Теплопроводность материала это: Теплопроводность материалов. Как считают? Сравнительная таблица

Содержание

Теплопроводность материалов. Как считают? Сравнительная таблица

Дмитрий Крылов

Эксперт в загородной недвижимости и строительстве. 29 лет прожил в частных домах и живу сейчас

Теплопроводность строительных материалов стала популярной темой в последние годы. Это связано с тем, что люди стали чаще задумываться о том, как сэкономить на отоплении дома зимой, либо сделать их более экологичными (если они отапливаются на угле, мазуте или другом неэкологичном топливе).

Полагаем, многие из вас уже слышали, что одни материалы хорошо проводят тепло, а другие — не очень. Соответственно из одних дома получаются сразу теплыми, а из других — их обязательно нужно утеплять. Но как же все это считают? По каким критериям и формулам? Об этом мы расскажем вам в данной статье.

Коэффициент теплопроводности Лямбда. Что это такое?

Коэффициент λ (лямбда) — это, пожалуй, наиболее важный параметр всех теплоизоляционных материалов. Его значение указывает на то, сколько тепла материал может пропускать через себя. То есть его показатель теплопроводности.

Чем ниже значение коэффициента λ (лямбда), тем меньше проводимость материала и, следовательно, он лучше изолирован от тепловых потерь. Это означает, что при одинаковых условиях больше тепла будет проходить через вещество с большей теплопроводностью.

Как же высчитывается этот коэффициент? Согласно второму закону термодинамики, тепло всегда уходит в область более низкой температуры. Для тела в форме теплопроводного кубоида в стационарных условиях количество передаваемого тепла зависит от вещества, пропорционально поперечному сечению тела, разности температур и времени теплопередачи.

Таким образом формула расчет будет выглядеть так:

Q = λ (S ΔTt / d)

отсюда лямбда:

λ = (Q / t) · (d / S ΔT)

где:

  • λ (лямбда) — коэффициент теплопроводности;
  • ΔQ — количество тепла, протекающего через тело;
  • t — время;
  • L — длина тела;
  • S — площадь поперечного сечения корпуса;
  • ΔT — разность температур в направлении теплопроводности;
  • d — толщина перегородки.

За единицу измерения теплопроводности принимается система СИ — [Вт / (м · К)]. Она выражает количество теплового потока через единицу поверхности материала заданной толщины, если разница температур между двумя его сторонами составляет 1 Кельвин. Измеряют все эти показатели в специальных строительных лабораториях.

От чего зависит теплопроводность?

Итак, как мы уже убедились, коэффициент теплопроводности λ (лямбда) характеризует интенсивность теплопередачи через конкретный материал.

Так, например, наиболее теплопроводными являются металлы, а самыми слабыми — газы. Еще все проводники электричества, такие как медь, алюминий, золото или серебро, также хорошо пропускают через себя тепло, в то время как электрические изоляторы (дерево, пластик, резина) наоборот задерживают его.

Что может повлиять на этот показатель, кроме самого материала? Например, температура. Теплопроводность изоляционных материалов увеличивается с повышением температуры, а у металлов — напротив, уменьшается. Еще может повлиять наличие примесей. Сплавы разнородных металлов обычно имеют более низкую теплопроводность, чем их легирующие элементы.

В целом, теплопроводность веществ зависит, в основном, от их структуры, пористости, и прежде всего от их плотности. Поэтому, если производитель заявляет о низком значении лямбда при низкой плотности материала, — эта информация, как правило, не имеет ничего общего с действительностью и просто рекламный ход.

Значения теплопроводности для различных материалов

Сравнить, насколько тот или иной материал может пропускать тепло, вы можете воспользовавшись данной таблицей:

Материал

Теплопроводность [Вт / (м · К)]

Полиуретановая пена

0,025 — 0,045

Воздух

0,03

Минеральная вата

0,031 — 0,045

Пенополистирол

0,032 — 0,045

Войлок, маты и плиты из минеральной ваты

0,042 — 0,045

Дерево

0,16 — 0,3 (сосна и ель), 0,22 — 0,4 (дуб)

Кирпич

0,15 – 1,31

Портландцемент

0,29

Вода

0,6

Обычный бетон

1 — 1,7

Железобетон

1,7

Стекло

0,8

Армированное стекло

1,15

Полиэфирная смола

0,19

Гипсовая штукатурка

0,4 — 0,57

Мрамор

2,07 – 2,94

Нержавеющая сталь

17

Чугун

50

Применение коэффициента теплопроводности в строительстве

В строительстве действует одно простое правило — коэффициенты теплопроводности изоляционных материалов должны быть как можно ниже. Все потому, что чем меньше значение λ (лямбда), тем меньше можно сделать толщину изоляционного слоя, чтобы обеспечить конкретное значение коэффициента теплопередачи через стены или перегородки.

В настоящее время производители теплоизоляционных материалов (пенополистирол, графитовые плиты или минеральная вата) стремятся минимизировать толщину изделия за счет уменьшения коэффициента λ (лямбда), например, для полистирола он составляет 0,032-0,045 по сравнению с 0,15-1,31 у кирпича.

Что касается строительных материалов, то при их производстве коэффициент теплопроводности не имеет столь большого значения, однако в последние годы наблюдается тенденция к производству строительных материалов с низким показателем λ (например, керамических блоков, структурных изоляционных панелей, блоков из ячеистого бетона). Такие материалы позволяют построить однослойную стену (без утеплителя) или с минимально возможной толщиной утеплительного слоя.

Важно: коэффициент теплопроводности лямбда зависит от плотности материала, поэтому при покупке, к примеру, пенополистирола, обратите внимание на вес продукта. Если вес слишком мал, значит плиты не имеют заявленной теплоизоляции. Добавим, что производитель обязан указывать заявленное значение коэффициента теплопроводности на каждой упаковке.

Какой же строительный материал самый теплый?

В настоящее время это пенополиуретан (ППУ) и его производные, а также минеральная (базальтовая, каменная) вата. Они уже зарекомендовали себя как эффективные теплоизоляторы и сегодня широко применяются в утеплении домов.

Для наглядности о том, насколько эффективны эти материалы, покажем вам следующую иллюстрацию. На ней отображено какой толщины материала достаточно, чтобы удерживать тепло в стене дома:

А как же воздух и газообразные вещества? — спросите вы. Ведь у них коэффициент Лямбда еще меньше? Это верно, Но если мы имеем дело с газами и жидкостями, помимо теплопроводности, здесь надо также учитывать и перемещение тепла внутри них — то есть конвекции (непрерывного движения воздуха, когда более теплый воздух поднимается вверх, а более холодный — опускается).

Подобное явление имеет место в пористых материалах, поэтому они имеют более высокие значения теплопроводности, чем сплошные материалы. Все дело в том, что небольшие частички газа (воздух, углекислый газ) скрываются в пустотах таких материалов. Хотя такое может случится и с другими материалами — в случае если воздушные поры в них будут слишком большими, в них может также начать происходить конвекция.

Разница между теплопроводностью и теплопередачей

Помимо коэффициента теплопроводности Лямбда существует также коэффициент теплопередачи U . Они звучат похоже, но обозначают совершенно разные вещи.

Так, если коэффициент теплопроводности является характеристикой определенного материала, то коэффициент теплопередачи U определяет степень теплоизоляции стены или перегородки. Проще говоря — коэффициент теплопроводности является исходным и напрямую влияет на значение коэффициента теплоотдачи U.

Если вам интересно получить больше информации на эту тему, а также узнать: какими материалами лучше всего утеплить ваш дом, в чем отличия между разными типами утеплителей, мы советуем прочитать эту статью.


Была ли эта статья для вас полезной? Пожалуйста, поделитесь ею в соцсетях:

Не забудьте добавить сайт Недвио в Закладки. Рассказываем о строительстве, ремонте, загородной недвижимости интересно, с пользой и понятным языком.

понятие о термине, единица измерения, коэффициент для разных материалов

При возведении здания строители стараются добиться его энергоэффективности, чтобы условия в помещениях были комфортными. Для этого учитывают теплопроводность строительных материалов. Но, если принято решение самостоятельно заниматься этим процессом, то понадобится изучить все понятия о термине и единице его измерения, чтобы правильно подобрать теплоизоляцию. В связи с тем, что коэффициент теплопроводности разный для материалов, к вопросу нужно подойти ответственно, чтобы избежать ошибки при их выборе.

Содержание

  • 1 Теплопроводность – что это такое
    • 1.1 Коэффициент теплопроводности
    • 1.2 Сопротивление теплопередаче
  • 2 Таблица теплопроводности материалов
    • 2. 1 Строительные материалы
    • 2.2 Теплоизоляционные материалы
    • 2.3 Для чего рассчитывается теплопроводность
  • 3 Как рассчитать толщину стены

Теплопроводность – что это такое

Теплопроводностью называется способность всех видов газов, жидкости или материалов передавать тепло. Это значит, что когда объект нагревается с одной стороны, он трансформируется в теплопроводник, т.к. передает свою энергию дальше. При охлаждении процесс происходит также.

Например, если во время приготовления пищи перемешивать продукты деревянной лопаткой, то изменений в температуре не последует. Но, если для этих целей использовать кухонную утварь из металла, то она быстро нагреется так, что держать ее станет в руке невозможно. Таких примеров теплопроводности привести можно немало.

Объяснение этого с точки зрения физики: тепловая энергия стремится от среды с высокой температурой к среде с низкой температурой. Причем ей требуется время, чтобы пройти через стройматериал. Чем больше его нужно, тем ниже скорость передачи тепла.

Так,

  • теплопроводность кирпича и стали составляет 0,56 и 58Вт/м●К соответственно;
  • древесины – 0,09-0,1;
  • песка – 0,35

Можно заметить, что не все материалы обладают одинаковой теплоэффективностью, это зависит от факторов:

  1. Пористая структура свидетельствует о ее неоднородности и наличии воздуха в порах.
  2. Структура пор – небольшие размеры и их замкнутость приводит к снижению теплового потока.
  3. Плотность – чем она выше, тем больше коэффициент проводимости тепла.
  4. Влажность – негативный фактор, который повышает скорость теплопередачи. Поэтому надо качественно произвести гидроизоляцию сооружения, правильно сделать вентиляцию и использовать влагоустойчивые стройматериалы.

Формула теплопроводности создана с учетом воздействия температуры на это свойство материала. Выглядит она так:

λ=λ0●(1+b●t), где

  • λ0 — коэффициент теплопроводности при 0°С, измеряется который в Вт/м●℃;
  • b – справочная величина температуры;
  • t – непосредственно температура.

Коэффициент теплопроводности

Зачастую в паспорте стройматериалов указан коэффициент теплопроводности – единица измерения которого Вт/(м●℃). Она характеризует любой материал как проводник тепла. В формуле она определяется греческой буквой λ.

Данный коэффициент демонстрирует способность используемого материала передавать тепло на определенную дистанцию за время. При этом показатель определяет именно сырье, а его размеры значения не имеют.

Рассчитать коэффициент теплообмена можно для материала строительного и иного назначения. Например, коэффициент теплоотдачи стали использовать как теплоотвод или теплообменник. Но для больше части стройматериалов ситуация обратная – чем меньше этот показатель для стен, тем меньше тепла здание потеряет зимой.

Сопротивление теплопередаче

Коэффициент теплопередачи – это показатель, характеризующий используемый материал. Но, как показывает практика, лучше оперировать какой-то величиной, которая будет описывать теплопроводные способности определенного сооружения. Иными словами, учитываться должны особенности его строения и параметров.

Термическое сопротивление – это и есть такая величина. Можно считать, что она обратная коэффициенту теплопроводности и учитывающая толщину стройматериала. Для этого показателя существует следующее обозначение – R. Формула при этом выглядит следующим образом:

R = h/λ, где

  • R — сопротивление теплопередаче однослойной однородной ограждающей конструкции, м²•℃/Вт;
  • h — толщина этого слоя в метрах;
  • λ — коэффициент теплопроводности материала конструкции, Вт/(м•℃).

Часто стены сооружают многослойными, один слой при этом – утеплитель с низким коэффициентом теплопроводности. Благодаря такому подходу нужный показатель повышается. Это связано с тем, что надо прибавить все слои сопротивления теплопередаче, из которых состоит ограждающая конструкция. Не стоит забывать и о суммировании приграничных слоев воздуха внутри и снаружи сооружения.

Таблица теплопроводности материалов

Для стен, перекрытий, и полов используют разные материалы, но часто теплопроводность гипсокартона и других строительных материалов сравнивают с кирпичом. Его знают все, поэтому проводить аналогии с ним намного проще. Но для кирпичных стен надо выбрать теплоизоляцию, т.к. они обладают высокой теплопроводностью.

Строительные материалы

Коэффициент теплопроводности строительных материалов указан в таблице. В ней отражены нормативные показатели, демонстрирующие теплоизоляционные свойства.

Строительный материалПлотность, кг/м³Теплопроводность, Вт/м•К
Бетон24001,51
Железобетон25001,69
Керамзитобетон5000,14
18000,66
Пенобетон3000,08
Пеностекло4000,11

Эти значения используют, если надо рассчитать:

  • теплоизоляцию фасадов;
  • общестроительную изоляцию;
  • сколько понадобится изоляционных материалов при устройстве крыши;
  • техническую изоляцию.

Такие простые вычисления уже в начале проектирования позволят определить более подходящие материалы и их количество.

Показатель теплопроводности металлов (железа, алюминия и пр.) тоже имеет значение в строительстве, например, при выборе батареи в помещение. Кроме этого, эти значения пригодятся в процессе сварки ответственных сооружений, производстве полупроводников и изоляторов разного типа. Таблица теплопроводности металлов поможет быстро найти нужное значение.

МеталлКоэффициент теплопроводности при температуре, °C
-1000100300700
Алюминий2,452,382,32,260,9
Бериллий4,12,31,71,250,9
Ванадий0,310,34
Висмут0,110,080,070,110,15
Вольфрам2,051,91,651,451,2
Гафний0,220,21
Железо0,940,760,690,550,34
Золото3,33,13,1
Индий0,25
Иридий1,511,481,43
Кадмий0,960,920,90,950,44
Калий0,990,420,34
Кальций0,98
Кобальт0,69

Таблица теплопроводности воздуха поможет правильно рассчитать показатель теплообмена. Все расчеты зависят от температуры окружающей среды.

Температура, °CТеплопроводность, Вт/м•град
-500,0204
-400,0212
-300,022
-200,0228
-100,0236
00,0244
100,0251
200,0259
300,0267
400,0276
500,0283

Судя по данным из таблицы, с увеличением температуры показатель теплопроводности также растет.

Теплоизоляционные материалы

В основном надо учитывать показатель теплопроводности изоляционных материалов. Важно помнить, что если у металлов он зависит от температуры воздуха, то у утеплителей главную роль играет плотность.  По этой причине в таблице расставлены результаты с учетом плотности используемого материала.

ТеплоизоляцияПлотность, кг/м³Теплопроводность, Вт/м•К
Минеральная вата (базальтовая)500,048
1000,056
2000,07
Стекловата1550,041
2000,044
Пенополистирол400,038
1000,041
1500,5
Пенополистирол экструдированный330,031
Пенополиуретан320,023
400,029
600,035
800,041

Перед тем, как сделать окончательный выбор, надо взять во внимание тот факт, что некоторые из представленных материалов при повышенной влажности значительно лучше проводят тепло.

В случае, когда во время его использования существует вероятность наступления такой ситуации надолго, для расчета надо применять теплопроводность именно для такого состояния.

Для чего рассчитывается теплопроводность

Коэффициент теплопередачи поможет рассчитать без ошибок толщину несущих стен с учетом утеплителей. Процент потери тепла в здании составляет:

  • по 30% через кровлю и стены;
  • 10% — сквозь полы;
  • 20% приходится на окна и двери.

Внимание!

Утечка тепла происходит через несколько ограждающих конструкций в строящемся здании.

Иными словами, при неправильном расчете, жители такого дома будут использовать только 10% тепловой энергии, исходящей от радиаторов отопления.

Как рассчитать толщину стены

Для этого понадобится суммировать коэффициенты теплопроводности всех материалов, которые были использованы при возведении стены. Это неудивительно, т.к. часто этот элемент возводят в несколько слоев. Так, коэффициент теплопроводности кирпича, наружного слоя штукатурки и облицовки надо учесть, как и выравнивающие материалы, используемые для внутренних работ (листы из гипсокартона, плиты, панели и пр.). Показателем воздушной прослойки тоже не стоит пренебрегать.

Существует удельная теплопроводность для каждого региона страны, которую берут за основу вычислений. Важно помнить, что расчетная величина не должна быть больше удельной. В таблице приведены значения по городам, которые рассчитывались с учетом средней температуры и уровня влажности:

Населенный пунктТеплопроводность

Москва

3,14

Санкт-Петербург

3,18

Ростов-на-Дону

2,75

Сочи

2,1

Чем южнее, тем показатель должен быть меньше. Следовательно, толщину стены можно уменьшить.

Определение теплопроводности стройматериалов — важный этап при возведении зданий. Благодаря ему в помещении можно обеспечить комфортные условия проживания: зимой в нем не будет холодно, а летом — жарко. Поэтому пренебрегать им не стоит. Кроме этого, нужно знать, от чего зависит теплопроводность.

Теплопроводность основных строительных материалов

Когда имеется в виду теплопроводность строительных материалов, подразумевают характеристику тела, выраженную в цифрах, о способности проводить тепло. Чтобы проводить сравнение показателей расчетов во время строительства, была разработана специальная таблица теплопроводности. Согласно ее данным можно подобрать нужную прочность материала, определить паропроницаемость основной массы строительных материалов.

Схема теплопроводности и толщины материалов.

Важные сведения о теплопроводности

Процесс перехода тепла, происходящий между молекулами однородного тела, обладающими различной температурой, называется теплопроводностью строительных материалов. В рамках данного процесса мельчайшие частицы, из которых состоит тело, активно обмениваются энергией атомов. При этом атомы тела начинают быстро и хаотично двигаться. Такому тепловому обмену подвержено любое физическое тело, в котором имеет место неодинаковое распределение температуры. Механизм теплопроводности во многом зависит от состояния вещества в конкретный момент.

Каждое вещество по-разному проводит тепло. Для измерения был введен коэффициент, который показывает величину удельной теплопроводности. Цифровое выражение этой характеристики соответствует количеству тепла, проходящему через материал толщиной в 1 м.

Таблица теплопроводности утеплителей.

Несколько десятилетий назад ученые считали, что передача тепловой энергии зависит от перехода тепла из одного тела в другое. Проведенные исследования опровергли это мнение. Сегодня теплопроводность представляет собой естественное желание объектов получить термодинамическое равновесие. Это происходит после выравнивания температуры тела.

Строительные материалы с высокой пористостью отличаются низкой теплопроводностью. Ее нельзя сравнивать с теплопроводностью, которой обладают строительные материалы высокой плотности. Тепловой поток данных материалов движется сквозь поры, которые заполнены воздухом. Благодаря низкой воздушной теплопроводности возникает мощное сопротивление направленному движению тепла. Когда пористость материалов одинакова, теплопроводность будет ниже у материала, имеющего самый маленький диаметр пор. Если поры имеют большие размеры, передача тепла происходит за счет конвекции. Передвижение теплоты ускоряется, если имеются сообщающиеся большие поры.

Когда проводится проектирование теплоизоляции, необходимо помнить, что, если будет иметь место повышенная влажность, теплопроводность самих строительных материалов увеличивается в разы. Это связано с тем, что поры, в которые попала вода, намного лучше пропускают тепло.

Влияет на теплопроводность структура материала. Направление волокон материала делает теплопроводность различной. Например, у дерева, имеющего волокна, расположенные вдоль, термическое сопротивление намного меньше, чем у древесины, у которой волокна расположены поперек. Следовательно, теплопроводность паркетного пола сильно уступает такому же показателю пола, сделанному из другого дерева.

Схема сравнения теплопроводности стен из газобетона и кирпича.

Такую зависимость нужно учесть, когда применяются слоистые материалы.

Сегодня можно смело утверждать, что теплопроводность — одно из важнейших качеств строительных материалов, которые применяются для строительства:

  • стен;
  • перекрытий;
  • изоляции;
  • холодильников;
  • котлов.

От правильного использования теплоизоляционных материалов, из которых делаются ограждающие конструкции, во многом зависят денежные расходы при оплате отопления зимой.

Вернуться к оглавлению

Значение коэффициента теплопроводности строительных материалов

Он равен количеству теплоты, которое проходит сквозь материал, имеющий толщину 1 м, в течение одного часа. Причем температура может отличаться на противоположных сторонах только на один градус. Сам параметр измеряется в ваттах.

Применение такого параметра было вызвано требованиями правильного выбора фасада, чтобы получить максимальную теплоизоляцию. Только соблюдение этого условия позволит чувствовать себя комфортно жильцам здания. Кроме того, данный аспект помогает выбрать вещество для дополнительного утепления здания. Ошибки расчета в данном случае недопустимы, так как может произойти сдвиг точки росы, стены начнут мокнуть. В таком доме всегда холодно, он полон сырости.

В основном теплопроводность — это показатель степени теплоизоляции. Конечно, ее можно считать важнейшим параметром во время строительства. Именно данный параметр помогает построить дом теплым и уютным.

Использование коэффициента теплопроводности имеет под собой веские основания. Сегодня наиболее актуальной является проблема сохранения тепла помещений, строящихся зданий. Разговор касается самой обычной экономии.

Ведь для сохранения нормальной температуры жилого здания требуется много топлива.

При плохой теплоизоляции топлива потребуется намного больше.

Вернуться к оглавлению

Теплопроводность современных строительных материалов

Свойства и классификация современных строительных материалов.

Совсем недавно лучшие теплоизоляционные параметры имели деревянные дома. К примеру, сосна имеет коэффициент теплопроводности 0,18 Вт/м* К. Однако на данный показатель могут оказать влияние самые разные нюансы. Очень важна при этом величина плотности древесины, показатель влажности. Поэтому, когда строится дом из бревен, их предварительно подвергают специальной подготовке.

Всякая древесина обладает индивидуальными характеристиками теплопроводности. Например, сосновый брус сделает дом весьма теплым, зато осина не подходит для возведения дома.

Новейшие технологии помогли получить новейший материал, получивший название газосиликат. Он состоит из бетонной основы, куда была добавлена алюминиевая пудра. В результате получилась пористая структура. Воздушные камеры намного увеличивают значение коэффициента теплопроводности. У газосиликата он превзошел показатель древесины и достиг 0,12 Вт/м* К, при плотности материала около 500 кг/м³. Более низкая теплопроводность у пенобетона — 0,38 Вт/м* К.

Однако даже при такой разнице стоимость газосиликата намного выше стоимости пенобетона. В связи с этим пенобетон получил большую популярность.

Классическим материалом при строительстве зданий является кирпич. За счет огромного многообразия этого материала, разных форм и габаритов, теплопроводность также имеет различные показатели.

Таблица теплопроводности утеплителей.

При выборе конкретного вида материалов нужно обязательно учитывать, как будет эксплуатироваться здание, какой климат в месте расположения дома. Эти параметры будут являться главными характеристиками, когда проводится анализ данных строительных материалов. Важнейшим считается коэффициент теплопроводности.

Когда строятся архитектурные здания, запрещается иметь большую теплопроводность строительного материала. Чем выше показатель теплопроводности, тем хуже теплоизоляционные свойства материала. Именно они поддерживают определенную температуру в помещении.

Когда строительные материалы имеют низкую теплопроводность, в помещении сохраняется комнатная температура, независимо от погоды за окном. Это происходит из-за появления диффузии между частицами, имеющими разную температуру.

Вернуться к оглавлению

Как на практике применяется низкая теплопроводность?

Новейшие технологии изготовления теплоизолирующих материалов открывают много возможностей для работы строительной индустрии. Совсем необязательно в наше время иметь дома, у которых стены отличаются большим значением толщины. Чтобы здание стало энергоэффективным, можно при строительстве совмещать различные виды материалов.

http://ostroymaterialah.ru/www.youtube.com/watch?v=iTAN9cIP7Ns

Кирпич отличается низкой теплопроводностью. Для компенсации применяют дополнительный утеплитель. С этой целью часто используют пенополистирол. Данный материал обладает коэффициентом теплопроводности, равным 0,03 Вт/м град.

Сегодня вместо очень дорогостоящих кирпичных домов, имеющих низкую эффективность энергосбережения, различных видов каркасного строительства, монолитных зданий, стены которых делаются из тяжелого бетона, воздвигаются здания с применением ячеистого бетона. Технологические характеристики этого материала аналогичны параметрам древесины.

http://ostroymaterialah.ru/www.youtube.com/watch?v=IkBtZSqC6Nc

Дом из такого материала никогда не имеет промерзших стен, даже когда на улице лютые морозы.

Теплопроводность строительных материалов. Основные показатели

Ни для кого не секрет, что каждый материал обладает своими исключительными качествами. Одним из таких является теплопроводность.
Давайте рассмотрим пример того какой должна быть толщина стенки из разных материалов в помещении для обеспечения пригодной для жизни температуры в 18 градусов Цельсия, когда на улице мороз -26 градусов.
Если строить из пустотелого кирпича, вам придется возвести стенку толщиной в 51 сантиметр, из керамзитобетона – 30 сантиметров, стенка из древесины может не превышать 15 см, а бетонная с применением утеплителя и вовсе может едва достигать 14 см. Почему это так? Каждый из этих материалов обладает своей теплопроводностью.
Как мы видим, очень важно определиться с проектом на начальных этапах строительства, дабы не попасть впросак. Чем точнее данные – тем выше вероятность качественного расчета и выбора строительных материалов. Чтобы определиться с сырьем и не ошибиться – воспользуйтесь данными ниже. Эквивалентная теплопроводность строительных материалов:

  • пенополиуретан — 80
  • пенополистирол — 160
  • минвата — 200
  • дерево — 548
  • керамзит — 640
  • газобетон — 800
  • кирпич — 1520
  • гранит — 2500
  • бетон — 3440

Теплопроводность – что это

Сам термин «теплопроводность» определяет передачу энергии тепловой от предметов с более высокой температурой – предметам с более низкой. Сам теплообмен осуществляется до тех пор, пока температура обоих предметов не станет одинаковой. Чтобы обозначить энергию тепловую был создан коэффициент теплопроводности, применяемый для строительных материалов. Этот параметр дает четкое понимание того, какое количество энергии тепловой проходит в единицу времени через единицу площади. Чем выше этот показатель – тем лучше теплообмен. Чем меньше теплопроводность материал – тем более он пригоден для строительства жилых и отапливаемых помещений. Согласно строительным нормам толщина стен, препятствующая теплопотерям в зданиях должна соответствовать:

  1. Кирпич — 210 см
  2. Керамзитобетон — 90 см
  3. Дерево — 53 см
  4. Газобетон — 44 см
  5. Минеральная вата — 18 см
  6. Пенополистерол — 12 см

Теплопроводный коэффициент характеризуется показателем количества теплоты, проходящего сквозь метр толщины материала в единицу времени, равную 60 минут. При создании лучшей теплоизоляции профессионалы рекомендуют использовать эту характеристику в обязательном порядке. Также на нее стоит обратить внимание при необходимости подобрать дополнительные утепляющие материалы и конструкции.
Рассмотрим соотношение материала и коэффициента теплопроводности, измеренного в Ваттах на метр квадратный Кельвин:

алюминий
асбест
асфальтобетон
асбесто-цементные плиты
бетон, желоззобетон
битум
бронза
винипласт
вода при температурі вище 0
войлок шерстяной
гипсокартон
гранит
древесина из дуба, волокна размещены вдоль
древесина из дуба, волокна размещены поперек
древесина из сосны или ели, волокна размещены вдоль
древесина из сосны или ели, волокна размещены поперек
до 221 Вт/м2
0,151 Вт/м2*К
1,05 Вт/м2*К
0,35 Вт/м2*К
до 1,51 Вт/м2*К
0,27 Вт/м2*К
64 Вт/м2
0,163 Вт/м2*К
0,6 Вт/м2*К
0,047 Вт/м2*К
0,15 Вт/м2*К
3,49 Вт/м2*К
0,23 Вт/м2*К
0,1 Вт/м2*К
0,18 Вт/м2*К
до 0,15 Вт/м2*К
плита древесно-стружечная или плита ориентировано-стружечная
железобетон
Картон используемый для облицовки
Керамзит, плотность 200кг / м3
Керамзит, плотность 800кг / м3
Керамзитобетон, плотность 500кг / м3
Керамзитобетон, плотность 1800кг / м3
Кирпич керамический, пустотелый брутто 1000, плотность 1200кг / м3
Кирпич керамический, пустотелый брутто брутто 1400, плотность 1600кг / м3
Кирпич красный глиняный
Кирпич силикатный
Кладка из изоляционного кирпича
Кладка из обыкновенного кирпича
Кладка из огнеупорного кирпича
Краска масляная
0,15 Вт / м2К
1,69 Вт / м2К
0,18 Вт / м2К
0,1 Вт / м2К
0,18 Вт / м2К
0,14 Вт / м2К
0,66 Вт / м2К
0,35 Вт / м2К
0,41 Вт / м2К
0,56 Вт / м2К
0,7 Вт / м2К
до 0,209 Вт / м2К
до 0,814 Вт / м2К
1,05 Вт / м2К
0,233 Вт / м2К

Факторы, влияющие на теплопроводность

На каждую характеристику имеют влияние ряд факторов. Не исключением является и теплопроводность. Какие же факторы оказывают значительное влияние?

  1. Пористость поверхности. Неоднородность структуры, благотворно сказывается на теплопроводности. При прохождении через материалы такого рода большая часть тепловой энергии сохраняется.
  2. Плотность.Этот показатель влияет на пересечение частиц и более тесные контакты между ними. В свою очередь это увеличивает теплообменные процессы.
  3. Влажность.Чем выше данный фактор влияния — тем выше теплопроводность.

Рассмотрим подробнее каждый из популярных материалов для строительства по характеристикам

Дерево
  • Плотность, кг / м3: 500
  • Коэффициент теплопроводности, Вт / М°С: 0,14
  • Рекомендуемая толщина стены для средней полосы, м: не менее 0,5
Щелевой кирпич
  • Плотность, кг/м3: 1400-1700
  • Коэффициент теплопроводности, Вт / М°с: 0,5
  • Механопрочность, кгс / см2: 100-200
  • Влагопоглощение, % массы: 12-18
  • Морозоустойчивость, циклы: 100
  • Рекомендуемая толщина стены для средней полосы, м: не менее 1,2
Поризований блок
  • Плотность, кг/м3: 400-1000
  • Коэффициент теплопроводности, Вт/М°с: 0,18-0,28
  • Механопрочность, кгс/см2: 100-150
  • Влагопоглощение, % массы: 10-16
  • Морозоустойчивость, циклы: 100
  • Рекомендуемая толщина стены для средней полосы, м: не менее 0,6
Керамзитобетон
  • Плотность, кг / м3: 850-1800
  • Коэффициент теплопроводности, Вт / М°с: 0,4-0,8
  • Механопрочность, кгс / см2: 35-75
  • Вологопоглинання, % маси: 0
  • Морозоустойчивость, циклы: від 50
  • Рекомендуемая толщина стены для средней полосы, м: не менее 0,6
Пінобетон
  • Плотность, кг / м3: 600-1000
  • Коэффициент теплопроводности, Вт / М°с: 0,14-0,22
  • Механопрочность, кгс / см2: 15-25
  • Влагопоглощение, % массы: 10-16
  • Морозоустойчивость, циклы: від 35
  • Рекомендуемая толщина стены для средней полосы, м: не менее 1
Газобетон
  • Плотность, кг / м3: 300-600
  • Коэффициент теплопроводности, Вт / М°с: 0,08-0,14
  • Механопрочность, кгс / см2: 25-50
  • Влагопоглощение, % массы: 25
  • Морозоустойчивость, циклы: від 50
  • Рекомендуемая толщина стены для средней полосы, м: не менее 0,4

Коэффициент теплопроводности и его практическое применение.

Материалы, зачастую, различают по теплоизоляционным и конструкционным характеристикам. Чем выше показатели конструкционных характеристик, тем более пригодны эти материалы для построения стен, ограждений, перекрытий.
Используя данные описанные выше, гораздо проще будет определить возможности теплообмена каждого из материалов. Чем ниже этот показатель – тем тоньше должна быть постройка. Если использования материалов с высоким коэффициентом теплоотдачи не избежать – рекомендуется применять дополнительные утепляющие и изолирующие компоненты.

Утепление построек. Способы утепления. Виды утеплителей. Теплопроводность материалов для строительства, основные показатели

Ни для кого не секрет, что каждый материал обладает своими исключительными качествами. Одним из таких является теплопроводность.
Давайте рассмотрим пример того какой должна быть толщина стенки из разных материалов в помещении для обеспечения пригодной для жизни температуры в 18 градусов Цельсия, когда на улице мороз -26 градусов.
Если строить из пустотелого кирпича, вам придется возвести стенку толщиной в 51 сантиметр, из керамзитобетона – 30 сантиметров, стенка из древесины может не превышать 15 см, а бетонная с применением утеплителя и вовсе может едва достигать 14 см. Почему это так? Каждый из этих материалов обладает своей теплопроводностью.
Как мы видим, очень важно определиться с проектом на начальных этапах строительства, дабы не попасть впросак. Чем точнее данные – тем выше вероятность качественного расчета и выбора строительных материалов. Чтобы определиться с сырьем и не ошибиться – воспользуйтесь данными ниже. Эквивалентная теплопроводность строительных материалов:

  • пенополиуретан — 80
  • пенополистирол — 160
  • минвата — 200
  • дерево — 548
  • керамзит — 640
  • газобетон — 800
  • кирпич — 1520
  • гранит — 2500
  • бетон — 3440

Теплопроводность – что это

Сам термин «теплопроводность» определяет передачу энергии тепловой от предметов с более высокой температурой – предметам с более низкой. Сам теплообмен осуществляется до тех пор, пока температура обоих предметов не станет одинаковой. Чтобы обозначить энергию тепловую был создан коэффициент теплопроводности, применяемый для строительных материалов. Этот параметр дает четкое понимание того, какое количество энергии тепловой проходит в единицу времени через единицу площади. Чем выше этот показатель – тем лучше теплообмен. Чем меньше теплопроводность материал – тем более он пригоден для строительства жилых и отапливаемых помещений. Согласно строительным нормам толщина стен, препятствующая теплопотерям в зданиях должна соответствовать:

  1. Кирпич — 210 см
  2. Керамзитобетон — 90 см
  3. Дерево — 53 см
  4. Газобетон — 44 см
  5. Минеральная вата — 18 см
  6. Пенополистерол — 12 см

Теплопроводный коэффициент характеризуется показателем количества теплоты, проходящего сквозь метр толщины материала в единицу времени, равную 60 минут. При создании лучшей теплоизоляции профессионалы рекомендуют использовать эту характеристику в обязательном порядке. Также на нее стоит обратить внимание при необходимости подобрать дополнительные утепляющие материалы и конструкции.
Рассмотрим соотношение материала и коэффициента теплопроводности, измеренного в Ваттах на метр квадратный Кельвин:

Факторы, влияющие на теплопроводностьНа каждую характеристику имеют влияние ряд факторов. Не исключением является и теплопроводность. Какие же факторы оказывают значительное влияние?

  • Пористость поверхности. Неоднородность структуры, благотворно сказывается на теплопроводности. При прохождении через материалы такого рода большая часть тепловой энергии сохраняется.
  • Плотность. Этот показатель влияет на пересечение частиц и более тесные контакты между ними. В свою очередь это увеличивает теплообменные процессы.
  • Влажность. Чем выше данный фактор влияния — тем выше теплопроводность.

Рассмотрим подробнее каждый из популярных материалов для строительства по характеристикамКоэффициент теплопроводности и его практическое применение. Материалы, зачастую, различают по теплоизоляционным и конструкционным характеристикам. Чем выше показатели конструкционных характеристик, тем более пригодны эти материалы для построения стен, ограждений, перекрытий.
Используя данные описанные выше, гораздо проще будет определить возможности теплообмена каждого из материалов. Чем ниже этот показатель – тем тоньше должна быть постройка. Если использования материалов с высоким коэффициентом теплоотдачи не избежать – рекомендуется применять дополнительные утепляющие и изолирующие компоненты.
Если проект создается впервые гораздо проще предусмотреть все возможные теплопотери. Но если здание уже построено и планируется ремонт – первое на что стоит обратить внимание – утечки тепла через проемы, двери, щели в полу и стенах. Если этому моменту уделить недостаточно внимания – придется довольствоваться отопительными приборами и обогревать улицу.
Обратите внимание, что если при строительстве здания были использованы стандартные материалы, такие как камень, бетон или кирпич – утепление дополнительными элементами является обязательным.
Здания, построенные на основе деревянного каркаса, тоже нуждаются в утеплении и теплоизоляции. Для этого утеплитель следует расположить непосредственно в пространстве между панелями.
Здания, построенные из шлакоблоков или кирпича, обычно утепляются с наружной стороны.
Чтобы четко выбрать качественный утеплитель следует обратить внимание на ряд факторов:

  • Влияние повышенных температур
  • Тип сооружения
  • Уровень влажности

Кроме того, не лишним будет учесть параметры утепляющих конструкций, а именно:

  • Влагопоглощение Важно учитывать для наружных видов утеплений.
  • Горючесть. Если материал высокого качества – горение не должно поддерживаться.
  • Безопасность
  • Теплопроводность. Этот показатель создает общее влияние на весь процесс теплоизоляции.
  • Толщина утеплителя. Особенно важна при использовании его внутри помещения. Чем тоньше утеплитель – тем больше полезной площади сохраняется для использования.
  • Термоустойчивость. Чем выше этот фактор, тем большие перепады температур способен выдержать утеплитель.
  • Звукоизоляция. Дает дополнительную защиту от шума.

Виды утеплителей:

  • Минеральная вата. Материал с низкой теплопроводностью, экологичен, не подвергается горению.
  • Пенопласт. Высокие утеплительные качества, легкий, влагоустойчивый, простой в монтаже. В основном применяют для нежилых и коммерческих помещений.
  • Базальтовая вата. По своим характеристикам схожа с минеральной, но имеет улучшенные показатели устойчивости к влаге.
  • Пеноплэкс. Относительно новый материал с хорошими показателями теплопроводности. Достаточно просто устанавливается, отличается высокой устойчивостью к влаге, повышению температур и огню, служит долгие годы.
  • Пенополиуретан. Приметен высокой пожаробезопасностью и водоотталкивающими качествами.
  • Пенополистирол экструдированный. Имеет хорошую обработку, равномерную структуру.
  • Пенофол. Это полиэтилен вспененный, состоит из большого количества слоев. Отличается высокими теплоизоляционными характеристиками, покрыт фольгой для лучшего отражения.

Иногда теплоизоляцию обеспечивают при помощи сыпучих видов материалов. В основном, это перлит или гранулы бумажные. Отличаются хорошей стойкостью к возгоранию и влаге. Реже применяются покрытие пробковое, древесное волокно и лен.
При выборе теплоизолирующих материалов обязательно обращайте внимание на экологичность, и способность противостоять возгоранию. Совет: При рассмотрении теплоизолирования помещения отдельное внимание следует уделить гидроизоляции. Ее наличие позволит уменьшить теплопотери и не допустить высокую влажность в помещение.Сравнительные характеристики теплопроводностей и других показателей некоторых материалов, применяемых в строительствеРазобраться с некоторыми показателями поможет точное описание для некоторых наиболее применяемых материалов.

  • Железобетон – применяемый в расчетах теплопроводности коэффициент 2,04 Вт/(м°С)
  • Бетон на гравии или щебне из природного камня – применяемый в расчетах теплопроводности коэффициент 1,86 Вт/(м°С)
  • Керамзитобетон – применяемый в расчетах теплопроводности коэффициент 0,92 Вт/(м°С)
  • Кирпичная кладка из сплошного кирпича глиняного обыкновенного (ГОСТ 53080) на цементно-песчаном растворе – применяемый в расчетах теплопроводности коэффициент 0,81 Вт/(м°С)
  • Кирпичная кладка из керамического пустотного кирпича плотностью 1400 кг/м3 (брутто) на цементно-песчаном растворе – применяемый в расчетах теплопроводности коэффициент 0,64 Вт/(м°С)
  • Кирпичная кладка из керамического пустотного кирпича плотностью 1300 кг/м3 (брутто) на цементно-песчаном растворе – применяемый в расчетах теплопроводности коэффициент 0,58 Вт/(м°С)
  • Кирпичная кладка из силикатного кирпича на цементно-песчаном растворе – применяемый в расчетах теплопроводности коэффициент 0,87 Вт/(м°С)
  • Пенополистирол – применяемый в расчетах теплопроводности коэффициент 0,05 Вт/(м°С)
  • Плиты минераловатные – применяемый в расчетах теплопроводности коэффициент 0,055 Вт/(м°С)

Чтобы рассчитать все самостоятельно следует толщину прослойки теплоизолятора разделить на теплопроводности коэффициент. Иногда это значение можно встретить на упаковке изоляции. А для дома материалы следует измерить самостоятельно, это касаемо толщины. Коэффициенты же доступны в таблицах.
Вот так просто выбрать и приобрести качественный материал и быть уверенным в том, что он соответствует всем желаемым требованиям.

алюминий
асбест
асфальтобетон
асбесто-цементные плиты
бетон, железобетон
битум
бронза
винипласт
Вода при температуре више 0
Войлок шерстяной
гипсокартон
гранит
древесина из дуба, волокна размещены вдоль
древесина из дуба, волокна размещены поперек
древесина из сосны или ели, волокна размещены вдоль
древесина из сосны или ели, волокна размещены поперек
до 221 Вт/м2
0,151 Вт/м2К
1,05 Вт/м2К
0,35 Вт/м2К
до 1,51 Вт/м2К
0,27 Вт/м2К
64 Вт/м2
0,163 Вт/м2К
0,6 Вт/м2К
0,047 Вт/м2К
0,15 Вт/м2К
3,49 Вт/м2К
0,23 Вт/м2К
0,1 Вт/м2К
0,18 Вт/м2К
до 0,15 Вт/м2К
плита древесно-стружечная или плита ориентировано-стружечная
железобен
картон используемый для облицовки
керамзит, плотность 200кг/м3
керамзит, плотность 800кг/м3
керамзитобетон, плотность 500кг/м3
керамзитобетон, плотность 1800кг/м3
кирпич керамический, пустотелый брутто 1000, плотность 1200кг/м3
кирпич керамический, пустотелый брутто 1400, плотность 1600кг/м3
кирпич красный глиняный
кирпич силикатный
Кладка из изоляционного кирпича
Кладка из обыкновенного кирпича
Кладка из огнеупорного кирпича
Краска масляная
0,15 Вт/м2К
1,69 Вт/м2К
0,18 Вт/м2К
0,1 Вт/м2К
0,18 Вт/м2К
0,14 Вт/м2К
0,66 Вт/м2К
0,35 Вт/м2К
0,41 Вт/м2К
0,56 Вт/м2К
0,7 Вт/м2К
до 0,209 Вт/м2К
до 0,814 Вт/м2К
1,05 Вт/м2К
0,233 Вт/м2К
Дерево
  • Плотность, кг/м3: 500
  • Коэффициент теплопроводности, Вт/М°с: 0,14
  • Рекомендуемая толщина стены для средней полосы, м: не менее 0,5
Щелевой цегла
  • Плотность, кг/м3: 1400-1700
  • Коэффициент теплопроводности, Вт/М°с: 0,5
  • Механопрочность, кгс/см2: 100-200
  • Вологопоглинання,% маси: 12-18
  • Морозоустойчивость, циклы: 100
  • Рекомендуемая толщина стены для средней полосы, м: не менее 1,2
Поризованный блок
  • Плотность, кг / м3: 400-1000
  • Коэффициент теплопроводности, Вт/М°с: 0,18-0,28
  • Механопрочность, кгс / см2: 100-150
  • Влагопоглощение, % масcы: 10-16
  • Морозоустойчивость, циклы: 100
  • Рекомендуемая толщина стены для средней полосы, м: не менее 0,6
Керамзитобетон
  • Плотность, кг/м3: 850-1800
  • Коэффициент теплопроводности, Вт/М°с: 0,4-0,8
  • Механопрочность, кгс/см2: 35-75
  • Влагопоглощение, % масcы: 0
  • Морозоустойчивость, циклы: від 50
  • Рекомендуемая толщина стены для средней полосы, м: не менее 0,6
Пенобетон
  • Плотность, кг/м3: 600-1000
  • Коэффициент теплопроводности, Вт/М°с: 0,14-0,22
  • Механопрочность, кгс/см2: 15-25
  • Влагопоглощение, % масcы: 10-16
  • Морозоустойчивость, циклы: від 35
  • Рекомендуемая толщина стены для средней полосы, м: не менее 1
Газобетон
  • Плотность, кг/м3: 300-600
  • Коэффициент теплопроводности, Вт/М°с: 0,08-0,14
  • Механопрочность, кгс/см2: 25-50
  • Влагопоглощение, % масcы: 25
  • Морозоустойчивость, циклы: від 50
  • Рекомендуемая толщина стены для средней полосы, м: не менее 0,4

Теплопроводность строительных материалов, что это, таблица

Что такое теплопроводность?

Теплопроводность – это процесс передачи энергии тепла от нагретых частей помещения к менее теплым. Такой обмен энергией будет происходить, пока температура не уравновесится. Применяя это правило к ограждающим системам дома, можно понять, что процесс теплопередачи определяется промежутком времени, за который происходит выравнивание температуры в комнатах с окружающей средой. Чем это время больше, тем теплопроводность материала, применяемого при строительстве, ниже.

Отсутствие теплоизоляции дома скажется на температуре воздуха внутри помещения

Для характеристики проводимости тепла материалами используют такое понятие, как коэффициент теплопроводности. Он показывает, какое количество тепла за одну единицу временного промежутка пройдет через одну единицу площади поверхности. Чем выше подобный показатель, тем сильнее теплообмен, значит, постройка будет остывать значительно быстрее. То есть при сооружении зданий, домов и прочих помещений необходимо использовать материалы, проводимость тепла которых минимальна.

Сравнительные характеристики теплопроводности и термического сопротивления стен, возведенных из кирпича и газобетонных блоков

Влияние теплопроводности на микроклимат внутри помещения

Среди большого разнообразия материалов бетонный массив считается достаточно популярным. Его ключевым свойством считается степень теплопередачи. Чтобы избежать непредвиденных теплопотерь, нужно учитывать это значение еще при составлении проекта теплоизоляции. В таком случае постройка будет как надежной и долговечной, так и комфортной для пребывания.

Если определить коэффициент теплопроводности бетона и найти подходящие материалы теплоизоляции, это позволит получить такие преимущества:

  • снизить затраты тепловой энергии;
  • уменьшить расходы на отопление;
  • организовать в помещении комфортный микроклимат.

Зависимость микроклимата в доме от степени теплопередачи объясняется следующими особенностями:

  1. По мере роста значений увеличивается интенсивность подачи тепла. В результате помещение быстрее остывает, но так же быстрее прогревается.
  2. Если теплопередача снижается, тепло долго удерживается внутри здания и не выходит наружу.

В результате степень проводимости тепловой энергии становится ключевым фактором, определяющим комфорт пребывания в доме. В зависимости от особенностей материала, он может обладать разной структурой и свойствами, а также теплопроводностью. Перед выбором блоков нужно внимательно изучить их эксплуатационные свойства и подготовить грамотный проект.

Значение в быту и производстве

Применение теплопроводности при строительстве


У каждого материала имеется свой показатель теплопроводности. Чем ее значение ниже, тем, соответственно ниже уровень теплообмена между внешней и внутренней средой. Это означает то, что в здании, сооруженном из материала с низкой теплопроводностью, зимой будет тепло, а летом прохладно.

Тепловые потери по швам панельного дома

При сооружении различных зданий, в том числе и жилые здания, без знаний о теплопроводности стройматериалов не обойтись. При проектировании строительных сооружений необходимо учитывать данные о свойствах таких материалов как – бетон, стекло, минеральная вата и многих других. Среди них предельная теплопроводность принадлежит бетону, между тем, у древесины она в 6 раз меньше.

Системы отопления


Ключевая задача любой отопительной системы – это перенос тепловой энергии от теплоносителя в помещения. Для такого обогрева применяют батареи или радиаторы отопления. Они необходимы для передачи тепловой энергии в помещения.

  • Радиатор отопления – это конструкция внутри, которой перемещается теплоноситель. К основным характеристикам этого изделия относят:материал, из которого оно изготовлено;
  • вид конструкции;
  • размеры, в том числе и количество секций;
  • показатели теплоотдачи.

Именно теплоотдача и есть ключевой параметр. Все дело в том, что определяет объем энергии, которое передается от радиатора в помещение. Чем больше этот показатель, тем ниже будут потери тепла.Существуют справочные таблицы, определяющие материалы, оптимальные для использования в отопительных системах. Из данных, которые в них размещены, становится ясно, что самым эффективным материалом считается медь. Но, вследствие ее высокой цены и определенных технологических сложностей, связанных с обработкой меди их применяемость не так высока.

Биметаллический радиатор

Именно поэтому все чаще применяют модели, изготовленные из стальных или алюминиевых сплавов. Нередко применяют и сочетание различных материалов, например, стали и алюминия.Каждый изготовитель радиаторов, при маркировке готовых изделий должен указывать такую характеристику, как мощность тепловой отдачи.На рынке отопительных систем можно приобрести радиаторы, изготовленные из чугуна, стали, алюминия и биметалла.

Допустимые значения

Выполняя теплотехнический расчет наружной стены, учитывают также и регион, в котором будет располагаться дом:

  • Для южных регионов с теплыми зимами и небольшими перепадами температур можно возводить стены небольшой толщины из материалов со средней степенью теплопроводности – керамический и глиняный обожженный одинарный и двойной, кирпич, пено- и газобетон большой плотности. Толщина стен для таких регионов может быть не более 20 см.
  • В то же самое время для северных регионов целесообразнее и экономически выгоднее строить ограждающие стеновые конструкции средней и большой толщины из материалов с большим термическим сопротивлением – оцилиндрованное бревно, газо- и пенобетон средней плотности. Для таких условий возводят стеновые конструкции толщиной до 50–60 см.
  • Для регионов с умеренным климатом и чередующимися по температурному режиму зимами подходят стены из материалов с высоким и средним значением термического сопротивления – газо- и пенобетон, брус, оцилиндрованное бревно среднего диаметра. В таких условиях толщина стеновых ограждающих конструкций с учетом утеплителей составляет не более 40–45 см.

Калькулятор расчёта толщины стены по теплопроводности

На практике подобные данные применяют часто и не только профессиональными проектировщиками. Нет ни одного закона, запрещающего самостоятельно создавать проект своего будущего дома. Главное, чтобы тот соответствовал всем нормативам и СНиПам. Чтобы рассчитать теплопроводность стены, можно воспользоваться специальным калькулятором. Подобное «чудо прогресса» можно как установить к себе на компьютер в качестве приложения, так и воспользоваться услугой онлайн.

Окно расчёта калькулятора

В нём нет премудростей. Просто выбираешь необходимые данные и получаешь готовый результат.

Расчёт толщины стен с использованием глиняного обыкновенного кирпича на цементно-песчаном растворе

Существуют и более сложные калькуляторы расчёта, где учитываются все слои стен, пример подобного расчётного «механизма» показан на фото ниже.

Расчёт проводимости тепла всех прослоек стен

Конечно, теплоэффективность будущего здания – это вопрос, требующий пристального внимания. Ведь от него зависит, насколько тепло будет в доме и насколько экономно будет его отапливать. Для каждого климатического региона существуют свои нормы коэффициентов теплопроводности ограждающих конструкций. Можно рассчитать самостоятельно теплоэффективность, но если возникают проблемы, лучше обратиться за помощью к специалистам.

Предыдущая Строительные материалыИз чего делают цемент: от теории к практике
Следующая Строительные материалыКрепкий пол в каждый дом: ламинат или линолеум – что лучше

Стройматериалы для наружных стен

Стены сегодня возводятся из разных материалов, однако популярнейшими остаются: дерево, кирпич и строительные блоки. Главным образом отличаются плотность и проводимость тепла стройматериалов. Сравнительный анализ позволяет найти золотую середину в соотношении между этими параметрами. Чем плотность больше, тем больше несущая способность материала, а значит, всего сооружения. Но тепловое сопротивление становится меньше, то есть повышаются расходы на энергоносители. Обычно при меньшей плотности есть пористость.

Коэффициент теплопроводности и его плотность.

Таблица теплопроводности теплоизоляционных материалов

Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше  (а лучше — хоть немного больше) рекомендованной для вашего региона.

Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций

При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

 В сухом состоянииПри нормальной влажностиПри повышенной влажности
Войлок шерстяной0,036-0,0410,038-0,0440,044-0,050
Каменная минеральная вата 25-50 кг/м30,0360,0420,,045
Каменная минеральная вата 40-60 кг/м30,0350,0410,044
Каменная минеральная вата 80-125 кг/м30,0360,0420,045
Каменная минеральная вата 140-175 кг/м30,0370,0430,0456
Каменная минеральная вата 180 кг/м30,0380,0450,048
Стекловата 15 кг/м30,0460,0490,055
Стекловата 17 кг/м30,0440,0470,053
Стекловата 20 кг/м30,040,0430,048
Стекловата 30 кг/м30,040,0420,046
Стекловата 35 кг/м30,0390,0410,046
Стекловата 45 кг/м30,0390,0410,045
Стекловата 60 кг/м30,0380,0400,045
Стекловата 75 кг/м30,040,0420,047
Стекловата 85 кг/м30,0440,0460,050
Пенополистирол (пенопласт, ППС)0,036-0,0410,038-0,0440,044-0,050
Экструдированный пенополистирол (ЭППС, XPS)0,0290,0300,031
Пенобетон, газобетон на цементном растворе, 600 кг/м30,140,220,26
Пенобетон, газобетон на цементном растворе, 400 кг/м30,110,140,15
Пенобетон, газобетон на известковом растворе, 600 кг/м30,150,280,34
Пенобетон, газобетон на известковом растворе, 400 кг/м30,130,220,28
Пеностекло, крошка, 100 – 150 кг/м30,043-0,06  
Пеностекло, крошка, 151 – 200 кг/м30,06-0,063  
Пеностекло, крошка, 201 – 250 кг/м30,066-0,073  
Пеностекло, крошка, 251 – 400 кг/м30,085-0,1  
Пеноблок 100 – 120 кг/м30,043-0,045  
Пеноблок 121- 170 кг/м30,05-0,062  
Пеноблок 171 – 220 кг/м30,057-0,063  
Пеноблок 221 – 270 кг/м30,073  
Эковата0,037-0,042  
Пенополиуретан (ППУ) 40 кг/м30,0290,0310,05
Пенополиуретан (ППУ) 60 кг/м30,0350,0360,041
Пенополиуретан (ППУ) 80 кг/м30,0410,0420,04
Пенополиэтилен сшитый0,031-0,038  
Вакуум  
Воздух +27°C. 1 атм0,026  
Ксенон0,0057  
Аргон0,0177  
Аэрогель (Aspen aerogels)0,014-0,021  
Шлаковата0,05  
Вермикулит0,064-0,074  
Вспененный каучук0,033  
Пробка листы 220 кг/м30,035  
Пробка листы 260 кг/м30,05  
Базальтовые маты, холсты0,03-0,04  
Пакля0,05  
Перлит, 200 кг/м30,05  
Перлит вспученный, 100 кг/м30,06  
Плиты льняные изоляционные, 250 кг/м30,054  
Полистиролбетон, 150-500 кг/м30,052-0,145  
Пробка гранулированная, 45 кг/м30,038  
Пробка минеральная на битумной основе, 270-350 кг/м30,076-0,096  
Пробковое покрытие для пола, 540 кг/м30,078  
Пробка техническая, 50 кг/м30,037  

Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50. 13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей

Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала

Понятие теплопроводности на практике

Теплопроводность учитывается на этапе проектирования здания

При этом берется во внимание способность материалов удерживать тепло. Благодаря их правильному подбору жильцам внутри помещения всегда будет комфортно. Во время эксплуатации будут существенно экономиться денежные средства на отопление

Во время эксплуатации будут существенно экономиться денежные средства на отопление.

Утепление на стадии проектирования является оптимальным, но не единственным решением. Не составляет трудности утеплить уже готовое здание путем проведения внутренних или наружных работ. Толщина слоя изоляции будет зависеть от выбранных материалов. Отдельные из них (к примеру, дерево, пенобетон) могут в некоторых случаях использоваться без дополнительного слоя термоизоляции. Главное, чтобы их толщина превышала 50 сантиметров.

Особенное внимание следует уделить утеплению кровли, оконных и дверных проемов, пола. Сквозь эти элементы уходит больше всего тепла. Зрительно это можно увидеть на фотографии в начале статьи

Зрительно это можно увидеть на фотографии в начале статьи.

Коэффициент теплопроводности материала. Теплопроводность строительных материалов: таблица

Процесс передачи энергии от более нагретой части тела к менее нагретой называется теплопроводностью. Числовое значение такого процесса отражает коэффициент теплопроводности материала. Это понятие является очень важным при строительстве и ремонте зданий. Правильно подобранные материалы позволяют создать в помещении благоприятный микроклимат и сэкономить на отоплении существенную сумму.

Понятие теплопроводности

Теплопроводность – процесс обмена тепловой энергией, который происходит за счет столкновения мельчайших частиц тела. Причем этот процесс не прекратится, пока не наступит момент равновесия температур. На это уходит определенный промежуток времени. Чем больше времени затрачивается на тепловой обмен, тем ниже показатель теплопроводности.

Данный показатель выражают как коэффициент теплопроводности материалов. Таблица содержит уже измеренные значения для большинства материалов. Расчет производится по количеству тепловой энергии, прошедшей сквозь заданную площадь поверхности материала. Чем больше вычисленное значение, тем быстрее объект отдаст все свое тепло.

Факторы, влияющие на теплопроводность

Коэффициент теплопроводности материала зависит от нескольких факторов:

  • Плотность материала. При повышении данного показателя взаимодействие частиц материала становится прочнее. Соответственно, они будут передавать температуру быстрее. А это значит, что с повышением плотности материала улучшается передача тепла.
  • Пористость вещества. Пористые материалы являются неоднородными по своей структуре. Внутри них находится большое количество воздуха. А это значит, что молекулам и другим частицами будет сложно перемещать тепловую энергию. Соответственно, коэффициент теплопроводности повышается.
  • Влажность также оказывает влияние на теплопроводность. Мокрые поверхности материала пропускают большее количество тепла. В некоторых таблицах даже указывается расчетный коэффициент теплопроводности материала в трех состояниях: сухом, среднем (обычном) и влажном.

Выбирая материал для утепления помещений, важно учитывать также условия, в которых он будет эксплуатироваться.

Понятие теплопроводности на практике

Теплопроводность учитывается на этапе проектирования здания. При этом берется во внимание способность материалов удерживать тепло. Благодаря их правильному подбору жильцам внутри помещения всегда будет комфортно. Во время эксплуатации будут существенно экономиться денежные средства на отопление.

Утепление на стадии проектирования является оптимальным, но не единственным решением. Не составляет трудности утеплить уже готовое здание путем проведения внутренних или наружных работ. Толщина слоя изоляции будет зависеть от выбранных материалов. Отдельные из них (к примеру, дерево, пенобетон) могут в некоторых случаях использоваться без дополнительного слоя термоизоляции. Главное, чтобы их толщина превышала 50 сантиметров.

Особенное внимание следует уделить утеплению кровли, оконных и дверных проемов, пола. Сквозь эти элементы уходит больше всего тепла. Зрительно это можно увидеть на фотографии в начале статьи.

Конструкционные материалы и их показатели

Для строительства зданий используют материалы с низким коэффициентом теплопроводности. Наиболее популярными являются:

  • Бетон. Его теплопроводность находится в пределах 1,29-1,52Вт/м*К. Точное значение зависит от консистенции раствора. На этот показатель также влияет плотность исходного материала, которая составляет 500-2500 кг/м3. Используют данный материал в виде раствора для фундаментов, в виде блоков – для возведения стен и фундамента.
  • Железобетон, значение теплопроводности которого составляет 1,68Вт/м*К. Плотность материала достигает 2400-2500 кг/м3.
  • Древесина, издревле использующаяся как строительный материал. Ее плотность и теплопроводность в зависимости от породы составляют 150-2100 кг/м3 и 0,2-0,23Вт/м*К соответственно.

Еще один популярный строительный материал – кирпич. В зависимости от состава он обладает следующими показателями:

  • саманный (изготовленный из глины): 0,1-0,4 Вт/м*К;
  • керамический (изготовленный методом обжига): 0,35-0,81 Вт/м*К;
  • силикатный (из песка с добавлением извести): 0,82-0,88 Вт/м*К.

Материалы из бетона с добавлением пористых заполнителей

Коэффициент теплопроводности материала позволяет использовать последний для постройки гаражей, сараев, летних домиков, бань и других сооружений. В данную группу можно отнести:

  • Пенобетон. Производится с добавлением пенообразующих веществ, за счет которых характеризуется пористой структурой с плотностью 500-1000 кг/м3. При этом способность передавать тепло определяется значением 0,1-0,37Вт/м*К.
  • Керамзитобетон, показатели которого зависят от его вида. Полнотелые блоки не имеют пустот и отверстий. С пустотами внутри изготавливают пустотелые блоки, которые менее прочные, нежели первый вариант. Во втором случае теплопроводность будет ниже. Если рассматривать общие цифры, то плотность керамзитобетона составляет 500-1800кг/м3. Его показатель находится в интервале 0,14-0,65Вт/м*К.
  • Газобетон, внутри которого образуются поры размером 1-3 миллиметра. Такая структура определяет плотность материала (300-800кг/м3). За счет этого коэффициент достигает 0,1-0,3 Вт/м*К.

Показатели теплоизоляционных материалов

Коэффициент теплопроводности теплоизоляционных материалов, наиболее популярных в наше время:

  • пенопласт, который обладает плотностью 15-50кг/м3, при теплопроводности – 0,031-0,033Вт/м*К;
  • пенополистирол, плотность которого такая же, как и у предыдущего материала. Но при этом коэффициент передачи тепла находится на уровне 0,029-0,036Вт/м*К;
  • стекловата. Характеризуется коэффициентом, равным 0,038-0,045Вт/м*К;
  • каменная вата с показателем 0,035-0,042Вт/м*К.

Таблица показателей

Для удобства работы коэффициент теплопроводности материала принято заносить в таблицу. В ней кроме самого коэффициента могут быть отражены такие показатели как степень влажности, плотность и другие. Материалы с высоким коэффициент теплопроводности сочетаются в таблице с показателями низкой теплопроводности. Образец данной таблицы приведен ниже:

Использование коэффициента теплопроводности материала позволит возвести желаемую постройку. Главное: выбрать продукт, отвечающий всем необходимым требованиями. Тогда здание получится комфортным для проживания; в нем будет сохраняться благоприятный микроклимат.

Правильно подобранный изоляционный материал снизит потери тепла, по причине чего больше не нужно будет «отапливать улицу». Благодаря этому финансовые затраты на отопление существенно снизятся. Такая экономия позволит в скором времени вернуть все деньги, которые будут затрачены на приобретение теплоизолятора.

Тепловые свойства материалов | Семинар по устойчивому развитию

Каждый материал, используемый в сборке оболочки, обладает фундаментальными физическими свойствами, которые определяют его энергетические характеристики, такими как проводимость, сопротивление и тепловая масса. Понимание этих неотъемлемых свойств поможет вам выбрать правильные материалы для управления тепловыми потоками.

Теплопроводность (k)

Способность материала проводить тепло.

Каждый материал имеет характеристическую скорость, с которой через него проходит тепло. Чем быстрее тепло проходит через материал, тем лучше он проводит тепло. Проводимость (k) — это свойство материала, данное для однородных твердых тел в стационарных условиях.

Используется в следующем уравнении:


где

q = результирующий тепловой поток (Вт)

k = теплопроводность материала (Вт/мК).

A = площадь поверхности, через которую проходит тепло (м²)

∆T = разница температур между теплой и холодной сторонами материала (К), и

L = толщина/длина материала (м) BTU*in/h ft ºF : В британской системе проводимость – это количество британских тепловых единиц в час (Btu/h), которое проходит через 1 квадратный фут (ft 2 ) материала толщиной 1 дюйм при разница температур в этом материале составляет 1ºF (в условиях устойчивого теплового потока).

SI – Вт/м ºC или Вт/м K: Эквивалент Международной системы (SI) – это количество ватт, которое проходит через 1 квадратный метр (м 2 ) материала толщиной 1 м при температуре разница в этом материале составляет 1 К (равно 1ºC) в условиях устойчивого теплового потока.

Теплопроводность (C)

Электропроводность на единицу площади для указанной толщины. Используется для стандартных строительных материалов.

В основных строительных материалах тепловой поток обычно измеряется проводимость (C) , не проводимость. Электропроводность – это удельная проводимость материала на единицу площади для толщины объекта (в единицах Вт/м²К для метрических единиц и БТЕ/ч•фут 2 •°F для британских).

Проводимость является свойством объекта и зависит как от материала, так и от его толщины. Многие твердые строительные материалы, такие как обычный кирпич, деревянный сайдинг, изоляция из войлока или плит, а также гипсокартон, широко доступны в стандартной толщине и составе. Для таких распространенных материалов полезно знать скорость теплового потока для этой стандартной толщины, а не скорость на дюйм.

Коэффициент U (U)

Общая проводимость строительного элемента. Используется для многоуровневых строительных конструкций.

В многослойных сборках проводимости объединены в одно число, называемое «U-фактор» (или иногда «U-значение»).

Коэффициент U и проводимость переводят проводимость из свойства материала в свойство объекта.

U общий коэффициент теплопередачи, выраженный в БТЕ/ч фут 2 ºF (в единицах СИ, Вт/м 2 К). Это та же единица измерения, что и проводимость, потому что это мера одного и того же: проводимость используется для определенного материала, U-фактор используется для конкретной сборки. Меньшие U-факторы означают меньшую проводимость, что означает лучшую изоляцию.

Например, общий U-фактор окна включает теплопроводность оконных стекол, воздуха внутри, материала обрамления и любых других материалов различной толщины и расположения. За исключением особых случаев, проводимость материалов не может быть добавлена ​​для определения U-фактора сборки.

Коэффициент U представляет собой общий коэффициент теплопередачи и включает влияние всех элементов в сборке и всех явных видов теплопередачи (теплопроводность, конвекция и излучение), но не скрытую теплопередачу (связанную с влажностью).

Термин U-коэффициент следует использовать только в том случае, если тепловой поток идет от воздуха снаружи оболочки через сборку оболочки к воздуху внутри. Например, его нельзя использовать на стенах подвала.

Термическое сопротивление (значение R = 1/U)

Способность материала сопротивляться тепловому потоку.

Обозначается как R (значение R), тепловое сопротивление указывает, насколько эффективен любой материал в качестве изолятора.

Величина, обратная теплопроводности, R измеряется в часах, необходимых для прохождения 1 БТЕ через 1 фут 2 материала заданной толщины при разнице температур в 1ºF. В имперской системе единицами измерения являются футов 2 •°F•ч/BTU . Единицы СИ: м²K/Вт .

Значения термического сопротивления иногда приводятся в виде таблиц как для единичных толщин, так и для образца материала с известной толщиной. Например, сопротивление сосны может быть указано как 1,0 фут 2 •°F•ч/БТЕ на дюйм, или значения могут быть приведены в таблице для сосновой стойки 2×6 как 5,5 фута 2 •°F•ч/БТЕ. Для однородного материала, такого как дерево, удвоение толщины удвоит значение R. Значения R обычно не указываются для сборок материалов. U-факторы используются для сборок.

Изоляция, препятствующая протеканию тепла через ограждающие конструкции здания, часто измеряется значением R. Более высокое значение R указывает на лучшие изоляционные характеристики. Просматривая листы спецификаций, убедитесь, что вы читаете значение R в правильных единицах, поскольку единицы не всегда указаны явно.

Для получения дополнительной информации о проектировании с изоляцией, включая таблицу общих значений R, тепловых мостов и расчет общих значений R для сборок, см. страницу «Изоляция».

Использование U-факторов и R-значений на практике

Разнообразие терминов, используемых до сих пор для выражения тепловых свойств, потенциально может сбивать с толку. При работе со сложными многоуровневыми строительными конструкциями полезно объединять тепловые свойства в одно общее число для определения критериев проектирования ограждающих конструкций.

Для общей оболочки здания это часто выражается как U-фактор. Тем не менее, окна часто выражаются с помощью U-фактора, а стены часто выражаются с помощью R-значений. Строгого правила нет.

Расчет общего U-фактора начинается с добавления сопротивлений . U-факторы рассчитываются для конкретного элемента (крыши, стены и т. д.) путем нахождения сопротивления каждой составной части, включая воздушные пленки и воздушные пространства, а затем суммирования этих сопротивлений для получения общего сопротивления. Коэффициент U является обратной величиной этой суммы (Σ) сопротивлений: U= 1/ Σ R.

Для получения дополнительной информации о том, как использовать значения R и коэффициенты U для расчета оболочки, см. стоимость и тепловые мосты.

Тепловая масса

Термическая масса — это сопротивление материала изменению температуры при добавлении или удалении тепла, а также ключевой фактор в динамическом взаимодействии теплопередачи внутри здания. Необходимо понимать четыре фактора: плотность, удельная теплоемкость, теплоемкость и тепловое отставание.

Плотность
Плотные материалы обычно накапливают больше тепла.

Плотность – это масса материала на единицу объема. В имперской системе плотность определяется как фунт/фут 9.0046 3 ; в системе СИ это дается как кг/м 3 . Для фиксированного объема материала большая плотность позволит хранить больше тепла.

Удельная теплоемкость
Высокая удельная теплоемкость требует много энергии для изменения температуры.

Удельная теплоемкость – это мера количества тепла, необходимого для повышения температуры данной массы материала на 1º. В имперской системе это выражается как БТЕ/фунт ºF; в системе СИ она выражается в кДж/кг·К. Для повышения температуры материала с низкой удельной теплоемкостью требуется меньше энергии, чем у материала с высокой удельной теплоемкостью.

Например, одному грамму воды требуется одна калория тепловой энергии, чтобы поднять температуру на один градус Цельсия. Вода обладает высокой теплоемкостью и поэтому иногда используется в качестве тепловой массы в зданиях.

Материал

Теплоемкость

Дж/(г·К)

Кирпич 0,84
Бетон 0,88
Гранит 0,79
Гипс 1,09
Почва 0,80
Дерево 1,2-2,3
Вода 4,2

 

Теплоемкость (тепловая масса)
Плотность x Удельная теплоемкость = Сколько тепла может храниться в единице объема

Теплоемкость – это показатель способности материала сохранять тепло в единице объема . Чем больше теплоемкость материала, тем больше тепла он может сохранить в данном объеме на градус повышения температуры. Теплоемкость материала получается произведением плотности на удельную теплоемкость. Единицы: Дж/К.

Более высокая теплоемкость может (но не всегда) уменьшить поток тепла извне во внутреннюю среду за счет накопления тепла внутри материала. Тепло, попадающее в конструкцию стены в дневное время, например, может сохраняться внутри стены в течение нескольких часов, пока оно не выйдет обратно в прохладный ночной воздух — при соответствующих погодных условиях и достаточной теплоемкости.

Тепловое запаздывание (время запаздывания)
При большой тепловой массе для перехода тепла от одной стороны оболочки к другой могут потребоваться часы.

Это замедление потока тепла называется «термической задержкой» (или временной задержкой) и измеряется как разница во времени между пиковой температурой на внешней поверхности строительного элемента и пиковой температурой на внутренней поверхности. Некоторые материалы, такие как стекло, не имеют значительного теплового отставания. Но тепловая задержка может достигать восьми или девяти часов для конструкций с высокой тепловой массой, таких как стены из двойного кирпича или утрамбованные земляные стены.

Время отставания и замедление температуры из-за тепловой массы

 

Например, если солнце выходит из-за облаков и ударяет по оболочке здания с высокой теплоемкостью в 10:00, температура наружной поверхности быстро повысится. Однако может пройти несколько часов, прежде чем этот температурный «всплеск» будет виден на внутренней поверхности стены. Причина в том, что часть тепла накапливается в материале стены. Это тепло сохраняется в материале стены до тех пор, пока оно не поглотит столько, сколько может (насыщение). Затем тепло будет течь внутрь в зависимости от проводимости материала.

Одним из примеров крупномасштабного теплового отставания является тот факт, что самые жаркие месяцы в большинстве частей северного полушария — июль или август, хотя самое яркое солнце в году приходится на июнь.

Свойства остекления

Теплопередача и излучение от окна

При работе с прозрачными поверхностями нужно учитывать еще больше.

Теплопередача через окно включает все три вида теплопередачи; теплопроводность, конвекция и излучение. Преобладающий способ теплопередачи всегда меняется и зависит от времени, температуры окружающей среды и помещения, скорости наружного ветра, а также количества и угла солнечного излучения, падающего на окно. Изоляционные способности окон обычно измеряются их U-фактором; см. таблицу на странице «Свойства остекления». U-фактор для окна — это прежде всего метрика, используемая для расчета кондуктивной части теплопередачи через окно.

Поскольку окна («остекление») пропускают свет и излучение, существует множество свойств, которые необходимо учитывать для оптимизации их тепловых и визуальных характеристик. Например, упрощенная метрика, используемая для определения лучистой теплопередачи через окно, когда солнечная энергия попадает на окно, называется коэффициентом притока солнечного тепла (SHGC). SHGC представляет собой значение от 0 до 1,0 и является мерой того, насколько большая будет передача лучистого тепла по отношению к незастекленному проему.

Подробнее о свойствах остекления

Что такое теплопроводность? Как это измеряется? – TAL

Автор: Джон Клиффорд, стажер-химик

Что такое теплопроводность?

Рисунок 1: Теплопередача за счет теплопроводности плоской стенки, показывающая важность теплопроводности в теплопередаче

Теплопроводность — это свойство, описывающее способность материала проводить тепло. Часто обозначается как k и имеет единицы СИ Вт/м·К (Ватт на метр по Кельвину). Теплопроводность является ключевым параметром при измерении кондуктивной теплопередачи.

Тепло может передаваться тремя способами: теплопроводностью, конвекцией и излучением. Весь теплообмен происходит, когда между двумя областями существует разница температур; проводимость отличается тем, что теплота «проходит через тело самого вещества» [1]. Внутри твердых тел конвекция отсутствует, а излучение обычно незначительно, а это означает, что проводимость чрезвычайно важна для описания теплового поведения.

Поскольку проводимость происходит через вещество, она может происходить либо внутри объекта, либо через два контактирующих материала. Определяющая формула кондуктивной теплопередачи описывается законом теплопроводности Фурье: градиент температуры (К/м), к – коэффициент теплопроводности [2]. Это математически демонстрирует, что теплопередача линейно пропорциональна градиенту температуры, а теплопроводность материала представляет собой константу пропорциональности. Это означает, что он может иметь большое влияние на скорость теплопередачи.

Поскольку теплопроводность является физическим свойством, она будет меняться в зависимости от типа, структуры и состояния материала. Точно так же это также функция температуры, которую важно учитывать в приложениях, где температура может сильно варьироваться, например, в электронном управлении температурой [3]. Точно так же обратной величиной теплопроводности является тепловое удельное сопротивление, которое является внутренним свойством, указывающим на эффективность материала в качестве изолятора [1].

Электропроводность твердых тел может сильно различаться. Например, металлы обычно очень теплопроводны из-за делокализованного движения электронов в металлической связи. Это способствует более быстрому нагреву металлов, чем другие материалы, такие как пластик или стекло.

Рисунок 2: Медные листы, металл с высокой теплопроводностью, часто используемый в промышленности

Однако все твердые тела, включая металлы, проводят тепло за счет вибрации между соседними атомами. Некоторые твердые вещества, такие как пенополистирол, имеют низкое значение k и действуют как изоляторы. Частично это связано с низким значением k для воздуха, который содержится в пустотах этих материалов [4]. Для получения дополнительной информации о теории теплопроводности см. видео ниже:

Одним из примеров важности проводимости является область полимерных композитов и добавок. Полимеры все чаще используются в радиаторах от электроники до биомедицинских устройств и автомобильных деталей.

Рис. 3. Термопаста, теплопроводящий материал, изготовленный с использованием проводящих добавок для эффективного отвода тепла

Однако для того, чтобы заменить металлы и керамику в этих чувствительных к теплу применениях, теплопроводность должна быть улучшена. Это достигается за счет использования добавок, повышающих проводимость, таких как медь, серебро, углеродные нанотрубки и графен. Затем эти композиты можно использовать для управления температурным режимом, поскольку повышенная проводимость будет более эффективно отводить тепло от чувствительных материалов. Однако проблемы с распределением наполнителя в полимерной матрице могут изменить ее термические свойства. Следовательно, необходимо протестировать и количественно оценить тепловые характеристики, чтобы убедиться, что композит функционирует так, как задумано [5].

Как это измеряется?

Рис. 4. Датчик C-Therm с модифицированным плоскостным источником переходных процессов (MTPS) — быстрый и точный способ измерения теплопроводности время от 1 до 3 секунд. Теплопроводность и эффузивность измеряются напрямую и работают в диапазоне от -50 до 200°C. Он соответствует ASTM D7984 и рекомендуется для твердых тел, жидкостей, порошков и паст [6]. Это широко используется из-за быстрого времени тестирования и простоты подготовки образцов.

Рис. 5. Датчик плоскостного источника переходного процесса (TPS), двусторонний датчик для более опытных пользователей

Датчик плоского источника переходного процесса представляет собой двусторонний датчик горячего диска. Он может одновременно определять теплопроводность, температуропроводность и рассчитывать удельную теплоемкость по одному измерению. Он работает при температуре от -50 до 300°C, соответствует стандарту ISO 22007-2 и рекомендуется для твердых веществ [6].

Рис. 6. Датчик линейного источника переходных процессов (TLS), рекомендуемый для расплавов полимеров и геологических применений

Наконец, в методе переходного линейного источника используется датчик типа игольчатого зонда, который полностью погружается в материал, нагревая его в радиальном направлении. Это измерение обычно занимает от 2 до 10 минут и лучше всего подходит для таких вещей, как расплавы полимеров, почва, гравий или вязкие жидкости. Соответствует ASTM D5334, D5930 и IEEE 442-1981 [6].

Дополнительная информация:

Дополнительная информация об испытаниях на теплопроводность

Услуги по контрактным испытаниям

______________________________________________________________________

Каталожные номера:

[1] Карслоу, Х.С. и Джагер, Дж. К. (1959). Теплопроводность твердых тел . Оксфорд. https://books.google.ca/books/about/Conduction_of_Heat_in_Solids.html?id=y20sAAAAYAAJ&redir_esc=y

[2] Бергман, Т.Л. и Лавин, А.С. (2017). Основы тепломассообмена . Джон Уайли и сыновья. https://www.wiley.com/en-us/Fundamentals+of+Heat+and+Mass+Transfer%2C+8th+Edition-p-9781119353881

[3] C-Therm Technologies. (2022). Управление температурным режимом в электромобилях . https://ctherm.com/resources/tech-library/thermal-management-in-electric-vehicles/

[4] Geankoplis, CJ, Hersel, AA, & Lepek, DH (2018). Принципы процессов транспортировки и разделения . Пирсон Образование. https://www.pearson.com/store/p/transport-processes-and-separation-process-principles/P100002515416/9780137459377

[5] C-Therm Technologies. (2022). Проводящие полимеры . Ctherm.com. https://ctherm.com/applications/polymers/

[6] C-Therm Technologies. (2022). Специальный отчет: Выбор метода определения характеристик теплопроводности . https://ctherm.com/methodreviewwp/ 

Тепловые свойства неметаллов

Связанные ресурсы: теплопередача

Тепловые свойства неметаллов

Разработка и проектирование материалов для теплопередачи

Теплопроводность, обзор теплопередачи

Тепловые свойства неметаллов

Проводимость: теплопередача происходит с меньшей скоростью через материалы с низкой теплопроводностью, чем через материалы с высокой теплопроводностью. Соответственно, материалы с высокой теплопроводностью широко используются в радиаторах, а материалы с низкой теплопроводностью используются в качестве теплоизоляции. Теплопроводность материала может зависеть от температуры. Величина, обратная теплопроводности, называется термическим сопротивлением.

Плотность: Плотность или, точнее, объемная массовая плотность вещества – это его масса на единицу объема.

Удельная теплоемкость: Теплота, необходимая для повышения температуры единицы массы данного вещества на заданную величину (обычно на один градус).

Материал

Проводимость
Вт/м-°C

Плотность
кг/м 3

Удельная теплоемкость
Дж/кг-°C

АБС-пластик

0,25

1,014 x 10 3

1,26 x 10 3

Ацетали

0,3

1,42 x 10 3

1,5 x 10 3

Акрил

0,06

1,19 x 10 3

1,5 x 10 3

Алкиды

0,85

2,0 x 10 3

1,3 x 10 3

Глинозем, 96%

21,0

3,8 x 10 3

880,0

Глинозем, чистый

37,0

3,9 x 10 3

880,0

Асбест, асбестовые листы

0,166

Асбест, цемент

2,08

Асбест, цементные плиты

0,74

Асбест, рифленый, 4 слоя/дюйм

0,087

Асбест, войлок, 20 лм/дюйм

0,078

Асбест, войлок, 40 лм/дюйм

0,057

Асбест, неплотно упакованный

0,154

520,0

Асфальт

0,75

Бакелит

0,19

Бальзамовая шерсть 2,2 фунта/фут 3

0,04

35,0

Бериллия, 99,5%

197,3

Кирпич, Строительный кирпич

0,69

1,6 x 10 3

Кирпич, карборундовый кирпич

18,5

Кирпич, Хромовый кирпич

2,32

3,0 x 10 3

Кирпич, Диатомит

0,24

Кирпич, лицевой кирпич

1,32

2,0 x 10 3

Кирпич шамотный

1,04

2,0 x 10 3

Кирпич, магнезит

3,81

Углерод

6,92

Картон, Целотекс

0,048

Гофрированный картон

0,064

Цемент, Раствор

1,16

Цемент, портленд

0,29

1,5 x 10 3

Бетон, пепел

0,76

Бетон, камень, смесь 1-2-4

1,37

2,1 x 10 3

Пробка, пробковая плита, 10 фунтов/фут 3

0,043

160,0

Пробка молотая

0,043

150,0

Пробка регранулированная

0,045

80,0

Алмаз, пленка

700,0

3,5 x 10 3

2,0 x 10 3

Алмаз, тип IIA

2,0 x 10 3

Алмаз, тип IIB

1,3 x 10 3

Диатомит

0,061

320,0

E-стекловолокно

0,89

2,54 x 10 3

820. 0

Эпоксидная смола, высоконаполненная

2,163

Эпоксидная смола, без наполнителя

0,207

Войлок, волосы

0,036

265,0

Войлок, шерсть

0,052

330,0

Изоляционная плита из волокна

0,048

240,0

FR4 Эпоксидное стекло, 1 унция меди

9.11

FR4 Эпоксидное стекло, 2 унции меди

17,71

FR4 Эпоксидное стекло, 4 унции меди

35,15

FR4 Эпоксидное стекло, без меди

0,294

1,9 x 10 3

1,15 x 10 3

Стекло боросиликатное

1,09

2,2 x 10 3

Стекло, пирекс

1,02

2,23 x 10 3

837,0

Стекло, окно

0,78

2,7 x 10 3

Стекло, шерсть, 1,5 фунта/фут 3

0,038

24,0

Инсулекс, сухой

0,064

Капок

0,035

Каптон

0,156

1,09 x 10 3

Магнезия, 85%

0,067

270,0

Слюда

0,71

Майлар

0,19

Нейлон

0,242

1,1 x 10 3

1,7 x 10 3

Фенол, на бумажной основе

0,277

Фенопласт, обычный

0,519

Гипс, гипс

0,48

1,44 x 10 3

Штукатурка, металлическая рейка

0,47

Штукатурка, деревянная рейка

0,28

Оргстекло

0,19

Поликарбонат

0,19

1,2 x 10 3

1,3 x 10 3

Полиэтилен высокой плотности

0,5

950,0

2,3 x 10 3

Полиэтилен низкой плотности

0,35

920,0

2,3 x 10 3

Полиэтилен средней плотности

0,4

930,0

2,3 x 10 3

Полистирол

0,106

Поливинилхлорид

0,16

Пирекс

1,26

Минеральная вата, 10 фунтов/фут 3

0,04

160,0

Минеральная вата, неплотно упакованная

0,067

64,0

Каучук, бутил

0,26

Резина, твердая

0,19

Резина, силикон

0,19

Резина, мягкая

0,14

Опилки

0,059

S-стекловолокно

0,9

2,49 х 10 3

835,0

Силикатный аэрогель

0,024

140,0

Кремний, 99,9%

150,0

2,33 x 10 3

710,0

Силиконовая смазка

0,21

Камень, гранит

2,8

2,64 x 10 3

Камень, известняк

1,3

2,5 x 10 3

Камень, мрамор

2,5

2,6 x 10 3

Камень, песчаник

1,83

2,2 x 10 3

Пенополистирол

0,035

Тефлон

0,22

1,04 x 10 3

Древесная стружка

0,059

Древесина, поперечное зерно, бальза, 8,8 фунта/фут 3

0,055

140,0

Дерево, поперечное зерно, кипарис

0,097

460,0

Древесина, поперечное зерно, пихта

0,11

420,0

Древесина, поперечное зерно, клен

0,166

540,0

Древесина, поперечное зерно, дуб

0,166

540,0

Древесина, поперечное зерно, белая сосна

0,112

430,0

Древесина, поперечное зерно, желтая сосна

0,147

640,0

Оксид алюминия, Al 2 O 3 , 99,5%

32,0

Оксид алюминия, Al 2 O 3 , 96%

21,5

Оксид алюминия, Al 2 O 3 , 90%

12,0

Преобразование теплопроводности:
1 кал/см 2 /см/сек/°C = 10,63 Вт/дюйм – °C

117 БТЕ/(ч-фут F) x (0,293 ватт-ч/БТЕ) x (1,8F/C) x (фут/12 дюймов) = 5,14 Вт/дюйм – °C
или
117 БТЕ/(час-фут-F) x 0,04395 ватт-ч-F-фут/(Btu=°C – дюйм) = 5,14 ватт/дюйм-°C

Почему важна низкая теплопроводность

Знакомы ли вы с понятием теплопроводности? Мы склонны думать о продуктах и ​​материалах с высокой теплопроводностью, что означает, что они позволяют теплу легко проходить через них. Однако изделия с низкой теплопроводностью не менее, если не более важны. Вот некоторые преимущества, области применения и примеры некоторых из этих продуктов, а также почему важна низкая теплопроводность.

Что такое теплопроводность?

Теплопроводность — это мера того, насколько эффективно материал передает или проводит тепло. Однако теплопроводность — не единственный способ передачи тепла; два других метода – конвекция и излучение. Теплопроводность также может быть измерена как скорость прохождения тепла через материал как отношение за определенный промежуток времени. В целом, это измерение показывает, насколько материал способен проводить тепло, что может быть полезным или вредным для определенных приложений. Сегодня мы исследуем низкую теплопроводность, а это означает, что рассматриваемые материалы обладают плохой способностью проводить тепло.

Преимущества низкой теплопроводности

Многие материалы встречаются в природе с низкой теплопроводностью или производятся с учетом этого свойства. Это связано с тем, что низкая проводимость имеет много преимуществ, особенно когда речь идет о производственных областях. Некоторые из этих преимуществ низкой теплопроводности включают терморегуляцию и энергоэффективность.

Тепловой контроль

Совершенно очевидно, что материалы с низкой теплопроводностью будут иметь превосходный термоконтроль благодаря своей способности регулировать тепло. Поскольку тепло не проходит через них легко, они часто используются в целях изоляции и защитного оборудования, основанного на этом тепловом контроле. Продолжайте читать, чтобы узнать больше об этих приложениях.

Энергоэффективность

Следующим преимуществом после теплового контроля является энергоэффективность. Особенно в тех случаях, когда в качестве изоляции используются материалы с низкой теплопроводностью, они дают отличные результаты в плане энергоэффективности. В доме с теплоизоляцией ручные меры по отоплению и охлаждению потребуются гораздо реже, чем в доме, в котором не используются изоляционные материалы. Это связано с тем, что тепло передается через естественные трещины в доме, что может помочь предотвратить теплоизоляция.

Области применения, зависящие от низкой теплопроводности

Благодаря этим уникальным свойствам и преимуществам материалы с низкой теплопроводностью находят применение в самых разных областях. Вот краткий обзор некоторых из их наиболее распространенных приложений.

Безопасность

Любая область, работающая с тяжелым оборудованием, опасными материалами и опасными условиями, знает о важности надлежащего защитного оборудования. Средства индивидуальной защиты (СИЗ) являются ключевым компонентом для слишком многих областей, чтобы их можно было сосчитать. Являетесь ли вы машинистом, сварщиком, лаборантом, пожарным или кем-то еще, теплозащита является необходимым компонентом всех видов защитного снаряжения. Любой профессионал, который работает с высокими температурами или может подвергаться их воздействию, нуждается в технологии с низкой теплопроводностью, встроенной в их защитное снаряжение.

Даже в повседневной жизни средний человек использует материалы с низкой теплопроводностью. Подумайте, например, о своих домашних прихватках. Без состава ткани этих простых предметов вытаскивание горячей сковороды из духовки было бы несчастным случаем.

Изоляция

Изоляция — еще один прекрасный пример того, насколько важны материалы с низкой теплопроводностью в нашей повседневной жизни. Изоляционные материалы в наших домах и на предприятиях регулируют температуру окружающей среды с помощью технологии теплопроводности. Поскольку большинство изоляционных материалов имеют низкую теплопроводность, они способны удерживать тепло внутри дома в зимние месяцы и удерживать его вне дома в летние месяцы. Поскольку такие материалы, как стекловолокно и пенополиуретан, обладают низкой теплопроводностью, этому теплу труднее проходить через материал. Это также помогает вашему дому быть более энергоэффективным и меньше полагаться на ручное отопление и охлаждение.

Конструкция

Строительные материалы с низкой теплопроводностью также способствуют безопасности. На самом деле, чтобы соответствовать строительным нормам, некоторые строительные материалы, такие как те, которые составляют фундамент, стены и полы, должны соответствовать определенным рекомендациям по теплопроводности. Здесь также играет роль изоляция, но многие строительные материалы сами по себе также имеют низкие показатели теплопроводности. Вот некоторые распространенные примеры строительных материалов с низким рейтингом теплопроводности.

Производство

Материалы с низкой теплопроводностью важны во многих других областях, одной из которых является производство. В конце концов, производство отвечает за создание продуктов безопасности и изоляции, которые мы используем ежедневно. Но материалы с низкой теплопроводностью могут применяться и в самом производственном процессе в виде оборудования. Эти материалы, как правило, довольно прочные и крепкие, что делает их идеальными для использования в различных формах машин и различных инструментов.

Низкая и высокая теплопроводность

Как правило, преимущества низкой теплопроводности по сравнению с высокой зависят от области применения и материала, с которым вы работаете. Один по своей сути не лучше другого, потому что оба полезны в определенных приложениях. Хотя мы изучили преимущества низкой теплопроводности, у высокой теплопроводности также есть свои преимущества. Например, многие кузнецы и производители ювелирных изделий полагаются на материалы, способные передавать тепло в процессе ковки. Они не смогли бы переплавить драгоценные руды без передачи большого количества тепла через плавильный котел. И это только один пример: многие области применения полагаются на высокую теплопроводность, в то время как вышеперечисленные приложения полагаются на более низкие показания.

От его уникальных свойств до множества применений, в которых он используется, вот некоторые из причин, по которым важна низкая теплопроводность. Материалы с низкой теплопроводностью используются во многих продуктах, приложениях и приборах, которые мы используем ежедневно, что становится трудно оспаривать их важность. Если вы считаете, что использование таких материалов может принести пользу вашему бизнесу, обратитесь к нашей команде экспертов из Red Seal Electric Company. Мы можем помочь вам установить термалаты и некоторые другие наши низкотеплопроводные материалы для ваших собственных бизнес-приложений.

Что такое теплопроводность материалов и химических элементов? Например, у алмаза самая высокая теплопроводность среди всех сыпучих материалов. Теплотехника

Теплопроводность материалов и химических элементов

Характеристики теплопередачи твердого материала измеряются свойством, называемым0007 теплопроводность , к (или λ), измеренная в Вт/м.К . Это мера способности вещества передавать тепло через материал путем теплопроводности. Обратите внимание, что закон Фурье применим ко всей материи, независимо от ее состояния (твердое, жидкое или газообразное), поэтому он также определен для жидкостей и газов.

Теплопроводность большинства жидкостей и твердых тел зависит от температуры. Для паров это также зависит от давления. В общем:

Большинство материалов почти однородны, поэтому обычно мы можем написать k = k (T) . Аналогичные определения связаны с теплопроводностью в направлениях y и z (k y , k z ), но для изотропного материала теплопроводность не зависит от направления переноса, k x = k у = к г = к.

Из приведенного уравнения следует, что поток тепла проводимости увеличивается с увеличением теплопроводности и увеличивается с увеличением разности температур. Как правило, теплопроводность твердого тела больше, чем у жидкости, которая больше, чем у газа. Эта тенденция во многом обусловлена ​​различиями в межмолекулярное расстояние для двух состояний вещества. В частности, алмаз обладает самой высокой твердостью и теплопроводностью среди всех сыпучих материалов.

 

Теплопроводность химических элементов

Теплопроводность жидкостей (жидкостей и газов)

В физике жидкость — это вещество, которое непрерывно деформируется (течет) под действием приложенного напряжения сдвига. Флюиды являются подмножеством фаз материи и включают жидкости , газы , плазма и, в некоторой степени, твердые пластмассы. Поскольку межмолекулярное расстояние намного больше, а движение молекул более хаотично для жидкого состояния, чем для твердого состояния, перенос тепловой энергии менее эффективен. Следовательно, теплопроводность газов и жидкостей обычно меньше, чем у твердых тел. В жидкостях теплопроводность обусловлена ​​атомной или молекулярной диффузией. В газах теплопроводность обусловлена ​​диффузией молекул с более высокого энергетического уровня на более низкий уровень.

Теплопроводность газов

Влияние температуры, давления и химических соединений на теплопроводность газа можно объяснить с точки зрения кинетической теории газов . Воздух и другие газы обычно являются хорошими изоляторами при отсутствии конвекции. Таким образом, многие изоляционные материалы (например, полистирол) функционируют просто благодаря большому количеству заполненных газом карманов , которые предотвращают крупномасштабную конвекцию . Чередование газового кармана и твердого материала приводит к тому, что тепло должно передаваться через множество поверхностей раздела, что приводит к быстрому снижению коэффициента теплопередачи.

Теплопроводность газов прямо пропорциональна плотности газа, средней молекулярной скорости и особенно длине свободного пробега молекулы. Длина свободного пробега также зависит от диаметра молекулы, при этом более крупные молекулы с большей вероятностью столкнутся, чем мелкие молекулы, что представляет собой среднее расстояние, пройденное энергоносителем (молекулой) до столкновения. Легкие газы, такие как водород и гелий обычно имеют высокую теплопроводность . Плотные газы, такие как ксенон и дихлордифторметан, обладают низкой теплопроводностью.

Как правило, теплопроводность газов увеличивается с повышением температуры.

Теплопроводность жидкостей

Как уже писалось, в жидкостях теплопроводность обусловлена ​​атомной или молекулярной диффузией, но физические механизмы объяснения теплопроводности жидкостей изучены недостаточно. Жидкости, как правило, обладают лучшей теплопроводностью, чем газы, а способность течь делает жидкость подходящей для отвода избыточного тепла от механических компонентов. Тепло можно отводить, пропуская жидкость через теплообменник. Теплоносители, используемые в ядерных реакторах, включают воду или жидкие металлы, такие как натрий или свинец.

Теплопроводность неметаллических жидкостей обычно уменьшается с повышением температуры.

 

Теплопроводность натрия

Жидкий натрий используется в качестве теплоносителя в некоторых типах ядерных реакторов , поскольку он имеет высокую теплопроводность и низкое сечение поглощения нейтронов, необходимые для достижения высокого потока нейтронов в реактор. Высокие свойства теплопроводности эффективно создают резервуар теплоемкости, который обеспечивает тепловую инерцию против перегрева.

Специальный справочник: Теплофизические свойства материалов для ядерной энергетики: Учебное пособие и сбор данных. IAEA-THPH, МАГАТЭ, Вена, 2008 г. ISBN 978–92–0–106508–7.

Теплопроводность воды и пара

Вода и пар являются общей жидкостью, используемой для теплообмена в первом контуре (от поверхности твэлов к потоку теплоносителя) и во втором контуре. Он использовался из-за его доступности и высокая теплоемкость, как для охлаждения, так и для обогрева. Особенно эффективен перенос тепла посредством испарения и конденсации воды из-за ее очень большой скрытой теплоты парообразования .

Недостатком является то, что реакторы с водяным замедлителем должны использовать первичный контур высокого давления для поддержания воды в жидком состоянии и для достижения достаточного термодинамического КПД. Вода и пар также реагируют с металлами, обычно используемыми в таких отраслях, как сталь и медь, которые быстрее окисляются необработанной водой и паром. Практически на всех тепловых электростанциях (угольных, газовых, атомных) в качестве рабочего тела используется вода (используется в замкнутом контуре между котлом, паровой турбиной и конденсатором) и теплоносителя (используется для обмена отработанного тепла с водоемом). или унести путем выпаривания в градирне).

Теплопроводность воды

Теплопроводность пара

См. также: Таблицы пара

Специальный справочник: Теплофизические свойства материалов и сбор данных для ядерной инженерии. IAEA-THPH, МАГАТЭ, Вена, 2008 г. ISBN 978–92–0–106508–7.

Теплопроводность гелия

Гелий — это химический элемент с атомным номером 2 , что означает наличие 2 протонов и 2 электронов в атомной структуре. химический символ  для гелия – He .

Это бесцветный, без запаха, без вкуса, нетоксичный, инертный, одноатомный газ, первый в группе благородных газов в периодической таблице. Его температура кипения самая низкая среди всех элементов.

Из-за относительно низкой молярной (атомной) массы гелия его теплопроводность, удельная теплоемкость и скорость звука в газовой фазе выше, чем у любого другого газа, кроме водорода. Из-за своей инертности и высокой теплопроводности, нейтронной прозрачности, а также из-за того, что он не образует радиоактивных изотопов в реакторных условиях, гелий используется в качестве теплоносителя в некоторых газоохлаждаемых ядерных реакторах (например, в высокотемпературных газоохлаждаемых реакторах — HTGR). ).

Специальный справочник: Теплофизические свойства материалов для ядерной энергетики: Учебное пособие и сбор данных. IAEA-THPH, МАГАТЭ, Вена, 2008 г. ISBN 978–92–0–106508–7.

Теплопроводность металлов

Металлы являются твердыми телами и поэтому обладают кристаллической структурой, в которой ионы (ядра с окружающими их оболочками остовных электронов) занимают трансляционно эквивалентные положения в кристаллической решетке. Металлы вообще имеют высокая электропроводность , высокая теплопроводность и высокая плотность. Соответственно перенос тепловой энергии может быть обусловлен двумя эффектами:

  • миграцией свободных электронов
  • колебательными волнами решетки (фононами).

Когда электроны и фононы переносят тепловую энергию, приводящую к теплопроводности в твердом теле, теплопроводность может быть выражена как:

k = k e + k ph

Уникальной особенностью металлов с точки зрения их структуры является наличие носителей заряда, а именно электронов . Электрическая и теплопроводность металлов происходит из того факта, что их внешние электроны делокализованы . Их вклад в теплопроводность называется электронной теплопроводностью , k e . Фактически, в чистых металлах, таких как золото, серебро, медь и алюминий, тепловой ток, связанный с потоком электронов, намного превышает небольшой вклад, обусловленный потоком фононов. Напротив, для сплавов вклад k ph to k больше не является незначительным.

 

Закон Видемана-Франца – Число Лоренца

При заданной температуре тепло- и электропроводность металлов пропорциональны , но повышение температуры увеличивает теплопроводность при уменьшении электропроводности. Это поведение количественно выражено в законе Видемана-Франца . Этот закон гласит, что отношение электронного вклада теплопроводности ( k ) к электропроводности (σ) металла пропорциональна температуре (T).

Качественно эта взаимосвязь основана на том факте, что перенос тепла и электричества связан с участием свободных электронов в металле. Электропроводность уменьшается с увеличением скорости частиц, потому что столкновения отклоняют электроны от прямого переноса заряда. Однако теплопроводность увеличивается со средней скоростью частиц, поскольку это увеличивает прямой перенос энергии. Закон Видемана-Франца обычно хорошо соблюдается при высоких температурах. Однако в области низких и промежуточных температур закон нарушается из-за неупругого рассеяния носителей заряда.

Следует отметить, что общая корреляция между электропроводностью и теплопроводностью не выполняется для других материалов из-за повышенной важности переносчиков фононов для теплоты в неметаллах.

Теплопроводность неметаллов

Для твердых неметаллических тел , k определяется в первую очередь k ph , которая увеличивается по мере уменьшения частоты взаимодействий между атомами и решеткой. Фактически, решеточная теплопроводность является доминирующим механизмом теплопроводности в неметаллах, если не единственным. В твердых телах атомы колеблются вокруг своих положений равновесия (кристаллическая решетка). Колебания атомов не независимы друг от друга, а довольно сильно связаны с соседними атомами. Регулярность расположения решетки существенно влияет на k ph , с кристаллическими (хорошо упорядоченными) материалами, такими как кварц , имеющими более высокую теплопроводность, чем аморфные материалы, такие как стекло. При достаточно высоких температурах k ph ∝ 1/T.

квантов колебательного поля кристалла называются « фононов ». Фонон — это коллективное возбуждение в периодическом упругом расположении атомов или молекул в конденсированных веществах, таких как твердые тела и некоторые жидкости. Фононы играют важную роль во многих физических свойствах конденсированного вещества, таких как теплопроводность и электропроводность. Фактически, для кристаллических неметаллических твердых тел, таких как алмаз, k ph может быть довольно большим, превышая значения k, связанные с хорошими проводниками, такими как алюминий. В частности, алмаз обладает самой высокой твердостью и теплопроводностью (k = 1000 Вт/м·К) среди всех объемных материалов.

 

Ссылки:

Теплопередача:

  1. Основы тепломассообмена, 7-е издание. Теодор Л. Бергман, Эдриенн С. Лавин, Фрэнк П. Инкропера. John Wiley & Sons, Incorporated, 2011. ISBN: 9781118137253.
  2. Тепломассообмен. Юнус А. Ценгель. McGraw-Hill Education, 2011. ISBN: 9780071077866.
  3. Основы тепломассообмена. CP Котандараман. New Age International, 2006 г., ISBN: 9788122417722.
  4. Министерство энергетики США, термодинамики, теплопередачи и течения жидкости. Справочник по основам Министерства энергетики США, том 2 из 3, май 2016 г.

Ядерная и реакторная физика:

  1. Дж. Р. Ламарш, Введение в теорию ядерных реакторов, 2-е изд., Аддисон-Уэсли, Рединг, Массачусетс (1983).
  2. Дж. Р. Ламарш, А. Дж. Баратта, Введение в ядерную технику, 3-е изд., Prentice-Hall, 2001, ISBN: 0-201-82498-1.
  3. В. М. Стейси, Физика ядерных реакторов, John Wiley & Sons, 2001, ISBN: 0-471-39127-1.
  4. Гласстоун, Сесонске. Разработка ядерных реакторов: разработка реакторных систем, Springer; 4-е издание, 1994 г., ISBN: 978-0412985317
  5. WSC. Уильямс. Ядерная физика и физика элементарных частиц. Кларендон Пресс; 1 издание, 1991 г., ISBN: 978-0198520467
  6. Г.Р.Кепин. Физика ядерной кинетики. Паб Эддисон-Уэсли. Ко; 1-е издание, 1965 г.
  7. Роберт Рид Берн, Введение в работу ядерных реакторов, 1988 г.
  8. Министерство энергетики, ядерной физики и теории реакторов США. Справочник по основам Министерства энергетики, том 1 и 2. Январь 1993 г.
  9. Пол Ройсс, Нейтронная физика. EDP ​​Sciences, 2008. ISBN: 978-2759800414.

Advanced Reactor Physics:

  1. K. O. Ott, WA Bezella, Introductory Nuclear Reactor Static, American Nuclear Society, Revised edition (1989), 1989, ISBN: 0-894-48033-2.
  2. К. О. Отт, Р. Дж. Нойхольд, Введение в динамику ядерных реакторов, Американское ядерное общество, 1985, ISBN: 0-894-48029-4.
  3. Д. Л. Хетрик, Динамика ядерных реакторов, Американское ядерное общество, 1993, ISBN: 0-894-48453-2.
  4. Э. Э. Льюис, В. Ф. Миллер, Вычислительные методы переноса нейтронов, Американское ядерное общество, 1993, ISBN: 0-894-48452-4.

См. также:

Теплопроводность

Надеемся, в этой статье Теплопроводность материалов и химических элементов поможет вам. Если это так, дайте нам лайк на боковой панели. Основная цель этого веб-сайта – помочь общественности узнать интересную и важную информацию о теплотехнике.

Категории Теплотехника

Copyright 2022 Теплотехника | Все права защищены | Атомная энергия | Реакторная физика |

Узнать о теплопроводности | Chegg.com

Определение теплопроводности

Способность материала передавать тепло из одного места в другое называется теплопроводностью. Теплопередача происходит от более высокой температуры к более низкой температуре. Теплопроводность обозначается символом К.

Обзор теплопроводности

Большое значение теплопроводности указывает на то, что материал является хорошим проводником тепла, тогда как низкое значение теплопроводности указывает на то, что материал плохо проводит тепло и является хорошим теплоизолятором. Отопление дома, приготовление пищи и глажка одежды — все это повседневные действия, зависящие от теплопроводности. Хлопчатобумажную рубашку мы надеваем летом, а шерстяную зимой только из-за разницы в проводимости хлопчатобумажной и шерстяной ткани. Знание о проводимости материала имеет для нас жизненно важное значение.

Есть вопрос по этой теме?

Что вы узнаете:

  • Определение теплопроводности
  • Обзор теплопроводности
  • Теплопроводность твердых тел:
  • Теплопроводность металлов и неметаллов:
  • Теплопроводность жидкостей:

    3 Теплопроводность 92 газы:
  • Исключительное поведение в неметаллических твердых телах:
  • Исключительное поведение в воде:
  • Применение теплопроводности в реальной жизни:
  • Практический вопрос

Теплопроводность твердых тел:

Теплопроводность твердых тел определяется двумя факторами:

1) числом свободных электронов и

2) колебанием решетки.

K=Kэлектрон+колебание решеткиK =K_{электрон} +K_{колебание решетки}K=Kэлектрон+колебание решетки​

где K — коэффициент теплопроводности.

Колебания решетки и поток свободных электронов в твердых телах показаны на изображении ниже.

Теплопроводность металлов и неметаллов:

В чистых металлах на теплопроводность больше влияет количество свободных электронов, чем колебания решетки. В чистых металлах существует несколько свободных электронов, и они вносят больший вклад в более высокое значение теплопроводности, чем колебания решетки. При повышении температуры металла теплопроводность уменьшается из-за увеличения турбулентности электронного потока. Движение электронов в чистых металлах показано ниже.

Теплопроводность неметалла намного меньше, чем у чистого металла, потому что в неметалле гораздо меньше свободных электронов, чем в чистом металле. Теплопроводность неметалла больше определяется колебанием решетки, чем потоком электронов. При повышении температуры неметалла увеличивается колебание его решетки, что приводит к увеличению значения его теплопроводности. Колебания решетки в неметаллах показаны ниже.

В сплаве двух металлов теплопроводность обычно намного ниже, чем у любого из металлов. В сплавах теплопроводность зависит как от количества свободных электронов, так и от колебаний решетки. При повышении температуры сплава увеличивается как поток электронов, так и колебания решетки, что приводит к умеренному значению теплопроводности.

Теплопроводность жидкостей:

В жидкостях теплопроводность зависит от межмолекулярного расстояния между молекулами. Теплопроводность жидкости обычно высока, но при повышении ее температуры она уменьшается. Среднее межмолекулярное расстояние между молекулами жидкости увеличивается при повышении температуры, что приводит к меньшему значению теплопроводности.

Теплопроводность газов:

Теплопроводность газов зависит от столкновения молекул. Беспорядочно движущиеся молекулы газов ответственны за передачу кинетической энергии от одной молекулы к другой. Передача энергии происходит при их столкновении. Большее число молекулярных столкновений увеличивает значение теплопроводности. Влияние теплопроводности в газах изучается кинетической теорией газов. На основе кинетической теории газа можно вывести зависимость между температурой, молекулярной массой и теплопроводностью газа. Это дается следующим образом:

Согласно теории,

Kgases∝TM{{K}_{gas}}\propto \sqrt{\frac{T}{M}}Kgases​∝MT​​

Чем выше температура и ниже молярная масса газа, тем выше значение теплопроводность. Теплопроводность газа не зависит от широкого диапазона изменения давления. Из-за большего межмолекулярного пространства и меньшего числа столкновений молекул теплопроводность газов ниже, чем у жидкостей. теплопроводность газов показана в таблице ниже.

Thermal conductivity of gases
Gases Thermal conductivity
Air 0.026
CO 0.025
H 0.182
Ne 0,049
Ar 0,018
углекислый газ 0,017
кислород 0,027
Азот 0,026
He 0,151
3 В таблице теплопроводность газов в порядке убывания дана так:

Kh3>KHe>Kair>KCO2K_{H_2}>K_{He}>K_{air}> K_{CO_{2}}Kh3​> KHe​>Kair​>KCO2​​

Исключительное поведение в неметаллических твердых телах:

Кристаллические неметаллические твердые тела с высокоупорядоченной структурой имеют более высокие тепловые электропроводность по сравнению с чистыми металлами. Алмаз, кварц, кремний и графит являются одними из высокоструктурированных кристаллических неметаллов, которые демонстрируют такое исключительное поведение. Упорядоченные кристаллические твердые тела имеют более высокую вибрацию решетки, чем чистый металл, что приводит к более высокой теплопроводности. Однако в этих типах твердых тел меньше свободных электронов, поэтому они являются плохими проводниками электричества.

The thermal conductivity of different materials at room temperature is shown below:

Thermal conductivity of some materials
Materials Thermal conductivity (at room temperature W.m/K)
Silver 430
Алмаз 2300
Золото 320
Медь
404 4040015 Aluminum 240 Glass 0. 8 Iron 80 Wood 0.17 Brick 0.7

Exceptional behavior in Water:

Вода проявляет исключительное поведение. Как правило, в жидкостях теплопроводность уменьшается при повышении температуры из-за увеличения межмолекулярного расстояния между молекулами. Но в воде молекулы связаны слабой вторичной связью, известной как водородная связь. При повышении его температуры разрываются водородные связи между молекулами и увеличивается число молекулярных столкновений. Большее количество молекулярных столкновений приводит к более высокой скорости теплопередачи и увеличивает теплопроводность. вода. Вода имеет три различных значения теплопроводности в зависимости от ее состояния:

Вода в твердом состоянии (лед) 1,2 Вт/мК, в жидком состоянии 0,67 Вт/мК и в виде пара 0,021 Вт/мК.

Применение теплопроводности в реальной жизни:

Существуют различные применения теплопроводности в реальной жизни. Некоторые из них описаны следующим образом:

1. Обогрев стены:

Стены дома могут нагреваться летом из-за передачи тепла от прямых солнечных лучей. Более высокое значение теплопроводности в стенах может привести к более высокой скорости передачи тепла в дом.

2. Нагрев чайника:

Когда в чайник наливают чай и горячую воду, тепло передается от горячей жидкости (воды) к чайнику. Количество теплопередачи зависит от теплопроводности горшка.

3. Глажка:

Электроэнергия используется для нагрева утюга. Нагретая железная пластина используется для глажки одежды. Температура железной пластины зависит от теплопроводности слоя слюдяного листа, покрывающего раскаленную проводящую проволоку. Мика – хороший дирижер тепло, но плохой проводник электричества.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *