Теплоизоляция трубопроводов тепловых сетей материалы – Теплоизоляция трубопроводов тепловых сетей

Теплоизоляционные материалы применяемые в тепловых сетях. Теплоизоляция трубопроводов тепловых сетей: утепляем отопление

Тепловая изоляция оборудования и перспективы развития отрасли

Рациональное применение и использование топливных и энергетических ресурсов — это одна из самых приоритетных задач в развитии любой экономики.

Изоляция для трубопровода и оборудования обуславливает технические возможности и экономическую эффективность в осуществлении технологических процессов.

Главная роль в решении подобной проблемы принадлежит эффективной тепловой промышленной изоляции. Изоляцию для трубопровода широко используют в энергетике и жилищно-коммунальном хозяйстве. Применяется также в металлургической, нефтеперерабатывающей, пищевой и химической отраслях.

В энергетике тепловая изоляция для трубопроводов используется в паровых котлах, газовых и паровых турбинах, теплообменниках, а также, в баках, аккумулирующих горячую воду, и в дымовых трубах. В промышленности изолируют технологические аппараты (вертикальные и горизонтальные), насосы и теплообменные аппараты. Тепловой изоляции подлежат резервуары для хранения нефтепродуктов, нефти и воды. Повышенные требования предъявляются к тепловой изоляции криогенного оборудования и прочих низкотемпературных агрегатов. Изоляция для трубопроводов обеспечит проведение различных процессов, в том числе и технологических, позволить создавать исключающие опасность травм и повреждений условия труда. Она снизит потери от испарений нефтепродуктов из резервуаров и позволит хранить природные и сжиженные газы в изотермическом хранилище.

Технологические требования к изоляционным конструкциям

В процессе монтажа и последующей эксплуатации изоляция для трубопроводов подвергается водяным и температурным, вибрационным и механическим воздействиям. Эти воздействия и определяют список требований, которые предъявляются к этим конструкциям. Теплоизоляционные материалы и конструкции должны обладать:

  • теплотехнической эффективностью;
  • эксплуатационной долговечностью и надежностью;
  • пожарной и экологической безопасностью.

Существует несколько основных показателей, которые определяют эксплуатационные и технико-физические свойства таких материалов. К их числу относятся: сжимаемость, упругость, стойкость к агрессивным средам, прочность при 10%-ой деформации, теплопроводность и плотность. Немаловажное значение имеет биологическая стойкость и величина содержания органических веществ. Эффективность тепловых изоляторов в первую очередь определяется коэффициентом теплопроводности. Этот коэффициент определяет необходимую толщину изолирующего слоя, и, как следствие, монтажные и конструктивные особенности конструкции, нагрузки на объект, которые нужно изолировать. При производимых вычислениях применяют расчетный коэффициент теплопроводности. Он учитывает температуру, наличие деталей крепежа и уплотнение теплоизолирующих материалов в данной конструкции. При теоретическом выборе теплоизолирующего материала учитывают:

  • его линейную усадку в процессе эксплуатации, размеры материала могут уменьшиться при нагреве;
  • потери массы и прочности, при нагреве может произойти разрушение материала;
  • степень частичного выгорания связующего вещества при увеличении температуры;
  • предельные допускаемые нагрузки на изолируемые поверхности и опоры, определяется предельная масса изолирующего материала.

Срок эксплуатации теплоизоляционных материалов и конструкции во многом зависит от условий, в которых они работают и конструктивных особенностей. К условиям эксплуатации относят:

  • место, в котором расположен объект;
  • режим функционирования оборудования;
  • агрессивность окружающей среды;
  • механические воздействия и их интенсивность.

Наличие и качество защитного покрытия у теплоизоляционных материалов и у теплоизолирующей конструкции в значительной степени определяют срок их службы.

Тепловая изоляция трубопроводов сегодняшнего дня

На сегодняшний день рынок теплоизолирующих материалов наполнен продукцией как зарубежных производителей, так и отечественных торговых марок. Номенклатура представленных на рынке волокнистых утеплителей для оборудования включает список таких материалов для изоляции трубопровода:

  • маты минеральные прошивные теплоизоляционные;
  • маты минеральные в обкладках из крафт-бумаги, стеклоткани или металлической сетки;
  • для промышленной изоляции минеральные изделия с гофрированной структурой, согласно ТУ 36,16,22-8-91;
  • термоизоляционные минеральные плиты плотностью 75-130 кг/куб.м на синтетическом связующем материале, в соответствии с ГОСТ 9573-96;
  • изделия на синтетическом связующем материале из штапельного и стеклянного волокна, изоляция для трубопроводов.

В небольшом объеме выпускают теплоизоляционные материалы в виде изделий из базальтового и тонкого стеклянного волокна, соответствующие ТУ 21-5328981-05-92.

Материалы (изоляция для трубопроводов) широко представлены продукцией иностранных производителей. Зарубежные варианты изоляции для трубопроводов и оборудования представлены волокнистыми теплоизолирующими материалами. Это цилиндры, плиты и маты, которые покрыты с одной из сторон алюминиевой фольгой или металлической сеткой. Страны производители этой продукции: Дания, Финляндия и Словакия.

Вспененный полиуретан, выпускаемый в виде плиточных изделий, находит все большее применение в подобных конструкциях. Нужно заметить, что вышеперечисленные теплоизоляционные материалы не заменят тепловую изоляцию, их можно использовать только в качестве дополнительных элементов для увеличения теплоотражающих характеристик. При канальной прокладке трубопроводов в тепловых сетях применяют цилиндры из стеклянного волокна и минеральной ваты, мягкие плиты и теплоизоляционные маты. Для прокладки трубопроводов под землей используют трубы с гидроизоляционным покрытием, предварительно заизолированные в заводских условиях. Повысить температурную устойчивость теплоизоляционных конструкций можно с помощью полиуретана, если применить двухслойную изоляцию. Внутренний слой такой изоляции должен быть из минеральной ваты, а наружный — из вспененного полиуретана. Эти материалы для изоляции трубопроводов в данном случае могут быть использованы только комплексно.

Тепловая изоляция для трубопроводов промышленных масштабов очень разнообразна как по виду конструкций, так и по применяемым в этих конструкциям материалам.

Для изоляции горизонтальных и вертикальных теплообменных аппаратов используют конструкции с применением проволочных каркасов и теплоизоляционных волокнистых материалов. Проволочные каркасы преимущественно применяют при изоляции горизонтальных аппаратов.

Нормативные документы

Действующие сегодня экономические условия повлияли на пересмотр сегодняшней нормативно-технической базы для тепловой изоляции в промышленности. Тепловая изоляция оборудования приоритетная отрасль промышленности.

Строительные нормы и правила 41-03 от 2003 года разработаны с учетом действующей на сегодняшний день ном

optolov.ru

ООО ГК ПИТЕР | Изоляция трубопроводов тепловых сетей

Изоляция трубопроводов тепловых сетей.

1. ТЕХНОЛОГИЯ на выполнение изоляции труб и оборудования в подвальных помещениях зданий и теплофикационных камерах трудногорючим теплоизоляционным материалом — влагостойким (ТТМ-В).
Для защиты труб и оборудования от коррозии и снижения тепловых потерь на тепловых сетях в подвальных помещениях зданий и теплофикационных камерах необходимо:
• Поверхность труб, оборудования и металлоконструкций очистить от загрязнений, солей, жиров, масел.
• Обезжиривание производить ветошью, смоченной растворителем Р646, Р647, ксилолом или ацетоном. Поверхность перед окрашиванием должна быть сухой и чистой.
• Очистка от ржавчины, окалины, старой краски производится ручным или механическим способом, без применения металлорежущих инструментов.
• Закладные детали и другие элементы металлоконструкций после очистки также подлежат обезжириванию и окрашиванию.

• Выполнить нанесение антикоррозийного слоя по сухой и обезжиренной поверхности при помощи кисти, валика.
• Металлические поверхности окрашиваются в один слой до «отлипа», в зависимости от температуры окружающего воздуха.
• Тепловой изоляции подлежат трубопроводы и оборудование тепловой сети за исключением дренажей и опорожнений за первой отключающей арматурой. Теплоизоляционный слой выполняется нанесением трудногоючего теплоизоляционного материала — влагостойкого (в дальнейшем ТТМ-В) в виде пастообразной консистенции в два одинаковых слоя общей толщиной 20÷60мм в зависимости от диаметра трубопровода. Для усиления конструкции после высыхания первого слоя ТТМ-В трубы и оборудование обматываются стеклотканевой сеткой с ячейкой 2х2 или 5х5 мм с закреплением замка сетки на трубе. Затем наносится второй слой ТТМ-В, обматывается стеклотканевой сеткой с ее натяжением и погружением во второй слой. Затем производится сушка материала.
• Гидроизоляция теплоизоляционного слоя обеспечивается нанесением каолиновым влагозащитным изоляционным покрытием (КВИП) в один слой с последующей сушкой.

2. ТЕХНОЛОГИЯ монтажа формованными изделиями из трудногорючего теплоизоляционного материала – влагостойкого ФИТТМ-В.
Для защиты труб и оборудования от коррозии и снижения тепловых потерь на тепловых сетях в подвальных помещениях зданий и теплофикационных камерах необходимо:
• Поверхность труб, оборудования и металлоконструкций очистить от загрязнений, солей, жиров, масел.
• Обезжиривание производить ветошью, смоченной растворителем Р646, Р647, ксилолом или ацетоном. Поверхность перед окрашиванием должна быть сухой и чистой.
• Очистка от ржавчины, окалины, старой краски производится ручным или механическим способом, без применения металлорежущих инструментов.
• Закладные детали и другие элементы металлоконструкций после очистки также подлежат обезжириванию и окрашиванию.
• Выполнить нанесение антикоррозийного слоя по сухой и обезжиренной поверхности при помощи кисти, валика.

• Металлические поверхности окрашиваются в один слой до «отлипа», в зависимости от температуры окружающего воздуха.
• Теплоизоляция выполняется ФИТТМ-В толщиной 10 – 30 мм. и длинной 400мм. После высыхания грунт-эмали нанести на внутренние части ФИТТМ-В клеевой состав и прижать к трубе для приклеивания. В местах соединения между формованными изделиями, а также в местах присоединения к существующей изоляции промазать тонким слоем клеевого состава. Для усиления конструкции обмотать по кругу формованные изделия самоклеющейся стеклосеткой в виде колец. Количество колец 2-3 шт.
• Сушка материала происходит в течение 10 — 15 мин.
• Гидроизоляция теплоизоляционного слоя обеспечивается нанесением каолинового влагозащитного изоляционного покрытия (КВИП) в 1 слой с последующей сушкой в течение 10 — 15мин.

3. ТЕХНОЛОГИЯ монтажа формованными изделиями из трудногорючего теплоизоляционного материала – влагостойкого ФИТТМ-В. СТЫКИ.

Для защиты, стыковых соединений стального трубопровода тепловой сети после ремонтных работ, от коррозии и снижения тепловых потерь необходимо:
• После запуска тепловой сети и проверки стыковых соединений на герметичность поверхность трубы и стыкового соединения очистить от загрязнений корщеткой.
• Выполнить выравнивание кромки существующей изоляции.
• Обезжирить поверхность трубы и стыкового соединения ветошью, смоченной растворителем Р646, Р647, ксилолом или ацетоном.
• Выполнить нанесение антикоррозийного слоя по сухой и обезжиренной поверхности при помощи кисти, валика.
• Поверхность трубы и стыкового соединения окрашиваются в один слой. Высыхание до «отлипа» грунт-эмали на горячем трубопроводе происходит в течение 10 — 20 мин.
• Изоляция стыковых соединений производиться ФИТТМ-В толщиной 10 – 20 мм. и длинной 400мм. После высыхания грунт-эмали нанести на внутренние части ФИТТМ-В клеевой состав и прижать в месте стыкового соединения для приклеивания. В местах соединения между формованными изделиями, а также в местах присоединения к существующей изоляции промазать тонким слоем клеевого состава. Для усиления конструкции после затирки стыковых соединений обмотать по кругу формованные изделия самоклеющейся стеклосеткой в виде колец. Количество колец 2-3 шт.
• Сушка материала происходит в течение 10 — 15 мин.
• Гидроизоляция теплоизоляционного слоя обеспечивается нанесением каолинового влагозащитного изоляционного покрытия (КВИП) в 1 слой с последующей сушкой в течение 10 — 15мин.

4. Изоляция поверхностей минераловатными материалами.

5. Изоляция стыковых соединений труб в ППУ изоляции методом заливки.

gkpiter.ru

Тепловая изоляция трубопроводов тепловых сетей

МИНИСТЕРСТВО  ОБРАЗОВАНИЯ И НАУКИ РФ

КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ 
 
 

Реферат

на тему «Тепловая  изоляция трубопроводов тепловых сетей» 
 
 
 

Казань 2011

Содержание.

Введение. 3

ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ К  ТЕПЛОИЗОЛЯЦИОННЫМ  МАТЕРИАЛАМ, И ИХ СВОЙСТВА. 4

ТЕПЛОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ, ИЗДЕЛИЯ  И КОНСТРУКЦИИ  ПРИ НАДЗЕМНОЙ  И ПОДЗЕМНОЙ ПРОКЛАДКАХ ТЕПЛОВЫХ СЕТЕЙ В  КАНАЛАХ. 7

ТЕПЛОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ И КОНСТРУКЦИИ  БЕСКАНАЛЬНЫХ ПРОКЛАДОК. 14

Заключение. 19

Список  использованной литературы. 22 

 

     ТЕПЛОИЗОЛЯЦИЯ ТРУБОПРОВОДОВ ТЕПЛОСЕТЕЙ

     Рациональное  использование топливно-энергетических ресурсов является одной из приоритетных задач в развитии российской экономики. Существенная роль в решении проблемы энергосбережения принадлежит высокоэффективной  промышленной тепловой изоляции.

     Тепловая  изоляция трубопроводов и оборудования определяет техническую возможность  и экономическую эффективность  реализации технологических процессов  и широко применяется в энергетике, ЖКХ, химической, нефтеперерабатывающей, металлургической, пищевой и других отраслях промышленности.

     В энергетике объектами тепловой изоляции являются паровые котлы, паровые  и газовые турбины, теплообменники, баки-аккумуляторы горячей воды, дымовые  трубы.

     В промышленности тепловой изоляции подлежат вертикальные и горизонтальные технологические  аппараты, насосы, теплообменники, резервуары для хранения воды, нефти и нефтепродуктов. Особенно высокие требования предъявляются  к эффективности тепловой изоляции низкотемпературного и криогенного  оборудования.

     Тепловая  изоляция обеспечивает возможность  проведения технологических процессов  при заданных параметрах, позволяет  создать безопасные условия труда  на производстве, снижает потери легко  испаряющихся нефтепродуктов в резервуарах, дает возможность хранить сжиженные  и природные газы в изотермических хранилищах.

 

     Теплоизоляционные материалы и конструкции предназначены  для уменьшения потерь тепла трубопроводами и оборудованием тепловых сетей, поддержания заданной температуры  теплоносителя, а также недопущения высокой температуры на поверхности теплопроводов и оборудования.

     Уменьшение  транспортных потерь тепла является главнейшим средством экономии топлива. Учитывая сравнительно небольшие затраты на теплоизоляцию трубопроводов (5…8% от капиталовложений в строительство тепловых сетей), очень важным в вопросах сохранения транспортируемого тепла по трубопроводам является их покрытие высококачественными и эффективными теплоизоляционными материалами.

     Теплоизоляционные материалы и конструкции непосредственно контактируют с окружающей средой, характеризующейся колебаниями температуры, влажности, а при подземных прокладках – агрессивными действиями грунтовых вод по отношению к поверхности труб

     Теплоизоляционные конструкции изготавливают из специальных  материалов, главное свойство которых – малая теплопроводность. Различают три группы материалов в зависимости от теплопроводности: низкой теплопроводности до 0,06 Вт/(мв°С) при средней температуре материала в конструкции 25°С и не более 0,08 Вт/(м*°С) при 125°С; средней теплопроводности 0,06.. 0,115 Вт/(мв°С) при 25°С и 0,08.. .0,14 Вт/(мв°С) при 125°С; повышенной теплопроводности 0,115…ОД75 Вт/(мв°С) при 25°С и 0,14 .0,21 Вт/( мв°С) при 125°С.

     Для основного слоя теплоизоляционных конструкций для всех видов прокладок кроме бесканальной, следует применять материалы со средней плотностью не более 400 кг/м3, и теплопроводностью не более 0,07 Вт/(м*°С) при температуре материала 25°С. При бесканальной прокладке – соответственно не более 600 кг/м3 и 0,13 Вт/(мв°С)

     Другим  важным свойством теплоизоляционных  материалов является их устойчивость к действию температур до 200°С, при  этом они не теряют своих физических свойств и структуры. Материалы не должны разлагаться с выделением вредных веществ, а также веществ, способствующих коррозии поверхности труб и оборудования (кислоты, щелочи, агрессивные газы, сернистые соединения и т.п.)

     По  этой причине для изготовления тепловой изоляции не допускается применение котельных шлаков, содержащих в своем составе сернистые соединения.

     Также важным свойством является водопоглощение и гидрофобность (водоотталкивание) Увлажнение тепловой изоляции резко повышает ее коэффициент теплопроводности вследствие вытеснения воздуха водой. Кроме того, растворенные в воде кислород и углекислота способствуют коррозии наружной поверхности труб и оборудования.

     Воздухопроницаемость  теплоизоляционною материала также  необходимо учитывать при проектировании и изготовлении теплоизоляционной конструкции, которая должна обладать соответствующей герметичностью, не допуская проникновения влажного воздуха

     Теплоизоляционные материалы также должны обладать повышенным электросопротивлением, не допускающим попадания блуждающих токов к поверхности трубопроводов, особенно при бесканальных прокладках, что вызывает электрокоррозию труб

     Теплоизоляционные материалы должны быть достаточно биостойкими, т.е. не подвергаться гниению, действию грызунов и изменениям структуры и свойств во времени

     Индустриальность  в изготовлении теплоизоляционных конструкций является одним из главных характеристик теплоизоляционных материалов Покрытие трубопроводов тепловой изоляцией по возможности должно осуществляться на заводах механизированным способом. Это существенно уменьшает трудозатраты, сроки монтажа и повышает качество теплоизоляционной конструкции. Изоляция стыковых соединений, оборудования, ответвлений и запорной арматуры должна производиться ранее заготовленными частями с механизированной сборкой на месте монтажа.

     Теплотехнические  свойства теплоизоляционных материалов ухудшаются при увеличении их плотности, поэтому минераловатные изделия не следует подвергать чрезмерному уплотнению Детали крепления тепловой изоляции (бандажи, сетка, проволока, стяжки) должны применять из агрессивно стойких материалов или с соответствующим покрытием, противостоящим коррозии.

     И, наконец, теплоизоляционные материалы  и конструкции должны иметь невысокую стоимость, применение их должно быть экономически оправданным.

      

 

     Теплоизоляционные материалы

     Основным  теплоизоляционным материалом в  настоящее время для тепловой изоляции трубопроводов и оборудования теплосетей является минеральная вата и изделия из нее. Минеральная вата представляет собой тонковолокнистый материал, получаемый из расплава горных пород, металлургических шлаков или их смеси. В частности, широкое применение находит базальтовая вата и изделия из нее.

     Из  минеральной ваты изготавливают  путем уплотнения и добавки синтетических или органических (битум) связующих или прошивки синтетическими нитями различные маты, плиты, полуцилиндры, сегменты и шнуры.

     Маты  минераловатные прошивные изготавливают  без обкладок и с обкладками из асбестовой ткани, стеклоткани, стекловолокнистого холста, гофрированного или кровельного картона; упаковочной или мешочной бумаги.

     В зависимости от плотности различают  жесткие, полужесткие и мягкие изделия. Из жестких материалов изготавливают  цилиндры с разрезом по образующей, полуцилиндры для изоляции труб малых диаметров (до 250 мм) и сегменты – для труб диаметром более 250 мм. Для изоляции труб больших диаметров применяют маты вертикальнослоистые, наклеенные на покровный материал, а также маты прошивные из минеральной ваты на металлической сетке.

     Для теплоизоляции на месте монтажа  стыков трубопроводов, а также компенсаторов, запорной арматуры изготавливается  шнур теплоизоляционный из минеральной  ваты, который представляет собой  сетчатую трубку, как правило, из стеклоткани, плотно наполненную минеральной ватой. Теплопроводность изделий из минеральной ваты зависит от марки (по плотности) и колеблется в пределах 0,044…0,049 Вт/(м*°С) при температуре 25°С и 0,067. ..0,072 Вт/(м*°С) при температуре 125°С.

     Стеклянная  вата представляет собой тонковолокнистый материал, получаемый из расплавленной стеклянной шихты путем непрерывного вытягивания стекловолокна, а также центробежно-фильерно-дутьевым способом. Из стеклянной ваты методом формования и склеивания синтетическими смолами изготавливают плиты и маты жесткие, полужесткие и мягкие. Изготавливаются также маты и плиты без связующего, прошивные стеклянной или синтетической нитью.

     Величина  коэффициента теплопроводности изделий  из стекловаты также зависит от плотности и колеблется в пределах 0,041…0,074 Вт/(мв°С)

     Находят широкое применение в качестве оберточного  и покровного материала холст стекловолокнистый (нетканый рулонный материал на синтетическом связующем) и полотно холстопрошивное из отходов стекловолокна, представляющее собой многослойный холст, прошитый стеклонитями.

     Вулканитовые  изделия получают смешиванием диатомита, негашеной извести и асбеста, формованием и с обработкой в автоклавах. Изготавливают плиты, полуцилиндры и сегменты для изоляции трубопроводов Ду 50 ..400 Теплопроводность изделий от 0,077 Вт/(м*°С) при 25°С до 0,1 Вт/(мв°С)при 125°С. Известково-кремнистые материалы -тонкоизмельченная смесь негашеной извести, кремнеземистого материала (трепел, кварцевый песок) и асбеста Выпускают изделия также в виде плит, сегментов и полуцилиндров для изоляции трубопроводов Ду 200.. .400. Теплопроводность материала от 0,058 Вт/(мв°С) при 25°С до 0,077 Вт/(м*°С) при 125°С.

     Перлит – пористый материал, получаемый при  термической обработке вулканического стекла с включениями полевых  шпатов, кварца, плагиоклазов Сырьем для получения вспученного перлита служат и другие силикатные породы вулканического происхождения (обсидиан, пемза, туфы и пр.) В виде щебня и песка перлит используется как заполнитель для приготовления теплоизоляционных бетонов и других теплоизоляционных изделий, как например, битумоперлит.

     Смешивая  перлитный песок с цементом и  асбестом путем формования получают перлитоцементные изделия в виде полуцилиндров, плит и сегментов. Коэффициент теплопроводности от 0,058 Вт/(м*°С) при 25°С до 128 Вт/(м*°С) при 300°С.

     Все более широкое применение в качестве основного теплоизоляционного слоя находят пенопласты. Пенопласты представляют собой пористый газонаполненный полимерный материал. Технология их изготовления основана на вспенивании полимеров газами, образующимися в результате химических реакций между отдельными смешивающимися компонентами. К пенопластам, допускаемым к применению для изоляции теплопроводов, следует отнести фенолформальдегидные пенопласты ФРП-1 и резолен, изготавливаемые из резольной смолы ФРВ-1А или резоцела и вспенивающего компонента ВАГ-3. Из этого материала изготавливаются цилиндры, полуцилиндры, сегменты, изолированные фасонные части марок ФРП-1 и резолен. Теплопроводность составляет 0,043…0,046 при 20°С.

stud24.ru

Изоляция тепловых сетей.

ИЗОЛЯЦИЯ ТЕПЛОВЫХ СЕТЕЙ

В настоящее время для изоляции тепловых сетей наиболее часто применяются минеральная вата, пенополиуретан (ППУ), пенополиэтилен и другие вспененные полимерные теплоизоляционные материалы и штучные изделия из легких бетонов. Минераловатные утеплители обладают низкой теплопроводностью в сухом состоянии. Но из-за нарушений условий транспортировки, хранения на стройплощадке, монтажа в условиях повышенной влажности, неаккуратного крепления, повреждения парозащитной пленки минеральная вата теряет свои теплозащитные свойства, деформируется, оседает, что приводит к необходимости ремонта и замены теплоизоляционного материала. Кроме того, ни одна из минеральных ват, в то числе базальтовая вата, не годятся для утепления труб с температурой теплоносителя выше 250°С, так как происходит разложение пропитывающего состава. Применяемая изоляция из ППУ, в основном, пригодна при температуре теплоносителя до 150°С. При повреждении гидрозащиты и попадания воды ППУ разлагается. Штучные теплоизоляционные материалы, способные обеспечивать надежную тепловую защиту трубопроводов длительное время и обладающие необходимой термостойкостью, изготавливаются в виде скорлуп из перлитобетона, пеностекла и других неорганических материалов, имеют достаточно высокую стоимость и требуют изготовления в заводских условиях. К более дешевым теплоизоляционным материалам относится неавтоклавный монолитный пенобетон естественного твердения – разновидность легкого ячеистого бетона, получаемого в результате твердения раствора, состоящего из цемента, воды и поверхностно-активного вещества, или просто – пены. Пена обеспечивает необходимое содержание воздуха в растворе и его равномерное распределение по всей массе в виде мелких замкнутых ячеек, что придает материалу теплоизоляционные свойства и влагостойкость. Пенобетон обладает высокой адгезией к металлу и надежно защищает металл от наружной коррозии. Коэффициент линейного расширения пенобетона сопоставим с коэффициентом линейного расширения стальной трубы. Пенобетон можно применять для теплоизоляции трубопроводов, оборудования, газоходов и воздуховодов, расположенных как в зданиях, так и на открытом воздухе в непроходных каналах и при бесканальной прокладке с температурой теплоносителя от минус 150°С до плюс 600°С, в том числе трубопроводов тепловых сетей при новом строительстве и ремонтных работах.

При повреждении гидрозащиты пенобетон может набрать до 22-25% воды, которая впоследствии испаряется. При этом пенобетон, вследствие реакции гидратации, становится прочнее и сохраняет свои теплозащитные свойства.

Технология монолитного неавтоклавного пенобетона предполагает использование мобильных комплексов, позволяющих производить непосредственно на объекте теплоизоляционный пенобетон средней плотностью 150 – 200 кг/м3 с заливкой его в межтрубное пространство с последующим твердением в естественных условиях и формированием на поверхности трубопровода долговечного, термостойкого теплоизоляционного слоя. Установка для производства пенобетона состоит из: низкооборотного, исключающего разбивание пены, смесителя цикличного действия, пеногенератора для производства пены, компрессора и героторного насоса, обеспечивающего плавную подачу пенобетона с минимальным разрушением воздушных пузырьков.

Работу можно производить в зимний период при отрицательных температурах до -15°С. При этом нужно обеспечить положительную температуру пенобетона в течение первых 4-5 часов. Это достигается использованием при замесе горячей воды и утеплением места заливки.

Стоимость утепления труб монолитным пенобетоном значительно меньше, чем утепление минеральной ватой или пенополиуретаном.

Технология производства работ

Участки трубопровода очищаются от ржавчины, пыли, грязи, масляных пятен и остатков изоляции при ремонтных работах (рис. 1).

Рис. 1 Участок трубопровода

Расчетная толщина пенобетонного слоя создается при помощи центраторов (рис. 2) из полимерных материалов (при температуре теплоносителя не выше 120°С) или оцинкованной стали, устанавливаемых на изолируемых трубах из расчета 1 центратор на 1 кожух (оболочку).

Рис. 2 Центратор

На начальных и конечных участках трубопровода устанавливаются центраторы-заглушки (рис. 3). Кроме того, заглушки устанавливаются по длине трубопровода так, чтобы объем ограниченного участка соответствовал объему смесителя.

Рис. 3 Центратор-заглушка

На центраторы с помощью саморезов устанавливается кожух (оболочка) из оцинкованной стали или алюминия таким образом, чтобы заливочное отверстие располагалось вверху, строго по центру трубы (рис. 4). Заливочные отверстия, в дальнейшем, заделываются гидроизолирующим, но паропроницаемым материалом, с целью удаления избытка влаги из пенобетона.

Рис. 4 Металлический кожух (оболочка) с заливочными отверстиями.

Заливка пенобетона производится в 2 этапа. Первоначально заполняется небольшой объем ограниченного заглушками участка для контроля возможного протекания пенобетонной смеси в местах стыков кожуха с неподвижными опорами. Места протекания заделываются монтажной пеной. Контроль заполнения пространства между трубопроводом и металлическим кожухом (оболочкой) осуществляется визуально через заливочные отверстия. Аналогично заполняются вертикальные участки трубопровода (рис. 5).

Рис. 5 Вертикальный участок, подготовленный к заливке пенобетона.

Заливку на действующем трубопроводе необходимо производить при температуре теплоносителя не более 60°С. Если температура выше 60°С, необходимо снизить температуру до указанной на время твердения пенобетона (12-24 часа).

Толщина пенобетонного слоя зависит от температуры теплоносителя, температурной зоны (для наружных трубопроводов) и диаметра изолируемого трубопровода. Учитывая, что единица измерения изоляции трубопровода в нормах и расценках принята 1 м3 изоляции, а в расчетах часто оперируют диаметром трубопровода и его длиной, ниже приводится таблица соотношений 1 м3 изоляции с длиной изолируемого трубопровода. Таблица разработана для изоляции наружных трубопроводов в III температурной зоне пенобетоном плотностью 200 кг/м3 при 4-х температурах теплоносителя.

Диаметр изолируемого трубопровода, мм

Длина трубопровода (м пог.), изолируемого 1 м3 монолитного пенобетона марки D 200 при температуре теплоносителя:

До 120°С

200°С

300°с

400°С

50

84,838

54,601

39,03

27,723

65

58,576

41,435

28,552

20,952

80

44,590

31,308

21,101

15,459

100

34,266

23,809

16,165

11,684

125

26,849

18,762

12,829

9,388

150

22,439

15,943

11,135

8,277

200

17,316

12,202

8,487

6,304

250

13,854

10,052

7,017

5,212

300

11,457

8,487

5,897

4,477

350

10,099

7,345

5,104

3,871

400

8,739

6,294

4,451

3,363

450

7,699

5,591

3,960

2,999

500

6,848

4,957

3,493

2,658

600

5,610

4,078

2,888

2,215

700

4,672

3,398

2,422

1,854

800

4,045

2,940

2,112

1,612

900

3,55

2,578

1,851

1,439

1000

3,17

2,327

1,68

1,304

1400

2,19

1,601

1,193

0,927

Журнал «Ценообразование и сметное нормирование в строительстве», ноябрь 2009 г. № 11

 

snipov.net

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *