Сравнение по теплопроводности утеплителей таблица: Сравнение утеплителей по теплопроводности | Утепление своими руками

Какой толщины должен быть утеплитель, сравнение теплопроводности материалов.

g tabl0Необходимость использования Систем теплоизоляции WDVS вызвана высокой экономической эффективностью.

Вслед за странами Европы, в Российской Федерации приняли новые нормы теплосопротивления ограждающих и несущих конструкций, направленные на снижение эксплуатационных расходов и энергосбережение. С выходом СНиП II-3-79*, СНиП 23-02-2003 "Тепловая защита зданий" прежние нормы теплосопротивления устарели. Новыми нормами предусмотрено резкое возрастание требуемого сопротивления теплопередаче ограждающих конструкций. Теперь прежде использовавшиеся подходы в строительстве не соответствуют новым нормативным документам, необходимо менять принципы проектирования и строительства, внедрять современные технологии.

 Как показали расчёты, однослойные конструкции экономически не отвечают принятым новым нормам строительной теплотехники. К примеру, в случае использования высокой несущей способности железобетона или кирпичной кладки, для того, чтобы этим же материалом выдержать нормы теплосопротивления, толщину стен необходимо увеличить соответственно до 6 и 2,3 метров, что противоречит здравому смыслу. Если же использовать материалы с лучшими показателями по теплосопротивлению, то их несущая способность сильно ограничена, к примеру, как у газобетона и керамзитобетона, а пенополистирол и минвата, эффективные утеплители, вообще не являются конструкционными материалами. На данный момент нет абсолютного строительного материала, у которого бы была высокая несущая способность в сочетании с высоким коэффициентом теплосопротивления.

Чтобы отвечать всем нормам строительства и энергосбережения необходимо здание строить по принципу многослойных конструкций, где одна часть будет выполнять несущую функцию, вторая - тепловую защиту здания. В таком случае толщина стен остаётся разумной, соблюдается нормированное теплосопротивление стен. Системы WDVS по своим теплотехническим показателям являются самыми оптимальными из всех представленных на рынке фасадных систем.

Таблица необходимой толщины утеплителя для выполнения требований действующих норм по теплосопротивлению в некоторых городах РФ:
g tabl1


Таблица, где: 1 - географическая точка 2 - средняя температура отопительного периода 3 - продолжительность отопительного периода в сутках 4 - градусо-сутки отопительного периода Dd, °С * сут 5 - нормируемое значение сопротивления теплопередаче Rreq, м2*°С/Вт стен 6 - требуемая толщина утеплителя

Условия выполнения расчётов для таблицы:

1. Расчёт основывается на требованиях СНиП 23-02-2003
2. За пример расчёта взята группа зданий 1 - Жилые, лечебно-профилактические и детские учреждения, школы, интернаты, гостиницы и общежития.
3. За несущую стену в таблице принимается кирпичная кладка толщиной 510 мм из глиняного обыкновенного кирпича на цементно-песчаном растворе l = 0,76 Вт/(м * °С)
4. Коэффициент теплопроводности берётся для зон А.
5. Расчётная температура внутреннего воздуха помещения + 21 °С "жилая комната в холодный период года" (ГОСТ 30494-96)
6. Rreq рассчитано по формуле Rreq=aDd+b для данного географического места
7. Расчёт: Формула расчёта общего сопротивления теплопередаче многослойных ограждений:

R0= Rв + Rв.п + Rн.к + Rо.к + Rн Rв - сопротивление теплообмену у внутренней поверхности конструкции
Rн - сопротивление теплообмену у наружной поверхности конструкции
Rв.п - сопротивление теплопроводности воздушной прослойки (20 мм)
Rн.к - сопротивление теплопроводности несущей конструкции
Rо.к - сопротивление теплопроводности ограждающей конструкции
R = d/l d - толщина однородного материала в м,
l - коэффициент теплопроводности материала, Вт/(м * °С)
R0 = 0,115 + 0,02/7,3 + 0,51/0,76 + dу/l + 0,043 = 0,832 + dу/l
dу - толщина теплоизоляции
R0 = Rreq
Формула расчёта толщины утеплителя для данных условий:
dу = l * ( Rreq - 0,832 )

а) - за среднюю толщину воздушной прослойки между стеной и теплоизоляцией принято 20 мм
б) - коэффициент теплопроводности пенополистирола ПСБ-С-25Ф l = 0,039 Вт/(м * °С) (на основании протокола испытаний)
в) - коэффициент теплопроводности фасадной минваты l = 0,041 Вт/(м * °С) (на основании протокола испытаний)

* в таблице даны усреднённые показатели необходимой толщины этих двух типов утеплителя.

Примерный расчёт толщины стен из однородного материала для выполнения требований СНиП 23-02-2003 "Тепловая защита зданий".

* для сравнительного анализа используются данные климатической зоны г. Москвы и Московской области.

Условия выполнения расчётов для таблицы:
g tabl2

1. Нормируемое значение сопротивления теплопередаче Rreq = 3,14
2. Толщина однородного материала d= Rreq * l

Таким образом, из таблицы видно, что для того, чтобы построить здание из однородного материала, отвечающее современным требованиям теплосопротивления, к примеру, из традиционной кирпичной кладки, даже из дырчатого кирпича, толщина стен должна быть не менее 1,53 метра.


Чтобы наглядно показать, какой толщины необходим материал для выполнения требований по теплосопротивлению стен из однородного материала, выполнен расчёт, учитывающий конструктивные особенности применения материалов, получились следующие результаты:

g tabl3

В данной таблице указаны расчётные данные по теплопроводности материалов.

По данным таблицы для наглядности получается следующая диаграмма:

g tabl4

Автор: Геннaдий Eмeльянoв

инструкция по выбору своими руками, особенности базальтовых материалов, коэффициенты других теплоизоляций, цена, видео, фото

При проведении строительных работ нередко приходится сравнивать свойства разных материалов. Это нужно для того, чтобы подобрать наиболее подходящий из них.

Ведь там, где хорош один из них, совсем не подойдет другой. Поэтому, осуществляя теплоизоляцию, нужно не просто утеплить объект. Важно выбрать утеплитель, подходящий именно для данного случая.

Такая диаграмма нагляднее таблицы

Такая диаграмма нагляднее таблицы

А для этого нужно знать характеристики и особенности разных видов теплоизоляции. Вот об этом мы и поговорим.

Содержание

Что такое теплопроводность

Для обеспечения хорошей теплоизоляции важнейшим критерием является теплопроводность утеплителей. Так называется передача тепла внутри одного предмета.

То есть, если у одного предмета одна его часть теплее другой, то тепло будет переходить от теплой части к холодной. Тот же самый процесс происходит и в здании.

Таким образом, стены, крыша и даже пол могут отдавать тепло в окружающий мир. Для сохранения тепла в доме этот процесс нужно свести к минимуму. С этой целью используют изделия, имеющие небольшое значение данного параметра.

Таблица теплопроводности

Обработанную информацию об этом свойстве разных материалов можно представить в виде таблицы. К примеру, вот так:

Сводная таблица

Сводная таблица

Здесь присутствуют всего два параметра. Первый – это коэффициент теплопроводности утеплителей. Второй – толщина стены, которая потребуется для обеспечения оптимальной температуры внутри здания.

Взглянув на эту таблицу, становится очевидным следующий факт. Построить комфортное здание из однородных изделий, например, из полнотелых кирпичей, невозможно. Ведь для этого потребуется толщина стены не менее 2,38м.

Поэтому для обеспечения нужного уровня тепла в помещениях требуется теплоизоляция. И первым и важнейшим критерием ее отбора является вышеуказанный первый параметр. У современных изделий он не должен быть более 0.04 Вт/м°С.

Совет!
При покупке обратите свое внимание на следующую особенность.
Изготовители, указывая на своих изделиях теплопроводность утеплителя, часто используют не одну, а целых три величины: первая – для случаев, когда материал эксплуатируется в сухом помещении с температурой в 10ºС;второе значение – для случаев эксплуатации опять же, в сухом помещении, но с температурой в 25 ºС; третья величина – для эксплуатации изделия в разных условиях влажности.
Это может быть помещение с влажностью категории А или В.
Для ориентировочного расчета следует использовать первое значение.
Все остальные нужны для проведения точных расчетов. О том, как они осуществляются, можно узнать из СНиП II-3-79 «Строительная теплотехника».

Иные критерии выбора

При выборе подходящего изделия должна учитываться не только теплопроводность и цена товара.

Нужно обратить внимание и на иные критерии:

  • объемный вес утеплителя;
  • формостабильность данного материала;
  • паропроницаемость;
  • горючесть теплоизоляции;
  • звукоизоляционные свойства изделия.

Рассмотрим эти характеристики подробнее. Начнем по порядку.

Объемный вес утеплителя

Объемным весом называется масса 1 м² изделия. Причем в зависимости от плотности материала эта величина может быть различной – от 11 кг до 350 кг.

Такая теплоизоляция будет иметь значительный объемный вес

Такая теплоизоляция будет иметь значительный объемный вес

Вес теплоизоляции непременно нужно учитывать, особенно проводя утепление лоджии. Ведь конструкция, на которую крепится утеплитель, должна быть рассчитана на данный вес. В зависимости от массы будет отличаться и способ монтажа теплоизолирующих изделий.

К примеру, при утеплении крыши, легкие утеплители устанавливают в каркас из стропил и обрешетки. Тяжелые экземпляры монтируются поверх стропил, как того требует инструкция по установке.

Формостабильность

Этот параметр означает не что иное, как сминаемость используемого изделия. Иными словами, оно не должно изменять своих размеров в течение всего срока службы.

Любая деформация приведет к потере тепла

Любая деформация приведет к потере тепла

В противном случае, может произойти деформация утеплителя. А это уже приведет к ухудшению его теплоизоляционных свойств. Исследованиями доказано, что потери тепла при этом могут составлять до 40%.

Паропроницаемость

По данному критерию все утеплители можно условно подразделить на два вида:

  • «ваты» – теплоизоляционные материалы, состоящие из органических или минеральных волокон. Они являются паропроницаемыми, поскольку легко пропускают через себя влагу.
  • «пены» – теплоизоляционные изделия, изготовленные путем затвердевания особой пенообразной массы. Влагу они не пропускают.

В зависимости от конструктивных особенностей помещения, в нем могут быть использованы материалы первого или второго вида. Кроме того, паропроницаемые изделия нередко устанавливают своими руками вместе со специальной пароизоляционной пленкой.

Горючесть

Весьма и весьма желательно, чтобы используемая теплоизоляция была негорючей. Допускается вариант, когда она будет самозатухающей.

Но, к сожалению, в условиях реального пожара даже это не поможет. В эпицентре огня будет гореть даже то, что не загорается в обычных условиях.

Звукоизоляционные свойства

Мы уже упоминали про два вида изоляционных материалов: «ваты» и «пены». Первый из них является отличным звукоизолятором.

Второй же, напротив, не имеет таких свойств. Но это вполне можно исправить. Для этого при утеплении «пены» нужно установить вместе с «ватами».

Вывод

Таблица теплопроводности наглядно иллюстрирует теплоизоляционные свойства тех или иных материалов. Более наглядной может быть лишь диаграмма.

На фото - наглядная таблица

На фото – наглядная таблица

То же самое, но в виде диаграммы

То же самое, но в виде диаграммы

Как видите, теплопроводность базальтового утеплителя и пенополистирола является наименьшей. Следовательно, они обладают наилучшими теплоизоляционными свойствами по сравнению с остальными материалами для утепления.

Определившись с данным критерием, нужно учесть и иные параметры. Это объемный вес, формостабильность, паропроницаемость, горючесть и звукоизоляционные свойства.

В представленном видео в этой статье вы найдете дополнительную информацию по данной теме.

Сравнение утеплителей по теплопроводности и по плотности материалов 

В продаже доступно много строительных материалов, использующихся для повышения свойств сооружения сохранять тепло – утеплителей. В конструкции дома он может применяться практически в каждой ее части: от фундамента и до чердака. Далее пойдет речь об основных свойствах материалов, способных обеспечить необходимый уровень теплопроводности объектов различного назначения, а также будет приведено их сравнение, в чем поможет таблица.

Основные характеристики утеплителей

Соотношение качества утеплителя, в зависимости от его толщины

 

При выборе утеплителей нужно обращать внимание на разные факторы: тип сооружения, наличие воздействия высоких температур, открытого огня, характерный уровень влажности. Только после определения условий использования, а также уровня теплопроводности применяемых материалов для сооружения определенной части конструкции, нужно смотреть на характеристики конкретного утеплителя:

  • Теплопроводность. От этого показателя напрямую зависит качество проведенного утеплительного процесса, а также необходимое количество материала для обеспечения желаемого результата. Чем ниже теплопроводность, тем эффективнее использование утеплителя.
  • Влагопоглощение. Показатель особо важен при утеплении внешних частей конструкции, на которые может периодически воздействовать влага. К примеру, при утеплении фундамента в грунтах с высокими водами или повышенным уровнем содержания воды в своей структуре.
  • Толщина. Применение тонких утеплителей позволяет сохранить внутреннее пространство жилого сооружения, а также напрямую влияет на качество утепления.
  • Горючесть. Это свойство материалов особенно важно при использовании для понижения теплопроводной способности наземных частей сооружения жилых домов, а также зданий специального назначения. Качественная продукция отличается способностью к самозатуханию, не выделяет при воспламенении ядовитых веществ.
  • Термоустойчивость. Материал должен выдерживать критические температуры. К примеру, низкие температуры при наружном использовании.
  • Экологичность. Нужно прибегать к использованию материалов безопасных для человека. Требования к этому фактору может изменяться в зависимости от будущего назначения сооружения.
  • Звукоизоляция. Это дополнительное свойство утеплителей в некоторых ситуациях позволяет добиться хорошего уровня защиты помещения от шума, а также посторонних звуков.
Когда используется при сооружении определенной части конструкции материал с низкой теплопроводностью, то можно покупать самый дешевый утеплитель (если это позволят предварительные расчеты).

Важность конкретной характеристики напрямую зависит от условий использования и выделенного бюджета.

Сравнение популярных утеплителей

СРЕДНЯЯ ТОЛЩИНА ТЕПЛОИЗОЛЯЦИИ ДЛЯ РАЗЛИЧНЫХ СТЕНОВЫХ КОНСТРУКЦИЙ
Теплоизоляционный материал Кирпичная кладка (полтора кирпича) Газобетон 30 см Деревянный брус 30 см Каркас из OSB
Экотермикс 7 см З см 5 см 10 см
Минеральная вата 13 см 8 см 10 см 15 см
Пенополистирол 12 см 7 см 8 см 13 см
Пеностекло 11 см 6,5 см 7 см 13 см

Давайте рассмотрим несколько материалов, применяемых для повышения энергоэффективности сооружений:

  • Минеральная вата. Производится из естественных материалов. Устойчива к огню и отличается экологичностью, а также низкой теплопроводностью. Но невозможность противостоять воздействию воды сокращает возможности использования.
  • Пенопласт. Легкий материал с отличными утеплительными свойствами. Доступный, легко устанавливается и влагоустойчив. Недостатки: хорошая воспламеняемость и выделение вредных веществ при горении. Рекомендуется его использовать в нежилых помещениях.
  • Бальзовая вата. Материал практически идентичный минвате, только отличается улучшенными показателями устойчивости к влаге. При изготовлении его не уплотняют, что значительно продлевает срок службы.
  • Пеноплэкс. Утеплитель хорошо противостоит влаге, высоким температурам, огню, гниению, разложению. Отличается отличными показателями теплопроводности, прост в монтаже и долговечен. Можно использовать в местах с максимальными требованиями способности материала противостоять различным воздействиям.
  • Пенофол. Многослойный утеплитель естественного происхождения. Состоит из полиэтилена, предварительно вспененного перед производством. Может иметь различные показатели пористости и ширины. Часто поверхность покрыта фольгой, благодаря чему достигается отражающие эффект. Отличается легкостью, простотой монтажа, высокой энергоэффективностью, влагостойкостью, небольшим весом.
Коэффициент теплопроводности размерность

Выбирая материал для использования в непосредственной близости с человеком, необходимо особое внимание уделять его характеристикам экологичности и пожаробезопасности. Также в некоторых ситуациях рационально покупать более дорой утеплитель, который будет обладать дополнительными свойствами влагозащиты или звукоизоляции, что в окончательном счете позволяет сэкономить.

 

Сравнение с помощью таблицы

N Наименование Плотность Теппопроводность Цена , евро за куб.м. Затраты энергии на
кг/куб.м мин макс Евросоюз Россия квт*ч/куб. м.
1 целлюлозная вата 30-70 0,038 0,045 48-96 15-30 6
2 древесноволокнистая плита 150-230 0,039 0,052 150 800-1400
3 древесное волокно 30-50 0,037 0,05 200-250 13-50
4 киты из льняного волокна 30 0,037 0,04 150-200 210 30
5 пеностекло 100-150 0.05 0,07 135-168 1600
6 перлит 100-150 0,05 0.062 200-400 25-30 230
7 пробка 100-250 0,039 0,05 300 80
8 конопля, пенька 35-40 0,04 0.041 150 55
9 хлопковая вата 25-30 0,04 0,041 200 50
10 овечья шерсть 15-35 0,035 0,045 150 55
11 утиный пух 25-35 0,035 0,045 150-200
12 солома 300-400 0,08 0,12 165
13 минеральная (каменная) вата 20-80 0.038 0,047 50-100 30-50 150-180
14 стекповопокнистая вата 15-65 0,035 0,05 50-100 28-45 180-250
15 пенополистирол (безпрессовый) 15-30 0.035 0.047 50 28-75 450
16 пенополистирол экструзионный 25-40 0,035 0,042 188 75-90 850
17 пенополиуретан 27-35 0,03 0,035 250 220-350 1100

 

Показатель теплопроводных свойств является основным критерием при выборе утеплительного материала. Остается только сравнить ценовые политики разных поставщиков и определить необходимое количество.

Утеплитель – один из основных способов получить сооружение с необходимой энергоэффективностью. Перед его окончательным выбором точно определите условия использования и, вооружившись приведенной таблицей, совершите правильный выбор.

сравнение строительных материалов по толщине, характеристики

В выборе строительных материалов с лучшими характеристиками поможет таблица теплопроводности материалов и утеплителейВ выборе строительных материалов с лучшими характеристиками поможет таблица теплопроводности материалов и утеплителейСбережение тепла в доме – особая функция строительства и обустройства жилища. Но какие материалы самые современные, качественные, при этом доступные и несложные в монтаже? Нельзя ответить однозначно на этот вопрос, но приведенные ниже сравнительные характеристики помогут разобраться в этом вопросе.

Описание и сравнение утеплителей

Сегодня потребитель может выбрать материал, свойства которого удовлетворяют его запросы в той или иной степени. От того, какой выбор вы делаете, зависит и монтаж утеплителя – справитесь ли вы с ним сами, или придется вызывать специалистов. Структура и текстура материалов имеет значение.

Основываясь на этом критерии можно выделить:

  • Плиты – представляют собой стройматериал разной плотности и толщины, который изготовлен с помощью склеивания и прессования;
  • Пеноблоки – сделаны из бетона, с включением специальных добавок, пористой структура получается вследствие химической реакции;
  • Вата – реализуется в рулонах, имеет волокнистую структуру;
  • Крошка или гранулы – сыпучий уплотнитель включает пеновещества различной фракции.

Свойства, стоимость и функционал материала – вот на что обращается внимание. Обычно на материале указывается, для какой именно поверхности он предназначен. Сырье для утеплителя может быть разным, а целом же оно бывает органическим и неорганическим.

Органические утеплители делают на основе торфа, древесины и камыша. Неорганические утеплители – это минералы, вспененный бетон, вещества с содержанием асбеста и т.д. Стоит научиться оценивать и понимать свойства различных веществ.

Свойства утеплителей: теплопроводность и т.д.

Насколько тот или иной материал эффективен, зависит от трех основных характеристик – плотность, гигроскопичность, теплопроводность. Теплопроводность – это, пожалуй, основной показатель качества материала. Исчисляется это свойство в ваттах на один метр квадратный. На данный показатель немало влияет и такой параметр, как впитывание влаги.

В таблице представлены основные свойства строительных материаловВ таблице представлены основные свойства строительных материалов

Плотность – чем выше она у пористого материала, тем более эффективно удерживается тепло внутри здания. Обычно этот показатель определяющий, если вы ищите утеплитель для стен, крыши или же этажного перекрытия. Гигроскопичностью называется устойчивость к влиянию влаги. Те же цокольные перекрытия нужно укреплять материалами с очень низкой гигроскопичностью. Таковым будет, к примеру, пластиформ.

Таблица сравнения утеплителей

Чтобы показать наглядно и схематично, какой утеплитель, образно говоря, чего стоит, сравнить, проще изобразить это в таблице. Здесь представлены самые популярные утеплители. Оцениваются они по таким категориям, как вышеуказанные теплопроводность, гигроскопичность и плотность.

Материал

Теплопроводность

Гигроскопичность

Плотность (кг/м3)

Минеральная вата

Низкая

Высокая

30-125

Пенофол

Низкая

Средняя

60-70

Пенополистирол

Очень низкая

Средняя

30-40

Керамзит

Высокая

Низкая

500

Пластиформ

Низкая

Очень низкая

50-60

Пенопласт

Очень низкая

Средняя

35-50

Пеноплекс

Низкая

Низкая

25-32

Ячеистый бетон

Высокая

Высокая

400-800

Базальтовое волокно

Низкая

Высокая

130

Своеобразным лидеров в рейтинге утеплительных материалов можно считать пенопласт. Здесь конкурентной будет также доступность и вполне себе недорогая цена. Но некорректным будет советовать что-то одно, не зная ситуации, области утепления, финансовых возможностей, объема работы и т.д.

По толщине: сравнение теплопроводности строительных материалов

Есть много таблиц, где упоминается такой важный показатель, как толщина утеплителя. Действительно, от этого многое зависит, ведь толщина этого слоя тоже «съедает» пространство и влияет на результат. В данном материале можно отталкиваться от того, какой толщины в сантиметрах будет минимальный слой того или иного утеплителя.

Минимальный слой (толщина) утеплителя:

  • Пластиформ – 2 см;
  • Пенофол – 5 см;
  • Пенопласт и пенополистирол – 10 см;
  • Пеностекло – 10-15 см;
  • Минвата – 15 см;
  • Базальтовое волокно – 15 см;
  • Пеноплекс и керамзит – 20 см;
  • Ячеистый бетон – от 20 до 40 см.

Конечно, важно, для чего именно вам нужен утеплитель. Например, керамзитом можно утеплять только полы и перекрытия между этажами. Также помните о том, что редкий утеплитель обойдется без гидро- и пароизоляции.

Нюансы применения утеплителей

Есть некоторые полезные рекомендации, которые можно учитывать при выборе утеплителя и последующем монтаже. Например, для пола и потолка, то есть горизонтальных поверхностей, вы можете использовать буквально любой материал. Но следует применять дополнительный слой, обладающий высокой механической прочностью – это обязательное условие.

Сравнительная таблица теплопроводности утеплителейСравнительная таблица теплопроводности утеплителей

Если говорить о цокольных перекрытиях, то их утеплять нужно стройматериалами низкой гигроскопичности. Обязательно учитывается и повышенная влажность. Если этого не сделать, что утеплитель под действием влаги может частично и полностью утратить свои свойства.

 Ну а для стен (вертикальных поверхностей) нужно использовать материалы в виде плит или листов. Если вы выберите рулонный материал или насыпной, то со временем материалы однозначно станут проседать. Значит, способ крепежа должен быть безукоризненный. А это уже отдельная тема.

Сравнительная таблица теплопроводности материалов и утеплителей (видео)

Выбирая утеплитель, приходится прислушиваться к советам знакомых, читать отзывы, консультироваться с продавцом. Хорошо идти в магазин, зная хотя бы главную информацию о том или ином утеплителе, его свойства и возможности.

Удачного выбора!


Добавить комментарий
Сравнение утеплителей по теплопроводности | Утепление своими руками

Предисловие. На рынке стройматериалов имеется сегодня большой выбор различных теплоизоляционных материалов, различных по стоимости, теплопроводности и своим характеристикам. Как же разобраться в этом разнообразии и принять правильное решение в пользу определенного материала? Какие параметры важны при выборе? В этой статье мы сравним утеплители по теплопроводности и другим характеристикам.

Обзор утеплителей

Свойства Rockwool Лайт Баттс

Минвата Изовер: характеристики

Утеплители Кнауф: характеристики

Свойства минваты Ursa PureOne

Применение ТехноНИКОЛЬ

Сравнение характеристик утеплителей

Для начала мы предоставим основные характеристики теплоизоляционных материалов, на которые стоит обратить внимание при их выборе. Сравнение утеплителей по этим характеристикам следует производить исходя из назначения и характеристик утепляемого помещения (наличие открытого огня, влажность, природные условия и т.д.). Мы расположили основные характеристики утеплителей в порядке их значимости.

Теплопроводность. Чем ниже теплопроводность, тем меньше требуется утеплительный слой, а значит, и ваши расходы на утепление сократятся.

Влагопроницаемость. Меньшая влагопроницаемость снижает негативное воздействие влаги на утеплитель при последующей эксплуатации.

Пожаробезопасность. Материал не должен поддерживать горение и выделять ядовитые пары, а иметь свойство к самозатуханию.

Экономичность. Утеплитель должен быть доступным по стоимости для широкого слоя потребителей.

Долговечность. Чем больше срок использования утеплителя, тем он дешевле обходится потребителю при эксплуатации и не требует частой замены или ремонта.

Экологичность. Материал для теплоизоляции должен быть экологически чистым, безопасным для здоровья человека и окружающей природы. Эта характеристика важна для жилых помещений.

Толщина материала. Чем тоньше утеплитель, тем меньше будет “съедаться” жилое пространство помещения.

Вес материала. Меньший вес утеплителя даст меньшее утяжеление утепляемой конструкции после монтажа.

Звукоизоляция. Чем выше звукоизоляция, тем лучше защита жилых помещений от шума со стороны улицы.

Простота монтажа. Момент достаточно важен для любителей делать ремонт в доме своими руками.

Сравнение характеристик популярных утеплителей

Пенопласт (пенополистирол)

Этот утеплитель самый популярный, благодаря легкости монтажу и небольшой стоимости.

Пенопласт изготавливается при помощи вспенивания полистирола, имеет очень низкую теплопроводность, устойчив к влажности, легко режется ножом и удобен во время монтажа. Благодаря низкой стоимости имеет большую востребованность для утепления различных помещений. Однако материал достаточно хрупкий, а также поддерживает горение, выделяя токсичные вещества в атмосферу. Пенопласт предпочтительнее использовать в нежилых помещениях.

Пеноплэкс (экструдированный пенополистирол)

Утеплитель не подвергается гниению и воздействию влаги, очень прочный и удобный в использовании – легко режется ножом. Низкое водопоглощение обеспечивает незначительные изменения теплопроводности материала в условиях высокой влажности, плиты имеют высокую сопротивляемость сжатию, не подвергаются разложению. Благодаря этому экструдированный пенополистирол можно использовать для утепления ленточного фундамента и отмостки. Пеноплекс пожаробезопасен, долговечен и прост в применении.

Базальтовая вата

Материал производится из базальтовых горных пород при расплавлении и раздуве с добавлением компонентов для получения волокнистой структуры материала с водоотталкивающими свойствами. При эксплуатации базальтовая вата Rockwool не уплотняется, а значит, ее свойства не изменяются со временем. Материал пожаробезопасен и экологичен, имеет хорошие показатели звукоизоляции и теплоизоляции. Используется для внутреннего и наружного утепления. Во влажных помещениях требует дополнительной пароизоляции.

Минеральная вата

Минвата производится из природных материалов – горных пород, шлака, доломита с помощью специальной технологии. Минвата Изовер имеет низкую теплопроводность, пожаробезопасна и абсолютно безопасна. Одним из недостатков утеплителя является низкая влагостойкость, что требует обустройства дополнительной влаго- пароизоляции при его использовании. Материал не рекомендуется использовать для утепления подвалов домов и фундаментов, а также во влажных помещениях – парилках, банях, предбанниках.

Пенофол, изолон (фольгированный теплоизолятор из полиэтилена)

Утеплитель состоит из нескольких слоев вспененного полиэтилена, имеющих различную толщину и пористую структуру. Материал часто имеет слой фольги для отражающего эффекта, выпускается в рулонах и в листах. Утеплитель имеет толщину в несколько миллиметров (в 10 раз тоньше обычных утеплителей), но отражает до 97% тепловой энергии, очень легкий, тонкий и удобный в работе материал. Используются для теплоизоляции и гидроизоляции помещений. Имеет длительный срок эксплуатации, не выделяет вредных веществ.

Сравнение утеплителей. Таблица теплопроводности

Сравнение утеплителей по теплопроводностиСравнение утеплителей по теплопроводности. Таблица

Данная таблица теплопроводности утеплителей дает полную картину и представление, о том, какой лучше использовать утеплитель. Остается лишь соотнести данные этой таблицы с сравнением стоимости утеплителей у разных поставщиков. Узнать цены на материалы для утепления и сравнить их стоимость можно в каталоге компаний. А чтобы не ошибиться в выборе рассчитайте толщину утепления на нашем сайте.

Теплопроводность утеплителей таблица - сравнение утеплителей по теплопроводности

Теплопроводность утеплителей в таблице - сравнение утеплителей по теплопроводности 1Мы живем далеко не в самой жаркой стране на Земле, а значит, свои жилища вынуждены обогревать, по крайней мере, большую часть года. Этим и объясняется такой высокий спрос на разные утеплители.

Из всех материалов, использующихся для утепления жилых и прочих объектов, особо популярными являются сейчас пенополиуретан, пенополистирол и минеральная вата. Поговорим о двух последних из них.

Минеральная вата

Минеральной ватой называется материал, основой которого является базальтовое волокно.

Применяться минеральная вата может не везде, так как имеет нижний температурный предел. К примеру, этот утеплитель не может быть использован в холодильной камере.

Под воздействием низких температур минеральная вата становится хрупкой и деформируется, что недопустимо для утеплителя. Здесь, как показывает сравнение утеплителей по теплопроводности, преимущество на стороне пенополистирола, у которого нет нижнего температурного предела.

Теплопроводность утеплителей в таблице - сравнение утеплителей по теплопроводности 2

Что касается верхней температурной границы, тут все зависит от механических нагрузок во время воздействия высокой температуры и длительности этого воздействия. Если вам интересна теплопроводность утеплителей, таблица, которая есть на нашем сайте, поможет в получении информации об этом. В частности там приведен коэффициент теплопроводности минеральной ваты.

Минеральная вата пропускает пар и влагу. Это заметно снижает ее теплоизолирующие свойства. Также скопление влаги способствует развитию плесени и грибка, в утеплителе начинают селиться грызуны, заводятся гнилостные бактерии и пр.

Еще утеплитель из минеральной ваты гигроскопичен, из-за чего необходимо возводить вентилируемые стены и кровлю. Это в ряде случаев приводит к большому расходу денежных средств.

Утеплитель из минеральной ваты тяжелее своего аналога из пенополистирола в 1,5-3 раза. Отсюда более высокая стоимость его транспортировки. Также минус в том, что такой утеплитель может быть использован лишь тогда, когда фундамент сооружения, которое утепляется с его помощью, достаточно прочен. Разумеется, труднее производить погрузочно-разгрузочные и строительно-монтажные работы с использованием утеплителя большой массы.

Теплопроводность утеплителей в таблице - сравнение утеплителей по теплопроводности 3

Пенополистирол

По сравнению с вышеописанным утеплителем, утеплитель из пенополистирола имеет лучшие характеристики. Теплоизоляционные свойства этого материала высоки, в результате чего, применение его становится экономически выгодным.

Утеплитель из пенополистирола помимо хороших теплоизоляционных свойств, хорошо поглощает шум, противостоит бактериям и грибкам. Также этот материал устойчив к воздействию растворов спиртов, кислот и щелочей. Коэффициент теплопроводности пенополистирола и прочие его характеристики можно узнать, изучив «теплопроводность утеплителей таблица» на нашем ресурсе.

Одно из главных достоинств пенополистирола заключается в его способности выдерживать достаточно большую механическую нагрузку при минимальном значении плотности.

Нужно выделить преимущество пенополистирола перед минеральной ватой. Так как он имеет небольшую среднюю плотность, то не изменяет практически нагрузку на фундамент и несущие конструкции.

Сравнение утеплителей по теплопроводности показывает, что в зависимости от плотности коэффициент теплопроводности минеральной ваты – 0,048-0,07; коэффициент теплопроводности пенополистирола – 0,038-0,05.

Теплопроводность утеплителей в таблице - сравнение утеплителей по теплопроводности 4

Другие свойства описываемых утеплителей

Утеплители из минеральной ваты не могут воспламеняться. Огнестойкость этих материалов определяется не только тем, каковы свойства материала, но и тем, в каких условиях они используются.

На степень огнестойкости большое влияние оказывает то, с какими материалами комбинируются утеплители. Также играет роль способ расположения защитных и покровных слоев.

Что касается пенополистирола, он относится к самозатухающим материалам. Поэтому стены, отделанные им, воспламеняются не так быстро. А если это все-таки происходит, пламя по их поверхности распространяется также медленнее, чем в случае с другими утеплителями.

Когда горит утеплитель из пенополистирола, тепла выделяется примерно 1000 МДж/м3, что в 7-8 раз меньше, чем при горении сухого дерева. Время самостоятельного горения пенополистирола – не больше секунды.

Минеральная вата относится к негорючим веществам. Поэтому воспламеняемость поверхностей, облицованных ей, равно как и распространяемость пламени по ним, минимальна. Так как основа этого утеплителя – базальт – является натуральным камнем, минеральная вата способна выдерживать температуру – до 1000 °C, а распространению огня способна противостоять – до трех часов.

Теплопроводность утеплителей в таблице - сравнение утеплителей по теплопроводности 5

таблица изоляционных материалов, коэффициент пенопласта 50 мм в сравнении по толщине, теплоизоляционные

Чтобы зимой наслаждаться теплотой и уютом в своем дома, нужно заранее позаботиться об его теплоизоляции. Сегодня сделать это совершенно несложно, ведь на строительном рынке имеется широкий ассортимент утеплителей. Каждый из них имеет свои минусы и плюсы, подходит для утепления при определенных условиях эксплуатации. При выборе материала очень важным остается такой критерий, как теплопроводность.

Что такое теплопроводность

Это процесс отдачи тепловой энергии с целью получения теплового равновесия. Температурный режим должен быть выровнен, главным остается скорость, с которой будет осуществлена эта задача. Если рассмотреть теплопроводность по отношению к дому, то чем дольше происходит процесс выравнивания температур воздуха в доме и на улице, то тем лучше. Говоря простыми словами, теплопроводность – это показатель, по которому можно понять, как быстро остывают стены в доме.

Этот критерий представлен в числовом значении и характеризуется коэффициентом тепловой проводимости. Благодаря ему можно узнать какое количество тепловой энергии за единицу времени сможет пройти через единицу поверхности. Чем выше значение теплопроводности у утеплителя, тем он быстрее проводит тепловую энергию.

На видео – виды утеплителей и их характеристики:

Чем ниже значение коэффициента проводимости тепла, тем дольше материал сможет удерживать тепло в зимние дни, а прохладу в летние. Но имеется ряд других факторов, которые также нужно принимать во внимание при выборе изолирующего материала.

Пенополистирол

Этот теплоизолятор один из самых востребованных. А связано это с его низкой проводимостью тепла, невысокой стоимостью и простотой монтажа. На полках магазинов материал представлен в плитах, толщина пенополистирола 20-150 мм. Получают путем вспенивание полистирола. Полученные ячейки заполняют воздухом. Для пенопласта характерна разная плотность, низкая проводимость тепла и стойкость к влаге.

пенополистиролпенополистирол

На фото – пенополистирол

Так как пенополистирол стоит недорого, он имеет широкую популярность среди многих застройщиков для утепления различных домов и построек. Но есть у пенопласта свои недостатки. Он является очень хрупким и быстро воспламеняется, а при горении выделяет в окружающую среду вредные токсины. По этой причине применять пенопласт лучше для утепления нежилых домов и ненагружаемых конструкций. Для жилых помещений стоит обратить внимание на фольгированные утеплители для стен.

теплопроводность пеноблоков и газоблоковтеплопроводность пеноблоков и газоблоковА вот какова теплопроводность пеноблоков и газоблоков, рассказывается в данной статье.

Какова теплопроводность пенобетона и газобетона, можно понять прочитав содержание статьи.

А вот какова теплопроводность газосиликатного блока, можно увидеть здесь в статье: https://resforbuild.ru/beton/bloki/gazosilikatnye/texnicheskie-xarakteristiki-2.html

А в данной статье можно посмотреть таблицу теплопроводности керамзитобетонных блоков. Для этого стоит перейти по ссылке.

Экструдированный пенополистирол

Этот материал не боится влияния влаги и гниению. Он прочный и удобный в плане монтажа. Легко поддается механической обработке. Имеет низкий уровень водоплоглощения, поэтому при повышенной влажности экструдированный пенополистирол сохраняет свои свойства. Утеплитель относится к пожаробезопасным материалам, он имеет продолжительный срок службы и простоту монтажа.

экструдированный пенополистиролэкструдированный пенополистирол

На фото – экструдированный пенополистирол

Представленные характеристики и низкая проводимость тепла позволят назвать экструдированный пенополистирол самым лучшим утеплителем для ленточных фундаментов и отмосток. При установке лист с толщиной 50 мм можно заменить пеноблок с толщиной 60 мм по проводимости тепла. При этом утеплитель не пропускает вод, так что не нужно заботиться про вспомогательную гидроизоляцию.

Минеральная вата

Минвата – это утеплитель, который можно отнести к природным и экологически чистым. Минеральная вата обладает низким коэффициентом проводимости тепла и совершенно не поддается влиянию огня. Производится утеплитель в виде плит и рулонов, каждый из которых имеет свои показатели жесткости. В статье вы можете почитать о том, чем хороша минеральная или каменная вата Технониколь.

минеральная ватаминеральная вата

На фото – минеральная вата

Если нужно изолировать горизонтальную поверхностность, то стоит задействовать плотные маты, а для вертикальных – жесткие и полужесткие плиты. Что касается минусов, то утеплитель минвата имеет низкую стойкость к влаге, так что при ее монтаже необходимо позаботиться про влаго-и пароизоляцию. Применять минвату не стоит для обустройства подвала, погреба, парилки в бане. Хотя если грамотно выложить гидроизоляционный слой, то минвата будет служить долго и качественно. А вот какова теплопроводность минваты, поможет понять информация из статьи.

Базальтовая вата

Этот утеплитель получают методом расплавления базальтовых горных пород с добавлением вспомогательных составляющих. В результате получается материал, имеющий волокнистую структуру и отличные водоотталкивающие свойства. Утеплитель не воспламеняется и совершенно безопасен для здоровья. Кроме этого, у базальта отличные показатели для качественной изоляции звука и тепла. Применять можно для утепления как снаружи, так и внутри дома.

базальтовая ватабазальтовая вата

На фото – базальтовая вата для утепления

При установке базальтовой ваты необходимо надевать средства защиты. Сюда относят перчатки, респиратор и очки. Это позволит защитить слизистые оболочки от попадания осколков ваты. При выборе базальтовой ваты сегодня большой популярностью пользуется марка Rockwool. В статье можно ознакомиться о том, что лучше: базальная или минеральная вата.

В ходе эксплуатации материала можно не переживать, что плиты будут уплотняться или слеживаться. А это говорит о прекрасных свойствам низкой теплопроводности, которые со временем не меняются.

Пенофол

Этот утеплитель производится в виде рулонов, толщина которых 2-10 мм. В основе материала положен вспененный полиэтилен. В продаже можно встретить теплоизолятор, на одной стороне которого имеется фольга для образования отражающего фона. Толщина материала в несколько раз меньше представленных ранее материалов, но при этом это совершенно не влияет на теплопроводность. Он способен отражать до 97% тепла. Вспененные полиэтилен может похвастаться продолжительным сроком службы и экологической чистотой.

пенофолпенофол

На фото- утеплитель Пенофол:

Изолон совершенно легкий, тонкий и удобный в плане установки. Применяют рулонный теплоизолятор при обустройстве влажных комнат, куда можно отнести подвал, балкон. Кроме этого, применения утеплителя позволит сохранить полезную площадь помещения, если устанавливать его внутри дома.

А вот какова теплопроводность керамического кирпича и где такой строительный материал используется, поможет понять информация из статьи.

Так же будет интересно узнать о том, каковы характеристики и теплопроводность газобетон.

Так же будет интересно узнать о том, какова теплопроводность керамзита.

Какова теплопроводность подложки под ламинат и как правильно сделать просчёты, рассказывается в данной статье.

Таблица 1 – Показатели проводимости тепла популярных материалов

Материал Теплопроводность, Вт/(м*С) Плотность, кг/м3 Паропроницаемость, мг/ (м*ч*Па)
Пенополиуретан 0,023 32 0,0-0,05
0,029 40
0,035 60
0,041 80
Пенополистирол 0,038 40 0,013-0,05
0,041 100
0,05 150
Экструдированный пенополистирол 0,031 33 0,013
Минеральная вата 0,048 50 0,49-0,6
0,056 100
0,07 200
Пенопласт ПВХ 0,052 125 0,023

Теплопроводность – это один из главных критериев при выборе теплоизоляционного материала. Если вести установку утеплителя с низким коэффициентом теплопроводности, то это позволит на дольше сохранить тепло в доме, создавая тем самых комфортные условия для проживания.

все, что нужно знать о термопасте - W / mK, контакт и эффективность | GamersNexus

Ну, может быть, не все - но, безусловно, самая полезная информация для сборщика систем. Мы писали о том, как в прошлом работали кулеры с термопастой и процессором, но решили, что тема стоит пересмотреть сейчас, когда сайт значительно вырос.

В этом видео и статье мы рассмотрим теплопроводность, эффективность контакта между холодной плитой и IHS, отверждение и старение, медь противалюминиевое охлаждение и многое другое.

Как работает термопаста и применение термопаста

Термопаста (также известная как: термопаста, TIM, термоклей) используется для заполнения микроскопических дефектов на поверхности холодной пластины процессорного кулера и IHS процессора (встроенный распределитель тепла). Это самое высокоуровневое определение термопасты.

Если бы вы использовали высокоточный лазер для измерения гладкости любой поверхности, было бы обнаружено, что ни холодная пластина, ни IHS не являются идеально плоскими поверхностями, и это означает, что идеальный прямой контакт не может быть достигнут.В идеальном мире медная или алюминиевая охлаждающая пластина кулера полностью контактирует с IHS, при этом время между металлами нулевое. Тем не менее, это не идеальный мир, поэтому мы вынуждены сделать два основных выбора: заполнить небольшие зазоры каким-либо теплопроводящим материалом или оставить их в покое, и в этом случае воздух заполнит эти зазоры.

Атмосферный воздух имеет теплопроводность около 0,024 Вт / мК (Вт на метр Кельвина) при 25 ° С, так что это не очень хорошо. Для сравнения, средняя трубка термопасты будет сидеть где-то в диапазоне 4 - 8.5W / мК; большая часть пасты составляет ~ 4 Вт / мК, хотя соединения серебра и алмаза могут иметь более высокие значения электропроводности. Медь рассчитана на ~ 401 Вт / мК при 25 ° С, а алюминий - на 205 Вт / мК. Даже в случае алюминия очевидно, что термопаста не приближается к термическому КПД металла, но металл не деформируется, чтобы соответствовать поверхности, поэтому мы должны использовать что-то более податливое (при хотя бы без разогрева и плавления его).

Материал Теплопроводность (Вт / мК) при 25 ° С
Воздух, атмосферный 0.024
Вода 0,058
Термопаста (AVG) ~ 5,3 - 8,5
Алюминий 205
Медь 401

(вверху: источник)

Без какого-либо интерфейса, заполняющего промежутки, воздух будет оставаться между конфоркой и IHS и генерировать тепловые карманы.Заполнение промежутков с помощью теплового интерфейса обеспечит материал с более высокой проводимостью, с целью служить в качестве пути для тепла, чтобы достигнуть холодной пластины от IHS. Это единственная цель TIM. Использование слишком большого количества термического компаунда фактически снижает тепловую эффективность всей системы, поскольку ограничивает прямой контакт между конфоркой и IHS и создает толстую термостену с более низкой проводимостью, чем у меди.

Мы ранее проверили эффективность меди противалюминиевые конфорки для отвода тепла от процессора, обнаружив, что - для меньших розеток (115X) - разница незначительна. Большие поверхности могут иметь большее значение, но мы еще не подтвердили это (LGA 2011 будет хорошим тестом).

Отверждение, старение и растрескивание

Существует «процесс отверждения» с использованием термопасты - период времени, необходимый для достижения максимальной эффективности пасты. При нанесении в свежем виде термопаста еще не затвердела и все еще остается жидкой. Только тогда, когда у смеси будет период старения, достигается максимальная тепловая эффективность.Это может занять несколько часов или несколько дней, в зависимости от уровня загрузки и типа соединения. Если бы вы сразу после применения провели тепловое тестирование своего процессора, а затем через неделю протестировали бы его снова, результаты должны быть незначительно другими. Не много, но достаточно, чтобы подобрать с точным оборудованием и методологией.

В конце концов, термопаста достигает и достигает своей максимальной эффективности, потенциально скручиваясь вниз, к старению и растрескиванию. Хорошее соединение не будет делать это в течение средней продолжительности жизни ПК - соединения алмаза и серебра являются хорошим примером высокопрочной пасты, но более дешевые материалы (такие как силикон) будут разлагаться с возрастом.При достаточно интенсивном нагревании паста начинает растрескиваться и теряет способность эффективно передавать тепло с одной поверхности на другую.

Ноутбуки

являются отличным примером этого процесса. У многих наших читателей, вероятно, есть опыт замены какого-либо внутреннего компонента ноутбука - вентилятора, термопасты графического процессора, перезаправки припоя или чего-либо подобного. Ноутбуки часто подвергаются жестокому обращению, они могут подвергаться воздействию внешних источников тепла (например, солнца, если они используются снаружи), их вентиляционные отверстия часто задыхаются, внутренние устройства предрасположены к более высоким тепловым нагрузкам в результате плотного корпуса, охлаждающих способностей отнесены к меньшим поклонникам, и так далее.Мы заменяли компоненты графического процессора ноутбука несколько раз, обычно потому, что исходное соединение высохло и утратило способность адекватно охлаждать кремний. Во время процесса замены проницательный техник обнаружит хлопья высушенного соединения, падающие с плиты, после снятия комбинации радиатор / вентилятор. Это старение.

различных типов соединений

В розничной торговле можно найти десятки марок термопаст. Цена обычно устанавливается на основе теплопроводности и количества соединения в пробирке (обычно в диапазоне 3 г, что является небольшим количеством применений).Трубка из углеродного соединения 8,5 Вт / мК, устойчивая к старению, стоит около 10 долларов за 4 грамма.

Тип соединения обычно указан как материал на основе металла (серебро), алмаз / углерод (часто называемый «наноалмаз») или керамика. Соединения на основе металлов, такие как соединение серебра, используют крошечные чешуйки металла, чтобы помочь отвести тепло к холодной плите. Алмазные составы, как правило, немного более твердые, поступающие из трубки, требующие дополнительной работы для дозирования, но теоретически они более прочные в течение длительного периода использования.

Для большинства сборщиков систем различия между составными типами не обязательно окажут заметное влияние. Оверклокерам следует позаботиться, учитывая более высокие напряжения и тепло, но строители общего назначения могут взять любую трубку ~ 5,3 Вт / мК и быть вполне довольными. Мы видели несколько трубок с составом до 1,5 Вт / мК, которые мы настоятельно рекомендуем избегать, но это главное, на что следует обратить внимание. Если вы строите систему с длительным сроком службы, где требуется минимальное техническое обслуживание, мы бы рекомендовали использовать соединение на основе углерода (например, алмаз) для его долговечности.

Запасная паста с кулерами - это нормально, хотя в качестве личной заметки у меня есть кое-что, чего я избегаю. Компонент Cooler Master, входящий в комплект радиаторов AMD, является одним из них - он любит прилипать (как клей) к IHS, а это означает, что удаление кулера для процессора часто вырывает процессоры AMD из их разъемов. Это опасно для контактов (установленных на процессоре, а не на разъеме) и может нанести непоправимый ущерб процессору. Я всегда использую постпродажный состав, когда он представлен пастой AMD.

В системе существуют другие тепловые интерфейсы, кроме термопасты, и вы, вероятно, видели некоторые из них.Термоподушки являются наиболее распространенными. Тепловые прокладки используются для крепления радиаторов VRM к дросселям, конденсаторам и полевым МОП-транзисторам, они используются для крепления медных / алюминиевых кулеров GPU к модулям VRM и VRAM, а прокладки активно используются в портативных системах. Термическая прокладка по большей части менее термически агрессивна, чем паста, но дешевле и может лучше соответствовать поверхности. Например, если производитель хочет, чтобы покрытие было по бокам дросселя, тепловая прокладка обеспечит некоторый выброс из-за давления, приложенного радиатором.

Это о покрывает это пока. Если у вас есть вопросы, оставьте их нам или разместите на наших форумах один на один!

- Стив "Леллдорианкс" Берк.

Теплопроводность - курсовая бумага

Похожие документы