Срок службы минваты: Какой срок службы у минеральной ваты и что на него влияет

Содержание

Какой срок службы у минеральной ваты и что на него влияет

Чтобы ответить на вопрос, какие факторы оказывают влияние на срок службы минеральной ваты, нужно иметь представление о том, что это за материал, для чего применяется и в каких условиях он используется.

Как изготавливается минвата, ее свойства

Минвата образуется путем расплава горных пород и пропуска их через тончайшие фильеры. Образующиеся волокна тут же, на выходе из печи остужаются и наматываются на катушки. Из каменных волокон вырабатывают электроизоляционные тканые материалы, но определенная их часть (обычно это отбраковка) срезается с катушек и попадает в трепальные машины, где и вырабатывается вата.

Затем образовавшаяся вата подается под прессы, где образуются полотна, сворачиваемые в рулоны (низкая плотность) и плиты (минвата средней и высокой плотности).

По своей сути и химическому составу волокнистая вата остается тем же самым камнем (горнорудным материалом), который не боится сырости, плесени, никаких иных грибков.

Это химически нейтральный утеплитель, который спокойно ведет себя при изменении кислотно-щелочной среды, никак не реагирует на появление, например ржавчины. Минеральной вате не страшны перепады температур, она не склонна к возгораниям, не проводит электрический ток.

Где применяют минеральную вату

В общем, минеральная вата — это идеальный утеплитель, который применяется для тепловой изоляции трубопроводов теплотрасс, водопроводов, промышленных котлов на тепловых электростанциях.

В последние десятилетия минвата все чаще применяется для изоляции стен в домостроении. При правильном проведении всех работ по тепло- и пароизоляции, минераловатный утеплитель будет сохранять тепло столько лет, сколько простоят стены. Производитель называет срок эксплуатации минераловатного утеплителя — 50 лет. Но на самом деле, при правильном проведении монтажных работ, он прослужит гораздо дольше.

Какие факторы разрушают минеральную вату

На промышленных объектах даже при капитальном ремонте вата не подлежит замене, потому что сам материал в целом не портится, не разрушается и не разлагается.

Могут образоваться пробои, когда пар под давлением образует отверстие в трубе (свищ) и, вырываясь наружу, сметает утеплитель. Во время проведения изоляционных работ старый утеплитель не удаляется.

Минераловатный утеплитель способен выдержать новый эксплуатационный срок до следующего капитального ремонта, поэтому его используют повторно. Новый материал накладывается там, где он по различным причинам стал меньше. Замене подлежат лишь те участки изоляционного слоя, которые, оказавшись открытыми, забиваются пылью, грязью и каменеют. Таким образом, первый враг минеральной ваты — пыль и грязь.

Вода

Следующий враг этого пористого и дышащего утеплителя является влага при отсутствии воздуха. Если вода или конденсат попадает в слой теплоизоляции, но при этом не имеет выхода, она нарушает теплоизоляционные свойства. Вата перестает дышать и сохранять тепло. Поэтому при устройстве теплоизоляции предусматриваются технологические отверстия, сквозь которые в слой теплоизоляции поступает воздух, и выводится влага.

Минвата хорошо впитывает влагу

Некоторые производители пропитывают минвату водоотталкивающими веществами, и такой материал подходит для теплоизоляции кровли, наружных стен дома.

Механическое воздействие

Из сказанного выше напрашивается также вывод, что срок службы минваты сокращает механическое воздействие извне. Это

  • свищи на трубопроводах;
  • ветер, способный смести слабо закрепленный кожух на наземных трубах;
  • рабочие, устраняющие протечки труб;
  • грызуны, живущие под землей и в домах.

Механическому разрушению подвержена в основном промышленная тепловая изоляция.

Грызуны

Что бы ни говорил производитель, практика показывает, что грызуны устраивают гнезда практически во всех типах изоляции. Их даже не пугает колючая и раздражающая стекловата. Они прогрызают ходы, устраивают гнезда, тем самым разрушают изоляционный слой.

Таким образом, для того, чтобы продлить срок службы теплоизоляционного слоя, нужно в первую очередь соблюсти все требования, предъявляемые к тепловой, и паровой изоляции на стадии монтажных работ, устранить факторы, разрушающие тепловую изоляцию.

Срок службы утеплителей: таблица и описание характеристик

Сегодня в данной статье мы рассмотрим актуальный в наше время вопрос о сроке службы утеплителей в таблице. Как правило, дома, здания и другие сооружения утепляются на длительное время, поэтому и материалы нужны как можно надежнее и качественнее

. Многие считают, что различного рода утеплители не служат более 30 лет. С учетом того, что стена, которая утепляется, стоит около 100 лет, приходим к выводу, что за это время процедуру необходимо проделать 2-3 раза. Если посчитать стоимость такого обновления, то она может далеко не порадовать.

Что влияет на срок эксплуатации утеплителя?

Как и во всем, считается, что срок службы утеплителя зависит от его стоимости и качества. Производители недорогого вещества утверждают, что он может прослужить как минимум 50 лет. На практике эта цифра ничем не подтверждается, поэтому в сносках они пишут, что на сегодня нет стандартного времени эксплуатации утеплителей.

Кроме того, важно то, из чего сделан материал. Эксперты подтверждают, что искусственные волокна не могут дать гарантии более чем на 35 лет. За это время они усыхают и разрушаются. Но самое главное, что они теряют половину своих теплосберегающих свойств. В то время как

натуральные волокна не теряют своих первоначальных качеств и могут служить более длительный период.

Согласно нормативным рекомендациям, после завершения строительства каждый дом должен подвергаться энергетическому аудиту. Такие проверки должны проводиться раз в 25 лет, чтобы можно было оценить уровень теплосберегающих свойств на данный момент. Но так как узнать точные цифры вследствие проверки нам не удается, мы пользуемся данными, которые приходят к нам из Европы.

Сравнительные характеристики сроков службы утеплителей таблица

Существует множество видов утеплителей, но сегодня мы подробно рассмотрим самые бюджетные и надежные варианты. К ним относятся:

  1. Минеральная вата.
  2. Базальная вата.
  3. Пенопласт.
НаименованиеСрок службы
Минеральная вата25-40 лет
Базальная вата40-50 лет
Пенополистирол30-50 лет
Пенополиуретан20-50 лет
Пеностекло80-100 лет

Первый вид называется каменным. Он имеет достаточно высокий уровень качества, так как его производят из базальтового камня. Стоимость его значительно выше, но и качество, и период пригодности оправдывает ожидания. Согласно статистике, больше всего в строительстве применяется минеральная вата. Продолжительность эксплуатации – около 50 лет. Но этот показатель все еще оспаривают, и он имеет несколько нюансов. На данный момент существует два вида минеральной ваты.

Второй является шлаковым. Это означает, что в него практически не может проникнуть вода, а сам материал достаточно плотный

. Соответственно, он изготавливается из шлаков от металлургической промышленности. Он значительно уступает предыдущему и в цене, и в качестве, и в сроке службы. К тому же, не стойкий к резким перепадам температуры и по истечении определенного времени может деформироваться. Но несмотря на это, его часто используют как оптимальный вариант в случае, если постройка будет временной или менее значимой.

Безусловно, для сооружений более значительного масштаба рекомендуется использовать каменную вату. Пусть она и дороже, но, когда речь идет о безопасности и качестве, об экономии не может быть и речи.

Стоит отметить, что данное вещество имеет два немаловажных преимущества:

  1. Негорючесть. Можно не беспокоиться о том, что материал не подвержен возгоранию от металлочерепицы, которая в сильную жару может нагреваться до высоких показателей. А также другие воздействия высоких температур не станут угрозой для утеплителя, а соответственно и для вас.
  2. Паропроницаемость. Изовер обладает способностью «дышать», что также немаловажно. Материал без труда пропускает все пары через себя, но при этом они не скапливаются внутри. Это свойство делает минеральную вату экологически чистой, а в сочетании с теплоизоляцией это огромный плюс. Кроме того, дополнительной обработки от конденсата не требуется.

Базальная вата не уступает в продолжительности периода действия предыдущего вещества. Производители дают гарантию свыше 50 лет. Еще очень давно в строительстве стали использовать утеплитель, изготовленный из волокнистого материала. Но пик его эксплуатации приходится на последние пару десятилетий. Это произошло благодаря интенсивному строительству загородных домов, а также повышению цен на отопление. Именно там материал пользуется огромной популярностью.

 

Со временем качество базальной ваты значительно улучшилось. Теперь это экологически чистый и безопасный продукт. Из основных плюсов можно выделить несколько аспектов:

  1. Пожаробезопасность. Материал без труда способен выдержать высокую температуру, не теряя при этом своих свойств.
  2. Низкая гидрофобность. Вещество отталкивает влагу, что заметно увеличивает срок эксплуатации утепления.
  3. Сжимаемость. Базальная вата является очень стойкой и не подвергается деформации.
  4. Химическая стойкость. Гниение, грибок, грызуны, плесень и вредоносные микроорганизмы больше не станут угрозой для вашего жилья.

Несмотря на стечение обстоятельств, материалы имеют отличное качество, не деформируются и не рассыпаются. Вещества используются повсеместно и имеют множество положительных отзывов. С таким утеплением ваши стены смогут простоять более 100 лет.

Срок службы пенопласта как утеплителя

Еще одним из часто используемых материалов для утепления является пенопласт. Принято считать, что срок годности пенополистирола достигает несколько десятков лет. Производители дают гарантию на стойкость материала в течение 50 лет. Однако при правильной процедуре утепления этот срок может быть увеличен в два раза. Это одна из основных причин, по которым он так популярен.

Следует учитывать, что существует несколько видов утеплителей, изготовленных из пенопласта:

  1. Полистирол. Материал, который делают  в виде поролона. Подходит для защиты помещения с внутренней стороны. Имеет очень высокие эксплуатационные характеристики.
  2. Поливинилхлоридные вещества являются очень эластичными. Имеют очень высокий показатель стойкости.
  3. Пенополиуретан. Он считается выносливой теплоизоляцией, которая прослужит довольно долгое время, быстро застывает, образовывая очень крепкую защиту, способную выдержать множество внешних воздействий.

Исходя из вышеперечисленных материалов, можно сделать вывод, что срок службы пенопласта является очень долгим и полностью оправдывает ожидания.

Срок службы минеральной ваты, ее свойства и экологичность

Среди большого разнообразия современных теплоизоляционных материалов несомненное лидерство удерживает минеральная вата или более привычное в народе название – изовер.

Схема утепления крыши минеральной ватой.

Трудно представить сейчас любые строительные работы без применения этого материала. Минвата давно отвоевала первые позиции в строительстве у пенопласта и прочих привычных утеплителей. В силу своей пластичности и мягкости, этот тепло- и шумоизоляционный утеплитель применяют практически во всех сферах строительства, утепления и изоляции. Им изолируют и утепляют трубы, стены, перекрытия и потолки домов снаружи и изнутри, помимо своих теплоудерживающих свойств, данный материал обладает также хорошей звукоизоляцией. Минеральная вата представляет собой волокнистый теплоизоляционный материал, в состав которого входят минеральные волокна (силикатные расплавы горных пород), связанные синтетическими смолами. Название данного утеплителя характеризует схожесть с обычной ватой по виду, мягкости и структуре. Состав и свойства минеральной ваты напоминают асбестовое волокно. В силу своей повышенной устойчивости к действию химических веществ и высоких температур, изовер имеет чрезвычайно высокий срок службы, что делает его наиболее предпочтительным тепло- и шумоизоляционным материалом в современном строительстве.

Экологичность и безопасность

Схема утепления фасадов минеральной ватой.

А вот с точки зрения экологичности и безопасности в использовании минеральной ваты не утихают споры, и экологичность минераловатного утеплителя вызывает ряд нареканий, а его безопасность для здоровья подвержена сомнениям. Дело в том, что одна из фракций минерального волокна в составе ваты обладает канцерогенными свойствами. К тому же, синтетическая вяжущая смола, используемая в производстве, выделяет формальдегид, который, как известно, чрезвычайно вреден и является токсическим веществом.

Несмотря на эти несомненные признаки вредности, существует ряд реабилитирующих свойств, которые значительно повышают экологичность данного утеплителя. Канцерогенными свойствами обладают, в основном, крупные волокна, и в силу того, что состав минеральной ваты главным образом состоит из мелковолокнистых соединений, то и вероятность вредного воздействия на человеческий организм сведена к минимуму при соблюдении технических и санитарных установленных норм строительства и монтажа.

Вернуться к оглавлению

Свойства и технические характеристики минеральной ваты

По своим свойствам этот теплоизолятор сходен с камнем, производится из базальта или шлака, поэтому минвата имеет еще одно название – каменная. Чтобы оценить несомненные преимущества ваты, технические характеристики и реальный срок службы, ниже приведены основные свойства и достоинства данного изоляционного материала.

Вернуться к оглавлению

Теплоизолирующие характеристики

При толщине этого утеплителя в размере 10 см, минвата обладает довольно низким коэффициентом 0,038-0,045 Вт/К×м, что обусловливает характеристики теплоизолирующих свойств равными толщине кирпичной стены в 117 см, либо стены из цельного дерева в 25 см. Несомненно, это делает изоляцию из минеральной ваты во много раз предпочтительнее прочих синтетически выделенных материалов, таких, как пенополистирол и прочие.

Вернуться к оглавлению

Шумопоглощающие свойства

Коэффициент звукоизоляции минеральной ваты равен 0. 95 при максимальном значении 1. На упаковке изовера данная характеристика звукопоглощения обозначается буквами Aw, и, зная данный показатель, можно наверняка быть уверенным в качестве покупаемого продукта и желаемых нормах шумопоглощения.

Вернуться к оглавлению

Негорючесть

Пожалуй, весьма немаловажным достоинством минеральной ваты считается ее негорючесть, а потому данный теплоизоляционный материал прекрасно себя чувствует под металлочерепицей, нагревающейся в жару, или в любых других местах с повышенными температурами. При нагревании, в отличие от всех остальных изоляций, изовер практически не горит, не плавится и, соответственно, не выделяет вредных химических летучих соединений.

Вернуться к оглавлению

Паропроницаемость

Еще один немаловажный аспект теплоизоляции и комфорта утепляемого помещения – способность изовера “дышать”. Пары проходят между волокнами, но не оседают и не впитываются в них. Такие свойства свободной циркуляции воздуха наравне с теплоудержанием становятся незаменимыми помощниками для создания комфортного микроклимата в помещении, что делает минвату самым экологически здоровым материалом в сравнении со всеми остальными.

Вернуться к оглавлению

Срок службы минеральной ваты

Схема утепления стены минеральной ватой.

Достоинства теплоизоляции и шумопонижения данного материала не вызывают сомнений. А каков срок службы минеральной ваты? Выгодно ли в конечном счете ее использование, и насколько изовер подвержен износу? Какие существуют различия данных характеристик в зависимости от состава волокон?

Итак, заявленный производителями срок службы данной изоляции около 50 лет. Но этот показатель не считается бесспорным и имеет ряд технических нюансов. Для изготовления утеплителя используется различное сырье, что влияет на качество и долговечность. На сегодняшний день существует два основных вида минеральной ваты.

Первый вид, наиболее высокого качества, изготавливается из горных вулканических пород базальтовой лавы или базальтового камня. Такая минвата называется каменной, стоит на порядок дороже, но технические характеристики и срок службы у нее гораздо выше чем у другого вида – шлаковой.

Шлаковый утеплитель изготавливают из шлаковых отходов металлургической доменной промышленности. Такой материал имеет низкую цену, служит недолго, да к тому же подвержен деформации, износу и плохо переносит температурные перепады. Но тем не менее, эта изоляция находит свое применение в утеплении некапитальных временных построек, сараев, складов.

Для капитального строительства и утепления жилых помещений либо для повышения пожаробезопасности рекомендуется использовать более дорогую – каменную вату, имеющую очень низкую степень возгорания и более высокую степень теплоизоляции и шумопонижения.

Минеральная вата имеет пассивную химическую среду, что исключает возникновение коррозии на прилегающих металлических трубах и арматуре. К тому же, изоверы устойчивы к температурным деформациям, имеют очень малую усадку и за все годы эксплуатации утеплители из минеральной ваты практически не изменяют своих размеров, толщины и положения. Естественно, это свойство значительно сказывается на сроках эксплуатации.

Вернуться к оглавлению

Достоинства и недостатки в строительстве

Схема производства минеральной ваты.

Отдельно следует упомянуть чисто технические недостатки и достоинства данного материала при использовании в строительстве. Изовер на сегодняшний день поставляется в плитах и рулонах. В рулонах идет более мягкий и пластичный материал, который хорошо режется обычными ножницами и легко укладывается под обрешетку. Для более масштабного и серьезного строительства используют плиты из минеральной ваты. Они более плотные, нарезаются ножом и крепятся специальными профилями или гвоздями.

Основной недостаток при планировании утепления в том, что минеральная вата в силу своей паропроницаемости напрямую зависит от отделочного слоя. И чем он плотнее, тем больше влаги впитывают волокна изовера. Вреда самой изоляции это не принесет, но значительно снизятся теплоизолирующие свойства. В силу большой гидрофильности (способности поглощать воду), минеральную вату при использовании в фасадной изоляции рекомендуется предварительно пропитать гидрофобизирующими составами, которые придадут утеплителю свойства водоотталкивания. К тому же, изначально следует составлять проект по теплоизоляции с учетом всех этих характеристик.

При правильном планировании, верных технических расчетах и подборе подходящих взаимодействующих материалов, любое строительство, будь то капитально жилье или временная постройка, при использовании минеральной ваты обретет все нужные характеристики теплоизоляции и шумопонижения, что сделает постройку теплой и долговечной.

Срок эксплуатации минваты ISOVER 50 лет

Доказанный срок эффективной эксплуатации тепло- и звукоизоляции ISOVER составляет 50 лет 

Это подтверждено испытаниями в соответствии с ГОСТ Р 57418-2017, которые были проведены в Научно-исследовательском институте строительной физики Российской академии архитектуры и строительных наук (НИИСФ РААСН).

Какие факторы могут повлиять на теплофизические свойства утеплителей со временем? 

 
Повышение влажности в отопительный период На теплофизические показатели теплоизоляционного слоя, главным образом, оказывает влияние повышение его влажности в период наибольшего влагонакопления (отопительный период).
Географический регион строительства и влажностный режим эксплуатации Повышение теплопроводности минераловатной теплоизоляции при увлажнении по сравнению с теплопроводностью в сухом состоянии отражено в коэффициентах теплопроводности в условиях эксплуатации «А» и «Б». Отнесение к условиям эксплуатации «А» или «Б» определяется географическим регионом строительства и влажностным режим эксплуатации помещения (сухой, нормальный, влажный).

Строительные конструкции, в которых теплоизоляционный слой наиболее подвержен увлажнению: а) системы фасадные теплоизоляционные композиционные (СФТК) и; б) трехслойные стены полностью или частично выполненные из мелкоштучных стеновых материалов (слоистая кладка).

Эти факторы влияют на долговечность и теплозащитные свойства здания и на энергоэффективность применяемого утеплителя. Поэтому под сроком эффективной эксплуатации теплоизоляции понимается эксплуатационный период, в течение которого этот материал не изменит свои теплотехнические показатели, либо изменит в рамках допустимых пределов.

Какие испытания проводились, чтобы доказать, что теплоизоляция ISOVER прослужит 50 лет. Метод испытаний.

Смоделировав эксплуатационные условия, сотрудники НИИСФ РААН провели исследование теплофизических характеристик и рассчитали срок эффективной эксплуатации материалов ISOVER.

Сущность метода заключалась в том, что испытываемые материалы подвергались циклическим климатическим воздействиям, имитирующим условия эксплуатации в доме. После этого определялись изменения теплофизических характеристик  минеральной ваты ISOVER, а именно теплопроводности и термического сопротивления. 

 

Проведение испытаний продукции ISOVER, таких как в лаборатории Научно-исследовательского института строительной физики Российской академии архитектуры и строительных наук (НИИСФ РААСН) – обязательный этап при создании любого материала ISOVER.  

Циклические климатические воздействия на испытуемые образцы тепло- и звукоизоляции включали увлажнение их до предельно допустимого значения влажности минеральной ваты в строительной конструкции и в последующем периодическом замораживании и оттаивании образцов. Два цикла замораживания-оттаивания приравнивались к одному условному году эффективной эксплуатации материала. Образцы минеральной ваты испытывались через 30, 60, 100 циклов замораживания-оттаивания, что соответствовало 15, 30 и 50 условным годам эффективной эксплуатации.

 

*/ ]]>
Число циклов во время испытанияСрок эффективной эксплуатации минеральной ваты
30 цикловМинеральная вата прослужит 15 лет
60 цикловМинеральная вата прослужит 30 лет
100 цикловМинеральная вата прослужит 50 лет

Так выглядят образцы минеральной ваты ISOVER после 100 циклов замораживания-оттаивания. 100 циклов = 50 лет. 

   

Методика по ГОСТу

 

Описанная методика испытаний для расчета срока эффективной эксплуатации  теплоизоляции ISOVER полностью соответствует методике, изложенной в национальном стандарте ГОСТ Р 57418-2017 «Материалы и изделия минераловатные теплоизоляционные. Метод определения срока эффективной эксплуатации». 


Испытание прошли материалы для утепления:
  • крыш

  • полов

  • стен

  • потолков

  • вентилируемых и штукатурных фасадов

  • а также для утепления бани, сауны и звукоизоляции  перегородок.

 

Какие результаты были получены: научно-технический отчет НИИСФ


  Анализ результатов исследования этих тепло- и звукоизоляционных материалов, произведенных на заводе в Егорьевске, Челябинске и Тамбове показал, что теплопроводность минераловатных плит  при моделировании условий эксплуатации увеличивается не более чем на 5% после проведенных 100 циклов замораживания-оттаивания. А это подтверждает, что срок эффективной эксплуатации материалов ISOVER составляет до 50 лет включительно. Для тех, кто ценит стабильность и полувековую преданность это идеальный вариант.

Исследования, проводившиеся в НИИ строительной физики РААСН, показали, что минераловатная теплоизоляция ИЗОВЕР на основе кварцевого волокна устойчива к воздействию влаги, растворов щелочей и водных вытяжек из цемента, обладающих щелочной реакцией. При высыхании теплоизоляции ISOVER после увлажнения указанными растворами ее теплопроводность восстанавливается до исходных значений.

Исследования по методикам ГОСТ Р 57418-2017 и ГОСТ Р 56732-2015, проводившихся в НИИИ строительной физики РААСН, показали, что срок эффективной эксплуатации минераловатной теплоизоляции  ISOVER составляет не менее 50 лет, эмиссия волокон при воздействии потока воздуха на теплоизоляцию отсутствует

Срок годности минеральной ваты

Основные данные про самый популярный утеплитель для тех, кто только задумался о выборе изоляции.

Статья подготовлена при участии специалистов компании ROCKWOOL

Современное строительство невозможно представить без применения различных теплоизоляционных материалов, позволяющих свести к минимуму теплопотери. В энергоэффективном доме нет бешеных счетов за энергоносители даже при солидной площади, так как отапливаются только помещения, а не улица. Одним из самых востребованных теплоизоляционных материалов является каменная вата, применяемая как в промышленных масштабах, так и повсеместно в частном секторе. И хотя этот утеплитель является, пожалуй, самым распространенным, тем не менее, вокруг него очень много домыслов, и производители без конца сталкиваются с одними и теми же вопросами. В этой статье мы с помощью специалистов компании ROCKWOOL рассмотрим основные характеристики каменной ваты:

  • Сырьевая база, технология производства, форма выпуска.
  • Сфера применения.
  • Технические и эксплуатационные характеристики.
  • Ответы на вопросы от форумчан

Каменная вата – из чего, как, в каком виде

Универсальный теплоизоляционный материал, производимый из горных пород преимущественно габбро-базальтовой группы (продукт извержения вулканов), из-за чего каменную вату зачастую называют базальтовой. Эта группа пород характеризуется не только прочностью, но и высокой температурой плавления, что и определяет выбор производителей. Породу плавят при температуре более полутора тысяч градусов, из расплава вытягивают тончайшие волокна.

В качестве связующего вещества, превращающего отдельные волокна в единое, упругое и прочное полотно, чаще всего применяют производные фенолформальдегидной смолы. Эти вещества считаются наиболее устойчивыми и долговечными. Что касается безопасности, то добавки содержатся в пределах допустимого нормативами количества, что делает их абсолютно безопасными как для человека, так и для окружающей среды. Это подтверждается многочисленными исследованиями и тестами.

Этот утеплитель является одним из немногих строительных материалов с положительным экологическим балансом. То есть, помогает сэкономить энергии больше, чем было затрачено на его производство, и теоретически может подвергаться бесконечной переработке после окончания срока службы.

Каменная вата выпускается в нескольких формах:

  • Плиты различной толщины и жесткости.
  • Рулоны.
  • Специфические изделия – изоляция в виде цилиндров с шовным или замковым соединением для трубопроводов и дымоходов, кашированные маты.

Характеристики каменной ваты

  • Теплопроводность – 0,04-0,05 Вт/(м*С).
  • Паропроницаемость – 0,25–0,3 мг/(м•ч•Па). Это означает, что дом будет «дышать», создавая полезный микроклимат в помещениях.
  • Водопоглощение по объему – от 1 до 3 %.
  • Плотность – от 25 до 200 кг/м³.
  • Прочность на сжатие (в зависимости от типа материала) – от сжимаемых мягких изделий (сжимаемость до 50 % по ГОСТ 17177), до жестких плит с прочностью на сжатие при деформации 10 % равной 0,1 Мпа.
  • Группа горючести – НГ (негорючий).
  • Экологичность – несмотря на наличие небольшого количества синтетического связующего, материал признан натуральным и абсолютно безопасным, он разрешен к применению даже внутри жилых конструкций и зданий общественного назначения.
  • Долговечность – производители обещают более полувека без потери характеристик, что подтверждается мировым опытом применения утеплителя. Кроме того, если материал намокнет, что маловероятно, ведь качественные материалы из каменной ваты обладают водоотталкивающими свойствами – ничего страшного, ведь после высыхания он не потеряет ни одно из своих свойств. А животные и плесень не тронут вату – производители создали такой материал, который является биостойким.

При выборе утеплителя приоритеты обычно расставляют в указанном порядке с незначительными перемещениями критериев, но группа горючести редко оказывается на первом месте. Тем не менее, это один из важнейших параметров: при утеплении дом не только «укутывается» по всему периметру, изоляция также укладывается в перекрытия и в стропильную систему. Получается замкнутый контур, который должен, как минимум, сдерживать горение, а в идеале – его предотвращать, и уж точно, никак не поддерживать. Достаточно, что «начинка» домов, как и львиная доля облицовки – горючая. Зная группу горючести утеплителя, проще подобрать остальные компоненты фасадного или кровельного «пирога», чтобы минимизировать опасность, а не записаться в будущие погорельцы. Приведем самые популярные материалы.

Разновидность теплоизоляционного материала

Горючесть

Целлюлозный утеплитель (эковата)

Если с негорючими (НГ) материалами понятно, то свойства остальных групп стоит расшифровать.

ФЗ «Технический регламент о требованиях пожарной безопасности» от 22.07.2008 № 123-ФЗ (действующая редакция, 2016).

Каждый материал, применяемый при возведении и отделке домов, рассматривается с позиции пожарной безопасности и оценивается по пяти критериям:

  • Горючесть.
  • Воспламеняемость.
  • Дымообразование.
  • Токсичность продуктов горения.
  • Распространение пламени по поверхности.

Критерии пожарной опасности строительных материалов

Класс конструктивной пожарной опасности строительных материалов в зависимости от групп

Качественная каменная вата, будучи негорючей, не воспламеняется, огонь по ее поверхности распространиться также не сможет. Что касается дымообразования и токсичности, связующие начнут плавиться и выгорать раньше волокна, но их количество в материале слишком мало для образования дымовой завесы. Не хватит их и чтобы отравить воздух, даже при внутреннем очаге возгорания, не говоря о наружном. Температура плавления каменной ваты 1000⁰С, так как тонкие волокна расплавить легче, чем породу, но и этого порога хватает, чтобы пламя затухало. Каменная вата в качестве огнезащиты выдерживает 240 минут прямого воздействия пламени.

Но независимо от разновидности утеплителя, специалисты советуют внимательнее относиться к выбору материала и основываться не на самой низкой стоимости, а на надежности производителя и опыте применения. Опытом можно «разжиться» как у соседей/родни/знакомых, так и на нашем портале, там его более чем достаточно. Что касается сертификатов, то у недобросовестных производителей встречаются подлоги, то есть даже их наличие не панацея, что уж говорить о продукции, на которую их вообще нет, хотя по закону сертификат на пожарную безопасность обязателен.

Сфера применения в вопросах и ответах

У каменной ваты широкая сфера применения. Благодаря натуральности сырья и его долговечности материалы из каменной ваты используют как в частных жилых домах, так и в многоэтажках, для общественных зданий и промышленных объектов. В частном секторе наиболее востребованы мягкие и жесткие плиты, а также дымоходы сэндвич и защита ограждающих конструкций посредством каменной ваты при выводе дымоходов сквозь стены.

Мягкие плиты предназначены для утепления и звукоизоляции ненагружаемых ровных и наклонных поверхностей: в каркасных домах в ограждающих конструкциях, в кровельной системе между стропилами, в межкомнатных перегородках, в перекрытиях (между лагами под черновой пол), в балконах и лоджиях. В тех зонах, где нужна минимальная теплопроводность и не требуется жесткости, так как нет нагрузки. Если стоит задача не только утеплить, но и изолировать помещение от шумов, выбирают материал со специфичным уклоном.

Тонкостей в выборе и монтаже материалов из каменной ваты особых нет – обычно производитель всю необходимую информацию указывает на пачке и на сайте. Да и созданы они таким образом, чтобы было максимально просто и удобно с ними работать. Например, можно встретить материал с пружинящим краем, а также плиты «с двойной плотностью», которые значительно упрощают процесс монтажа и к тому же в конечном итоге позволяют сэкономить.

Но иногда все же возникают вопросы, ответы на которые легко можно найти на forumhouse.ru, в частности, на ветках, которые ведут представители производителей. Приведем самые популярные вопросы, которые встречаются на нашем форуме.

Подскажите, какой слой каменной ваты нужен на деревянное межэтажное перекрытие для звукоизоляции. Есть ли большая разница между обычным утеплителем и акустиком.

Как правило, межэтажное перекрытие представляет собой каркас из деревянных балок. По словам специалиста, при таком конструктиве для обеспечения звукоизоляции необходимо использовать материал, сертифицированный, как звукоизоляционный. Монтируются плиты враспор в каркас, оптимальная толщина слоя – 100 мм, но конечный выбор зависит также и от толщины балок. Толщина деревянных балок и плит звукоизоляции должна совпадать. Данное решение позволяет значительно снизить уровень воздушного шума.

Плиты средней жесткости чаще применяют при наружном утеплении в системах вентилируемых навесных фасадов и в колодцевой кладке между стенами. Для утепления помещений с повышенной влажностью также используется каменная вата в плитах, у производителей есть специальные серии, рассчитанные на специфический эксплуатационный режим.

Жесткие плиты характеризуются повышенной прочностью, они выдерживают большие нагрузки (300 кг/м²) и чаще всего используются для утепления перекрытий под «плавающую» стяжку. Для систем «мокрого фасада» выпускаются специальные жесткие плиты с прочностью на отрыв не менее 10 кПа, что позволяет наносить армирующий и декоративный слой непосредственно на материал. Стоит учитывать, что у жестких плит, в силу большей плотности, выше теплопроводность, поэтому если не предполагается нагружать утеплитель, стоит предпочесть мягкую или полужесткую разновидность.

Далеко не все конструкции типовые, зачастую расстояние между элементами подсистемы не соответствует габаритам плит.

Каким образом утеплить мансарду при межстропильных пролётах более 580 мм, в моём случае при 720 мм? Я имею в виду, как установить вату, можно ли вставлять её не вертикально, а горизонтально, дабы сократить количество отходов? Такое расстояние между стропилами – не моя прихоть, так строит фирма, причём 720 мм – это усреднённый размер, на самом деле нет ни одного одинакового пролёта, да и стропила установлены не в вертикальной плоскости, т. е. если внизу 680 мм, то сверху может быть и 740 мм.

В этом случае нужно применять горизонтальную установку плит, но их толщина должна быть не менее 100 мм, так как такие плиты будут менее склонны к прогибу при сильном сжатии.

Иногда пользователям сложно определиться с плотностью изоляции.

Какая плотность должна быть у материала для утепления фасада под сайдинг? Стены кирпичные.

Плотность – это не более, чем удельный вес. Главным аспектом при выборе материала являются рекомендации производителя. Важны определенные физико-механические характеристики. Например, материал для каркаса должен быть упругим, а для пола под стяжку – жестким. Для материалов из разного сырья жесткость и упругость наступают при разных значениях плотности. Влияют и сырье, и размер волокон, а также ряд других параметров. Для монтажа теплоизоляционного слоя в каркас без механического крепления выбирается легкий и упругий материал, он легче устанавливается и вплотную прилегает к конструкции. При выборе более плотного материала смонтировать в каркас без механических повреждений будет достаточно тяжело. Поэтому в условиях экономии выбирать нужно не плотный материал, а тот, который необходим в конструкции.

В силу своей негорючести каменная вата используется в качестве изоляции дымоходов в местах прохождения труб сквозь перекрытия или стены.

Имеем дом бревенчатый, печка буржуйка. Не хочется дырявить крышу, проще будет через стену вывести, какие тонкости, что для этого потребуется? Как трубу в стене вести, просто сэндвич через дырку в стене не загорится?

Самый распространенный вариант. Делаете проем в стене 400×400 мм, обшиваете внутренние стенки проема базальтовым картоном, минеритом, далее монтируете проходной короб. После прохождения трубы сэндвич через короб набиваете его (короб) базальтовой ватой.

Также наши умельцы применяют каменную вату в уличных печных комплексах для поддержания оптимального температурного режима тандыров, помпейских печей и различных модификаций русских печей. Кашированные маты с алюминиевой фольгой используют для утепления трубопроводов, с этой же целью применяют фасонные изделия (цилиндры).

Кстати, срок службы качественных утеплителей из каменной ваты очень долгий – 100 лет, поэтому долгой и безопасной жизни вашему дому!

Больше информации о каменной вате и других утеплителях – в разделе о теплоизоляционных материалах. Насыпные изоляторы – в материалах об утеплении перлитом и керамзитом. В видео – рассказ эксперта о каменной вате.

Минеральная вата — востребованный материал, который используется для утепления различных поверхностей в промышленных и коммерческих зданиях, а также загородных домах и квартирах. Ведь его технические характеристики являются очень высокими, независимо от того, какой именно вид минеральной ваты используется.

Минеральная вата является негорючим утеплителем, поэтому не будет способствовать распространению огня и поддерживать пламя.

Основные характеристики минваты

Перед тем как использовать минвату для утепления, многие желают поближе познакомиться с этим материалом, поэтому ищут подробное описание к нему. Ниже представлен список основных характеристик такой ваты, которые позволят в полной мере оценить ее эксплуатационные свойства.

Теплоизолирующие и шумопоглощающие характеристики

Таблица свойств минеральной ваты.

Минвата отличается очень низким коэффициентом теплопроводности. Он находится в следующих пределах: 0,038-0,045 Вт/К×м. Благодаря такому важному свойству, всего лишь 10-сантиметровый слой минеральной ваты заменяет кирпичную кладку толщиной в 117 см или стену из цельного дерева в 25 см. Высокая теплоизоляция этого материала достигается за счет наличия в нем многочисленных воздушных пор и каналов, которые составляют около 95% от его общего объема.

Еще одна важная отличительная черта минеральной ваты — способность сдерживать проникновение звуков в помещение. В результате чего можно создать с помощью этого материала комфортную обстановку в доме, где не будут присутствовать лишние шумы. Если говорить о точном коэффициенте звукоизоляции минваты, то он находится на отметке в 0,95, тогда как максимальный показатель равен 1. Такая важная характеристика достигается за счет того, что в таком материале в хаотичном порядке располагается огромное количество различных волокон. Они отлично поглощают звуковые волны.

Негорючесть и паропроницаемость минваты

Самое ценное достоинство этого утеплителя заключается в его высокой пожарной безопасности. Он является негорючим, поэтому не будет способствовать распространению огня и поддерживать пламя.

Структура минеральной ваты и эковаты.

Утепление минватой можно производить даже в тех зданиях и помещениях, где планируется работать при температурах до +1000 °С.

Минеральная вата обладает высокой паропронизаемостью. Показатели этого материала по данной характеристике находятся в следующих пределах: 0,49-0,60 Мг/(м×ч×Па). Такое свойство обеспечивается минвате за счет особой структуры, которая дает возможность ей «дышать».

Это, в свою очередь, позволяет обеспечивать помещения, где она использована в качестве утеплителя, здоровым внутренним микроклиматом. В результате для этих целей не потребуется использовать механические приборы и тратиться на их покупку.

Натуральность и плотность

Все вышеозвученные технические характеристики делают минеральную вату одной из самых лучших, среди материалов для утепления, но ее выбирают еще и потому, что она является натуральной и не содержит в себе вредные химические соединения. Так, ее изготавливают из гранитов, туфов, глин, известняков и базальтов при помощи особой обработки с применением огня. Поэтому использование минеральной ваты в загородных домах и квартирах является идеальным, поскольку она не навредит здоровью жильцов.

Минеральная вата обладает высокой плотностью. По этой характеристике данный материал подразделяется на несколько видов:

Виды минеральной ваты по плотности.

  1. 30-50 кг/м3 — минеральная вата, представленная мягким пухом, который продается в мешках или сформирован в рулоны. Применяется такой вид материала для утепления горизонтальных плоскостей в помещении. Его сжимаемость доходит до 50%.
  2. 75 кг/м3 — полужесткая минеральная вата, используется для утепления горизонтальных частей зданий. Сжимаемость материала составляет около 20%.
  3. 125 кг/м3 — минеральная вата средней жесткости, отлично подходит для защиты горизонтальных и вертикальных частей дома. Сжимаемость материала доходит до 12%.
  4. 150-175 кг/м3 — жесткая минеральная вата в плитах. Она предназначена для утепления стен и кровли. Сжимаемость материала составляет около 2%.
  5. 200 кг/м3 — плиты минеральной ваты с повышенной прочностью, которые можно использовать под нагрузкой до 12 МПа.

Важно учесть, что высокая плотность этого материала наделяет его дополнительно следующими важными качествами:

  • не теряет первоначальную форму под собственным весом;
  • не поддается деформации и сжатию;
  • выдерживает дополнительные нагрузки.

Срок службы минеральной ваты

Поскольку минеральная вата отличается высокими техническими характеристиками, что является показателем дробности этого материала, то многих интересует ее срок службы. Такой утеплитель относится к элитной группе «долгожителей», поскольку заявленная производителем длительность эксплуатации составляет до 50 лет. Но очень важно правильно укладывать минвату, иначе ее отличительные характеристики сойдут на нет, а прослужит она недолго. Так, при ее монтаже нужно предусмотреть изолирующие прослойки, а также оснастить минеральную вату защитным противоветровым и влагозащитным покрытием. И самое главное — при кладке этого материала предусмотрите технические щели (около 8-10 мм). Они необходимы для того, чтобы из минваты беспрепятственно испарялась влага. В противном случае она через пару лет разбухнет и разрушится.

Безусловно, минеральная вата идеально подходит в качестве утеплителя, поэтому рекомендуется в данных целях использовать именно этот материал. Ведь в его технических характеристиках и сроке эксплуатации при правильном монтаже вы не разочаруетесь, тогда как покупка минваты обойдется вам в весьма скромный бюджет. Ведь ее стоимость находится на минимальном уровне, что делает ее одним из самых доступных утеплителей.

Минеральная вата является одним из самых популярных утеплителей на сегодняшний день. Изготовленная из каменного или стеклянного волокна она имеет практически неограниченный срок службы при соблюдении правил монтажа и эксплуатации. Однако, оказывается, на сроке службы могут сказаться и условия хранения.

Многие даже не задумываются над тем, что хранение утеплителя прямо на улице вместо закрытого помещения может повлечь за собой серьезные последствия для материала. Минвата – это, по сути, распушенный камень. С ним и на открытом воздухе ничего не произойдет. Только в состав минваты входят еще связующие вещества и смолы, которые придают материалу форму и выполняют функцию клея. Они-то как раз очень чувствительны к атмосферным воздействиям:

  1. Минеральное волокно имеет неорганическую природу, а связующие компоненты, наоборот, органическую. Место их склейки плохо переносит перепады температуры, когда она то опускается ниже нуля, то снова поднимается. Замерзание и оттаивание минваты крайне неблагоприятно сказывается на ее свойствах.
  2. Для утеплителя вредно ультрафиолетовое излучение. Одно дело, когда минвату достали из упаковки, смонтировали и быстро закрыли защитным слоем в виде штукатурки или сайдинга. Здесь вреда особого не будет. Но если оставить материал без защиты на несколько месяцев, то губительный свойства света проявятся в полной мере.
  3. Еще один разрушительный фактор – влага. Минвата, впитавшая в себя воду, практически теряет свои теплоизоляционные свойства. Производители добавляют в состав изделий специальные водоотталкивающие компоненты. Но если бросить минвату валяться на улице под дождем или снегом, то и добавки не помогут. Условия хранения и транспортировки для того и существуют, чтобы их соблюдать.

Результаты эксперимента

Специалисты проводили исследование, с целью выяснить, как ведет себя минвата при неблагоприятных условиях. В ходе эксперимента образцы минваты оставляли под открытым небом на снегу и под дождем, а также на фасаде дома под солнечными лучами.

Материал, находившийся под воздействием ультрафиолета, как будто загорает, становится темно-коричневым. Также верхний слой утеплителя делается более рыхлым. Это в будущем может грозить отставанием от него штукатурки.

Образец минваты, хранившийся на улице, напитался водой, стал более тяжелым. Понятно, что о теплосберегающих свойствах здесь говорить не приходится. Они просто исчезли. Укрывать дом таким утеплителем все равно, что спать в мороз под мокрым одеялом.

Эксперты отмечают, что нарушение условий хранения также разрушает и легкие утеплительные материалы (с низкой плотностью). Оно приводит к образованию в них мостиков холода. Легкие материалы более пористые, следовательно, и влагу впитывают гораздо больше и быстрее.

Это, конечно, не означает, что от использования минераловатных утеплителей надо отказаться. Они обладают бесспорными преимуществами, только, как и любой другой материал нуждаются в соблюдении правил хранения. Держать минвату на улице нельзя ни на складе, ни дома.

Срок службы утеплителей из минеральной ваты

Чтобы дать ответ на вопрос, какие факторы влияют на период службы мин. ваты, следует иметь представление про то, что это за материал, зачем используется и в каких условиях он применяется.

Содержание

  • 1 Как делается минеральная вата, ее свойства
  • 2 Где используют минвату
  • 3 Какие факторы разрушают минвату
  • 3.1 Вода
  • 3.2 Влияние механики
  • 3.3 Грызуны

Как делается минеральная вата, ее свойства

Минеральная вата появится путем расплава горных пород и пропуска их через тончайшие фильеры. Образовывающиеся волокна здесь же, на выходе из печи остужаются и накручиваются на катушки. Из каменных волокон вырабатывают электроизоляционные материалы на тканевой основе, но конкретная их часть (в большинстве случаев это отбраковка) срезается с катушек и проникает в трепальные машины, где и формируется вата.

Потом образовавшаяся вата подается под прессы, где появляются полотна, сворачиваемые в рулоны (невысокая плотность) и плиты (минеральная вата средней и большой плотности).

По собственной сущности и химическому составу волокнистая вата остается тем же самым камнем (горнорудным материалом), который не боится сырости, плесени, никаких других грибков. Это химически нейтральный теплоизолятор, который спокойно ведет себя при изменении кислотно-щелочной среды, совсем не реагирует на образование, к примеру ржавчины. Минвате не страшны температурные перепады, она не предрасположена к возгораниям, не проводит переменный ток.

Где используют

минвату

В общем, минеральная вата — это прекрасный теплоизолятор, который используется для теплоизоляции трубопроводов теплотрасс, водомерных узлов, промышленных котлов на тепловых электрических станциях.

В последние несколько десятков лет минеральная вата очень часто применяется для изоляции стен в строительстве дома. При правильном проведении всех работ по тепло- и пароизоляции, минераловатный теплоизолятор будет держать тепло столько лет, сколько простоят стены. Изготовитель называет эксплуатационный срок минерального теплоизолятора — 50 лет. Но в действительности, при правильном проведении работ по монтажу, он отслужит намного длительнее.

Какие факторы разрушают

минвату

На объектах промышленности даже при кап. ремонте вата не подлежит замене, так как именно материал в общем не приходит в негодность, не разрушается и не разлагается. Могут образоваться пробои, когда пар под давлением образовывает отверстие в трубе (свищ) и, вырываясь наружу, сметает теплоизолятор. В процессе проведения работ связанных с изоляцией устаревший теплоизолятор не убирается.

Минераловатный теплоизолятор выдерживает новый срок эксплуатации до последующего капремонта, благодаря этому его применяют еще раз. Материал новый накладуется там, где он по самым разным причинам стал меньше. Замене подлежат лишь те участки слоя изоляции, которые, очутившись открытыми, забиваются пылью, грязью и каменеют. Аналогичным образом, первый недруг мин. ваты — грязь и пыль.

Вода

Следующий недруг этого пористого и дышащего теплоизолятора считается влага при отсутствии воздуха. Если вода или конденсат проникает в теплоизоляционный слой, но одновременно не имеет выхода, она нарушает свойства теплоизоляции. Вата перестает дышать и держать тепло. Благодаря этому при устройстве тепловой изоляции предусматриваются специальные отверстия, сквозь которые в теплоизоляционный слой подается воздух, и выводится влага.

Минеральная вата прекрасно поглощает влажность

Большинство производителей наполняют минеральную вату влагоотталкивающими веществами, и материал такого рода подходит для утепления кровли, внешних стен дома.

Влияние механики

Из вышесказанного напрашивается также вывод, что служебный срок минеральные ваты уменьшает влияние механики снаружи. Это

  • свищи на трубопроводах;
  • ветер, способный смести слабо закрепленный кожух на наземных трубах;
  • рабочие, ликвидирующие протечки труб;
  • грызуны, живущие под землей и в домах.

Механическому разрушению предрасположена по большей части промышленная теплоизоляция.

Грызуны

Что бы ни говорил изготовитель, практика демонстрирует, что грызуны устраивают гнезда почти что во всех типах изоляции. Их даже не пугает колючая и раздражающая вата на основе стекловолокна. Они прогрызают ходы, устраивают гнезда, таким образом разрушают слой изоляции.

Аналогичным образом, для того, чтобы увеличить рабочий срок слоя теплоизоляции, необходимо обязательно исполнить все требования, которые предъявляют к тепловой, и паровой изоляции на стадии работ по монтажу, удалить факторы, разрушающие теплоизоляцию.

Какой срок службы у современных материалов для утепления?

Многие здания требуют дополнительного утепления снаружи. Чтобы утеплитель служил долго, материалы должны быть надежными. При этом в зависимости от вида, срок их службы составляет в среднем от 30 до 50 лет. Рассмотрим, какие материалы используют для этих целей и как долго они могут выполнять свои функции.

Что влияет на срок службы утеплителя

Утеплитель выдерживает все время эксплуатации до следующего ремонта независимо от вида. Подлежат замене только те части, которые оказались открытыми и начали истончаться или разрушаться под воздействием факторов внешней среды. Срок службы теплоизоляции зависит от:

  • Материала. Дольше всего служит дорогой утеплитель из натурального сырья. Искусственные волокна сохраняют тепло в течение 30-50 лет. За этот период происходит их усыхание и разрушение, что вызывает потерю теплосберегающих функций.

  • Защищенности утеплителя от внешних воздействий. Открытые участки быстро накапливают грязь, теряют свойства от ветра, дождя, ультрафиолета. Во всех утеплителях грызуны могут делать гнезда, из-за чего нарушается слой изоляции.

  • Качества гидроизоляции. Если вода и конденсат накапливаются под защитным слоем и не имеют выхода, постепенно происходит нарушение теплоизоляционных функций.

Для продления периода службы утеплителя важно соблюдение правил тепловой и паровой изоляции еще в период монтажа. На начальных стадиях необходимо позаботиться об устранении факторов, которые способны влиять на функции материала.

Сравнение сроков службы различных материалов

Сейчас применяют несколько видов утеплителей, но самыми популярными и надежными считаются:

  • минеральная вата – срок службы 25-40 лет;

  • пенополистирол – 30-50 лет;

  • вата базальтовая – 40-50 лет;

Срок службы напрямую зависит от состава утеплителя. Но с качеством материала увеличивается и его стоимость.

Минеральная вата

Минеральная вата относится к высококачественным каменным утеплителям, поскольку производится из базальтового камня. Ее стоимость выше других, но оправдывает себя. Каменная вата используется для строений значительных масштабов. Нужно выделить плюсы:

  • Материал негорючий. Поскольку современное покрытие для крыш при большой температуре способно нагреваться, нет вероятности возгорания стен. Утеплитель не подвергается воздействию внешних факторов, а значит, является безопасным.

  • Паропроницаемые свойства. Позволяет стенам дышать, что крайне важно. Через покрытие проходят пары, не скапливаясь внутри. Такое свойство делает материал экологически чистым и безопасным. Не требуется дополнительной обработки стен средствами от накопления конденсата.


К разновидностям этого утеплителя относят:

  • стекловату – выпускается из расплавленного стекла;

  • каменную вату – сделано из расплава горных пород;

  • шлаковую вату – выпускается из расплава доменного шлака.

Не менее важный показатель – плотность, чем он выше, тем меньше в материале связующих смол. Соответственно, такая минвата прослужит дольше.

Пенопласт

Сейчас популярным становится пенополистироловый изоляционный материал. Производители гарантируют теплозащиту на период до 50 лет. Но максимальный период службы можно удвоить и обеспечить только при правильном проведении утепляющих работ.

Пенопласт является вспененной строительной массой с большим объемом. При этом меньшая плотность и большая часть воздуха позволяют пенополистирольным плитам иметь небольшую массу и высокий показатель звуко- и теплоизоляции, но одновременно эти характеристики уменьшают прочность материала. Именно по этой причине такой утеплитель лучше использовать внутри помещений.


Можно выделить плюсы:

  • влагостойкость – вспененная масса слабо впитывает влагу;

  • хорошая теплоизоляция – обеспечивается воздушностью материала;

  • антибактериальная защита – поверхность пенопласта не дает образовываться плесени и развиваться бактериям;

  • небольшой вес – легкая и плотная структура способствует быстрому проведению изоляционных работ;

  • устойчивость к перепадам температуры;

  • обеспечение хорошей звукоизоляции.

Нельзя забывать о слабой прочности материала, что потребует дополнительной защиты. К тому же такой утеплитель не позволяет стене дышать.

Базальтовая вата

Растет популярность шлакового утеплителя, имеющего высокую плотность, из-за чего в него практически не проникает вода. Выпускается из шлаковых отходов металлургической промышленности и является безопасным при соблюдении технологии производства и утепления. В сравнении с каменным, этот вид стоит недорого, но менее качественный.


Достоинства базальтовой ваты:

  • цена – использование заменителей с такими же характеристиками выходит гораздо дороже;

  • доступность – много компаний мира выпускает этот вид теплоизоляции;

  • пожаростойкость – материал способен выдерживать высокие температуры, сохраняя свои функции;

  • непроницаемость – вещество способно отталкивать влагу, не позволяя накапливаться конденсату на стенах;

  • стойкость к химическим воздействиям.

Сейчас это востребованный изоляционный материал с высокими теплоизоляционными свойствами. Но он подвержен воздействию факторов окружающей среды. Этот вариант оптимален для утепления временных строений. Сейчас существуют такие марки Baswool, Rockwool, Технониколь.

Уютный дом должен быть теплым. Для этой цели лучше всего применять утеплители без органических веществ или с минимальным их количеством. Период теплоизоляции, обеспеченной утеплителями, составляет в среднем от 30 до 50 лет. При отсутствии контакта с факторами окружающей среды их меняют только при следующем ремонте стен или крыши.

Сравнительная оценка жизненного цикла (LCA) различных изоляционных материалов для зданий в континентальном средиземноморском климате

Основные моменты

Представлен экологический анализ различных изоляционных материалов.

Эксплуатационная фаза является наиболее важной на протяжении всего жизненного цикла.

Рассмотренная минеральная вата показала наилучшее воздействие на окружающую среду.

Изученные PU, MW, XPS показали обнадеживающую экологическую окупаемость.

Реферат

Строительная отрасль является одним из наименее устойчивых видов деятельности на планете, составляя 40% от общего спроса на энергию и примерно 44% от общего использования материалов и генерируя 40–50% мирового производства. парниковых газов. Наибольшее воздействие на окружающую среду, оказываемое зданиями, возникает на этапе их эксплуатации из-за потребления энергии на тепловое кондиционирование.Следовательно, чтобы снизить это потребление энергии, необходимо использовать изоляционные материалы, и с точки зрения жизненного цикла использование изоляционных материалов снижает воздействие на здание с течением времени. В этой статье проводится сравнительная оценка жизненного цикла (LCA) различных изоляционных материалов (полиуретан, экструдированный полистирол и минеральная вата) для анализа экологического профиля каждого типа изоляционного материала в средиземноморском континентальном климате. Примечательно, что все три изоляционных материала продемонстрировали чистый положительный эффект в течение пятидесятилетнего срока службы из-за снижения требований к отоплению здания.Результаты показали, что наибольшее воздействие на окружающую среду было связано с изоляционным материалом из полистирола, а наилучшие экологические характеристики – с минеральной ватой. Более того, что касается расхода, полиуретан и минеральная вата имели одинаковые тепловые характеристики в течение всего года. Кроме того, экологический срок окупаемости показывает, что ячейки с изоляционным материалом являются экологически эффективными, если они используются не менее 7 лет (для минеральной ваты), 10 лет (полиуретан) и 12 лет (экструдированный полистирол).Результаты этого исследования позволяют по-новому взглянуть на воздействие на строительные изоляционные материалы.

Ключевые слова

Изоляционные материалы

Оценка жизненного цикла (LCA)

Воздействие на окружающую среду

ReCiPe

GWP

Тепловые характеристики

Рекомендуемые статьи Цитирующие статьи (0)

Посмотреть полный текст

B.

Рекомендуемые артикулы

Цитирующие артикулы

Изоляция

имеет срок хранения

Как я обнаружил, оптимальный срок хранения изоляции составляет около 41 года.Я предполагал, что, поскольку это было сделано в основном руками человека, так будет продолжаться вечно. Поскольку я живу в доме, который строится около 40 лет, и в прошлом году мне потребовалась новая крыша, я нашел ряд статей, касающихся вопроса о сроке службы изоляционных материалов. Это заставило меня задуматься, как другие люди могли предположить, что он будет продолжать обеспечивать тот же уровень изоляции, что и в день его установки. Когда я снял часть старой изоляции на чердаке своего дома, я также обнаружил, что 40-летняя изоляция чердака не теряет своих зудящих свойств, и следующие 30 минут я провожу в душе, чтобы избавиться от штрафа. частицы стекловолокна.

Ниже представлены различные варианты замены утеплителя чердака.

Выбор утеплителя чердака

Если ваш чердак легко доступен и не имеет проблем с влажностью или конденсацией, его должно быть легко утеплить. Можно сделать самому.

Если доступ легкий и у вас обычные балки на чердаке, вы можете использовать рулоны теплоизоляции из минеральной ваты. Первый слой укладывается между балками – горизонтальными балками, составляющими пол чердака, – затем укладывается еще один слой под прямым углом, чтобы покрыть балки и сделать изоляцию на необходимую глубину.Это может сделать кто-то, кто разбирается в домашних условиях, или профессиональный установщик.

Кладовая

Если вы планируете использовать чердак или чердак для хранения вещей, вам нужно будет положить доски на балки. К сожалению, если перед этим вы сделаете изоляцию только между балками, изоляция не будет достаточно толстой.

Чтобы получить достаточную изоляцию, вы можете сделать следующее:

  • Изолируйте между балками с помощью минеральной ваты, а затем положите поверх них жесткие изоляционные плиты и деревянную обшивку поверх них.Вы можете купить изоляционную плиту, предварительно приклеенную к настилу пола, чтобы облегчить работу. Или
  • приподнимите уровень пола, чтобы можно было уложить достаточно минеральной ваты под новым уровнем пола.

В любом случае убедитесь, что вы не раздавили минеральную вату, когда устанавливаете плиты сверху, так как это снизит ее изоляционные свойства.

Комната в крыше

Если вы хотите использовать чердак в качестве жилого помещения или он уже используется как жилое пространство, вы можете изолировать свою комнату-в-крыше, утеплив саму крышу, а не чердак.Обычно это делается путем крепления жестких изоляционных плит между стропилами крыши. Доски необходимо обрезать до нужной ширины, чтобы они плотно прилегали между стропилами. Затем их можно покрыть гипсокартоном. Стропила обычно не очень глубокие, поэтому для достижения наилучших характеристик вам, возможно, придется изолировать их поверх гипсокартона. Если для этого нет места, убедитесь, что вы используете изоляционную плиту с высокими эксплуатационными характеристиками.

Стены в кровельном пространстве и вокруг слуховых окон также должны быть утеплены.Обычно это делается с помощью жестких теплоизоляционных плит.

Во всех случаях должна обеспечиваться соответствующая вентиляция до стропил.

Недоступные чердаки

Если доступ к чердаку затруднен, профессионал может установить утеплитель, который будет использовать специальное оборудование, чтобы выдувать на чердак непрозрачный изоляционный материал из целлюлозного волокна или минеральной ваты. Обычно это занимает не более нескольких часов.

Плоские крыши

Плоскую крышу желательно изолировать сверху.Слой жесткой теплоизоляционной плиты может быть добавлен либо поверх атмосферостойкого слоя крыши, либо непосредственно поверх деревянной поверхности крыши с новым атмосферостойким слоем поверх утеплителя. Лучше всего это делать, когда кровельное покрытие все равно нужно заменить. Если вашу плоскую крышу все равно нужно заменить, вы должны утеплить ее в соответствии со строительными нормами.

Плоскую крышу можно утеплить снизу, но это может привести к конденсации, если не будет выполнено правильно.

Установка теплоизоляции плоской крыши может сэкономить вам столько же на счетах за отопление, сколько и утепление чердака. Экономия будет варьироваться в зависимости от того, какая часть собственности имеет плоскую крышу.

Лофт с повышенной влажностью

Изоляция предотвращает выход тепла из жилых помещений, поэтому она сделает ваше чердак более прохладным, что может привести к появлению или ухудшению существующих проблем с влажностью или конденсацией. Если вы устанавливаете изоляцию чердака самостоятельно, имейте в виду, что вам может потребоваться увеличить вентиляцию, и вам нужно будет получить одобрение строительного надзора.Прежде чем устанавливать изоляцию, посоветуйтесь с профессионалами, чтобы узнать, сможете ли вы сначала решить проблемы с влажностью.

Установка изоляции – это самостоятельный проект?

Если ваш чердак легко доступен, не имеет проблем с влажностью и не является плоской крышей, вы, вероятно, могли бы утеплить его самостоятельно.

Утеплитель помещения в крыше может быть установлен опытными мастерами-самоделками. В случаях, когда возникают проблемы с влажностью или требуется более сложная система изоляции, следует использовать профессионального установщика.

Если ваш дом был построен с использованием традиционных строительных материалов и методов, вам необходимо убедиться, что вы используете изоляционные материалы, подходящие для вашего дома, чтобы он продолжал работать так, как он был спроектирован.Вы также можете обнаружить, что вам нужен столяр или ремесленник, который сделает работу за вас, чтобы убедиться, что работа соответствует строению.

Изоляция плоских крыш всегда требует профессиональной изоляции.

Влажные кровли требуют профессиональной оценки перед проведением работ.

Минераловатная изоляция для кровли и теплоизоляции – котировки в реальном времени, цены последней продажи -Okorder.com

Описание продукта:

Изоляция из минеральной ваты для кровли и теплоизоляции

1.Структура изоляции из минеральной ваты для кровли и теплоизоляции :

Изоляция Rock woo л относится к типу изоляции, которая сделана из реальных горных пород и минералов. Он также известен под названиями изоляция из каменной ваты, изоляция из минеральной ваты или изоляция из шлаковой ваты. Из минеральной ваты можно производить широкий ассортимент изделий, поскольку она отлично блокирует звук и тепло. Этот тип изоляции обычно используется в строительстве, на промышленных предприятиях и в автомобильной промышленности.

Процесс производства

Плавление / Формование в волокна / Процесс с непрерывным волокном / Штапельное волокно / Рубленое волокно / Минеральная вата / Защитные покрытия / Формование в формы

2. Основные характеристики минеральной ваты Изоляция для кровли и теплоизоляция :

● ХАРАКТЕРИСТИКИ

Теплоизоляция

Пожарная безопасность

Акустический контроль

Отсутствие коррозии

Экологичность

Устойчивость к влаге

Энергосбережение и снижение выбросов на

Различное сырье

Шерсть в основном производится из базальта и других природных руд.Сырьем для другой так называемой минеральной ваты является минеральный шлак. Разное сырье, разные характеристики.

Различная коррозионная стойкость. Наша минеральная вата обладает хорошей устойчивостью к коррозии. не вызывает коррозии металла. А вот минеральная шлаковая вата – другое дело. В среде с высокой влажностью CaS в минеральном шлаке будет вступать в химические реакции и вызывать коррозию при контакте с металлом.

Срок годности разный. Срок службы минерального шлака очень короткий, а долговечность очень низкая из-за более высокого содержания CaO и MgO в шлаке. Выцветание минерального шлака происходит легко и также влияет на срок службы. Модель

Отличается жаропрочностью. Термостойкость каменной ваты (базальта) выше, чем у минеральной шлаковой ваты. Наша рабочая температура может достигать 800 ℃. Но для шлаковой ваты не может превышать 675 ℃. По своим свойствам наша минеральная вата полностью превосходит шлаковую вату.

3. Изоляция из минеральной ваты для кровли и теплоизоляция изображений

90Изоляция из минеральной ваты для кровли и теплоизоляции. Спецификация

ОДЕЯЛО И ДОСКА ИЗ РОК-ШЕРСТИ

Стандартный размер

Товарная плита

Плотность (кг / м3) 60-100 40-200

Размер: Д x Ш (мм) 1200X3000-6000 600X1200

Толщина (мм) 30-150 30-100

Примечание:

Другие размеры доступны по запросу.

Облицовочные материалы могут быть применены по запросу.

Стандартный размер

Товарная плита

Плотность (кг / м3) 60-100 40-200

Размер: Д x Ш (мм) 1200X3000-6000 600X1200

Толщина (мм) 30-150 30- 100

Примечание:

Другие размеры доступны по запросу.

Облицовочные материалы могут быть применены по запросу.

Минеральная вата ТРУБА

Стандартный размер

DIA Толщина (мм)

дюймов мм 25 30 40 50 60 70 80 90 100120150

1/2 дюйма 22 ● ● ●

3/4 дюйма 27 ● ● ● ● ● ● ●

1 дюйм 34 ● ● ● ● ● ● ●

1–1 / 4 дюйма 43 ● ● ● ● ● ● ● ● ●

1–1 / 2 дюйма 48 ● ● ● ● ● ● ● ● ●

2 дюйма 60 ● ● ● ● ● ● ● ● ●

2-1 / 2 дюйма 76 ● ● ● ● ● ● ● ● ●

3 дюйма 89 ● ● ● ● ● ● ● ● ●

3-1 / 2 дюйма 108 ● ● ● ● ● ● ● ● ●

4 дюйма 114 ● ● ● ● ● ● ● ● ● ●

5 дюймов 140 ● ● ● ● ● ● ● ● ● ●

6 дюймов 169 ● ● ● ● ● ● ● ● ● ●

8 дюймов 219 ● ● ● ● ● ● ● ● ●

10 дюймов 273 ● ● ● ● ● ● ● ● ●

12 дюймов 325 ● ● ● ● ● ● ● ●

14 дюймов 356 ● ● ● ● ● ● ● ●

15 дюймов 381 ● ● ● ● ● ● ● ●

16 »406 ● ● ● ● ● ● ● ●

18« 456 ● ● ● ● ● ● ● ●

19 дюймов 483 ● ● ● ● ● ●

20 дюймов 508 ● ● ● ● ● ●

22 дюйма 558 ● ● ● ● ●

24 дюйма 6 10 ● ● ● ● ●

5.FAQ

Мы организовали несколько общих вопросов для наших клиентов , могу искренне помочь вам :

① Какой в ​​основном материал для минеральной ваты?

Минеральная вата называется минеральной ватой, потому что она в основном состоит из базальта, вулканической породы ,

②Какой в ​​основном тип для каменной ваты?

Изоляционные материалы из каменной ваты

доступны в виде сыпучих материалов и ватина. Батты, или одеяла, представляют собой толстые плиты изоляции, которые могут быть облицованы крафт-бумагой.

③Как вы контролируете качество?

Во время производства изоляционного материала из стекловолокна в различных местах производственного процесса отбираются образцы материала для поддержания качества.

Это Roxul или Rockwool?

20 марта 2020 г.

Совсем недавно Roxul Insulation в Северной Америке приняла то же имя, что и ее всемирная материнская компания – Rockwool Insulation. Та же минеральная вата по-прежнему предлагается в Канаде, которую многие домовладельцы продолжают использовать для утепления и модернизации своих домов.При профессиональной установке изоляция из минеральной ваты Rockwool может значительно улучшить энергетические характеристики и домашний комфорт.

Чтобы узнать больше о продукции Roxul / Rockwool, которую мы предлагаем, или связаться с нами по поводу модернизации вашего дома, заполните форму ниже. После разговора с нашей командой по работе с клиентами вы также можете запросить бесплатную оценку вашего дома.

Что такое изоляция из минеральной ваты?

Изоляция из минеральной ваты Rockwool – это материал, который обычно используется для изоляции домов и коммерческих зданий.Он способен значительно улучшить энергетические характеристики и домашний комфорт при профессиональной установке, и он естественным образом контролирует влажность, поскольку сделан из каменных волокон.

Наружные стены, утепленные минеральной ватой, обеспечивают дому отличную тепло- и звукоизоляцию. Это также делает его разумным выбором для внутренних или перегородок, которые выиграют от эффективного звукоизоляции. Кроме того, отчасти благодаря своему составу из каменного волокна изоляция из минеральной ваты обеспечивает уровень огнестойкости, достаточный для использования в городских домах.

Профессиональный специалист может посоветовать вам, является ли использование минеральной ваты правильным выбором для ваших конкретных потребностей. Свяжитесь с нами по телефону 1-800-265-1914, если вы хотите узнать больше.

Что такое изоляция Rockwool?

Rockwool или Roxul Insulation – это изоляция из минеральной ваты из каменных волокон. При правильной установке он обеспечивает множество преимуществ и может значительно улучшить жилое или коммерческое здание. Эти преимущества включают:

  • Улучшенные энергетические характеристики
  • Снижение затрат на коммунальные услуги
  • Превосходный контроль влажности и устойчивость к плесени
  • Более высокая стоимость при перепродаже
  • Повышенный домашний комфорт
  • Длительный срок службы и высокая надежность для длительной защиты
  • Эффективная огнестойкость

Что я должен использовать, изоляцию из минеральной ваты или стекловолокно?

Ответ на этот вопрос во многом зависит от конкретного сценария, с которым вы столкнулись.GNI может помочь вам определить, какой вариант лучше всего подходит для запланированных обновлений и бюджета. Тем не менее, изоляция Rockwool часто используется, когда более необходимы контроль влажности и огнестойкость. Roxul / Rockwool также чрезвычайно прочен и устойчив к коррозии, и имеет немного более высокий R-Value, чем вата из стекловолокна. Мышей также гораздо реже привлекает Rockwool из-за того, что они сделаны из каменных волокон.

Где можно установить изоляцию Rockwool?

Изоляция Rockwool может быть установлена ​​практически везде, где можно установить стекловолокно.Сюда входят чердаки, подвалы, внутренние и внешние стены. Тем не менее, где он действительно сияет, так это в разделительных / праздничных стенах для кондоминиумов, таунхаусов и внутри отдельных домов из-за его сильной звукоизоляции. Это обеспечивает жильцам повышенный уровень домашнего комфорта и отделение от внешнего шума. Его также можно использовать для повышения уровня качества домашнего кинотеатра или медиа-офиса.

Повышает ли утеплитель из минеральной ваты Rockwool домашний комфорт?

Совершенно верно! Любой тип изоляционного материала, способный улучшить тепловую защиту вашего дома, улучшит ваш домашний комфорт.Минеральная вата Rockwool – фантастический выбор для домовладельцев, желающих увидеть улучшения R-Value и эффективную звукоизоляцию. Кроме того, он естественным образом устойчив к воздействию влаги и плесени и не содержит особо опасных веществ. Это делает его полезным для защиты жителей с респираторными заболеваниями и от синдрома больного дома.

В сочетании со стратегической герметизацией воздуха Rockwool эффективно улучшает ограждающую конструкцию вашего дома – защитный экран, который образует ваш дом, чтобы отделить вас от окружающей среды.Это не только означает лучший домашний комфорт и меньше сквозняков, но также означает более доступный счет за электроэнергию и меньшее воздействие на окружающую среду.

Профессионально установленная изоляция из минеральной ваты Rockwool

Когда ваша изоляция из минеральной ваты профессионально установлена ​​(и старая изоляция в некоторых случаях удалена), вы получаете ряд преимуществ. Вы можете быть уверены, что любые потенциальные опасности от старых или поврежденных изоляционных материалов в вашем доме находятся под контролем; что ваши обновления выполняются наиболее экономичным способом, и что минеральная вата была лучшим вариантом для вашего уникального сценария.Имея на своей стороне GNI, вы можете отдыхать спокойно, зная, что модернизация вашего дома находится в руках опытных специалистов.

Самодельная изоляция из минеральной ваты

Может показаться заманчивым попробовать установить самодельную изоляцию из минеральной ваты, но при использовании этого метода могут возникнуть некоторые сложности. Без должного учета других факторов, таких как утечки воздуха, эффективность вашей установки может быть снижена. Срок службы минеральной ваты также может быть снижен, если с ней неправильно обращаться или устанавливать, и вы можете подвергнуть себя потенциальной опасности для здоровья во время процесса DIY.Эксперт по ремонту домов GNI может убедиться, что вы ориентируетесь на наиболее рентабельные обновления в своем доме; помогая вам увидеть самые большие улучшения при минимальных затратах.

Программа скидок за эффективность дома

Перед тем, как приступить к каким-либо улучшениям или ремонту дома, стоит взглянуть на программу скидок за эффективность дома и посмотреть, можете ли вы претендовать на нее. Энергоаудит дома необходим как до начала любых ремонтных работ, так и после их завершения, но в рамках программы предусмотрена скидка, чтобы помочь с этими затратами.Максимальную скидку в размере 5000 долларов могут получить клиенты Union Gas и Enbridge Gas, которые ремонтируют дома для повышения своей энергоэффективности.

Вопросы о минеральной вате? Свяжитесь с нами

Если у вас есть дополнительные вопросы о минеральной вате и о том, как ее наиболее эффективно использовать в вашем доме, свяжитесь с нами по телефону 1-800-265-1914 или пообщайтесь с нашей командой по работе с клиентами на сайте www.gni. ca / contact. Чтобы сразу же приступить к обновлению своего дома, вы также можете организовать бесплатную необязательную домашнюю оценку.

Устойчивая изоляция: минеральное волокно и пенопласт



При сравнении экологичных аспектов изоляционных материалов менеджерам необходимо учитывать множество факторов, включая переработанное содержимое, исходные материалы и встроенную энергию, а также проверять заявления производителя на основе информации третьих лиц.Строительные системы изолируют самые разные материалы. Обычно они делятся на две категории: минеральное волокно, включая стекловолокно, каменную и шлаковую вату; и пенопласты, включая экструдированный или пенополистирол, полиизоцианурат и полиуретан.

Изоляция из стекловолокна в основном состоит из песка и переработанного стекла. Расплавленное стекло наливают во вращающуюся вертушку с небольшими отверстиями во внешних стенках. Когда расплавленное стекло вытекает через отверстия, оно образует тонкие волокна. Эти волокна быстро охлаждаются, и при необходимости производитель добавляет связующие вещества или клеи.Волокна образуют одеяла, плиты и изоляционные материалы для труб.

Изоляция из каменной и шлаковой ваты производится аналогичным образом, за исключением того, что в качестве сырья используются в основном базальтовая порода и доменный шлак.

Изоляционные материалы из минерального волокна обладают экологичными свойствами и обладают экологическими характеристиками, поскольку они сделаны из песка – очень распространенного сырья – переработанного стекла, базальтовой породы и шлака, который является побочным продуктом производства стали.

Хотя для плавления стекла и камня требуется энергия, она бледнеет по сравнению с энергией, сэкономленной в течение срока службы изоляции. Исследование, проведенное Альянсом за сохранение энергии, показало, что изоляция из минерального волокна ежегодно экономит в 12 раз больше энергии, чем на ее производство. Другими словами, он экономит всю энергию, затрачиваемую на его производство, в течение первого месяца эксплуатации.

Как следует из названия, изоляция из пенопласта представляет собой пластик с пузырьками воздуха или газа, распределенными по основному материалу.Пузырьки газа в пенопласте образуются путем впрыскивания газа или вспенивающего агента в расплавленный жидкий пластик и охлаждения материала.

Другой метод – объединить два жидких компонента, которые вступают в химическую реакцию с образованием пластика с пузырьками газа в нем. Полученный пенопласт затем превращается в листы, изоляцию для труб и другие изделия, предназначенные для легкой установки. Другой тип пенопласта изготавливается из стекла и, как и пластик, содержит пузырьки.

Обычно пластмассы получают из нефти, хотя некоторые производители начинают использовать пенопласт на биологической основе.






Связанные темы:

Комментарии

Минеральная вата и фасад здания – Страница 2 из 4

Один из крупнейших в Европе комплексов пассивных домов в Инсбруке, Австрия, состоит из 354 резиденций.Изоляция из минеральной ваты использовалась для удовлетворения требований проекта по энергоэффективности.
Фото любезно предоставлено Sto SE KGAA

Атрибуты

Привлекательность изоляции для проектировщиков и разработчиков основана на нескольких ключевых характеристиках.

Тепловые характеристики

Минеральная вата является барьером, препятствующим естественному течению тепла от теплых поверхностей к холодным. Эта теплопередача может принимать три формы:

  • проводимость;
  • конвекция; или
  • радиация.

Изоляция из минеральной ваты предотвращает конвекцию, удерживая статический воздух в матрице ваты. Он также останавливает излучение (, т.е. , миграцию тепла посредством электромагнитных волн) и ограничивает передачу тепла через соседние молекулы в изоляционном материале. В результате уменьшается перенос тепла.

Удельная эффективность минеральной ваты в снижении теплопередачи зависит от структурных свойств, таких как плотность, толщина, состав и тонкость, а также от средней температуры, при которой она используется.Для наружных работ стандартное значение R для минеральной ваты обычно составляет R-4,3 на дюйм, а диапазон толщины плиты составляет от 25 до 178 мм (от 1 до 7 дюймов). Однако точные требования для конкретного проекта зависят от местных колебаний температуры, влажности и влажности.

Например, можно выбрать тонкий продукт с высокой плотностью, чтобы удовлетворить требованиям R-ценности при одновременном снижении водопоглощения в жарком влажном климате. С другой стороны, можно выбрать толстый продукт с меньшей плотностью, чтобы удовлетворить требованиям R-ценности в холодном и сухом климате, где водопоглощение не так важно.

С точки зрения тепловых характеристик также важно знать, что минеральная вата испытана на соответствие стандарту ASTM C518, Стандартному методу испытаний на установившиеся свойства теплопередачи с помощью прибора для измерения теплового потока или стандартного метода испытаний ASTM C177, для установившегося нагрева Измерения потока и тепловыделение , постпроизводство как часть процесса контроля качества (QC). Кроме того, поскольку минеральная вата не содержит вспенивающих агентов, воздух не может диффундировать в материал и заменить агенты, которые уже циркулировали из него.Другими словами, это волокнистый материал, и его теплопроводность со временем не ухудшается. Изоляция из каменной и шлаковой ваты с рыхлым наполнителем сопротивляется осаждению, а изделия из войлока возвращаются в исходное состояние после среднего сжатия, поэтому установленные тепловые характеристики сохраняются в течение всего срока службы изделия.

Огнестойкость

Поскольку минеральная вата сопротивляется лучистой энергии, ее можно использовать в засушливом климате с интенсивным солнечным светом в качестве защитного барьера для стен для систем облицовки с открытыми стыками, таких как дождевик.
Изображения любезно предоставлены Sto Corp.

Поскольку изоляционные материалы из минеральной ваты в основном неорганические, они негорючи по своей природе и не горят и не выделяют вредный дым и горячие газы. Однако связующее, используемое в минеральной вате, является органическим и подвергается термическому разложению около 260 ° C (500 F). В то же время испытания показали, что высвобождение связующего не происходит в достаточно высоких концентрациях, чтобы считаться вредными. Согласно ASTM E119, стандартным методам испытаний для огнестойких испытаний строительных конструкций и материалов изоляция может выдерживать температуры, превышающие 1093 ° C (2000 F) в течение как минимум пяти часов, а поскольку продукты имеют высокую температуру плавления, они могут могут использоваться в широком спектре приложений, требующих этих огнестойких характеристик.Изоляция из минеральной ваты в целом соответствует требованиям Национальной ассоциации противопожарной защиты (NFPA) 220, стандарту для типов зданий Строительство и ASTM E136, стандартному методу испытаний для определения поведения материалов в вертикальной трубчатой ​​печи при температуре 750 ° C . Они относятся к продукту класса A, протестированному в соответствии с ASTM E84, Стандартным методом испытаний на горение поверхности Характеристики строительных материалов и NFPA 101, Кодом безопасности жизни .Следовательно, изоляция из минеральной ваты используется в качестве пассивной противопожарной защиты во многих стеновых конструкциях.

Поскольку минеральная вата по своей природе является огнестойкой и не требует теплового барьера, она прошла испытания в качестве огнезащитного материала в многочисленных конструкциях по периметру ограждения от огня за счет проникновения, противопожарной защиты и строительных швов, включая сборные конструкции наружных стен и открытые швы. системы облицовки, например, фасады с защитой от дождя. У дождевых экранов много преимуществ с точки зрения эстетики, долговечности и простоты обслуживания.Тем не менее, внутренняя стенка полой стены, являющаяся неотъемлемой частью систем защиты от дождя, также может действовать как дымовая труба, которая может позволить пламени и дыму двигаться вверх в случае пожара. Минеральная вата обычно используется на линиях пола в качестве противопожарного барьера в таких системах, чтобы исключить эту форму риска возгорания.

Цементное базовое покрытие и плетеная сетка из стекловолокна, нанесенная поверх минеральной ваты как часть внешней непрерывной фасадной системы изоляции (CI).

Проницаемость

Минеральная вата является паропроницаемой и имеет рейтинг проницаемости до 50, что означает, что водяной пар может легко диффундировать по всему материалу.Изоляция не удерживает воду и остается неповрежденной даже во влажном состоянии. Он разработан, чтобы справляться с конденсацией, проливным дождем и любой другой влагой, которая может попасть в конструкцию стены, позволяя ей быстро стекать и высыхать и позволяя зданию «дышать». в частности, потому что они неизменно позволяют воде проникать через облицовку и вступать в контакт с изоляцией. Поскольку изоляция воздухопроницаема / паропроницаема, она обеспечивает лучший контроль над влажностью, конденсацией и качеством воздуха.

Устойчивое развитие

Продукция из минеральной ваты, как правило, более чем на 50% состоит из переработанных материалов, переработанных в постиндустриальную эпоху, и способствует энергосбережению и получению сертификатов экологического строительства. Шлаковая вата заслуживает дополнительных похвал за экологичность, потому что она состоит из 70 или более процентов переработанных отходов сталелитейной промышленности. Кроме того, и аналогично другим типам изоляции, используемым в системах непрерывной внешней изоляции (CI), таких как EIFS, минеральная вата может помочь сократить потребление энергии для отопления и охлаждения и существенно сократить выбросы парниковых газов (ПГ) в течение срока службы здания.

Искусственные минеральные волокна – Искусственные минеральные волокна и радон

  • Олдред Ф. Х. Аспекты продуктов из алюмосиликатного волокна, связанные со здоровьем. Анна. ок. Hyg. 1985. 29: 441–442. [PubMed: 4073709]
  • Альсбирк К.Е., Йоханссон М., Петерсен Р. Глазные симптомы и воздействие минеральных волокон в плитах для звукоизоляции потолка (Дан.). Ugeskr. Laeger. 1983; 145: 43–47. [PubMed: 6836763]
  • Американская конференция государственных промышленных гигиенистов (1986) Пороговые значения и индексы биологического воздействия на 1986–1987 гг. , Цинциннати, Огайо, стр.19, 34.

  • Андерсен А., Лангмарк Ф. 1986 Заболеваемость раком в промышленности по производству минеральной ваты в Норвегии. Сканд. J. Work Environ. Здоровье 12 (1): 72–77. [PubMed: 3026038]
  • Anon. (1986) Факты и цифры. Chem. Англ. Новости, 64 , 32–44.

  • Аноним. (1987a) Волокно из оксида алюминия высокой чистоты, превращенное в бумагу. Jpn. хим. Неделя, 28 , 1.

  • Анон. (1987b) Высокоэффективные волокна находят все более широкое применение в военных и промышленных целях. Chem. Англ. Новости, 65 , 9–14.

  • Аноним. (1987c) На Среднем Западе волшебное слово – керамика. Автобус. Week, 2999 , 123.

  • Arbetarskyddsstyrelsen (Национальный шведский совет по безопасности и гигиене труда) (1981) Измерение и определение характеристик пыли MMMF (частичные отчеты 3–9) , Стокгольм.

  • Arbetarskyddsstyrelsen (Национальный шведский совет по безопасности и гигиене труда) (1984) Предельные значения профессионального воздействия (AFS 1984: 5) , Solna, p.16.

  • Arledter, H.F. & Knowles, S.E. (1964) Керамические волокна. В: Battista, O.A., ed., Синтетические волокна в производстве бумаги , Нью-Йорк, Interscience, стр. 185–244.

  • Азова С.М., Евлашко Ю.П., Ковалевская И.А. Изменения в крови и метаболизме порфиринов при воздействии пыли из стекловолокна (русск.). Концерт. Тр. проф. Забол. 1971; 15: 38–42. [PubMed: 5088881]
  • Balzer, J.L. (1976) Данные по окружающей среде: концентрации в воздухе, обнаруженные при различных операциях. In: LeVee, WN & Schulte, PA, eds, Профессиональное воздействие волокнистого стекла (DHEW Publ. No. (NIOSH) 7–151; NTIS Publ. No. PB-258869) , Цинциннати, Огайо, Национальный институт по охране труда, стр. 83–89.

  • Balzer J.L., Cooper W.C., Fowler D.P. Стекловолоконные системы передачи воздуха: оценка их воздействия на окружающую среду. Являюсь. инд. Hyg. Доц. J. 1971. 32: 512–518. [PubMed: 4946492]
  • Бейлисс Д.Л., Демент Дж. М., Ваггонер Дж.К., Блейер Х.П. Смертность рабочих производства стекловолокна. Анна. Акад. Sci. 1976a; 271: 324–335. [PubMed: 1069521]
  • Бейлисс, Д., Демент, Дж. И Ваггонер, Дж. К. (1976b) Структура смертности рабочих на производстве стекловолокна предварительный отчет. In: LeVee, WN & Schulte, PA, eds, Professional Exposure to Fibrous Glass ( DHEW Publ. No. (NIOSH) 76–151; NTIS Publ. No. PB-258869), Cincinnati, OH, National Институт безопасности и гигиены труда, стр.349–363.

  • Beck E.G. 1976a Взаимодействие между волокнистой пылью и клетками in vitro. Анна. Анат. патол. 12227–236. [PubMed: 788560]
  • Beck E.G. Взаимодействие клеток с волокнистой пылью (нем.). Zbl. Бакт. Hyg. I. Abt. Ориг. B. 1976b; 162: 85–92. [PubMed: 1033650]
  • Beck E.G., Bruch J. Влияние волокнистой пыли на альвеолярные макрофаги и другие клетки, культивируемые in vitro. Биохимическое и морфологическое исследование (фр.). Rev.fr. Mal. респир. 1974; 2: 72–76.

  • Beck, E.G., Bruch, J., Friedrichs, K.-H., Hilscher, W. & Pott, F. (1971) Волокнистые силикаты в экспериментах на животных и культивировании клеток. Морфологические реакции клеток и тканей в зависимости от различных физико-химических воздействий. В: Walton, W.H., ed., Inhaled Particles III , Vol. II, Old Woking, Surrey, Unwin Bros, стр. 477–487. [PubMed: 4365268]
  • Бек Э.Г., Холт П.Ф., Манойлович Н. Сравнение воздействия на культуры макрофагов стекловолокна, стеклянного порошка и хризотилового асбеста.Br. J. ind. Med. 1972; 29: 280–286. [Бесплатная статья PMC: PMC1009425] [PubMed: 4339803]
  • Bellmann B., Muhle H., Pott F., Konig H., Kloppel H., Spurny K. Стойкость искусственных минеральных волокон (MMMF) и асбеста в легкие крысы. Анна. ок. Hyg. 1987. 31: 693–709. [PubMed: 2835923]
  • Bernstein, D.M., Drew, R.T., Schidlovsky, G. & Kuschner, M. (1984) Патогенность MMMF и контрасты с натуральными волокнами. В: Биологические эффекты искусственных минеральных волокон (Материалы конференции ВОЗ / МАИР) , Vol.2, Копенгаген, Всемирная организация здравоохранения, стр. 169–195.

  • Бертацци П. А., Зоккетти К., Пезатори А., Радиче Л., Рибольди Л. Смертность от рака в когорте рабочих, производящих стекловолокно (итал.). Med. Лав. 1984. 75: 339–358. [PubMed: 6527669]
  • Бертацци П.А., Зоккетти С., Рибольди Л., Пезатори А., Радис Л., Латокка Р. Смертность от рака итальянской когорты рабочих, занятых в производстве искусственного стекловолокна. Сканд. J. Work Environ. Здоровье. 1986. 12 (1): 65–71. [PubMed: 3798057]
  • Ботам С.К., Холт П.Ф. Развитие стекловолоконных тел в легких морских свинок. J. Pathol. 1971; 103: 149–156. [PubMed: 4935921]
  • Бойд, округ Колумбия, и Томпсон, Д.А. (1980) Стекло. In: Grayson, M., Mark, H.F., Othmer, D.F., Overberger, C.G. & Сиборг, Г.Т., ред., Кирк-Отмер Энциклопедия химической технологии , 3-е изд., Т. 11, Нью-Йорк, John Wiley & Sons, стр. 807–880.

  • Браун Р.С., Чемберлен М., Дэвис Р., Гаффен Дж., Скидмор Дж.W. 1979a Биологические эффекты стекловолокна in vitro. J. Environment. Патол. Toxicol. 21369–1383. [PubMed: 528847]
  • Браун Р.С., Чемберлен М., Скидмор Дж. У. Эффекты искусственных минеральных волокон in vitro. Анна. ок. Hyg. 1979b; 22: 175–179. [PubMed: 533084]
  • Бай Э., Эдуард В., Гьённес Дж., Сёрбреден Э. Возникновение переносимых по воздуху волокон карбида кремния во время промышленного производства карбида кремния. Сканд. J. Work Environ. Здоровье. 1985. 11: 111–115. [PubMed: 4001899]
  • Кэмпбелл, В.Б. (1970) Рост нитевидных кристаллов в парофазных реакциях. In: Levitt, A.P., ed., Whisker Technology , New York, Wiley-Interscience, pp. 15–46.

  • Кейси Г. Обмен сестринских хроматид и клеточная кинетика в клетках CHO-K1, человеческих фибробластах и ​​лимфобластоидных клетках подвергали in vitro воздействию асбеста и стекловолокна. Мутат. Res. 1983; 116: 369–377. [PubMed: 6300672]
  • Чемберлен М., Тарми Е.М. Асбест и стеклянные волокна в тестах на бактериальные мутации.Мутат. Res. 1977; 43: 159–164. [PubMed: 194149]
  • Champeix J. 1945 Стекловолокно. Патология и гигиена в мастерских (фр.). Arch. Mal. проф. 691–94.

  • Черри Дж., Доджсон Дж. 1986 Прошлое воздействие переносимых по воздуху волокон и других потенциальных факторов риска в европейской промышленности по производству искусственного минерального волокна. Сканд. J. Work Environ. Здоровье 12 (1): 26–33. [PubMed: 3026036]
  • Черри Дж., Доджсон Дж., Гроат С., Макларен В. Экологические исследования в европейской промышленности по производству искусственного минерального волокна.Сканд. J. Work Environ. Здоровье. 1986. 12 (1): 18–25. [PubMed: 3026035]
  • Черри Дж., Кранц С., Шнайдер Т., Эберг И., Камструп О., Линандер В. Экспериментальное моделирование раннего процесса производства минеральной / шлаковой ваты. Анна. ок. Hyg. 1987. 31: 583–593. [PubMed: 3450229]
  • Чиаппино Г., Скотти П.Г., Ансельмино А. Профессиональное бронхолегочное заболевание, вызванное стекловолокном. Клинические наблюдения (Итал.). Med. Лав. 1981; 2: 96–101. [PubMed: 7242454]
  • Чолак Дж., Шафер Л.J. Эрозия волокон из установленных стекловолоконных каналов. Arch. Окружающая среда. Здоровье. 1971; 22: 220–229. [PubMed: 5540108]
  • Цирла П. Профессиональная патология стекловолокна (итал.). Med. Лав. 1948; 39: 152–157.

  • Claude J., Frentzel-Beyme R. Исследование смертности рабочих, занятых на немецком заводе по производству минеральной ваты. Сканд. J. Work Environ. Здоровье. 1984; 10: 151–157. [PubMed: 6474109]
  • Клод Дж., Френцель-Бейме Р. Смертность рабочих на немецкой фабрике по производству минеральной ваты – второй взгляд с расширенными наблюдениями.Сканд. J. Work Environ. Здоровье. 1986. 12 (1): 53–60. [PubMed: 3798055]
  • Corn, M. (1979) Обзор неорганических искусственных волокон в окружающей среде человека. В: Lemen, R. & Dement, J.M., eds, Dusts and Disease , Park Forest South, IL, Pathotox, стр. 23–36.

  • Корн М., Хаммад Ю.Ю., Уиттиер Д., Коцко Н. Воздействие переносимых по воздуху волокон и твердых частиц на двух предприятиях по производству минеральной ваты. Environ. Res. 1976; 12: 59–74. [PubMed: 954709]
  • Кайперс Дж.M.C., Bleumink E., Nater J.P. Дерматологический аспект производства стекловолокна (нем.). Berufsdermatosen. 1975. 23: 143–154. [PubMed: 1227498]
  • Дэвис Р. (1980) Влияние минеральных волокон на макрофаги. In: Wagner, J.C., ed., Biological Effects of Mineral Fibers ( Научные публикации МАИР № 30) , Лион, Международное агентство по изучению рака, стр. 419–425.

  • Davis, J.M.G. (1976) Патологические аспекты введения стекловолокна в плевральную и брюшную полости крыс и мышей. In: LeVee, WN & Schulte, PA, eds, Professional Exposure to Fibrous Glass (DHEW Publ. No. (NIOSH) 76–151; NTIS Publ. No. PB-258869 ), Cincinnati, OH, National Institute for Безопасность и гигиена труда, стр. 141–149.

  • Дэвис Дж. М.Г. Обзор экспериментальных доказательств канцерогенности искусственных волокон стекловидного тела. Сканд. J. Work Environ. Здоровье. 1986. 12 (1): 12–17. [PubMed: 3541171]
  • Дэвис Дж.М.Г., Гросс П., де Тревиль Р.Т.П. «Железистые тела» у морских свинок.Тонкая структура, полученная экспериментально из минералов, кроме асбеста. Arch. Патол. 1970; 89: 364–373. [PubMed: 5435676]
  • Davis, JMG, Addison, J., Bolton, RE, Donaldson, K., Jones, AD & Wright, A. (1984) Патогенные эффекты волокнистого керамического алюмосиликатного стекла, вводимого крысам путем ингаляции или перитонеальной инъекции. In: Biological Effects of the Man made Mineral Fibers ( Proceedings of a WHO / IARC Conference ), Vol. 2, Копенгаген, Всемирная организация здравоохранения, стр.303–322.

  • Davis, JMG, Bolton, RE, Cowie, H., Donaldson, K., Gormley, LP., Jones, AD, Wright, A. (1985) Сравнения биологических эффектов образцов минерального волокна с использованием in vitro и in vivo аналитические системы . В: Beck, E.G. И Bignon, J., eds, In vitro Эффекты минеральной пыли (серия NATO ASI, Vol. G3 ), Берлин (Запад), Springer, стр. 405–411.

  • Демент, Дж. М. (1973) Предварительные результаты отраслевого исследования отрасли стекловолокна NIOSH ( DHEW ( NIOSH ) Publ.№ IWS.35.3b; NTIS Publ. No. PB-81-224693 ), Цинциннати, Огайо, Национальный институт профессиональной безопасности и здоровья, стр. 1–5.

  • Демент Дж. М. Экологические аспекты производства и использования стекловолокна. Environ. Res. 1975. 9: 295–312. [PubMed: 1157805]
  • Deutsche Forschungsgemeinschaft (Немецкое исследовательское общество) (1986) Максимальные концентрации на рабочем месте и значения биологической толерантности для рабочих материалов 1986 (Германия) (Отчет No.XXII ), Weinheim, Verlag Chemie, стр. 65, 76.

  • Direktoratet for Arbeidstilsynet (Управление инспекции труда) (1981) Административные нормы загрязнения рабочей атмосферы (Норвегия) ( No. 361 ), Осло, стр. 23.

  • Энгхольм Г., фон Шмалензее Г. Бронхит и воздействие искусственных минеральных волокон у некурящих строительных рабочих. Евро. J. respir. Дис. 1982. 63 (118): 73–78. [PubMed: 6284537]
  • Энггольм, Г., Энглунд, А., Hallin, N. & von Schmalensee, G. (1984) Заболеваемость раком органов дыхания у шведских строительных рабочих, подвергшихся воздействию MMMF. In: Biological Effects of the Man made Mineral Fibers ( Proceedings of a WHO 11 ARC Conference ), Vol. 1, Копенгаген, Всемирная организация здравоохранения, стр. 350–366.

  • Энгхольм Г., Энглунд А., Флетчер Т., Халлин Н. Заболеваемость раком органов дыхания у шведских строительных рабочих, подвергшихся воздействию искусственных минеральных волокон и асбеста. Анна.ок. Hyg. 1987. 31: 663–675. [PubMed: 3450233]
  • Энтерлайн П.Е., Хендерсон В. Здоровье вышедших на пенсию рабочих из стекловолокна. Арка, окруж. Здоровье. 1975. 30: 113–116. [PubMed: 1115535]
  • Enterline, P.E. И Марш, Г. (1979) Окружающая среда и смертность рабочих завода стекловолокна. В: Lemen, R. & Dement, J.M., eds, Dusts and Disease , Park Forest South, IL, Pathotox, стр. 221–231.

  • Enterline, P.E. И Марш, Г.М. (1980) Смертность рабочих в промышленности искусственного минерального волокна. In: Wagner, J.C., ed., Biological Effects of Mineral Fibers ( Научные публикации МАИР № 30) , Лион, Международное агентство по изучению рака, стр. 965–972. [PubMed: 7228348]
  • Enterline, P.E. И Марш, Г. (1984) Здоровье работников индустрии MMMF. In: Biological Effects of the Man made Mineral Fibers ( Proceedings of a WHO / IARC Conference ), Vol.1, Копенгаген, Всемирная организация здравоохранения, стр. 311–339.

  • Энтерлайн П.Е., Марш Г.М., Эсмен Н.А. Респираторные заболевания у рабочих, подвергшихся воздействию искусственных минеральных волокон. Являюсь. Преподобный респир. Дис. 1983; 128: 1–7. [PubMed: 6870053]
  • Энтерлайн П.Е., Марш Г.М., Хендерсон В., Каллахан С. Обновление данных о смертности когорты американских рабочих, занятых в производстве минерального волокна. Анна. ок. Hyg. 1987. 31: 625–656. [PubMed: 3450231]
  • Эсмен Н. А., Хаммад Ю. Ю., Корн М., Уиттиер Д., Коцко Н., Халлер М., Кан Р.А. Воздействие искусственных минеральных волокон на сотрудников: производство минеральной ваты. Environ. Res. 1978; 15: 262–277. [PubMed: 352685]
  • Эсмен Н.А., Корн М., Хаммад Ю.Ю., Уиттиер Д., Коцко Н. Резюме измерений воздействия переносимой по воздуху пыли и волокна на сотрудников на шестнадцати предприятиях, производящих искусственные минеральные волокна. Являюсь. инд. Hyg. Доц. J. 1979a; 40: 108–117. [PubMed: 495442]
  • Эсмен Н. А., Корн М., Хаммад Ю. Ю., Уиттиер Д., Коцко Н., Халлер М., Кан Р. А. Воздействие искусственных минеральных волокон на сотрудников: производство керамического волокна.Environ. Res. 1979b; 19: 265–278. [PubMed: 499150]
  • Эсмен Н.А., Уиттиер Д., Кан Р.А., Ли Т.К., Шихан М., Коцко Н. Улавливание волокон из воздушных фильтров. Environ. Res. 1980; 22: 450–465. [PubMed: 7408828]
  • Эсмен Н.А., Шихан М.Дж., Корн М., Энгель М., Коцко Н. Воздействие на сотрудников искусственных стекловолокон: установка изоляционных материалов. Environ. Res. 1982; 28: 386–398. [PubMed: 7117223]
  • Fairhall L.T., Webster S.H., Bennett G.A. Минеральная вата в отношении здоровья.J. ind. Hyg. 1935; 17: 263–275.

  • Фаркас Й. Стекловолоконный дерматит у сотрудников проектного офиса в новостройке. Контактный дерматит. 1983; 9: 79. [PubMed: 6220862]
  • Ферон В.Дж., Шерренберг П.М., Иммель Х.Р., Спит Б.Дж. Легочная реакция хомяков на фиброзное стекло: хронические эффекты повторных интратрахеальных инстилляций с бензо [ a ] пиреном или без него. Канцерогенез. 1985; 6: 1495–1499. [PubMed: 4042277]
  • Fireline (без даты) Технический паспорт продукта: Whiteline Shapes из керамического волокна вакуумного формования , Янгстаун, Огайо.

  • Фишер А.А. 1982 Стекловолокно против дерматита из минеральной ваты Curr. Контакты Новости 29412, 415–416, 422, 427, 513. [PubMed: 6212199]
  • Фишер Б.К., Варкентин Д.Д. Дерматит из стекловолокна. Arch. Дерматол. 1969; 99: 717–719. [PubMed: 5783083]
  • Forget G., Lacroix M.J., Brown R.C., Evans P.H., Sirois P. Ответ перфузируемых альвеолярных макрофагов на стеклянные волокна: влияние продолжительности воздействия и длины волокна. Environ. Res. 1986; 39: 124–135. [PubMed: 3943503]
  • Форстер, Х.(1984) Поведение минеральных волокон в физиологических растворах. В: Биологические эффекты искусственных минеральных волокон (Материалы конференции ВОЗ / МАИР) , Vol. 2, Копенгаген, Всемирная организация здравоохранения, стр. 27–59.

  • Фаулер, Д.П. (1980) Исследования промышленной гигиены воздействия минеральной ваты на рабочем месте ( DHHS (NIOSH) Publ. No. 80–135; NTIS Publ. No. PB-81-222481) , Цинциннати, Огайо, Национальный институт охраны труда и здоровье.

  • Fowler D.P., Balzer J.L., Cooper W.C. Воздействие на изоляционных рабочих стекловолокна в воздухе. Являюсь. инд. Hyg. Доц. J. 1971; 32: 86–91. [PubMed: 5572573]
  • Гантнер Б.А. Опасность для органов дыхания при снятии изоляции из керамического волокна с высокотемпературных промышленных печей. Являюсь. инд. Hyg. Доц. J. 1986; 47: 530–534. [PubMed: 3020958]
  • Гарднер М.Дж., Винтер П.Д., Паннетт Б., Симпсон М.Дж.К., Гамильтон К., Ачесон Е.Д. Исследование смертности рабочих в промышленности по производству искусственного минерального волокна в Соединенном Королевстве.Сканд. J. Work Environ. Здоровье. 1986. 12 (1): 85–93. [PubMed: 3798059]
  • Goldstein B., Rendall R.E.G., Webster I. Сравнение эффектов воздействия на павианов пыли крокидолита и стекловолокна. Environ. Res. 1983; 32: 344–359. [PubMed: 6315390]
  • Голдштейн, Б., Вебстер, И. и Рендалл, Р.Е.Г. (1984) Изменения, вызванные вдыханием стекловолокна у нечеловеческих приматов. В: Биологические эффекты искусственных минеральных волокон (Материалы конференции ВОЗ / МАИР) , Vol.2, Копенгаген, Всемирная организация здравоохранения, стр. 273–285.

  • Гриффитс Дж. (1986) Синтетические минеральные волокна – от камней к богатству. Ind. Miner., Сентябрь , стр. 20–43.

  • Гримм Х.-Г. Воздействие искусственных минеральных волокон на рабочем месте и их влияние на здоровье (нем.). Zbl. Arbeitsmed. 1983; 33: 156–162. [PubMed: 6349178]
  • Гросс П., Вестрик М.Л., Шренк Х.Х., Макнерни Дж. М. Воздействие пыли синтетического керамического волокна на легкие крыс.Arch. инд. Здоровье. 1956; 13: 161–166. [PubMed: 13282516]
  • Гросс П., Кашак М., Толкер Э.Б., Бабяк М.А., де Тревиль Р.Т.П. Легочная реакция на высокие концентрации стекловолоконной пыли. Предварительный отчет. Arch. Окружающая среда. Здоровье. 1970а; 20: 696–704. [PubMed: 5443343]
  • Гросс П., де Тревиль Р.Т.П., Кралли Л.Дж., Гранквист В.Т., Пундсак Ф.Л. Легочная реакция на волокнистую пыль разного состава. Являюсь. инд. Hyg. Доц. J. 1970b; 31: 125–132. [PubMed: 4316348]
  • Гросс П., Tuma J., de Treville R.T.P. Легкие рабочих подвергаются воздействию стекловолокна. Изучение их патологических изменений и запыленности. Arch. Окружающая среда. Здоровье. 1971; 23: 67–76. [PubMed: 4103314]
  • Hallin, N. (1981) Пыль минеральной ваты на строительных площадках (отчет 1981-09-01 ), Стокгольм, Бюггхальсан [Организация строительной индустрии по вопросам рабочей среды, безопасности и здоровья]

  • Хаммад Ю., Дием Дж., Крейгхед Дж., Вейл Х. 1982 Отложение вдыхаемых искусственных минеральных волокон в легких крыс.Анна. ок. Hyg. 26179–187. [PubMed: 7181264]
  • Харбен П. В. и Бейтс Р. Л. (1984) Геология неметаллических соединений , Нью-Йорк, Бюллетень металлов, стр. 50–51, 90–91, 260–261.

  • Харди К.Дж. Легочные эффекты стекловолокна у человека и животных. Arh. Hig. Рада. Токсикол. 1979; 30: 861–870.

  • Глава I.W.H., Wagg R.M. Обследование профессионального воздействия искусственной пыли минерального волокна на рабочем месте. Анна. ок. Hyg. 1980; 23: 235–258. [PubMed: 7447247]
  • Управление здравоохранения и безопасности (1987) Пределы воздействия на рабочем месте, 1987 (Руководство EH 40/87 ), Лондон, Канцелярия Ее Величества, с.25.

  • Heisel E.B., Hunt F.E. Дальнейшие исследования кожных реакций на стекловолокно. Arch. Окружающая среда. Здоровье. 1968; 17: 705–711. [PubMed: 5687266]
  • Herring C., Galt J.K. Упругие и пластические свойства очень мелких металлических образцов. Phys. Ред. 1952; 85: 1060–1061.

  • Хестерберг Т. В., Барретт Дж. К. Зависимость индуцированной асбестом и минеральной пылью трансформации клеток млекопитающих в культуре от размера волокна. Cancer Res. 1984; 44: 2170–2180. [PubMed: 6324999]
  • Хилл Дж.W. Искусственные минеральные волокна. J. Soc. ок. Med. 1978; 28: 134–141. [PubMed: 713506]
  • Hill, J.W., Rossiter, C.E. & Foden, D.W. (1984) Пилотное исследование респираторной заболеваемости рабочих завода MMMF в Соединенном Королевстве. В: Биологические эффекты искусственных минеральных волокон (Материалы конференции ВОЗ / МАИР) , Vol. 1, Копенгаген, Всемирная организация здравоохранения, стр. 413–426.

  • Хёр Д. Исследования с помощью просвечивающей электронной микроскопии волокнистых частиц в окружающем воздухе (нем.). Staub. Рейнхальт. Люфт. 1985. 45: 171–174.

  • Холмс А., Морган А., Дэвисон В. Формирование псевдоасбестовых тел на стеклянных волокнах в легком хомяка. Анна. ок. Hyg. 1983; 27: 301–313. [PubMed: 6638764]
  • Хоуи Р.М., Аддисон Дж., Черри Дж., Робертсон А., Доджсон Дж. Высвобождение волокон из фильтрующих респираторов с маской. Анна. ок. Hyg. 1986. 30: 131–133. [PubMed: 3013067]
  • Национальный институт исследований и безопасности (1986) Предельные значения концентраций опасных веществ в воздухе рабочих мест (фр.) (ND 1609-125-86) , Париж, стр. 582.

  • Международное бюро труда (1980) Пределы воздействия на рабочем месте токсичных веществ, переносимых по воздуху, , 2-е (ред.) Изд. (Серия статей о безопасности и гигиене труда № 37) , Женева, стр. 243–270.

  • Johnson D.L., Healey J.J., Ayer H.E., Lynch J.R. Воздействие волокон при производстве стекловолокна. Являюсь. инд. Hyg. Доц. J. 1969; 30: 545–550. [PubMed: 5369267]
  • Джонсон, Н.Ф., Гриффитс, Д.М. и Хилл, Р.Дж. (1984) Распределение размеров после длительного вдыхания MMMF. In: Biological Effects of the Man made Mineral Fibers ( Proceedings of a WHO / IARC Conference ), Vol. 2, Копенгаген, Всемирная организация здравоохранения, стр. 102–125.

  • Кауффер Э., Виньерон Дж. К. Эпидемиологическое обследование на двух заводах по производству искусственного минерального волокна. I. Измерение запыленности (фр.). Arch. Mal. проф. 1987. 48: 1–6.

  • Клингхольц, Р.& Steinkopf, B. (1984) Реакции MMMF в физиологической модельной жидкости и в воде. В: Биологические эффекты искусственных минеральных волокон (Материалы конференции ВОЗ / МАИР) , Vol. 2 , Копенгаген, Всемирная организация здравоохранения, стр. 60–86.

  • Konzen, J.L. (1980) Искусственные стекловидные волокна и здоровье. In: Proceedings of the National Workshop on Asbestos of Asbestos, Arlington, VA, 1980 (EPA 560 / 3-80-001) , Washington DC, Агентство по охране окружающей среды США, стр.329–342.

  • Krantz, S. & Tillman, C. (1983) Измерение и идентификация пыли минеральной ваты (частичный отчет 10 и 11), анализ пыли и сканирующая электронная микроскопия (S wed.) (Undersökningsrapport 1983: 4 и 1983: 9) , Solna, Arbetarskyddsstyrelsen.

  • Ламан Д., Теодор Дж., Робин Э.Д. Регулирование внутрицитоплазматического pH и «кажущегося» внутриклеточного pH в альвеолярных макрофагах. Exp. Lung Res. 1981; 2: 141–153. [PubMed: 6791912]
  • Ле Буффан, Л., Henin, J.P., Martin, J.C, Normand, C, Tichoux, G. & Trolard, F. (1984) Распределение вдыхаемого MMMF в легком крысы долгосрочные эффекты. В: Биологические эффекты искусственных минеральных волокон (Материалы конференции ВОЗ / МАИР) , Vol. 2, Копенгаген, Всемирная организация здравоохранения, стр. 143–168.

  • Le Bouffant L., Daniel H., Henin J.P., Martin J.C, Normand C, Tichoux G., Trolard F. Экспериментальное исследование долгосрочного воздействия вдыхаемого MMMF на легкие крыс.Анна. ок. Hyg. 1987. 31: 765–790. [PubMed: 3450235]
  • Лехнер В., Хартманн А. А. Гранулема инородного тела, индуцированная стекловолокном (нем.). Hautarzt. 1979; 30: 100–101. [PubMed: 370066]
  • Ли, Дж. А. (1983) GRC – материал. In: Fordyce, M.W. 8c. Wodehouse, R.G., eds, GRC and Buildings: A Design Guide for the Architect and Engineer for Use of Glassfibre Arged Cement in Construction , London, Butterworths, pp. 6–27.

  • Ли К.П. и Рейнхардт, К.Ф. (1984) Биологические исследования неорганических волокон титаната калия. In: Biological Effects of the Man made Mineral Fibers (Proceedings of a WHO / IARC Conference ), Vol. 2, Копенгаген, Всемирная организация здравоохранения, стр. 323–333.

  • Ли К.П., Баррас С.Э., Гриффит Ф.Д., Вариц Р.С. Легочная реакция на стекловолокно при вдыхании. Лаборатория. Инвестировать. 1979; 40: 123–133. [PubMed: 372672]
  • Ли К.П., Баррас С.Е., Гриффит Ф.Д., Вариц Р.С., Лапин С.А. Сравнительная реакция легких на вдыхание неорганических волокон с асбестом и стекловолокном. Environ. Res. 1981; 24: 167–191. [PubMed: 6260477]
  • Leineweber, J.P. (1984) Растворимость волокон in vitro, и in vivo. В: Биологические эффекты искусственных минеральных волокон (Материалы конференции ВОЗ / МАИР) , Vol. 2, Копенгаген, Всемирная организация здравоохранения, стр. 87–101.

  • Левитт А.П. (1970) Вводный обзор. In: Levitt, A.P., ed., Whisker Technology , New York, Wiley-Interscience, pp. 1–13.

  • Linnainmaa, K., Gerwin, B., Gabrielson, E., LaVeck, M., Lechner, J.F., Jantunen, K. & Harris, C.C. (1986) Хромосомные изменения в нормальных культурах мезотелиальных клеток человека после обработки асбестовыми волокнами in vitro (аннотация). В: Протоколы 5-го заседания Северного общества мутагенов окружающей среды: новые подходы в генетической токсикологии, Хейнявеси, Финляндия, 2–5 марта 1986 г. , Хельсинки, Институт гигиены труда, с.9.

  • Липпманн М., Шлезингер Р. Б. Межвидовые сравнения отложения частиц и мукоцилиарного клиренса в трахеобронхиальных дыхательных путях. J. Toxicol, Environment. Здоровье. 1984; 13: 441–470. [PubMed: 6376822]
  • Loewenstein, K.L. (1983) Технология производства непрерывных стекловолокон , 2-е изд. изд., Амстердам, Elsevier.

  • Longley E.O., Jones R.C. Стекловолоконный конъюнктивит и кератит. Arch. Окружающая среда. Здоровье. 1966; 13: 790–793.[PubMed: 5924066]
  • Lucas, J. (1976) Кожные и глазные эффекты, возникающие в результате воздействия на рабочего стекловолокна. In: LeVee, WN & Schulte, PA, eds, Professional Exposure to Fibrous Glass (DHEW Publ. No. ( NIOSH ) 76–151; NTIS Publ. No. PB-258869) , Cincinnati, OH , Национальный институт охраны труда и здоровья, стр. 211–219.

  • Maggioni A., Meregalli G., Sala C., Riva M. Респираторная и кожная патология при производстве стекловолокна (Итал.). Med. Лав. 1980; 3: 216–227. [PubMed: 6450322]
  • Malmberg, P., Hedenstrom, H., Kolmodin-Hedman, B. & Krantz, S. (1984) Функция легких у рабочих завода по производству минерального волокна. В: Биологические эффекты искусственных минеральных волокон (Материалы конференции ВОЗ / МАИР ) , Vol. 1, Копенгаген, Всемирная организация здравоохранения, стр. 427–435.

  • Мансманн, М., Клингхольц, Р., Хакенберг, П., Видеманн, К., Шмидт, К.А.Ф., Голден, Д.& Overhoff, D. (1976) Волокна синтетические и неорганические (Германия). В: Энциклопедия прикладной химии Ульмана (нем.), Vol. 11, Weinheim, Verlag Chemie, стр. 359–374.

  • Манвилл, компании CertainTeed и Owens-Corning Fiberglas (1962–1987) Измерение воздействия на рабочем месте , Денвер, Колорадо, Вэлли Фордж, Пенсильвания и Толедо, Огайо.

  • Marsh, J.P., Jean, L. & Mossman, B.T. (1985) Асбест и стекловолокно индуцировали биосинтез полиаминов в трахеобронхиальных эпителиальных клетках in vitro.В: Beck, E.G. И Bignon, J., ред., Эффекты минеральной пыли in vitro (серия NATO ASI, Vol. G3) , Берлин (Запад), Springer, стр. 305–311.

  • McConnell, E.E., Wagner, J.C., Skidmore, J.W. И Мур, Дж. (1984) Сравнительное исследование фиброгенных и канцерогенных эффектов канадского асбеста хризотил B UICC и стеклянного микроволокна ( JM 100 ). In: Biological Effects of the Man made Mineral Fibers ( Proceedings of a WHO / IARC Conference ), Vol.2, Копенгаген, Всемирная организация здравоохранения, стр. 234–252.

  • McCreight, L.R., Rauch, H.W., Sr & Sutton, W.H. (1965) Керамические и графитовые волокна и усы. Обзор технологии , Нью-Йорк, Academic Press, стр. 48–55.

  • McCrone, W.C. (1980) Атлас частиц асбеста , Анн-Арбор, Мичиган, Энн-Арбор Сайенс, стр. 55, 78–80, 91.

  • Центр 3M (без даты) Технический паспорт продукта: Nextel (R) Продукты из керамического волокна для высокотемпературных применений , Сент-Пол, Миннесота, Отдел керамических материалов.

  • Миддлтон А.П. Видимость тонких волокон асбеста при рутинном электронно-микроскопическом анализе. Анна. ок. Hyg. 1982; 25: 53–62. [PubMed: 7092017]
  • Mikalsen, S.-O., Rivedal, E. & Sanner, T. (1987) Сравнение способности стекловолокна и асбеста вызывать морфологическую трансформацию клеток эмбриона сирийского золотого хомячка ( Реферат № М77). В: Протоколы IX заседания Европейской ассоциации исследований рака, 31 мая 3 июня 1987 г., Хельсинки, Финляндия , Монтебелло (Норвегия), Институт исследования рака, стр.27.

  • Milby T.H., Wolf C.R. Раздражение дыхательных путей от вдыхания волокнистого стекла. Ж. ок. Med. 1969; 11: 409–410. [PubMed: 5795599]
  • Miller E.T. Практический метод сравнения изоляций из минеральной ваты в судебно-медицинской лаборатории. J. Assoc. выключенный. анальный. Chem. 1975. 58: 865–870.

  • Миллер К. (1980) Эффекты in vivo стеклянных волокон на характеристики мембран альвеолярных макрофагов. In: Wagner, J.C., ed., Biological Effects of Mineral Fibers ( Научные публикации IARC No.30 ), Лион, Международное агентство по изучению рака, стр. 459–465. [PubMed: 7239667]
  • Miller, W.C. (1982) Огнеупорные волокна. In: Grayson, M., Mark, H.F., Othmer, D.F., Overberger, C.G. & Сиборг, Г.Т., ред., Кирк-Отмер Энциклопедия химической технологии , 3-е изд., Т. 20, Нью-Йорк, John Wiley & Sons, стр. 65–77.

  • Mohr, J.G. И Роу, У. (1978) Стекловолокно , Нью-Йорк, Ван Ностранд Рейнхольд.

  • Моншо Г., Bignon J., Jaurand M.C., Lafuma J., Sebastien P., Masse R., Hirsch A., Goni J. Мезотелиомы у крыс после инокуляции выщелоченным кислотой хризотиловым асбестом и другими минеральными волокнами. Канцерогенез. 1981; 2: 229–236. [PubMed: 6268324]
  • Моншо Г., Биньон Дж., Хирш А., Себастьян П. Транслокация минеральных волокон через дыхательную систему после инъекции в плевральную полость крыс. Анна. ок. Hyg. 1982; 26: 309–318. [PubMed: 6295242]
  • Morgan, A. (1979) Размеры волокон: их значение в осаждении и удалении вдыхаемой волокнистой пыли. В: Lemen, R. & Dement, J.M., eds, Dusts and Disease , Park Forest South, IL, Pathotox, стр. 87–96.

  • Морган А., Холмс А. Концентрация и характеристики волокон амфибола в легких рабочих, подвергшихся воздействию крокидолита на британских фабриках по производству противогазов и в других местах во время Второй мировой войны. Br. J. ind. Med. 1982; 39: 62–69. [Бесплатная статья PMC: PMC1008929] [PubMed: 7066222]
  • Morgan, A. & Holmes, A. (1984a) Отложение MMMF в дыхательных путях крысы, их последующий клиренс, растворимость in vivo и белковое покрытие. В: Биологические эффекты искусственных минеральных волокон (Материалы конференции ВОЗ / МАИР) , Vol. 2, Копенгаген, Всемирная организация здравоохранения, стр. 1–17.

  • Морган А., Холмс А. Растворимость волокон минеральной ваты in vivo и образование псевдоасбестовых тел. Анна. ок. Hyg. 1984b; 28: 307–314. [PubMed: 6508081]
  • Морган А., Холмс А. Загадочное тело из асбеста: его образование и значение при заболеваниях, связанных с асбестом. Environ. Res. 1985. 38: 283–292.[PubMed: 4065077]
  • Морган А., Холмс А. Растворимость асбеста и искусственных минеральных волокон in vitro, и in vivo: ее значение при заболеваниях легких. Environ. Res. 1986; 39: 475–484. [PubMed: 3007107]
  • Морган А., Эванс Дж. К., Эванс Р. Дж., Хоунам Р. Ф., Холмс А., Дойл С. Г. Исследования отложения вдыхаемого волокнистого материала в дыхательных путях крысы и его последующего удаления с использованием методов радиоактивных следов. II. Нанесение стандартных эталонных образцов асбеста UICC.Environ. Res. 1975. 10: 196–207. [PubMed: 1193032]
  • Морган, А., Эванс, Дж. К. и Холмс, А. (1977) Отложение и клиренс вдыхаемых волокнистых минералов у крыс. Исследования с использованием радиоактивных индикаторов. In: Walton, W.H., ed., Inhaled Particles IV , Part 1, Oxford, Pergamon Press, стр. 259–274. [PubMed: 1236162]
  • Морган А., Блэк А., Эванс Н., Холмс А., Притчард Дж. Н. Отложение стеклянных волокон в дыхательных путях крысы. Анна.ок. Hyg. 1980; 23: 353–366. [PubMed: 7258930]
  • Морган А., Холмс А., Дэвисон В. Удаление заданных стеклянных волокон из легких крысы и их растворимость in vivo . Анна. ок. Hyg. 1982; 25: 317–331. [PubMed: 7181257]
  • Морган Р.В., Каплан С.Д., Братсберг Дж. А. Исследование смертности рабочих производства стекловолокна. Arch. Окружающая среда. Здоровье. 1981; 36: 179–183. [PubMed: 7271323]
  • Морган Р.В., Каплан С.Д., Братсберг Дж. А. Ответить на письмо в редакцию. Arch.Окружающая среда. Здоровье. 1982; 37: 123–124.

  • Morgan, R.W., Kaplan, S.D. И Братсберг, Дж. (1984) Смертность рабочих на производстве стекловолокна. In: Biological Effects of the Man made Mineral Fibers ( Proceedings of a WHO / IARC Conference ), Vol. 1, Копенгаген, Всемирная организация здравоохранения, стр. 340–346.

  • Мориссе Ю., Пан А., Жегье З. Влияние стирола и стекловолокна на небольшие дыхательные пути мышей. J. Toxicol. Окружающая среда. Здоровье. 1979; 5: 943–956.[PubMed: 513157]
  • Morton W.E. Письмо редактору. Arch. Окружающая среда. Здоровье. 1982; 37: 122–123.

  • Moulin J.J., Mur J.M., Wild P., Perreaux J.P., Pham Q.T. Рак полости рта и гортани у рабочих на производстве искусственного минерального волокна. Сканд. J. Work Environ. Здоровье. 1986; 12: 27–31. [PubMed: 3961439]
  • Мюле Х., Потт Ф., Беллманн Б., Такенака С., Зием У. Эксперименты по вдыханию и инъекции на крысах для проверки канцерогенности MMMF. Анна. ок. Hyg.1987. 31: 755–764. [PubMed: 2835926]
  • Müller C, Werner U., Wagner C.-P. 1980 Влияние стекловолокна на верхние дыхательные пути (нем.) Dtsch. Gesundh. Wes., 351777–1780.

  • Мунго А. Патология работы при переработке слоистых смесей, армированных стекловолокном (итал.). Folia med. 1960; 43: 962–970.

  • Накатани Ю. Биологические эффекты минеральных волокон на лимфоциты in vitro (Jpn.). Jpn. J. ind. Здоровье. 1983; 25: 375–386.[PubMed: 6366291]
  • Наср А.Н.М., Дитчек Т., Шолтенс П.А. Распространенность рентгенологических аномалий в груди у рабочих из стекловолокна. Ж. ок. Med. 1971; 13: 371–376. [PubMed: 5564764]
  • Национальный институт профессиональной безопасности и здоровья (1977a) Критерии рекомендуемого стандарта … Воздействие стекловолокна на рабочем месте ( DHEW ( NIOSH ) Publ. No. 77-152 ; NTIS Publ No. PB-274195 ), Цинциннати, Огайо.

  • Национальный институт безопасности и гигиены труда (1977b) Руководство по аналитическим методам , 2-е изд., Цинциннати, Огайо.

  • Национальный институт профессиональной безопасности и здоровья (1980) Отчет о технической помощи TA 80-80 , Цинциннати, Огайо.

  • Национальный институт безопасности и гигиены труда (1984) Руководство по аналитическим методам NIOSH , 3-е изд., Цинциннати, Огайо.

  • Ньюболл Х.Х., Брахим С.А. Респираторная реакция на воздействие домашнего стекловолокна. Environ. Res. 1976; 12: 201–207. [PubMed: 986939]
  • Олсен Дж.Х., Йенсен О. М. Заболеваемость раком среди сотрудников одного завода по производству минеральной ваты в Дании. Сканд. J. Work Environ. Здоровье. 1984; 10: 17–24. [PubMed: 6547541]
  • Olsen J.H., Jensen O.M., Kampstrup O. Влияние курения и места жительства на риск рака легких у рабочих одного завода по производству минеральной ваты в Дании. Сканд. J. Work Environ. Здоровье. 1986. 12 (1): 48–52. [PubMed: 3798053]
  • Oshimura M., Hesterberg T.W., Tsutsui T., Barrett C.J. Корреляция цитогенетических эффектов, индуцированных асбестом, с клеточной трансформацией клеток эмбриона сирийского хомячка в культуре.Cancer Res. 1984; 44: 5017–5022. [PubMed: 6091868]
  • Оттери, Дж., Черри, Дж. У., Доджсон, Дж. И Харрисон, Дж. Э. (1984) Сводный отчет об условиях окружающей среды на 13 европейских заводах MMMF. In: Biological Effects of the Man made Mineral Fibers ( Proceedings of a WHO / IARC Conference ), Vol. 1, Копенгаген, Всемирная организация здравоохранения, стр. 83–117.

  • Owens-Corning Fiberglas Corp. (1987) Отчет о стекле, минералах и керамических волокнах , Толедо, Огайо.

  • Паррат, Нью-Джерси (1972) Технология материалов, армированных волокном, , Лондон, Ван Ностранд Рейнхольд, стр. 68–99.

  • Pellerat J. Дерматоз из стекловаты (фр.). Анна. Дерматол. Сифил. 1947; 8: 25–31. [PubMed: 20247727]
  • Пеллерат Дж., Кондерт Дж. Дерматоз из стекловаты (фр.). Arch. Mal. проф. 1946; 7: 23–27. [PubMed: 20988529]
  • Pickrell J. A., Hill J.O., Carpenter R.L., Hahn F.F., Rebar A.H. Реакция in vitro и in vivo после воздействия искусственных минеральных и асбестовых изоляционных волокон.Являюсь. инд. Hyg. Доц. J. 1983; 44: 557–561. [PubMed: 6312789]
  • Пиготт Г.Х., Измаил Дж. Стратегия разработки и оценки «безопасного» неорганического волокна. Анна. ок. Hyg. 1982; 26: 371–380. [PubMed: 7181277]
  • Poeschel E., Konig R., Heide-Weise H. Сравнение исследованного распределения диаметров искусственных минеральных волокон в старых и современных изоляционных материалах из идентичной области применения (Германия). Штауб Рейнхальт. Люфт. 1982; 42: 282–287.

  • Поссик П.А., Геллин Г.А., Кей М.М. Стекловолоконный дерматит. Являюсь. инд. Hyg. Доц. J. 1970; 31: 12–15. [PubMed: 4245197]
  • Потт Ф., Фридрихс К.-Х., Хут Ф. Результаты экспериментов на животных по канцерогенному действию волокнистой пыли и их интерпретация в отношении канцерогенеза у людей (нем.). Zbl. Бакт. Hyg., I. Abt. Ориг. Б. 1976; 162: 467–505. [PubMed: 185852]
  • Pott, F., Ziem, U. & Mohr, U. (1984a) Карциномы и мезотелиомы легких после интратрахеальной инстилляции стекловолокна и асбеста. In: Proceedings of VIth International Pneumoconiosis Conference, Bochum, Federal Republic of Germany, 20–23 сентября 1983 г. , Vol. 2, Женева, Международное бюро труда, стр. 746–756.

  • Pott, F., Schlipköter, H.W., Ziem, U., Spurny, K. & Huth, F. (1984b) Новые результаты экспериментов по имплантации минеральных волокон. В: Биологические эффекты искусственных минеральных волокон (Материалы конференции ВОЗ / МАИР) , Vol. 2, Копенгаген, Всемирная организация здравоохранения, стр.286–302.

  • Потт Ф., Зием У., Райффер Ф.-Дж., Хут Ф., Эрнст Х., Мор У. Исследования канцерогенности волокон, соединений металлов и некоторых других видов пыли у крыс. Exp. Патол. 1987. 32: 129–152. [PubMed: 3436395]
  • PPG Industries (1984) PPG Fiber Glass Yarn Products / Handbook , Pittsburgh, PA.

  • Pundsack, F.L. (1976) Стекловолокно производство, использование и физические свойства. В: LeVee, W.N. & Schulte, P.A., eds, Воздействие стекловолокна на рабочем месте ( DHEW ( NIOSH ) Publ. No. 76–151; NTIS Publ. No. PB-258869 ), Цинциннати, Огайо, Национальный институт охраны труда и здоровье, стр. 11–18.

  • Raabe, O.G., Yeh, H.C, Newton, G.J., Phalen, R.F. И Веласкес, Д. (1977) Осаждение вдыхаемых монодисперсных аэрозолей у мелких грызунов. In: Walton, W.H., ed., Inhaled Particles IV , Part 1, Oxford, Pergamon Press, стр.3–21.

  • Ребенфельд, Л. (1983) Текстиль. In: Grayson, M, Mark, H.F., Othmer, D.F., Overberger, C.G. & Сиборг, Г.Т., ред., Кирк-Отмер Энциклопедия химической технологии , 3-е изд., Т. 22, Нью-Йорк, John Wiley & Sons, стр. 762–768.

  • van Rhijn, A. A. (1984) Влияние высокотемпературной керамики на промышленный рост в сообществе. In: Krockel, H., Merz, M. & van der Biest, O., eds, Ceramics in Advanced Energy Technologies , Dordrecht, D.Рейдель, стр. 4–9.

  • Ричардс Р.Дж., Моррис Т.Г. Производство коллагена и мукополисахаридов в растущих фибробластах легких, подвергшихся воздействию хризотилового асбеста. Life Sci. 1973; 12: 441–451.

  • Риндель А., Бах Э., Бреум Н.О., Хьюгод К., Шнайдер Т. Корреляция воздействия на здоровье с качеством воздуха в помещении в детских садах. Int. Arch. ок. Окружающая среда. Здоровье. 1987. 59: 363–373. [PubMed: 3610336]
  • Ririe, D.G., Hesterberg, T.W., Barrett, J.C. & Nettesheim, P. (1985) Токсичность асбеста и стекловолокна для эпителиальных клеток трахеи крысы в ​​культуре. В: Beck, E.G. И Биньон, Дж., Ред., Эффекты минеральной пыли in vitro (серия НАТО ASI, том G3) , Берлин (Запад), Springer, стр. 177–184.

  • Робинсон К.Ф., Демент Дж. М., Несс Г. О., Ваксвейлер Р.Дж. Смертность рабочих производства горной и шлаковой минеральной ваты: эпидемиологическое и экологическое исследование. Br. J. ind. Med. 1982; 39: 45–53. [Бесплатная статья PMC: PMC1008926] [PubMed: 6279138]
  • Roche L. Опасность для легких при производстве стекловолокна (фр.). Arch.Mal. проф. 1947; 7: 27–28. [PubMed: 20988530]
  • Руд А.П., Стритер Р.Р. Распределение переносимых по воздуху сверхтонких искусственных минеральных волокон по размерам, определенное с помощью просвечивающей электронной микроскопии. Являюсь. инд. Hyg. Доц. J. 1985; 46: 257–261. [PubMed: 4003277]
  • Rowhani F., Hammad Y.Y. Долевое отложение волокон у крысы. Являюсь. инд. Hyg. Доц. J. 1984; 45: 436–439. [PubMed: 6235733]
  • Сараччи Р. Искусственные минеральные волокна и здоровье. Ответы на вопросы и без ответов. Сканд. J. Work Environ.Здоровье. 1985; 11: 215–222. [PubMed: 4035324]
  • Сараччи Р. Десять лет эпидемиологических исследований искусственных минеральных волокон и здоровья. Сканд. J. Work Environ. Здоровье. 1986. 12 (1): 5–11. [PubMed: 3798054]
  • Сарачи, Р., Симонато, Л., Ачесон, Э. Д., Андерсен, А., Бертацци, П. А., Клод, Дж., Чарне, Н., Эстев, Дж., Френцель-Бейм, Р.Р., Гарднер, М.Дж., Йенсен, О.М., Маазинг, Р., Олсен, Дж. Х., Теппо, ЛХИ, Вестерхолм, П. и Зоккетти, К. (1984a) Исследование IARC смертности и заболеваемости раком рабочих, занятых на производстве MMMF. In: Biological Effects of the Man made Mineral Fibers ( Proceedings of a WHO / IARC Conference ), Vol. 1, Копенгаген, Всемирная организация здравоохранения, стр. 279–310.

  • Сараччи Р., Симонато Л., Ачесон Э.Д., Андерсен А., Бертацци П.А., Клод Дж., Чарне Н., Эстев Дж., Френцель-Бейм Р. Р., Гарднер М. Дж., Дженсен О. М., Маазинг Р., Олсен Дж. Х. , Teppo LHI, Westerholm P., Zocchetti C. Смертность и заболеваемость раком рабочих в промышленности, производящей искусственное стекловолокно: международное исследование на 13 европейских заводах.Br. J. ind. Med. 1984b; 41: 425–436. [Бесплатная статья PMC: PMC1009365] [PubMed: 6498106]
  • Schepers G.W.H. Биологическое действие стекловаты. Arch. инд. Здоровье. 1955; 12: 280–287. [PubMed: 13248254]
  • Schepers G.W.H. Патогенность стеклопластиков. Экспериментальные исследования с помощью инъекций или наружных аппликаций. Arch. Окружающая среда. Здоровье. 1961; 2: 20–34. [PubMed: 13747492]
  • Schepers G.W.H., Delahant A.B. Экспериментальное исследование воздействия стекловаты на легкие животных.Arch. инд. Здоровье. 1955; 12: 276–279. [PubMed: 13248253]
  • Schepers G.W.H., Durkan T.M., Delahant A.B., Redlin A.J., Schmidt J.G., Creedon F.T., Jacobson J.W., Bailey D.A. Биологическое действие стеклопластиковой пыли. Экспериментальное ингаляционное исследование пыли, образующейся при производстве деталей кузова автомобиля из коммерческого продукта с наполнителем из карбоната кальция. Arch. инд. Здоровье. 1958; 18: 34–57.

  • Schneider, C.J., Jr & Pifer, A.J. (1974) Практика работы и технический контроль для контроля профессионального воздействия на стекловолокно.Заключительный отчет , Буффало, Нью-Йорк, Calspan Corporation.

  • Шнайдер Т. Воздействие искусственных минеральных волокон в пользовательских отраслях в Скандинавии. Анна. ок. Hyg. 1979а; 22: 153–162. [PubMed: 533082]
  • Шнайдер Т. Влияние правил подсчета на количество и распределение волокон по размерам. Анна. ок. Hyg. 1979b; 21: 341–350. [PubMed: 757842]
  • Schneider, T. (1984) Обзор опросов в отраслях, в которых используется MMMF. In: Biological Effects of the Man made Mineral Fibers (Proceedings of a WHO / IARC Conference) , Copenhagen World Health Organization, pp.178–190.

  • Шнайдер Т. Искусственные минеральные волокна и другие волокна в воздухе и в осажденной пыли. Environ. внутр. 1986; 12: 61–65.

  • Schneider T., Hoist E. Распределение размеров искусственного минерального волокна с использованием методов подсчета без смещения и смещения длины волокна, а также двумерного логнормального распределения. J. Aerosol Sci. 1983; 14: 139–146.

  • Schneider, T. & Smith, E.D. (1984) Характеристики пылевых облаков, образовавшихся из старых продуктов MMMF.Часть II: Экспериментальный подход. В: Биологические эффекты искусственных минеральных волокон (Материалы конференции ВОЗ / МАИР) , Копенгаген, Всемирная организация здравоохранения, стр. 31–43.

  • Шнайдер Т., Стокгольм Дж. Накопление волокон в глазах рабочих, работающих с изделиями из искусственного минерального волокна. Сканд. J. Work Environ. Здоровье. 1981; 7: 271–276. [PubMed: 7347912]
  • Шнайдер Т., Хист Э., Скотт Дж. Распределение размеров переносимых по воздуху волокон, полученных из искусственных минеральных волокон.Анна. ок. Hyg. 1983; 27: 157–171. [PubMed: 6614727]
  • Шнайдер Т., Скотт Дж., Ниссен П. Размер фракций искусственных минеральных волокон и их взаимосвязь. Сканд. J. Work Environ. Здоровье. 1985. 11: 117–122. [PubMed: 4001900]
  • Шольце Дж., Конрад Р. Исследование химической стойкости кремнеземных волокон in vitro. Анна. ок. Hyg. 1987. 31: 683–692.

  • Шварц Л., Ботвиник И. Опасности для кожи при производстве стекловаты и ниток. Ind. Med. 1943; 12: 142–144.

  • Сетхи С., Бек Э.Г., Манойлович Н. Индукция поликариоцитов различными волокнистыми порошками и их ингибирование лекарственными средствами у крыс. Анна. ок. Hyg. 1975. 18: 173–177. [PubMed: 11
  • ]
  • Шеннон Х.С., Джеймисон Э., Джулиан Дж. А., Мьюр Д. К. Ф., Уолш К. Опыт смертности рабочих из стекловолокна Онтарио – расширенное наблюдение. Анна. ок. Hyg. 1987. 31: 657–662. [PubMed: 3450232]
  • Симонато Л., Флетчер А.С., Черри Дж., Андерсен А., Бертацци П.А., Чарней Н., Claude J., Dodgson J., Esteve J., Frentzel-Beyme R., Gardner MJ, Jensen OM, Olsen JH, Saracci R., Teppo L., Winkelmann R., Westerholm P., Winter PD, Zocchetti C. 1986a Европейское историческое когортное исследование искусственного минерального волокна: расширение последующего исследования Scand. J. Work Environ. Здоровье 12 (1): 34–47. (исправление в Scand. J. Work Environ. Health, 13 , 192) [PubMed: 3798052]
  • Simonato L., Fletcher AC, Cherrie J., Andersen A., Bertazzi PA, Charnay N., Claude J. , Доджсон Дж., Esteve J., Frentzel-Beyme R., Gardner MJ, Jensen O., Olsen J., Saracci R., Teppo L., Westerholm P., Winkelmann R., Winter PD, Zocchetti C. когорта рабочих по производству искусственного минерального волокна в семи европейских странах. Cancer Lett. 1986b; 30: 189–200. [PubMed: 3955541]
  • Simonato L., Fletcher AC, Cherrie J., Andersen A., Bertazzi P., Charnay N., Claude J., Dodgson J., Esteve J., Frentzel-Beyme R., Gardner MJ , Дженсен О., Олсен Дж., Теппо Л., Winkelmann R., Westerholm P., Winter P.D., Zocchetti C., Saracci R. Историческое когортное исследование рабочих MMMF в семи европейских странах, проведенное Международным агентством по изучению рака. Анна. ок. Hyg. 1987. 31: 603–623. [PubMed: 3450230]
  • Синкок А. М. (1977) Предварительные исследования клеточных эффектов асбеста и мелкой стеклянной пыли in vitro. In: Hiatt, H.H., Watson, J.D. & Winsten, J.A., eds, Origins of Human Cancer (Cold Spring Harbor Conferences on Cell Proliferation Vol.4) , Книга B, Колд-Спринг-Харбор, Нью-Йорк, CSH Press, стр. 941–954.

  • Синкок А., Сибрайт М. Индукция хромосомных изменений в клетках китайского хомячка путем воздействия волокон асбеста. Природа. 1975. 257: 56–58. [PubMed: 1161005]
  • Sincock A.M., Delhanty J.D.A., Casey G. Сравнение цитогенетического ответа на асбест и стекловолокно в линиях клеток китайского хомяка и человека. Демонстрация ингибирования роста первичных фибробластов человека. Мутат. Res. 1982; 101: 257–268.[PubMed: 7087986]
  • Сикст Р., Бейк Б., Абрахамссон Г., Тирингер Г. Функция легких у рабочих, работающих с листовым металлом, подвергшихся воздействию стекловолокна. Сканд. J. Work Environ. Здоровье. 1983; 9: 9–14. [PubMed: 6857190]
  • Skuric, Z. & Stahuljak-Beritic, D. (1984) Воздействие на рабочем месте и изменения вентиляционной функции у рабочих, занятых в производстве минеральной ваты. В: Биологические эффекты искусственных минеральных волокон (Материалы конференции ВОЗ / МАИР) , Vol. 1, Копенгаген, Всемирная организация здравоохранения, стр.436–437.

  • Смит, Д.М., Ортис, Л.В. и Арчулета, Р.Ф. (1984) Долгосрочное воздействие на сирийских хомяков и крыс Осборн-Мендель аэрозольным стекловолокном диаметром 0,45 мкм, средний диаметр мкм. В: Биологические эффекты искусственных минеральных волокон (Материалы конференции ВОЗ / МАИР) , Vol. 2, Копенгаген, Всемирная организация здравоохранения, стр. 253–272.

  • Смит Д.М., Ортиз Л.В., Арчулета Р.Ф., Джонсон Н.Ф. Долгосрочные последствия для здоровья хомяков и крыс, хронически подвергавшихся воздействию искусственных стекловидных волокон.Анна. ок. Hyg. 1987. 31: 731–754. [PubMed: 2835925]
  • Sohio Carborundum Co. (1986) Fiberfrax Bulk Fiber Technical Information: Product Specifications (Form Nos C733-A, C733-D, C733-F, C733-I) , Niagara Falls, NY, Sohio Engineered Materials Co., подразделение волокон.

  • Стэнтон М.Ф., Лейард М., Тегерис А., Миллер Э., Мэй М., Кент Э. Канцерогенность стекловолокна: реакция плевры у крысы в ​​зависимости от размера волокна. J. Natl Cancer Inst. 1977; 58: 587–603.[PubMed: 839555]
  • Стэнтон М.Ф., Лейард М., Тегерис А., Миллер Э., Мэй М., Морган Э., Смит А. Связь размера частиц с канцерогенностью в амфиболовых асбестозах и других волокнистых минералах. J. Natl Cancer Inst. 1981; 67: 965–975. [PubMed: 6946253]
  • Stettler L.E., Donaldson H.M., Grant G.C. Химический состав угля и других минеральных шлаков. Являюсь. инд. Hyg. Доц. J. 1982; 43: 235–238.

  • Strübel G., Fraji B., Rodelsperger K., Woitowitz H.J. Письмо в редакцию.Являюсь. J. ind. Med. 1986; 10: 101–102. [PubMed: 3740064]
  • Сульцбергер М.Б., Баер Р.Л. Влияние «стекловолокна» на кожу животных и человека. Экспериментальное исследование. Ind. Med. 1942; 11: 482–484.

  • Сайкс С.Е., Морган А., Мурс С.Р., Холмс А., Дэвисон В. Дозозависимые эффекты в подострой реакции легких крыс на кварц. I. Клеточный ответ и активность лактатдегидрогеназы в дыхательных путях. Exp. Lung Res. 1983а; 5: 229–243. [PubMed: 6319111]
  • Сайкс С.Э., Морган А., Мурс С.Р., Дэвисон В., Бек Дж., Холмс А. Преимущества и ограничения тест-системы in vivo для исследования цитотоксичности и фиброгенности волокнистой пыли. Environ. Перспектива здоровья. 1983b; 51: 267–273. [Бесплатная статья PMC: PMC1569310] [PubMed: 6315369]
  • Теппо Л., Кожонен Э. Смертность и риск рака среди рабочих, подвергающихся воздействию искусственных минеральных волокон в Финляндии. Сканд. J. Work Environ. Здоровье. 1986. 12 (1): 61–64. [PubMed: 3798056]
  • Тислер Х. Выбросы от производства искусственных минеральных волокон (нем.). VDI (Verein Deutscher Ingenieure) -Berichte. 1983; 475: 383–394.

  • Tilkes, F. & Beck, E.G. (1980) Сравнение цитотоксичности, зависящей от длины, вдыхаемого асбеста и искусственных минеральных волокон. In: Wagner, J.C., ed., Biological Effects of Mineral Fibers (IARC Scientific Publications No. 30) , Lyon, International Agency for Research on Cancer, pp. 475–483. [PubMed: 7239669]
  • Тимбрелл В. Вдыхание волокнистой пыли.Анна. Акад. ScL. 1965; 132: 255–273. [PubMed: 5219552]
  • Тимбрелл В. Отложение и удержание волокон в легких человека. Анна. ок. Hyg. 1982; 26: 347–369. [PubMed: 7181276]
  • Tomasini M., Rivolta G., Chiappino G. Склерогенный эффект, связанный с профессиональным воздействием стекловолокна на выбранную группу рабочих (итал.). Med. Лав. 1986; 77: 256–262. [PubMed: 3747926]
  • Työsuojeluhallitus (Национальный совет Финляндии по безопасности и гигиене труда) (1981) Переносимые по воздуху загрязнители на рабочих местах (Фин.) ( Safety Bull. 3) , Тампере, стр. 20.

  • Инспекция предприятий Великобритании (1987) Исследование воздействия сверхтонких искусственных минеральных волокон в Великобритании , Лондон, Исполнительный консультативный комитет по охране здоровья и безопасности по токсическим веществам, лабораториям профессиональной медицины и гигиены.

  • Министерство торговли США (1985) Перепись производств 1982 года: абразивные материалы, асбест и прочие неметаллические минеральные продукты (публикация № MC82-1-32E) , Вашингтон, округ Колумбия, Бюро переписи населения.

  • Агентство по охране окружающей среды США (1986) Профиль отрасли производства прочного волокна и прогноз рынка , Вашингтон, округ Колумбия, Управление пестицидов и токсичных веществ.

  • Управление по безопасности и гигиене труда США (1986) Трудовые отношения. Код США. Regul., Т. 29 , часть 1910.1000, стр. 659.

  • Валентин, Х., Бост, Х.-П. И Эссинг, Х.-Г. (1977) Пыль из стекловолокна опасна для здоровья (нем.). Berufsgenossenschaft, февраль , стр. 60–64.

  • Винсент Дж. Х. О практическом значении электростатического осаждения изометрических и волокнистых аэрозолей в легких. J. Aerosol Sci. 1985; 16: 511–519.

  • Форвальд А.Дж., Дуркан Т.М., Пратт П.С. Экспериментальные исследования асбестоза. Arch. инд. Hyg. ок. Med. 1951; 3: 1–43. [PubMed: 14789264]
  • Wagner, J.C., Berry, G. & Skidmore, J.W. (1976) Исследования канцерогенных эффектов стекловолокна различного диаметра после внутриплевральной инокуляции на экспериментальных животных. In: LeVee, WN & Schulte, PA, eds, Professional Exposure to Fibrous Glass (DHEW Publ. No. (NIOSH) 76–151; NTIS Publ. No. PB-258869) , Cincinnati, OH, National Institute for Безопасность и гигиена труда, стр. 193–204.

  • Wagner, J.C, Berry, G.B., Hill, R.J., Munday, D.E. И Скидмор, Дж. (1984) Эксперименты на животных с MMM (V) F эффекты ингаляции и внутриплевральной инокуляции на крысах. В: Биологические эффекты искусственных минеральных волокон (Материалы конференции ВОЗ / МАИР) , Vol. 2 , Копенгаген, Всемирная организация здравоохранения, стр. 209–233.

  • Walzer, P. (1984) Керамика для будущих автомобильных электростанций. In: Krockel, H., Merz, M. & van der Biest, O., eds, Керамика в передовых энергетических технологиях , Dordrecht, D. Reidel, стр. 10–22.

  • Ватт, А.А., изд. (1980) Коммерческие возможности для усовершенствованных композитов (Специальная техническая публикация ASTM 704) , Филадельфия, Пенсильвания, Американское общество испытаний и материалов, стр.111.

  • Weill H., Hughes J.M., Hammad Y.Y., Glindmeyer H.W. III, Шэрон Г., Джонс Р. Здоровье органов дыхания у рабочих, подвергшихся воздействию искусственных волокон стекловидного тела. Являюсь. Преподобный респир. Дис. 1983; 128: 104–112. [PubMed: 6307098]
  • Weill, H., Hughes, J.M., Hammad, Y.Y., Glindmeyer, H.W., Sharon, G. & Jones, R.N. (1984) Респираторное здоровье рабочих, подвергшихся воздействию MMMF. В: Биологические эффекты искусственных минеральных волокон (Материалы конференции ВОЗ / МАИР) , Vol.1, Копенгаген, Всемирная организация здравоохранения, стр. 387–412.

  • Венцель М., Венцель Дж., Ирмшер Г. Биологическое действие стекловолокна на животных (нем.). Int. Arch. Gewerbepathol. Gewerbehyg. 1969; 25: 140–164.

  • Вестерхольм П., Боландер А.-М. Смертность и заболеваемость раком в производстве искусственных минеральных волокон в Швеции. Сканд. J. Work Environ. Здоровье. 1986. 12 (1): 78–84. [PubMed: 3798058]
  • Уильямс Х.Л. Четверть века исследований промышленной гигиены в промышленности стекловолокна.Являюсь. инд. Hyg. Доц. J. 1970; 31: 362–367. [PubMed: 4

    5]

  • Всемирная организация здравоохранения (1983) Биологические эффекты искусственных минеральных волокон. Отчет о встрече ВОЗ / МАИР (EURO Reports and Studies 81) , Копенгаген.

  • Всемирная организация здравоохранения (1985) Справочные методы измерения содержания антропогенных минеральных волокон в воздухе (MMMF) (Серия 4 по гигиене окружающей среды) , Копенгаген.

  • Райт А., Коуи Х., Гормли Л.П., Дэвис Дж. М.G. Цитотоксичность асбестовых волокон in vitro. I. P388D 1 ячеек. Являюсь. J. ind. Med. 1986; 9: 371–384. [PubMed: 3706311]
  • Райт Г.У. Волокнистые частицы стекла в воздухе. Рентгенограммы грудной клетки лиц при длительном облучении. Arch. Окружающая среда. Здоровье. 1968; 16: 175–181. [PubMed: 5646441]
  • Райт, Г.В. & Kuschner, M. (1977) Влияние различной длины стеклянных и асбестовых волокон на реакцию тканей у морских свинок.
  • Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *