Теплопроводность газобетонных блоков: Коэффициент теплопроводности газобетона – глоссарий компании Xella

Содержание

D300

Энергоэффективность в «300-ой степени»
В последние годы стремительно развивается монолитное домостроение в России. На рынке появляются новые энергоэффективные строительные материалы. Среди широкого ассортимента представленной продукции для монолитного домостроения наиболее технологичным решением является газобетон Bonolit D300.


  Bonolit D300 по своим физико-механическим теплофизическим свойствам и экономической эффективности позиционируется рынком как один из наиболее оптимально отвечающих современным требованиям, предъявляемым к строительным материалам.

Прочность вне конкуренции. По своим свойствам блок D300 из линейки Bonolit Group лидирует среди конкурентных материалов. А по такому критерию, как прочность, – он и вовсе вне конкуренции. Несмотря на небольшой удельный вес автоклавный газобетон плотностью D300 обладает высокой прочностью на сжатие (класс В2,0).

Энергоэффективность. По этому значению стены дома из газобетонных блоков соответствуют строительным нормам, предусмотренным для жилых и общественных зданий. Коэффициент теплопроводности блоков в сухом состоянии– λ=0,072 Вт/м∙°С, поэтому минимальная достаточная толщина стены по тепловой защите зданий для Москвы и области с учетом равновесной влажности W=5% составляет 180 мм. А ровная поверхность и точные геометрические размеры газобетонных блоков позволяют применять технологию беcшовной кладки с использованием пено-клея нового поколения Bonolit «Формула Тепла», что приближает стену по свойствам к монолитной. Толщина клеевого слоя между блоками составляет до 1 мм, что предотвращает теплопотери через стену. Идеальная геометрия (отклонение не превышает 1 мм по высоте) достигается благодаря использованию самого современного оборудования от мирового лидера в этом сегменте рынка – компании HESS AAC Systems B.V.

Экологичность. В последнее время в нашей стране все больше внимания уделяется экологичности товаров. Достаточно вспомнить, что прошедший 2017 г. в Российской Федерации был объявлен Годом экологии. Bonolit Group – обладатель российских и международных наград за экологичность продукции. Изделия торговой марки Bonolit награждены дипломом Всероссийского конкурса, проводившегося в рамках программы «100 лучших товаров России».

По радиоактивности Bonolit D300 относится к первой условной группе с приведенным излучением Аэфф< 54 Бк/кг (беккерелей на килограмм массы). Для сравнения: тяжелый бетон соответствуют второму классу (Аэфф = 54 120 Бк/кг), глиняный кирпич – третьему (Аэфф = 120 ÷ 153 Бк/кг). В группу материалов с высокой радиоактивностью – от 153 до 370 Бк/кг (четвертый класс) – входят керамзит и керамические изделия. Если пересчитывать массу на объем, то квадратный метр стены из автоклавного газобетона имеет радиоактивность менее 2000 Бк, а кирпичной – от 10000 до 18000 Бк.

Морозостойкость. По результатам проведенных испытаний морозостойкость Bonolit D300 составляет 100 циклов. Это позволяет безаварийно эксплуатировать здание более 100 лет.

Огнестойкость. Отдельным достоинством Bonolit D300 является высокая огнестойкость, подтвержденный пожарным сертификатом – блоки выдерживают не менее 240 минут открытого огня без каких-либо признаков разрушения.

Эксплуатационная безопасность. Безопасность – это защищенность от угроз и рисков. Стены из Bonolit способствуют защищенности. Однослойная стена наименее подвержена риску случайного или сознательного повреждения; является залогом отсутствия скрытых дефектов, возникающих при укладке утеплителя, установке пароизоляции, при монтаже несущего каркаса или вследствие коррозии рабочей арматуры.

Экономичность и инвестиционная привлекательность.
Использование Bonolit D300 в строительстве позволяет:

снизить нагрузку на фундамент
значительно снизить трудоемкость строительных работ. Один газобетонный блок заменяет 15 – 20 кирпичей (Следовательно во время выкладки стены из газобетона рабочие должны будут произвести в 15 – 20 раз меньше операций, чем при кладке кирпичной стены такого же размера. Газобетонные блоки при большом размере имеют -небольшой удельный вес. Для работы с ними не нужны специальные подъемные механизмы. Все это сокращает трудозатраты. При использовании Bonolit D300 скорость возведения здания увеличивается примерно в четыре раза, а стоимость строительства снижается).

исключить необходимость утеплять стены, что позволяет экономить на материалах и монтажных работах).
увеличить площадь здания за счет меньшей толщины стен, и как следствие получить дополнительную прибыль с продаж большего количества м2.
снизить транспортные затраты за счет большего объема перевозимой продукции.
Анализ сравнительных характеристик наглядно демонстрирует преимущества Bonolit D300 и его перспективы применения на строительном рынке России

Марка по прочности ТК довольно высока от М50 до М150. Наиболее часто используемая M75, что соответствует классам по прочности на сжатие В5. На первый взгляд – это в 2,5 раза большая прочность ТК в сравнении c Bonolit D300 B2,0, вызывает чувство надежности. Однако, обратившись к таблице 2 и п. 6.1. СП 15.13330.2012, мы видим, что расчетное сопротивление кладки из крупноформатных камней на теплом растворе М50 равно 1,105 МПа для М75 и. А для кладки из D300 это значение составляет 0,8 МПа. Таким образом, при марочной прочности ТК в 2,5 большей, чем у Bonolit D300, расчетные сопротивления сжатию кладок из них примерно одинаковы.

Bonolit D300 уверенно выходит на лидерские позиции в строительной отрасли страны, обгоняя своих конкурентов. Продукция рекомендована к внесению в «Перечень инновационной, высокотехнологичной продукции и технологий» Агентством инноваций г. Москвы.

Bonolit D300 с классом по прочности на сжатие В2.0 при толщине наружных несущих стен 300 и 400мм применим для возведения малоэтажных домов до трех этажей включительно.

 Одним из ярких преимуществ автоклавного ячеистого бетона (АЯБ) является его широкое применение и отработанная технология производства, заводское освоение этого материала началось в конце 30-х годов XX века. Первые построенные дома из АЯБ стоят уже более 80 лет вообще без наружной отделки. Вопрос совершенствования технологии конструкционно-теплоизоляционного ячеистого бетона является одним из важнейших направлений технического прогресса в строительстве. Использование таких материалов в качестве ограждающих конструкций более эффективно, чем применение традиционных материалов. Это связано с повышением термического сопротивления ограждающих конструкций, что способствует снижению затрат на отопление. Еще в 1979г. потребление теплоизоляционного ячеистого бетона в СССР составляло более 2 млн. м3 изделий средняя объемная масса плит составляла 391 кг/м3, а 740 тыс. м3 впускалось с объемной массой 300-350 кг/м3.

Современный газобетон начал массово производиться в РФ давно, поэтому его производство хорошо отработано. С 80-х годов производство автоклавных ячеистых бетонов шагнуло далеко вперед, одним из ярких примеров и показателей качества стал выпуск конструкционно-теплоизоляционного газобетона низкой плотности Bonolit D300 c высоким для ячеистого бетона классом по прочности на сжатие В2,0. В 2013 году блоки D300 от компании Bonolit стали доступны строительному рынку, а в 2015 году начали широко применяться в малоэтажном и многоэтажном строительстве. Производство такого материала стало возможным благодаря высокопрофессиональной производственной группе. Cпециалисты подобрали оптимальный состав исходных компонентов, например, песок с большим содержанием кремния и минимальным количеством глинистых примесей, высокого качества цемент со стабильными характеристиками, известь с устойчивой активностью, все это позволило для Bonolit D300 достичь высокого класса по морозостойкости F100. Современный технологический комплекс предприятия, который, помимо прочего, обеспечивает качественный тонкодисперсный помол кремнеземистого компонента, высокую точность дозировки и однородность смеси. Благодаря этому, стены их нашего газобетона рассчитаны на безаварийную эксплуатацию более чем на 100 лет.

Сравнение с конкурентными материалами
Теплая (поризованная, пористая) керамика (ТК), напротив, только начала развиваться, поэтому невозможно говорить о том, что этот материал проверен временем в конструкциях стен. К сожалению, и до зарубежного уровня качество изделий пока не дотягивает, особенно это связано с геометрическими размерами, которые имеют большие отклонения в сравнении с Bonolit D300, что приводит к увеличению толщины шва и большим теплопотерям через готовую конструкцию.

 Продолжая сравнение двух материалов Bonolit D300 и поризованную керамику зачастую оперируют фальсифицированными данными. Например, как  производители теплой (поризованной) керамики, так и производители газобетона в целом, для сравнения могут принимать данные испытаний для  индивидуально отобранных серий образцов. Для корректного сравнения обратимся к нормативной документации.

 Сравним теплопроводность, рассмотрим, насколько один материал может быть теплее другого. Коэффициент теплопроводности для Bonolit D30

0 регламентируется ГОСТ 31360 и 31359 и в условиях эксплуатации составляет 0,088 Вт/(м∙°С), а для камней крупноформатных пустотелых из пористой керамики теплопроводность регламентируется ГОСТ 530, для кладки с применением «теплого раствора» она составляет 0,15 Вт/(м∙°С) для изделий средней плотностью 600 кг/м3 и 0,22 Вт/(м∙°С) для плотности 800 кг/м3. Таким образом, Bonolit D300 «теплее» на 70% чем самые лучшие образцы керамических изделий и на 150%, чем наиболее распространенные. На практике это означает, что для замены достаточной толщины стены 300мм без утепления блоков Bonolit D300, необходима толщина стены из пористой керамики не менее 510мм для изделий средней плотностью 600 кг/м3 м не менее 750мм для 800 кг/м3. Низкая теплопроводность Bonolit D300 обеспечивается, в основном, благодаря легкому весу готовых изделий, то есть, для полнотелых материалов вступает в силу линейная зависимость – чем легче конструкция, тем она «теплее».

Один из следующих сравниваемых параметров это прочность блоков и соответствующая ей «прочность кладки». Снова обратимся к нормативным документам, в этот раз нам необходим свод правил «Каменные и армокаменные конструкции. Актуализированная редакция СНиП II-22-81*» СП 15.13330.2012.

Марка по прочности ТК довольно высока от М50 до М150. Наиболее часто используемая – M75, что соответствует классу по прочности на сжатие В5. На первый взгляд – в 3 раза большая прочность ТК, в сравнении с Bonolit D300 (В2,0), вызывает чувство надежности. Однако, обратившись к таблице 2 и п. 6.1. СП 15.13330.2012, мы видим, что расчетное сопротивление кладки из крупноформатных камней на теплом растворе равно 1,105 МПа. А для газобетонной кладки это значение составляют 0,8 МПа. Таким образом, при марочной прочности ТК в 3 раза большей, чем у Bonolit D300, расчетное сопротивление сжатию кладки отличается всего на 1,4 раза. На практике Bonolit D300, с классом по прочности В2,0 применим для возведения трех этажных ломов с несущими стенами, а в монолитно-каркасном домостроении этажность не ограничивается.

Экологичность материалов, также немаловажный показатель. Оба материала принято считать экологически безопасными. Экологичность оценивается удельной эффективной активностью естественных радионуклидов, которая для изделий, применяемых в строительстве домов, не должна превышать 370 Бк/кг. Для Bonolit этот показатель на 2018 год (протокол испытаний №2757/181017М-1 от 29.1.2017) составляет 33 Бк/кг (без погрешности прибора), что в 10 раз лучше требований норм. Производители поризованной керамики, как правило, стараются не освещать этот вопрос, так как значения изделий ТК могут в несколько раз превышать значения для автоклавного газобетона.

Большим преимуществом готовой конструкции из Бонолит, является простота в последующей отделке и меньшим расходом материалов, благодаря точной геометрии блоков. Допуски размеров по ширине при производстве блоков «теплой керамики» значительно хуже, чем для блоков из ячеистого бетона автоклавного твердения. Отклонения размеров поризованной керамики могут доходить до ±10мм. При этом толщина штукатурного слоя будет составлять:

блок «Теплая керамика» min 15мм.
блок из ячеистого бетона min 5 мм.
Это означает, что на оштукатуривание стен, построенных из блоков «Теплой керамики» расход штукатурной смеси будет в 3 раза больше.

Блоки из ячеистого бетона автоклавного твердения обладают однородной структурой представляющие однородный массив, а блоки из «Теплой керамики» обладают многопустотной структурой направленной работы. Это влияет на подбор крепежных элементов. Большая популярность ячеистого бетона привела к широкому распространению доступного, технологического крепежа, что нельзя сказать о керамических блоках, для которых, часто применяется химический анкер, который неудобен для бытового применения и стоит на порядок дороже крепежей для газобетона.

Свойства материала | gazobeton.org

 

ВЫСОКАЯ ПРОЧНОСТЬ

Автоклавный газобетон относится к конструкционно-теплоизоляционным бетонам и обладает прочностью камня. Современные предприятия в Украине выпускают изделия с классом бетона по прочности на сжатие от С2,0 до С2,5. Этим показателям соответствует марка прочности М25-35 (фактическая прочность 2,0-3,5 МПА). Таким образом, один блок выдерживает сжатие, измеряемое несколькими десятками тонн. Благодаря этому из газобетонных блоков можно возводить несущие стены до 5 этажей включительно.

 

 

НИЗКАЯ ТЕПЛОПРОВОДНОСТЬ

Газобетон характеризуется наиболее низкой теплопроводностью среди остальных стеновых материалов. Для плотности 300 кг/м3 расчетный коэффициент теплопроводности не превышает показатель 0,1, для плотности 400 кг/м3  0,13, для плотности 500 кг/м3 – 0,15. Для сравнения, полнотелый кирпич имеет теплопроводность 0,7-0,8, пустотелый кирпич – 0,58-0,7, керамзитобетон – 0,26-0,31, крупноформатные блоки из поризованной керамики – 0,18-0,22, древесина – 018-0,20. Чем ниже теплопроводность материала, тем лучше теплоизоляционные свойства построенных из него стен. Таким образом, стена из газобетона в среднем в 6 раз теплее кирпичной и в 1,5 раза теплее деревянной.

 

 

ВЫСОКАЯ ПАРОПРОНИЦАЕМОСТЬ

Высокая паропроницаемость газобетона определена его пористой структурой. Газобетон практически на 50% имеет большую паропроницаемость, чем полнотелый керамический кирпич и сравним по этому показателю с древесиной. Это весьма положительное свойство материала стены, позволяющее в достаточном количестве избавляться от избытка водяного пара и углекислого газа изнутри помещения наружу и тем самым регулировать постоянную комфортную влажность внутри помещения. При этом обеспечивается быстрое высушивание кладки стен до равновесной влажности.

 

 

ВЫСОКАЯ МОРОЗОСТОЙКОСТЬ

Благодаря капиллярно-пористой структуре материала, газобетон хорошо переносит процессы замораживания-оттаивания, т.е. является морозостойким. Важнейшим фактором, определяющим морозостойкость ячеистого бетона, является присутствие в нем условнозамкнутых (резервных) пор. Чем больше объем этих пор в единице объема ячеистого бетона, тем больше его морозостойкость. Поры газобетона не подвержены полному насыщению водой, при кристаллизации влаги давление льда на межпоровое вещество микроструктуры материала значительно меньше, чем в капиллярах. Современный газобетон ведущих украинских производителей имеет марку морозостойкости F100.

 

 

ХОРОШАЯ ВЛАГОСТОЙКОСТЬ

Газобетон не боится воды, хотя и является достаточно гигроскопичным материалом. После увлажнения, вода не может быстро проникнуть в материал, поскольку капилляры прерываются порами. Сорбционная влажность материала в среднем составляет 5-10 % по массе. При этом, благодаря минеральной основе, влажный газобетон не гниет и практически не теряет своих прочностных свойств, а также не подвержен коррозии.

 

 

ВЫСОКАЯ ДОЛГОВЕЧНОСТЬ

Долговечность газобетона предопределена минеральной природой сырья, из которого синтезированы гидросиликаты кальция. Такой минералогический состав изделий обеспечивает высокую долговечность зданий. На сегодняшний день, в Скандинавских странах существует множество домов, построенных из газобетона, которые эксплуатируются около 75 лет. И эти строение ещё не проявляют никаких признаков разрушения. По прогнозным оценкам, долговечность зданий из ячеистого бетона при правильном монтаже стен составляет 100-120 лет.

 

 

ОТЛИЧНАЯ ЗВУКОИЗОЛЯЦИЯ

Стены и перегородки, возведенные из газобетонных блоков, обеспечивают эффективную звукоизоляцию, соответствующую самым высоким стандартам. Пористая структура материала хорошо поглощает высокочастотные звуковые колебания. Шумовой комфорт в помещении достигается за счет подбора соответствующей толщины стены либо определенного технического решения, плотности материала и, частично, за счет технологии возведения стен.

 

 

ВЫСОКАЯ ОГНЕСТОЙКОСТЬ

Ячеистый бетон автоклавного твердения является негорючим материалом. Он не горит, препятствует распространению огня, выдерживает воздействие высоких температур в течение длительного времени. Стены из газобетона удовлетворяют любым классам огнестойкости. Согласно европейским стандартам газобетон относится к классу «Евро класс А1». Согласно ДБН В. 1.1-7-2002 «Пожарная безопасность объектов строительства», дома с несущими и ограждающими конструкциями из газобетона характеризуются наиболее высокими I и II степенями огнестойкости.

 

 

ЛЕГКОСТЬ В ОБРАБОТКЕ

Газобетон легко обрабатывается: пилится, строгается, шлифуется, фрезеруется и сверлится. Это позволяет изготавливать конструкции различной конфигурации (арки, эркеры), обрабатывать поверхность, прорезать каналы и отверстия под электорпроводку и розетки, трубопроводы. Из него легко делать элементы архитектурного декора.

 

 

ВЫСОКАЯ ЭКОЛОГИЧНОСТЬ

Газобетон изготовлен из исключительно природных экологически чистых природных компонентов. Он не выделяет токсичных веществ, не содержит канцерогенных радиоактивных веществ, является химически инертным материалом. Эти свойства обуславливают высокую степень экологичности материала.

 

 

УСТОЙЧИВОСТЬ К БАКТЕРИЯМ, ПЛЕСЕНИ, ГРИБКАМ

Газобетон биологически стойкий материал. Исследования газобетона на восприимчивость к плесени и бактериям, проведённые при стимуляции условий неблагоприятного, влажного тропического климата, т. е. при температуре от +25 до +30, а также при относительной влажности воздуха от 95 до 98% показали, что даже в таких условиях газобетон проявляет полную биологическую устойчивость.

 

сравнение массы, теплопроводности и долговечности

Дом из кирпича или газобетонных блоков: сравнение массы, теплопроводности и долговечности.

Очень часто, если вы запланировали построить дом, придется столкнуться с моментом правильного выбора строительных материалов. Сразу может возникнуть вопрос, из чего будет возвести дом лучше, а главное выгоднее? Здесь стоит рассмотреть два очень распространенных материала для строительства зданий, а именно кирпич и газобетон. Такие материалы, достаточно давно пришли на строительный рынок и пользуются большой популярностью среди покупателей. Стоит отметить, что в данном тексте под термином кирпич, мы будем подразумевать пустотелые блоки, которые производятся путем обжига глиняных смесей.

Сравнение, подразумевает наличие второго материала, в данном случае, был выбран газобетон. Подобный материал, производится путем смешивания извести, песка, цемента, а также дополнительных газообразных добавок. Два вышеупомянутых материала, существенно различаются между собой по множеству параметров, а именно: теплопроводность, устойчивость к низким температурам, огнестойкость, поглощение материалом влаги, а также прочности. С учетом всех перечисленных характеристик, вам будет существенно легче отдать свое предпочтение тому или иному строительному материалу.

Сравнительные характеристики.

Далее стоит рассмотреть более подробно все сравнительные параметры, чтобы принять правильное решение и приобрести оптимальные блоки.

Наиболее важным параметром при строительстве, является масса возводимой стены. Исходя из этого параметра, вам придется выбирать, каким будет фундамент у здания. В данном случае, сравнение кирпич или газобетон, выигрывает второй вариант, так как стена, выполненная из такого материала, будет существенно легче. Поэтому вы сможете использовать недорогой, но надежный ленточный фундамент. Для кирпичей, придется подбирать более надежную модель фундамента, так как дом получится достаточно тяжелым, придется выбирать, либо монолитный фундамент, либо ленточный, но с достаточным углублением.

После этого, стоит обратить внимание на такой параметр, как теплопроводность. Данный термин обозначает, возможность материала передавать тепло. Если вы не желаете углубляться в цифры, что можно с уверенностью сказать, что блоки газобетона, значительно лучше удерживают тепло в помещении. Однако здесь не все так просто, если стена из кирпича будет более толстой, то и теплопроводность значительно увеличится. Кроме того, стоит отметить, что для кирпичных стен помимо больших затрат, лучше всего дополнительно купить клеящий раствор, который избавит вас от мостиков холода.

Далее, проводя сравнение двух материалов, стоит обратить внимание на то, какую устойчивость к низким температурам имеют сравниваемые блоки. В данном случае, кирпич, превосходит газобетон практически в два раза. Так как второй материал, влажном состоянии очень негативно может себя повести при чрезмерно низких температурах. Если вы строите дом на долгие года, и планируете его передать своим детям по наследству, то без сомнений лучше выбрать кирпичные стены. В случае, когда такой шаг не планируется, можно выбрать более доступный вариант возведения стен из газобетонных блоков.

Кроме всего вышеперечисленного, стоит отметить, что дом, возведенный из кирпича, обладает существенно большей прочностью стен. Именно из-за этого параметра, очень часто на использование газобетона, накладывают запрет. Подобные блоки запрещается использовать для строительства домов, чья высота будет больше четырнадцати метров. Однако, для возведения небольших коттеджей, такой материал получил широкое применение.

Далее, стоит обратить внимание на такой параметр, как долговечность. В данном случае, она зависит от способности возведенных стен, поглощать влагу. Срок эксплуатации здания значительно уменьшается при увеличении такого параметра. В данном случае, лучше выбрать кирпичные блоки, которые обладают превосходной устойчивостью к влаге.

Для кладки стен из газобетона придется выбирать теплую солнечную погоду, иначе в дальнейшем дом может покрыться грибком. Стоит отметить, что завершенная стена из газобетонных блоков, должна подвергнуться грунтованию, чтобы обеспечить надежную защиту от влаги. Кроме того, поверх грунта потребуется нанести специальную краску, которая будет отталкивать пары.

Такой параметр, как пожароопасность ничем не отличается в данном сравнении. Оба материала, обладают экологической чистотой, и соответствуют всем необходимым современным требованиям.

В случае влажностной усадки, кирпичная кладка ведет себя спокойно, а вот дом, выполненный из газобетонных блоков, может незначительно уменьшиться в размерах, что в дальнейшем приведет к трещинам в отдельно взятых блоках, либо в целых стенах. Исходя из этого, можно сделать вывод, что кирпич ведет себя значительно лучше. Кроме этого, стоит добавить, что газобетонный блок чрезмерно негативно может себя повести в местах соприкосновения с сухим теплом, а именно с дымоходом.

В конце, стоит обратить внимание на механическую обработку. Здесь сразу стоит отметить, что газобетонный блок значительно лучше поддается различной обработке, чем кирпич. Но при дальнейшей эксплуатации здания, монтировать разнообразные шкафы к стене стоит аккуратно, так как материал достаточно хрупкий. Про кирпичные стены, должно быть все наслышаны, что те свободно выдерживают массу различных шкафов и похожих элементов.

Далее, завершая рассказ о параметрах сравниваемых материалов, можно добавить, что существует еще одна модель кирпичей, которые производятся по другой технологии. В данном случае, речь идет о теплом кирпиче, или как его еще называю, поризованный кирпич. Возвести дом из такого материала, стало доступным не так давно, потому что разновидность строительного элемента появилась не больше сорока лет назад. Здесь были воплощены все положительные качества обычного кирпича, однако данный материал, значительно лучше, так как сюда добавили более высокие теплоизоляционные качества. Теперь, если обратить внимание на вышеперечисленные сравнения, кирпич выглядит значительно лучше, чем газобетон. Дом, который будет выполнен из такого материала, не только прослужит дольше, но и будет значительно более теплым.

Теперь можно перечислить наиболее яркие преимущества от использования такого материала, а именно: нет никаких ограничений при проведении строительных работ, экологическая чистота материала, а кроме того добавляется удобство в работе. Также теплый кирпич включил в себя все самые положительные качества от обычного шамота. В дополнение к всему сказанному выше, можно добавить, что такой материал, обладает свойствами естественного кондиционирования. В итоге дом изнутри будет наполнен своим благоприятным микроклиматом.

После этого, стоит уделить небольшое внимание ценам на описанные выше материалы. Здесь без сомнения лидирующее место занимает газобетонный блок, который стоит значительно дешевле, чем даже обычный кирпич. В данном случае, в расчет берется стоимость одного кубического метра материала, а не одной штуки. Что касается теплого кирпича, то он также обойдется дешевле, чем обычный кирпич, однако разница здесь будет не столь существенна.

Сравнивая два таких материала, сделать правильный выбор не так, очень многое зависит от финансовых возможностей. Также в учет берется окружающий климат, в котором вы проживаете. Для засушливых районов, здания, возведенные из газобетона, будут заметно лучше, чем кирпичные дома.

Поэтому однозначно ответить, что будет правильно выбрать кирпич или газобетон, вам никто не возьмется. Каждый из материалов, достаточно хорош для его использования. Исходя из этого, стоит отметить, что решение, какой материал подобрать остается за вами. Но его стоит принимать лишь после того, как все рекомендации и сравнения были вами учтены. Но прежде, стоит учесть свои финансовые возможности, так как кирпичный дом достаточно дорогое удовольствие, хоть он и прослужит значительно больший срок. Однако здесь есть небольшой нюанс, если правильно соблюдать все технологии строительства, то и дома из газобетонных блоков служат своим владельцам долгий срок, необходимо, лишь поддерживать в надлежащем состоянии фасадное покрытие. Также стоит отметить, что можно использовать комбинирование. В данном случае, речь идет о возведении дома из газобетона, с последующей обкладкой стен кирпичом.

Похожие записи.

Толщина стен из керамзитобетонных блоков при разных вариантах кладки.

Керамзитобетонные блоки, цены и сравнительные характеристики.

Строительство дома из пеноблоков: сколько стоит и преимущества технологии.

16.07.2017

газобетон и газоблок по оптовой цене»

Хорошая теплопроводность газобетонных блоков и как последствие, высочайшая энергоэффективность считается одной из характеризующих черт газобетонных изделий. Ячеистая конструкция газобетона гарантирует ему теплоизоляцию в десятки раз лучше чем у бетонных изделий. Следственно, в здании построенном из газобетона, уютно и тепло зимними вечерами и свежо летом.

Коэффициент теплопроводности газобетонных блоков благодаря пористой структуризации является отличным изоляционным материалом. Теплопроводность газобетона в нормальном состоянии составит 0,13 Вт/м0С. Воздух, находящийся в порах, приводит к хорошему эффекту теплоизоляции. Использование газобетонных блоков в строительстве зданий позволяет экономить на энергоносителях до 30% стоимости.

 Теплопроводность газобетонных блоков помогает аккумулировать тепло, накопленное от отопительных приборов. Коэффициент теплопроводности газобетонных блоков стандартного размера эквивалентен кирпичным кладкам гораздо большего размера. Газобетонные блоки имеют дополнительные резервные поры, в которые при больших отрицательных температурах вытесняется замёрзшая вода, что обусловливается морозостойкостью донного материала и препятствует разрушению. При правильном технологическом использовании, морозостойкость данного материала превышает 25 циклов.

По строительным нормативам, действующим на территории РФ, коэффициент теплопроводности должен составлять не меньше 3,15. Теплопроводность является результатом деления толщины на теплопроводность материала. На теплопроводность газобетонных блоков огромное слияние оказывает структуризация материала, которая определяется размером внутренней пустоты. Чем больше пузырьков воздуха и чем они меньше, тем больше свойства теплоизоляции. Так же важна и геометрическая точность блока, толщина швов между блоками не должна превышать 4 – 6 мм., тогда стена будет монолитной. Если толщина швов будет от 12мм., то швы могут стать, так называемыми мостками холода. Тогда теплопроводность газобетонных блоков может быть нарушена, что может привести к значительной потери теплопроводности и к отсыреванию стен.

Статьи pp-budpostach.com.ua Все о бане

Статьи по пеноблоку,пенобетону,пенобетонным блокам

Статьи pp-budpostach.com.ua Статьи по бетону

Статьи Все о заборах

Статьи pp-budpostach.com.ua Все о крышах ( виды, материал, как лутше выбрать)

Статьи Все о Фундаменте

Статьи по газобетону ( газоблоку ), газобетонных блоков, газосиликатнных блоков

Новости, статьи, слухи, факты, разное и по чу-чуть

Статьи по кирпичу ( рядовому, лицевому,облицовочному,клинкерному, шамотному, силикатному,)

Краткое руководство по спецификации блоков и блоков

Блочная кладка играет ключевую роль в строительной отрасли. В этом руководстве рассматриваются некоторые ключевые моменты при выборе блоков для вашего проекта.

Искать «блоки» и «блочные продукты» по SpecifiedBy

Блоки – это общее название бетонных блоков каменной кладки (CMU), их иногда также называют бетонными кирпичами, цементными блоками, шлакоблоками или шлакоблоками.

Идея изготовления блоков из бетона, имитирующих структурную эффективность блоков природного камня или кирпича при гораздо более низкой стоимости, возникла в 19 веке в Америке. На протяжении ХХ века и по сегодняшний день бетонные блоки настолько распространены, что их можно с полным основанием считать самым распространенным строительным материалом в мире – на милю.

Хотя они потеряли популярность у некоторых архитекторов, которые считают их устаревшими, они по-прежнему используются во всем мире в самых разных приложениях, где надежность и стоимость являются решающими факторами.

Бетонные блоки – это буквально рабочая лошадка в строительном мире: за исключением высоких зданий, они широко используются во всех областях зданий, включая фундаменты, стены и пол.

Обратите внимание: в этой статье рассматриваются только блоки, сделанные из бетона, а не блоки из глины, такие как соты (Ziegel) или необожженные глиняные кирпичи.

Технические характеристики блочной конструкции

Бетонные блоки можно разделить на три категории: плотный заполнитель, легкий заполнитель и ячеистый газобетон, иногда известный как газобетон.

Плотные агрегатные блоки состоят из цемента, песка и различных заполнителей, таких как барит, магнетит, железные или свинцовые окатыши, и имеют типичную теплопроводность 0,70–1,30 Вт / мК.

Блоки из легких заполнителей состоят из цемента, песка и легких природных заполнителей, таких как вулканическая пемза, сланец или сланец, или промышленных побочных продуктов, таких как летучая зола, шлак или FBA (примесь на основе фторосиликата), с типичной теплопроводностью 0,10 – 0,20 Вт / мК. Газобетонные блоки, или газобетон, впервые изобретенные в 1920-х годах,

Как правильно выбрать кирпичную кладку

Основным фактором, который следует учитывать при выборе бетонных блоков, является структурная нагрузка, которую можно ожидать от них.

При этом вам следует проконсультироваться с инженером-строителем, особенно если здание более двух этажей. Для зданий до двух этажей любой из трех основных типов бетонных блоков, упомянутых выше, будет подходящим с точки зрения конструкции.

Второй вопрос, который следует учитывать, – это значение изоляции указанных вами блоков.

Вам следует тщательно продумать стратегию обогрева вашего здания и решить, что важнее – изоляция или тепловая масса.В то время как блоки из легкого заполнителя или газобетона будут обеспечивать свою собственную встроенную изоляцию в виде воздуха, захваченного в бетон (требуя меньшей изоляции полости или ее отсутствия, в зависимости от нормативных требований), эти более легкие формы блоков имеют недостаток, заключающийся в меньшей тепловой массе. чем тяжелые агрегатные блоки.

Меньшая тепловая масса затруднит использование естественного тепла солнечного света, но это не будет приниматься во внимание органами управления зданием.

Дополнительная изоляция сохранит тепло в вашем доме дольше и будет учтена строительным надзором, но может предотвратить попадание части естественного тепла от солнца в конструкцию.

Вы также должны учитывать возможность сборки любого типа блока, который вы укажете.

С блоками для зажигалок строителям значительно легче обращаться, но их может быть трудно оштукатурить непосредственно, если они не полностью ровные.

Более тяжелые блоки потребуют гораздо больше работы, но могут быть желательны по структурным или термическим причинам.

Также стоит учитывать устойчивость любых бетонных блоков, которые вы выберете.

Блоки из газобетона являются наиболее устойчивым типом бетонных блоков и могут соответствовать Кодексу экологически безопасных домов, с содержанием вторичного сырья до 80% и значительно сниженными транспортными расходами благодаря более низкому соотношению веса к объему.

Блоки легких заполнителей также могут содержать переработанное содержимое в качестве заполнителя, обычно называемого вторичными заполнителями, поскольку они являются вторичными побочными продуктами различных производственных процессов.

Правила, которые следует учитывать при определении блочной конструкции

Несмотря на то, что строительные нормы и правила прямо не касаются использования бетонных блоков в зданиях, стеновые конструкции, в которых они используются, должны соответствовать Утвержденному документу Строительных норм, часть E Устойчивость к прохождению звука Утвержденный документ и , часть L Сохранение топлива и мощность .

Оба этих документа устанавливают минимальные требования как для прохождения звука и энергии через стены и другие строительные элементы в новых и реконструируемых существующих зданиях.

Для простоты здесь будут обсуждаться только правила, применимые к жилым домам.

Для новых жилых зданий минимальное значение передачи воздушного звука для стен составляет 45 дБ, а для существующих зданий минимальное значение передачи воздушного шума составляет 43 дБ.

Часть E требует, чтобы 10% всех жилых помещений проходили предварительное тестирование (PCT) на предмет акустического соответствия на месте. Это тестирование должно проводиться испытательной организацией с правильной аккредитацией.

В качестве альтернативы разработчики могут использовать надежную деталь (RD), разделяющую этажи, чтобы продемонстрировать соответствие Части E и устранить необходимость в предварительных испытаниях.

В новостройках теплоизоляция внешних стен должна составлять 0,30 Вт / м2.К, а для реновации – наружные стены с изоляцией полости с теплопотери более 0.70 Вт / м2.К следует модернизировать, чтобы теплопотери составляли 0,50 Вт / м2.К, а внешние стены с внешней / внутренней изоляцией с теплопотери более 0,70 Вт / м2.К следует модернизировать, чтобы чтобы иметь коэффициент теплопередачи 0,30 Вт / м2К.

Вы должны знать, что строительные нормы и правила предусматривают дальнейшие меры по энергосбережению, которые выходят за рамки максимальных значений потерь тепла для стен.

Наконец, также важно убедиться, что указанные вами продукты сертифицированы BBA (British Board of Agrement), чтобы они соответствовали строительным нормам и могли быть подписаны инспектором здания.

Искать «блоки» и «блочные продукты» по SpecifiedBy

ОПРЕДЕЛЕНИЕ ТЕПЛОВОЙ ПРОВОДИМОСТИ ДЛЯ ЭЛЕМЕНТОВ ИЗ АВТОКЛАВИРОВАННОГО ПЕРИОДИЧЕСКОГО БЕТОНА, ИСПОЛЬЗУЕМЫХ В ЗАКРЫТЫХ СТЕНАХ

Реферат

В текущих условиях, когда эффекты изменения климата развиваются непрерывно, с постоянным усилением, энергоэффективность зданий стала отправной точкой в ​​существующем строительстве. дизайн. На энергоэффективность здания напрямую влияют тепловые характеристики оболочки.Поэтому проектирование элементов с оболочкой, общее тепловое сопротивление которых превышает требуемые минимальные значения, является обязательной мерой. Повышение тепловых характеристик стен ограждающих домов; это может быть теплоизоляция или использование кирпичных блоков с низкой теплопроводностью. В этой категории строительных материалов можно встретить и автоклавные газобетонные блоки.

В работе представлены экспериментальные определения теплопроводности блоков АКК, производимых в нашей стране.Измерения проводились в Лаборатории строительной физики на факультете гражданского строительства и строительных услуг в Яссах. Кроме того, эквивалентная теплопроводность кладки из AAC была определена с помощью программного обеспечения FEM и математических расчетов.

Ключевые слова: энергоэффективность; Кладочный блок AAC; теплопроводность, климатическая камера.

1. Введение

В холодное время года условия гигротермического комфорта в помещении достигаются за счет высокого потребления ископаемого топлива и негативного воздействия на окружающую среду за счет выбросов парниковых газов.

Снижение энергопотребления в жилых домах и строительство энергоэффективных зданий являются стратегическими целями европейской политики. Законодательство ЕС представляет ряд особенностей, касающихся этого класса зданий, в соответствии с конкретными климатическими условиями и типом здания, устанавливая годовое потребление тепловой энергии от нуля до 50 … 75 кВт / м2 / год (C107 – 1997 … 2011).

Проектирование данного типа зданий предполагает использование строительных материалов с низкой теплопроводностью (ниже 0.1 Вт / м.К) или очень толстой теплоизоляции.

Использование внешних стен с распределенным термическим сопротивлением может быть альтернативой для увеличения уровня тепловой защиты оболочки и уменьшения толщины необходимой теплоизоляции.

2. Блоки и стены из AAC

Кладка из автоклавного газобетона (AAC) используется для наружных стен из-за преимуществ материала, связанных с низкой плотностью, объемным характером блоков и, следовательно, с более высокой скоростью строительства, и его благоприятная проницаемость для водяного пара.

Термические, несущие или ненесущие стены из AAC определяются распределенной теплоизоляцией. Типы используемых материалов и их характеристики представлены в Таблице 1.

Используемые для несущих или ненесущих стен, эти блоки являются жизнеспособной и долговечной альтернативой.

3. Анализ образцов и численное моделирование кирпичной панели

С конкретным намерением отнести их к категории теплоизоляции (с учетом их плотности ниже 500 кг / м3 и теплопроводности ниже 0.Изготовлены новые блоки АКП мощностью 1 Вт / м.К0, которые легче, чем представленные в таблице 1, и предназначены для серийного производства. Для оценки теплофизических свойств блоков и стен проведен комплекс экспериментальных измерений:

а) сухой плотности блока и стен;
б) теплопроводность блоков AAC и эквивалентная теплопроводность кладки AAC;
c) поведение при массообмене.

В исследовании использовалась двойная климатическая камера производства Feutron Klimasimulation GmbH, Германия, комм.- №9004 2861 и измеритель теплового потока для определения теплопроводности блоков АКК. Кроме того, численное моделирование, используемое для определения эквивалентной теплопроводности кирпичной кладки AAC, было выполнено в программном обеспечении ANSYS Workbench 12.0.

3.1. Блоки AAC для определения теплопроводности

Двойная климатическая камера (рис.1) создает две разные среды (теплую и холодную), определяемые относительной влажностью (RH) и температурой. В теплой камере относительная влажность и температура колеблются в пределах 10%… 95% соответственно 5% … 100 градусов по Цельсию и в холодильной камере относительная влажность и температура колеблются в пределах 15% … 95%, соответственно, 45% … 100 градусов по Цельсию.

В измерениях используются стандарты SR EN ISO 8990: 2002 и SR EN 1946-3: 2004.

Для измерения интенсивности теплового потока и температуры поверхности использовались измеритель теплового потока TRSYS01 Huksefluex и электрический измеритель влажности Testo 606. Блоки AAC размером 600x150x250 мм, категория I, GBN 25 (SR EN 771-4 / 2004; SR EN 771-4 / 2004 / A1-2005) были размещены в пространстве между двумя климатическими камерами с помощью защитного кольца. .Расположение пластин теплового потока и термопар показано на рисунке 2.

Для сушки блоки АКП помещали в климатическую камеру при температуре 80 градусов Цельсия и относительной влажности 10% на 72 часа. Полученная относительная влажность блоков составила 5,5%, как определено с помощью лектрического измерителя влажности Testo 606.

После этого высушенные блоки помещали в пространство между камерами и устанавливали датчики теплового потока и термопары. Как известно, теплопроводность блоков можно определить, зная интенсивность теплового потока, пересекающего образец, температуру поверхности, а также толщину образца.

Продолжительность испытания составила 20 часов для следующих параметров:

а) температура воздуха в теплой камере 40 градусов по Цельсию и относительная влажность 10%;
б) температура воздуха в холодильной камере составляла 20 градусов по Цельсию, а относительная влажность – 10%; и 20 часов для следующих параметров:
c) температура воздуха в теплой камере 40 градусов по Цельсию и относительная влажность 60%;
d) температура воздуха в холодной камере составляла 30 градусов по Цельсию, а относительная влажность – 60 градусов по Цельсию.

Направление теплового потока перпендикулярно поверхности блоков от горячей грани к холодной.

……

3.2. Определение эквивалентной теплопроводности AAC Masonry

. Численное моделирование проводилось с использованием программы ANSYS Workbench 12.0. Характеристики блоков AAC представлены выше.

Для возведения кладочных панелей использовался раствор для стыков типа М5 с теплопроводностью 0,87 Вт / м.К. Было изучено два варианта толщины горизонтальных и вертикальных швов соответственно 3 и 5 мм. Конфигурация кирпичной панели AAC показана на рис.7.

Отмечено отрицательное влияние растворного шва на теплопроводность кладки при увеличении ее толщины и длины. Следовательно, проводимость панели увеличивается с 0,127 до 0,138 Вт / м · К и с 0,152 до 0,163 Вт / м · К с увеличением толщины шва раствора.

4. Определение тепловой инерции каменной кладки AAC

Коэффициент тепловой инерции строительного элемента определяется следующим соотношением:
……

Полученные значения классифицируют стены из кирпичной кладки в элементах зданий со средней термической массой, так как D находится в диапазоне от 4 до 7.

5. Выводы

Экспериментальные измерения, проведенные для блоков из цементобетонной кладки и стен из каменной кладки, показали, что осветил ряд вопросов, касающихся тепловых характеристик материала. Плотность блоков в сухом состоянии (390 кг / м3) и их теплопроводность превосходят характеристики обычных блоков AAC и рекомендуют протестированные блоки для наружных стен с хорошими гигротермическими характеристиками.Определенная плотность сухой кладки стены составляет 440 кг / м3 для строительных швов толщиной 3 мм и 488 кг / м3 для строительных швов толщиной 5 мм, что на 34,8% … 27,75 ниже значений обычных блоков AAC, представленных в таблице. 1 (C 107/0 – 2002).

На теплопроводность стен из кладки из AAC напрямую влияют толщина швов раствора, объем, занимаемый раствором, и теплопроводность раствора. Полученные при численном моделировании значения указывают на то, что испытанные стены из каменной кладки AAC обладают повышенным термическим сопротивлением, поэтому толщина дополнительной теплоизоляции, необходимая для получения минимального общего сопротивления, меньше, чем у обычных наружных стен.

Теплопроводность бетонного блока

Оставьте свои комментарии?

ТЕПЛОВЫЕ ХАРАКТЕРИСТИКИ MASONRY THERMAL…

1 час назад теплопроводность . Однако фактическое тепловое испытание показывает, что невозможно точно предсказать электропроводность кирпичной кладки блок по плотности бетона из-за разнообразия материалов, используемых в бетоне для производства блока ( агрегаты и др.). Теплопроводность теста аналогичной плотности

Размер файла: 858 КБ

Количество страниц: 11

Веб-сайт: Perlite.org