистирол толстым слоем — материал с очень низкой паропроницаемостью.
Или же не забыть для очень «дышащего» газобетона снаружи применить еще более «воздушную» минеральную вату.
Разделение слоев пароизолятором
Другой вариант применения принципа паропрозрачности материалов в многослойной конструкции — разделение наиболее значимых слоев пароизолятором. Или применение значимого слоя, который является абсолютным пароизолятором.
Например, — утепление кирпичной стены пеностеклом. Казалось бы, это противоречит вышеуказанному принципу, ведь возможно накопление влаги в кирпиче?
Но этого не происходит, из-за того, что полностью прерывается направленное движение пара (при минусовых температурах из помещения наружу). Ведь пеностекло полный пароизолятор или близко к этому.
Поэтому, в данном случае кирпич войдет в равновесное состояние с внутренней атмосферой дома, и будет служить аккумулятором влажности при резких ее скачках внутри помещения, делая внутренний климат приятнее.
Принципом разделении слоев пользуются и применяя минеральную вату — утеплитель особо опасный по влагонакоплению. Например, в трехслойной конструкции, когда минеральная вата находится внутри стены без вентиляции, рекомендуется под вату положить паробарьер, и оставить ее, таким образом, в наружной атмосфере.
Международная классификация пароизоляционных качеств материалов
Международная классификация материалов по пароизоляционным свойствам отличается от отечественной.
Согласно международному стандарту ISO/FDIS 10456:2007(E) материалы характеризуются коэффициентом сопротивляемости движению пара. Этот коэффициент указывает во сколько раз больше материал сопротивляется движению пара по сравнению с воздухом.
Т.е. у воздуха коэффициент сопротивляемости движению пара равен 1, а у экструдированного пенополистирола уже 150, т. е. пенополистирол в 150 раз пропускает пар хуже чем воздух.
Также в международных стандартах принято определять паропроницаемость для сухих и увлажненных материалов. Границей между понятиями «сухой» и «увлажненный» выбрана внутренняя влажность материала в 70%.Ниже приведены значения коэффициента сопротивляемости движению пара для различных материалов согласно международным стандартам.
Коэффициент сопротивляемости движению пара
Сначала приведены данные для сухого материала, а через запятую для увлажненного (более 70% влажности).Воздух 1, 1 Битум 50 000, 50 000Пластики, резина, силикон — >5 000, >5 000Тяжелый бетон 130, 80Бетон средней плотности 100, 60Полистирол бетон 120, 60Автоклавный газобетон 10, 6Легкий бетон 15, 10 Искусственный камень 150, 120Керамзитобетон 6-8, 4Шлакобетон 30, 20Обожженная глина (кирпич) 16, 10Известковый раствор 20, 10Гипсокартон, гипс 10, 4Гипсовая штукатурка 10, 6Цементно-песчаная штукатурка 10, 6Глина, песок, гравий 50, 50Песчаник 40, 30Известняк (в зависимости от плотности) 30-250, 20-200Керамическая плитка ?, ?Металлы ?, ?OSB-2 (DIN 52612) 50, 30OSB-3 (DIN 52612) 107, 64OSB-4 (DIN 52612) 300, 135ДСП 50, 10-20Линолеум 1000, 800Подложка под ламинат пластик 10 000, 10 000Подложка под ламинат пробка 20, 10Пенопласт 60, 60ЭППС 150, 150Полиурентан твердый, полиуретановая пена 50, 50Минеральная вата 1, 1Пеностекло ?, ?Перлитовые панели 5, 5Перлит 2, 2Вермикулит 3, 2Эковата 2, 2Керамзит 2, 2
Дерево поперек волокон 50-200, 20-50
Нужно заметить, что данные по сопротивляемости движению пара у нас и «там» весьма различаются. Например, пеностекло у нас нормируется, а международный стандарт говорит, что оно является абсолютным пароизолятором.
Откуда возникла легенда о дышащей стене
Очень много компаний выпускает минеральную вату.
Это самый паропроницаемый утеплитель. По международным стандартам ее коэффициент сопротивления паропроницаемости (не путать с отечественным коэффициентом паропроницаемости) равен 1,0. Т.е. фактически минеральная вата не отличается в этом отношении от воздуха.
Действительно, это «дышащий» утеплитель.
Что бы продать минеральной ваты как можно больше, нужна красивая сказка. Например, о том, что если утеплить кирпичную стену снаружи минеральной ватой, то она ничего не потеряет в плане паропроницания. И это абсолютная правда!
Коварная ложь скрывается в том, что через кирпичные стены толщиной в 36 сантиметров, при разности влажностей в 20% (на улице 50%, в доме — 70%) за сутки из дома выйдет примерно около литра воды. В то время как с обменом воздуха, должно выйти примерно в 10 раз больше, что бы влажность в доме не наращивалась.
А если стена снаружи или изнутри будет изолирована, например слоем краски, виниловыми обоями, плотной цементной штукатуркой, (что в общем-то «самое обычное дело»), то паропроницаемость стены уменьшиться в разы, а при полной изоляции — в десятки и сотни раз.
Поэтому всегда кирпичной стене и домочадцам будет абсолютно одинаково, — накрыт ли дом минеральной ватой с «бушующим дыханием», или же «уныло-сопящим» пенопластом.
Принимая решения по утеплению домов и квартир, стоит исходить из основного принципа — наружный слой должен быть более паропроницаем, желательно в разы.
Если же это выдерживать почему-либо не возможно, то можно разделить слои сплошной пароизоляцией, (применить полностью паронепроницаемый слой) и прекратить движение пара в конструкции, что приведет к состоянию динамического равновесия слоев со средой в которой они будут находиться.
- Стены дома должны быть и теплосберегающими и не дорогими в … Технология утепления стен «Мокрый фасад» получила наибольшую популярность. Это самое …
Источники:
- dom.dacha-dom.ru
- studfiles.net
- ostroymaterialah.ru
- teplodom1.ru
blog-potolok.ru
Паропроницаемость материалов | Строительный справочник | материалы – конструкции
Паропроницаемостью по СП 23-101-2000 называется свойство материала пропускать влагу воздуха под действием перепада (разницы) парциальных давлений водяного пара в воздухе на внутренней и наружной поверхности слоя материала. Давления воздуха с обеих сторон слоя материала при этом одинаковые. Плотность стационарного потока водяного пара Gп (мг/м² час), проходящего в изотермических условиях через слой материала толщиной 5(м) в направлении уменьшения абсолютной влажности воздуха равна Gп = μ∆рп/δ, где μ (мг/м час Па) — коэффициент паропроницаемости, ∆рп (Па) — разность парциальных давлений водяного пара в воздухе у противоположных поверхностей слоя материала. Величина, обратная μ, называется сопротивлением паропроницанию Rп =δ/μ и относится не к материалу, а слою материала толщиной δ. В отличие от воздухопроницаемости, термин «паропроницаемость» — это абстрактное свойство, а не конкретная величина потока водяного пара, что является терминологическим недочётом СП 23-101-2000. Правильней было бы называть паропроницаемостью величину плотности стационарного потока водяного пара Gп через слой материала.
Если при наличии перепадов давления воздуха пространственный перенос водяных паров осуществляется массовыми движениями всего воздуха целиком вместе с парами воды (ветром) и оценивается с помощью понятия воздухопроницания, то при отсутствии перепадов давления воздуха массовых перемещений воздуха нет, и пространственный перенос водяных паров происходит путем хаотического движения молекул воды в неподвижном воздухе в сквозных каналах в пористом материале, то есть не конвективно, а диффузионно. Воздух представляет собой смесь молекул азота, кислорода, углекислого газа, аргона, воды и других компонентов с примерно одинаковыми средними скоростями, равными скорости звука. Поэтому все молекулы воздуха диффундируют (хаотически перемещаются из одной зоны газа в другую, непрерывно соударяясь с другими молекулами) примерно с одинаковыми скоростями. Так что скорость перемещения молекул воды сопоставима со скоростью перемещения молекул и азота, и кислорода. Вследствие этого европейский стандарт EN12086 использует вместо понятия коэффициента паропроницаемости μ более точный термин коэффициента диффузии (который численно равен 1,39μ) или коэффициента сопротивления диффузии 0,72/μ.
Сущность понятия паропроницаемости поясняет метод определения численных значений коэффициента паропроницаемости ГОСТ 25898-83. Стеклянную чашку с дистиллированной водой герметично накрывают испытуемым листовым материалом, взвешивают и устанавливают в герметичный шкаф, расположенный в термостатированном помещении (рис. 20). В шкаф закладывают осушитель воздуха (концентрированный раствор азотнокислого магния, обеспечивающий относительную влажность воздуха 54%) и приборы для контроля температуры и относительной влажности воздуха (желательны ведущие непрерывную запись термограф и гигрограф). После недельной выдержки чашку с водой взвешивают, и по количеству испарившейся (прошедшей через испытуемый материал) воды рассчитывают коэффициент паропроницаемости. При расчетах учитывается, что паропроницаемость самого воздуха (между поверхностью воды и образцом) равна 1 мг/м час Па. Парциальные давления водяных паров принимают равными рп = ϕр0, где р0 — давление насыщенного пара при заданной температуре, ϕ — относительная влажность воздуха, равная единице (100%) внутри чашки над водой и 0,54 (54%) в шкафу над материалом.
Рис. 20. Принцип измерения паропроницаемости строительных материалов. 1 — стеклянная чашка с дистиллированной водой, 2 — стеклянная чашка с осушающим составом (концентрированным раствором азотнокислого магния), 3 — изучаемый материал, 4 — герметик (пластилин или смель парафина с канифолью), 5 — герметичный термостатированный шкаф, 6 — термометр, 7 — гигрометр |
Данные по паропроницаемости приведены в таблицах 4 и 5. Напомним, что парциальное давление паров воды является отношением числа молекул воды в воздухе к общему числу молекул (азота, кислорода, углекислого газа, воды и т. п.) в воздухе, т. е. относительным счётным количеством молекул воды в воздухе. Приведённые значения коэффициента теплоусвоения (при периоде 24 часа) материала в конструкции вычислены по формуле s=0,27(λp0C0)0,5, где λ, р0 и С0 — табличные значения коэффициента теплопроводности, плотности и удельной теплоёмкости.
Таблица 5: Сопротивление паропроницанию листовых материалов и тонких слоев пароизоляции (приложение 11 к СНиП II-3-79*)
Материал | Толщина слоя, мм | Сопротивление паропроницанию, м² час Па/мг |
Картон обыкновенный | 1,3 | 0,016 |
Листы асбестоцементные | 6 | 0,3 |
Листы гипсовые обшивочные (сухая штукатурка) | 10 | 0,12 |
Листы древесно-волокнистые жесткие | 10 | 0,11 |
Листы древесно-волокнистые мягкие | 12,5 | 0,05 |
Пергамин кровельный | 0,4 | 0,33 |
Рубероид | 1,5 | 1,1 |
Толь кровельный | 1,9 | 0,4 |
Полиэтиленовая пленка | 0,16 | 7,3 |
Фанера клееная трехслойная | 3 | 0,15 |
Окраска горячим битумом за один раз | 2 | 0,3 |
Окраска горячим битумом за два раза | 4 | 0,48 |
Окраска масляная за два раза с предварительной шпатлевкой и грунтовкой | — | 0,64 |
Окраска эмалевой краской | — | 0,48 |
Покрытие изольной мастикой за один раз | 2 | 0,60 |
Покрытие бутумно-кукерсольной мастикой за один раз | 1 | 0,64 |
Покрытие бутумно-кукерсольной мастикой за два раза | 2 | 1,1 |
Пересчёт давлений из атмосфер (атм) в паскали (Па) и килопаскали (1кПа = 1000 Па) ведётся с учётом соотношения 1 атм = 100 000 Па. В банной практике значительно более удобно характеризовать содержание водяного пара в воздухе понятием абсолютной влажности воздуха (равной массе влаги в 1 м³ воздуха), поскольку оно наглядно показывает, сколько воды надо поддать в каменку (или испарить в парогенераторе). Абсолютная влажность воздуха равна произведению значений относительной влажности и плотности насыщенного пара:
Температура °С | 0 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
Плотность насыщенного пара d0, кг/м³ | 0,005 | 0,017 | 0,03 | 0,05 | 0,08 | 0,13 | 0,20 | 0,29 | 0,41 | 0,58 |
Давление насыщенного пара р0, атм | 0,006 | 0,023 | 0,042 | 0,073 | 0,12 | 0,20 | 0,31 | 0,47 | 0,69 | 1,00 |
Давление насыщенного пара р0, кПа | 0,6 | 2,3 | 4,2 | 7,3 | 12 | 20 | 31 | 47 | 69 | 100 |
Поскольку характерный уровень абсолютной влажности воздуха в банях 0,05 кг/м³ соответствует парциальному давлению водяных паров 7300 Па, а характерные значения парциальных давлений водяных паров в атмосфере (на улице) составляют при 50%-ной относительной влажности воздуха 1200 Па летом (20°С) и 130 Па зимой (-10°С), то характерные перепады парциальных давлений водяных паров на стенах бань достигают значений 6000-7000 Па. Отсюда следует, что типичные уровни потоков водяных паров через брусовые стены бань толщиной 10 см составляют в условиях полного штиля (3-4) г/м²час, а в расчёте на 20 м² стен — (60-80) г/час. Это не столь уж и много, если учесть, что в бане объёмом 10 м³ содержится около 500 г водяных паров. Во всяком случае при воздухопроницаемости стен во время сильных (10 м/сек) порывов ветра (1-5-10) кг/м² час перенос водяных паров ветром через брусовые стены может достигать (50-500) г/м² час. Всё это означает, что паропроницаемость брусовых стен и потолков бань не снижает существенно влажность древесины, намоченной горячей росой при поддачах, так что потолок в паровой бане и в самом деле может намокать и работать как парогенератор, преимущественно увлажняющий только воздух в бане, но лишь при тщательной защите потолка от порывов ветра.
Если же баня холодная, то перепады давлений водяных паров на стенах бани не могут превышать летом 1000 Па (при 100%-ной влажности внутри стены и 60%-ной влажности воздуха на улице при 20°С). Поэтому характерная скорость высушивания брусовых стен летом за счёт паропроницания находится на уровне 0,5 г/м² час, а за счёт воздухопроницаемости при легком ветре 1 м/сек — (0,2-2) г/м² час и при порывах ветра 10 м/сек — (20- 200) г/м² час (хотя внутри стен движения масс воздуха происходят со скоростями менее 1 мм/сек). Ясно, что процессы паропроницания становятся существенными в балансе влаги лишь при хорошей ветрозащите стен здания. Таким образом, для быстрых просушиваний стен здания (например, после аварийных протечек кровли) лучше предусматривать внутри стен продухи (каналы вентилируемого фасада). Так, если в закрытой бане намочить внутреннюю поверхность брусовой стены водой в количестве 1 кг/м², то такая стена, пропуская через себя водяные пары наружу, просохнет на ветру за несколько суток, но если брусовая стена оштукатурена снаружи (то есть ветроизолирована), то она просохнет без протопки лишь за несколько месяцев. К счастью, древесина очень медленно пропитывается водой, поэтому капли воды на стене не успевают проникнуть глубоко в древесину, и столь долгие просушки стен не характерны. Но если венец сруба лежит в луже на цоколе или на мокрой (и даже влажной) земле неделями, то последующая просушка возможна только ветром через щели.
В быту (и даже в профессиональном строительстве) именно в области пароизоляции имеется наибольшее количество недоразумений, порой самых неожиданных. Так, например, часто считают, что горячий банный воздух якобы «сушит» холодный пол, а холодный промозглый воздух из подполья «впитывается» и якобы«увлажняет» пол, хотя все происходит как раз наоборот. Или, например, всерьёз полагают, что теплоизоляция (стекловата, керамзит и т. п.) «всасывает» влагу и тем самым «высушивает» стены, не задаваясь вопросом о дальнейшей судьбе этой якобы бесконечно «всасываемой» влаги. Подобные житейские соображения и образы опровергать в быту бесполезно, хотя бы потому, что в общенародной среде никто всерьёз (а тем более во время «банного трёпа») природой явления паропроницаемости не интересуется. Но если дачник, имея соответствующее техническое образование, на самом деле хочет разобраться, как и откуда проникают водяные пары в стены и как оттуда выходят, то ему придётся, прежде всего, оценить реальное содержание влаги в воздухе во всех зонах интереса (внутри и вне бани), причём объективно выраженное в массовых единицах или парциальном давлении, а затем, пользуясь приведёнными данными по воздухопроницаемости и паропроницаемости определить, как и куда перемещаются потоки водяного пара и могут ли они конденсироваться в тех или иных зонах с учётом реальных температур. С этими вопросами мы и будем знакомиться в следующих разделах. Подчеркнём при этом, что для ориентировочных оценок можно пользоваться следующими характерными величинами перепадов давления:
— перепады давлений воздуха (для оценки переноса паров воды вместе с массами воздуха — ветром) составляют от (1-10) Па (для одноэтажных бань или слабых ветров 1 м/сек), (10-100) Па (для многоэтажных зданий или умеренных ветров 10 м/сек), более 700 Па при ураганах;
— перепады парциальных давлений водяных паров в воздухе от 1000Па (в жилых помещениях) до 10000Па (в банях).
В заключение отметим, что в народе часто путают понятия гигроскопичности и паропроницаемости, хотя они имеют совершенно разный физический смысл. Гигроскопические («дышащие») стены впитывают водяные пары из воздуха, превращая пары воды в компактную воду в очень мелких капиллярах (порах), несмотря на то, что парциальное давление паров воды может быть ниже давления насыщенных паров. Паропроницаемые же стены просто пропускают через себя пары воды без конденсации, но если в какой-то части стены имеется холодная зона, в которой парциальное давление водяных паров становится выше давления насыщенных паров, то конденсация, конечно же, возможна точно также, как и на любой поверхности. При этом паропроницаемые гигроскопические стены увлажняются сильнее, чем паропроницаемые негигроскопические.
Источник: health.totalarch.com. Дачные бани и печи. Принципы конструирования. Хошев Ю.М. 2008
build.novosibdom.ru