Свойство теплопроводности – Теплофизические свойства, теплопроводность и теплоемкость материалов

Свойства теплопроводности – Справочник химика 21

    Физико-химический анализ основан на изучении экспериментальных зависимостей свойств равновесной физико-химической системы от состава и условий существования. Основным приемом физико-химического анализа является построение диаграмм состояния, т. е. графически выраженных зависимостей различных свойств системы от ее состава и внешних условий. Примерами являются уже рассмотренные нами диаграммы воды и серы (см. рис. 8.1 И 8.2). В других случаях могут исследоваться и иные физико-химические свойства (теплопроводность, электрическая проводимость, показатель преломления, твердость, вязкость и др.). [c.152]
    Том III (1964 г.) включает данные по гомогенному химическому равновесию в газовой и жидкой фазах гетерогенному химическому равновесию (твердое тело — жидкость газ — жидкость твердое тело — газ жидкость — жидкость криоскопиче-ские и эбулиоскопические константы) свойствам гомогенных жидких растворов (плотность, коэффициенты активности, энергетические свойства, теплопроводность, электропроводность и числа переноса, вязкость, поверхностное натяжение, показатели преломления) электродным процессам в растворах и расплавах химической кинетике и диффузии. Том заканчивается предметным указателем.  
[c.23]

    В самом деле, когда мы рассматриваем какое-нибудь свойство газа или жидкости, у нас обычно не возникает необходимости определить, в каком направлении было или должно быть измерено это свойство. Теплопроводность или показатель преломления воды одинаковы во всех направлениях. Но в кристаллах многие свойства оказываются различными при измерении их в разных направлениях. К таким свойствам относятся, в частности, показатель преломления, теплопроводность, электропроводность, механическая прочность, скорость роста кристаллов, скорость растворения их и др. Известно, что слюда, например, легко разделяется на пластинки по плоскостям, параллельным ее основной поверхности, но разделение ее на части в направлениях, перпендикулярных или наклонных к этой поверхности, требует затраты значительно больших усилий. 

[c.123]

    У кристаллов многие свойства (теплопроводность, показатель преломления,электропроводность, механическая прочность, скорость роста кристаллов, скорость растворения и др.) при измерении их в различных направлениях оказываются неодинаковыми. Например, слюда легко разделяется на пластинки только в одном направлении (параллельно ее поверхности). В других направлениях для разрушения слюды требуются значительно большие усилия. [c.62]

    Магнезия жженая, магнезия уста, окись магния, MgO,—свет лый порошок. Различные сорта отличаются по своим физикохимическим свойствам легкости (объемному весу), химической активности, адсорбционным свойствам, теплопроводности и пр. [c.110]

    Для кристаллического состояния характерно строго определенное расположение частиц (атомов, ионов, молекул) во всем объеме кристалла, т. е. в расположении частиц существует дальний порядок. Это обусловливает анизотропию кристаллического вещества, или различие физических свойств (теплопроводность, прочность, коэффициент преломления света и др.) кристалла в разных направлениях. 

[c.79]

    Изучение физико-химических свойств (теплопроводности, поверхностного натяжения, вязкости, pH, скорости ультразвука и др.) водных растворов ПАВ дает возможность наблюдать скачкообразное изменение [c.332]

    Существенно, что для смеси любых веществ (газов, паров, капельных жидкостей или твердых веществ) свойство теплопроводности не является аддитивным, т. е. для смесей веществ нельзя рассчитывать X как среднюю величину теплопроводностей составляющих компонентов даже с учетом доли каждого компонента в смеси. [c.210]

    Плоская металлическая пластина толщиной 0,1525 м обладает следующими теплофизическими свойствами теплопроводность 33,4 Вт/(м-°С), удельная теплоемкость 846 Дж/(кг- С) и плотность 7350 кг/м Первоначально пластина имела однородную температуру 38°С, а при т=0 поверхности пластины мгновенно нагревают до 260°С. 

[c.25]

    По мере поступления вещества электродов в разряд происходит разрушение поверхности электродов, так называемая электрическая эрозия. Степень разрушения электрода зависит от формы разряда и от параметров электрической схемы. Имеет еще значение материал электрода, его физические свойства теплопроводность, теплоемкость, температура плавления. Например, электроды из вольфрама, меди, молибдена разрушаются значительно меньше, чем электроды из алюминия, свинца, цинка, олова. Это объясняется тем, что медь, например, имеет большой коэффициент теплопроводности и поэтому температура электрода быстро падает в месте соприкосновения разряда. [c.242]

    Том I (1962 г.) содержит общие сведения атомные веса и распространенность элементов единицы измерения физических величин соотношения между единицами измерения физических величин измерение температуры и давления математические таблицы и формулы важнейшие химические справочники и периодические издания основные данные о строении вещества и структуре кристаллов физические свойства (плотность и сжимаемость жидкостей и газов, термическое расширение твердых тел, жидкостей и газов равновесные температуры и давления критические величины и константы Ван-дер-Ваальса энергетические свойства теплопроводность электропроводность и числа переноса диэлектрическая проницаемость дипольные моменты вязкость поверхностное натяжение показатели преломления) краткие сведения по лабораторной технике. Имеется предметный указатель. 

[c.23]

    Размер и упорядоченность кристаллитов кокса определяют его физические свойства (теплопроводность, электропроводность, пористость, внутреннюю поверхность и т. д.), а тип боковых цепочек, (СНз-, 5Н”, Н-) — его химическую активность. [c.71]

    Химика большей частью интересует не упаковка молекул в кристалле, а структура молекул. Однако определение упаковки молекул в кристалле является неизбежным этапом в рентгеноструктурном анализе и, таким образом, неразрывно связано с установлением структуры молекулы. К тому же исследования упаковки молекул в кристаллах представляют значительный самостоятельный интерес, поскольку от упаковки зависят такие свойства, как удельная теплота и температура возгонки, механические свойства, теплопроводность и т. д. [c.738]

    В некоторых случаях в качестве электродного материала используют и менее известные углеродные модификации. Например, электроды из стекловидного углерода, отличающиеся низкой пористостью (I—3%), высокой жаропрочностью и эрозионной стойкостью, целесообразно использовать при искровом возбуждении спектров сухих остатков растворов, расположенных на торце электрода интенсивность линий ряда элементов возрастает втрое по сравнению с угольными графитизирован

www.chem21.info

Свойство – теплопроводность – Большая Энциклопедия Нефти и Газа, статья, страница 1

Свойство – теплопроводность

Cтраница 1

Свойство теплопроводности при прочих равных условиях зависит от крупности пор. В сообщающихся порах могут возникать конвективные токи воздуха, которые повышают проводимость тепла. Увеличение пористости в таких материалах может привести к возрастанию общей теплопроводности.  [1]

Свойство теплопроводности противокоррозионных покрытий в определенной степени оказывает влияние на их тепловое старение. С уменьшением теплопроводности увеличивается время теплового старения изоляции. По этим соображениям теплопроводность изоляции необходимо оценить количественно.  [2]

Хотя полное объяснение свойств теплопроводности сверхпроводников может быть дано только на основе детальной микроскопической теории сверхпроводимости, однако для качественных заключений можно воспользоваться двухжидкостной моделью 3), которая, хотя и не объясняет явления, служит удобной схемой для описания сверхпроводников и, по-видимому, в дальнейшем будет подтверждена последовательной микроскопической теорией.  [3]

Хотя полное объяснение свойств теплопроводности сверхпроводников может быть дано только на основе детальной микроскопической теории сверхпроводимости, однако для качественных заключений можно воспользоваться двухжндкостной моделью 3), которая, хотя н не объясняет явления, служит удобной схемой для описания сверхпроводников и, по-видимому, в дальнейшем будет подтверждена последовательной микроскопической теорией.  [4]

Реальные вещества всегда в той или иной мере обладают свойством теплопроводности. Поэтому адиабатическое течение можно рассматривать как некоторый продельный случай, когда коэффициент теплопроводности среды к исчезающе мал.  [5]

Термокондуктометрический газоанализатор работает по принципу измерения изменения электрического сопротивления за счет отдачи тепла посредством использования свойств теплопроводности.  [6]

В то же время прямое действие медленно перемещающейся влаги на температурное поле пренебрежимо мало, хотя свойство теплопроводности материалов в значительной мере зависит от их влажностного состояния.  [7]

Технологическая схема получения отливок с направленной структурой сводится к затвердеванию жидкого металла в литейнсй форме с резко отличающимися свойствами теплопроводности вдоль и поперек требуемого направления структуры, с регулированием градиента температур вдоль направления роста кристаллов.  [9]

Его получают осаждением из газовой фазы на поверхность подложки при температурах 1500 – 2500 С [1], причем с ростом температуры подложки плотность пирографита приближается к теоретической плотности графита. Пирографит обладает ярко выраженной анизотропией свойства теплопроводности: его теплопроводность в направлении нормали к поверхности осаждения примерно на два порядка ниже, чем в тангенциальных направлениях. Дело в том, что при осаждении пирографита образуются гексагональные плотноупакованные кристаллы в виде шестигранных призм, основания которых параллельны ( или почти параллельны) поверхности осаждения, что приводит к образованию упорядоченной кристаллической структуры, вызывающей указанную анизотропию свойства теплопроводности.  [10]

В теплоизоляциях с ограниченным временем работы могут использоваться подвергающиеся тепловому разрушению композиционные монолитные материалы, состоящие, как правило, из отдельных элементов термостойкого наполнителя ( зерен, чешуек, волокон, слоев ткани, пленок), заключенных в матрицу из органического или неорганического связующего. Указанные композиционные материалы обычно анизотропны по отношению к

свойству теплопроводности. Тепловое воздействие на поверхность такой теплоизоляции вызывает в композиционном материале сложные физико-химические процессы, сопровождаемые плавлением, испарением, газификацией и уносом вещества и связанные со значительным поглощением теплоты, что в основном обеспечивает защиту теплоизолируемого объекта от указанного воздействия.  [11]

Легко видеть, что энтропия также стремится к бесконечности. Вблизи центра взрыва возникают большие градиенты температуры; благодаря этому свойство теплопроводности становится весьма важным.  [13]

Она пропорциональна давлению и не зависит от размеров, но зависит от формы и природы поверхности. Таким образом, при очень низких давлениях вязкость имеет свойства, полностью совпадающие со свойствами теплопроводности.  [14]

Его получают осаждением из газовой фазы на поверхность подложки при температурах 1500 – 2500 С [1], причем с ростом температуры подложки плотность пирографита приближается к теоретической плотности графита. Пирографит обладает ярко выраженной анизотропией свойства теплопроводности: его теплопроводность в направлении нормали к поверхности осаждения примерно на два порядка ниже, чем в тангенциальных направлениях. Дело в том, что при осаждении пирографита образуются гексагональные плотноупакованные кристаллы в виде шестигранных призм, основания которых параллельны ( или почти параллельны) поверхности осаждения, что приводит к образованию упорядоченной кристаллической структуры, вызывающей указанную анизотропию свойства теплопроводности.  [15]

Страницы:      1    2

www.ngpedia.ru

Теплопроводность – Свойства материалов – Материаловедение для штукатуров, плиточников, мозаичников

Теплопроводность — это способность материала передавать тепло от одной своей поверхности к другой.

Величина теплопроводности учитывается при подборе материалов для ограждающих конструкций — наружных стен, верхнего перекрытия жилых зданий. В жилых помещениях с наружными стенами из теплопроводных материалов зимой будет холодно, а стены промерзнут, будут мокнуть и отделка (штукатурка, окраска) разрушится.

Чтобы избежать этого, стены следует делать толстыми, что повлечет за собой расход лишних материалов и труда, затяжку сроков строительства и много других отрицательных последствий. Поэтому наружные стены и верхнее перекрытие делают из малотеплопроводных материалов.

Теплопроводность материала принято характеризовать коэффициентом теплопроводности. Этот коэффициент равен количеству тепла в килокалориях, проходящего за 1 час через 1 м2 стены толщиной 1 м при разности температур на противоположных поверхностях стены в 1 °С.

Чем больше материал проводит тепла в единицу времени, тем больше его коэффициент теплопроводности. Величину коэффициента для разных материалов определяют в физических или теплотехнических лабораториях опытным путем. Она зависит от состава и структуры (строения) материала, его пористости и влажности.

Например, коэффициент теплопроводности кристаллических (каменных) материалов в несколько раз больше, чем аморфных, у дерева вдоль волокон в два раза больше, чем поперек волокон, при одинаковом коэффициенте пористости. Вообще коэффициент теплопроводности мелкопористых материалов меньше, чем крупнопористых, у материалов с сообщающимися порами он больше, чем у материалов с замкнутыми порами.

Как правило, коэффициент теплопроводности больше у плотных материалов и меньше у пористых (например, у стали А = 50 ккал/м * град * час, а у пробки Я = 0,06 ккал/м * град * час), что объясняется очень низкой теплопроводностью воздуха (Х = 0,02 ккал/м * град * час), находящегося в порах пробки.

Влажность материала резко увеличивает его теплопроводность (до 10 раз), что объясняется значительной теплопроводностью воды, превышающей в 25 раз теплопроводность воздуха (коэффициент теплопроводности воды равен 0,5 ккал/м * град час).

Особенно сильно это сказывается на материалах с крупными порами. Когда влажные материалы замерзают, их теплопроводность увеличивается. Коэффициент теплопроводности льда λ = 2 ккал/м * град * час, т. е. в четыре раза больше воды.

«Материаловедение для штукатуров,
плиточников, мозаичников»,
А.В.Александровский

Весовое водопоглощение различных материалов также колеблется в широких пределах. Например, у керамических плиток для внутренней облицовки стен оно доходит до 16%, а у керамических плиток для полов не превышает 4%. Весовое водопоглощение обыкновенного глиняного кирпича 8 — 30%, плотного бетона 2 — 3%, пористых изоляционных материалов, например торфоплит, 100% и больше. Вода, попавшая в поры…

К химическим относятся такие свойства материалов, которые характеризуют их способность реагировать на внешние воздействия, ведущие к изменению химической структуры материала, а также способность воздействовать в этом же отношении на другие материалы. К химическим свойствам относятся растворимость, кислото- и щелочестойкость, газостойкость и антикоррозийность. Растворимость — способность материала растворяться в воде, масле, бензине, скипидаре и других жидкостях…

Влагоотдача — это способность материала терять находящуюся в его порах воду. Величину влагоотдачи определяют, измеряя (в процентах) количество воды, испарившейся из образца в течение суток при температуре воздуха 20 °С и его относительной влажности 60%. Вес испарившейся воды равен разнице между весом образца до начала опыта и весом образца после окончания опыта. Величина влагоотдачи имеет…

Кислотостойкость — свойство материала сохранять свою структуру при действии кислот. Кислотостойкостью обладают материалы, представляющие собой соли сильных кислот (азотной, соляной, кремнефтористой), а также некоторые синтетические материалы. Кислотостойкими материалами являются, например, стекло, полихлорвиниловые и специальные керамические плитки, полиэтиленовые пленки. Кислотостойкость материалов имеет большое значение при отделке некоторых промышленных сооружений, например отстойников. Щелочестойкость — свойство материалов сохранять…

Водопроницаемостью называется способность материала пропускать воду под давлением. Величина водопроницаемости характеризуется значением коэффициента водопроницаемости Кв, который определяется по формуле: где: QB — количество воды в кг, фильтрующейся сквозь образец за время Z час при давлении 0,1 ати б — толщина образца в м; F — площадь образца в м2. Водопроницаемость — отрицательное свойство материала, сказывающееся…

www.ktovdome.ru

Теплопроводность как свойство в физико-химическом анализе

    Физико-химический анализ основан на изучении экспериментальных зависимостей свойств равновесной физико-химической системы от состава и условий существования. Основным приемом физико-химического анализа является построение диаграмм состояния, т. е. графически выраженных зависимостей различных свойств системы от ее состава и внешних условий. Примерами являются уже рассмотренные нами диаграммы воды и серы (см. рис. 8.1 И 8.2). В других случаях могут исследоваться и иные физико-химические свойства (теплопроводность, электрическая проводимость, показатель преломления, твердость, вязкость и др.). [c.152]
    Для проведения физико-химического анализа могут быть использованы самые разнообразные свойства системы, например, вязкость, теплоемкость, теплопроводность, электропроводность, коэффициент сжимаемости и т. д. Наиболее часто с этой целью строят кривые зависимости плотности или показателя преломления от состава. Последнее объясняется тем, что значения этих свойств можно определить с большой точностью. Кроме того, измерение показателя преломления требует весьма малой затраты времени. [c.314]

    В основе метода физико-химического анализа лежит изучение функциональной зависимости между числовыми значениями физических свойств химической равновесной системы и факторами, определяющими ее равновесие. При этом в зависимости от природы изучаемой системы исследуются самые различные физические свойства тепловые (теплопроводность, теплоемкость), электрические (электропроводность, э. д. с. термопары, составленной из изучаемых сплавов и металла, выбранного для сравнения, температурный коэффициент электропроводности), оптические (коэффициент преломления), механические (твердость, коэффициент сжимаемости). Кроме указанных свойств, исследуются и другие, например магнитные свойства, свойства, зависящие от молекулярного сцепления (вязкость, поверхностное натяжение), и т. д. В настоящее время разработаны методы, позволяющие исследовать более сорока различных свойств системы. [c.371]

    Статистическая проверка [72, с. 203] показала, что уравнение (III. 17) имеет широкие пределы применимости и позволяет количественно описывать эффекты среды, начиная от газовой фазы и кончая растворителями типа воды. Всего регрессионный анализ, по уравнению (III. 13), выполнен для 70 различных объектов (26 химических процессов, для которых характеристиками А были Ig k или константы чувствительности р или р/ в уравнениях Гаммета или Тафта 18 частот или энергий возбуждения в электронных спектрах 12 ИК-частот 5 химических сдвигов в спектрах ЯМР и 9 разных других физико-химических характеристик, включая такие свойства самих чистых растворителей как энергия активации вязкого течения и коэффициент теплопроводности). [c.109]

    Анализируя редкие газы приходится пользоваться физическими и физико-химическими методами анализа, основанными на различии характерных физико-химических свойств газов их плотности, упругости насыщенного пара, теплопроводности, адсорбции на твердых адсорбентах, потенциале зажигания и т. п. [c.267]

    Достоинство этого метода заключается в том, что при изменении условий анализа искажения наблюдаются в одинаковой степени для всех компонентов. Поэтому не требуется с большой точностью поддерживать условия анализа, как это необходимо при использовании метода абсолютной калибровки. Кроме того, метод внутренней нормализации иногда используют без введения поправочных коэффициентов в случае применения детектора по теплопроводности и газа-носителя гелия или водорода. Однако при этом анализируемые вещества должны иметь близкие физико-химические свойства. [c.112]

    В основе метода физико-химического анализа лежит изучение функциональной зависимости между числовыми значениями физических свойств химической равновесной системы и факторами, определяющими ее равновесие. При этом в зависимости от природы изучаемой системы исследуются самые различные физические свойства тепловые (теплопроводность, теплоемкость), элек- [c.390]

    Для суждения о характере взаимодействия веществ в физико-химическом анализе изучаются разные физические свойства, чувствительные к изменению состава системы. В качестве таких свойств используются температуры фазовых превращений (например, плавления), теплоты образования, теплопроводность, теплоемкость, электросопротивление, плотность, коэффициент теплового расширения, твердость и др. Сюда следует добавить методы исследования макро- и микроструктуры нейтронографию, рентгенофазовый и рентгеноспектральный анализ, ЯМР, Y-peзoнaн нyю спектроскопию, электронную микроскопию, метод высокотемпературной калориметрии, измерение магнитной восприимчивости, точки Кюри и т. д. [c.264]

    Физ. химия изучает широкий диапазон св-в р-ров. Наиб, разработана и имеет практически важные применения равновесная термодинамика р-ров дальнейший материал посвящен в осн. этому разделу физ. химии р-ров. Кроме того, изучаются транспортные св-ва р-ров-диффузия, теплопроводность, вязкость (см. Физико-химическая гидродинамика), а также спектроскопия., электрич., акустич. и др. физ. св-ва. Методы исследования макроскопич. св-в Р. н. и их структурных характеристик во многом аналогичны методам исследования индивидуальных жидкостей, но осн. внимание уделяется рассмотрению концентрац. зависимостей св-в. Важнейшая задача физ.-хим. исследований-установление связи между наблюдаемыми на опыте св-вами, структурой р-ров и характеристиками межмо.гекулярных взаимодействии. Эксперим. информацию о структуре р-ров и межмолекулярных взаимод. в них дают методы оптической и радиоспектроскопии, дифракционные, электрич. и др. Важную роль в изучении Р.н. играет физико-химический анализ, основанный на построении и исследовании фазовых диаграмм, концентрац. зависимостей термодинамич. и др. физ. св-в (показателя преломления, вязкости, теплопроводности, акустич. характеристик и др.). При этом одна из главных задач состоит в том, чтобы на основании анализа диаграмм состав – свойство устанавливать факт образования хим. соединений между компонентами Р. н. и находить их характеристики. [c.185]

    Физико-химические методы анализа. Для анализа веществ широко используются химические реакции, протекание которых сопровождается изменением физических свойств анализируемой системы, например ее цвете, интенсивности окраски, прозрачности, флуоресценции, величины ЭЛСК7 ро- и теплопроводности, и т, д. [c.17]

    Предложенная методика, з отличие от известных, базируется на экспериментальных данных о А около 300 образцов нефтей и нефтепродуктов, для которых имеется достоверная информация о физико-химических свойствах и углеводородном составе. Она позволяет рассчитывать с меньшими ошибками теплопроводность широкого ассортимента нефтепродуктов /ошибки вычисления Л по основног у варианту не превышают 8% при средней- менее 3>/. При расчетах в качестве исходных величин, в отличие от ряда существующих методик, используются только данные физико-химическо-го анализа, которые легко определяются стандартными методами /показатель гфеломления, относительная плотность, мольная масса и ряд, других/. Дня

www.chem21.info

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *