Коэффициенты теплопроводности строительных материалов
Теплопроводность материала зависит от его плотности, влажности и добавок. Таким образом, у строительных материалов разных производителей будут отличаться физические свойства. Поэтому для точности следует брать значения коэффициентов теплопроводности материала из документации производителя.
Для того, чтобы произвести расчет теплопотерь частного дома, чтобы определить необходимую мощность отопления, достаточно взять данные, которые приведены в таблице ниже. В ней приведены коэффициенты теплопроводности λ (Вт/(м*К)), взятые для средней зоны влажности по СНиП 2-3-79.
ВсеБетоныРастворыГипсокартон и гипсовые плитыКирпичная кладка и облицовкаДерево и материалы на его основеУтеплителиЗасыпкиДругое Фильтр по группе материалов
Материал | Плотность, кг/куб.м | Теплопроводность, Вт/(м*K) |
---|---|---|
Железобетон | 2500 | 2.04 |
Бетон на гравии или щебне | 2400 | 1,86 |
Туфобетон | 1800 | 0.99 |
* | 1600 | 0.81 |
* | 1400 | 0.58 |
* | 1200 | 0.47 |
Пемзобетон | 1600 | 0.68 |
* | 1400 | 0.54 |
* | 1200 | 0.43 |
* | 1000 | 0.34 |
* | 800 | 0.26 |
Бетон на вулканическом шлаке | 1600 | 0.70 |
* | 1400 | 0.58 |
* | 1200 | 0.47 |
* | 1000 | 0.35 |
* | 800 | 0.29 |
Керамзитобетон на керамзитовом песке и керамзитопенобетон | 1800 | 0.92 |
* | 1600 | 0.79 |
* | 1400 | 0.65 |
* | 1200 | 0.52 |
* | 1000 | 0.41 |
* | 800 | 0.31 |
* | 600 | 0.26 |
* | 500 | 0.23 |
Керамзитобетон на кварцевом песке с поризацией | 1200 | 0.58 |
* | 1000 | 0.47 |
* | 800 | 0.35 |
Керамзитобетон на перлитовом песке | 1000 | 0.41 |
* | 800 | 0.35 |
Шунгизитобетон | 1400 | 0.64 |
* | 1200 | 0.50 |
* | 1000 | 0.38 |
Перлитобетон | 1200 | 0.50 |
* | 1000 | 0.38 |
* | 800 | 0.33 |
* | 600 | 0.23 |
Шлакопемзобетон (термозитобетон) | 1800 | 0.76 |
* | 1600 | 0.63 |
* | 1400 | 0.52 |
* | 1200 | 0.44 |
* | 1000 | 0.37 |
Шлакопемзопенобетон и шлакопемзогазобетон | 1600 | 0.70 |
* | 1400 | 0.58 |
* | 1200 | 0.47 |
* | 1000 | 0.41 |
* | 800 | 0.35 |
Бетон на доменных гранулированных шлаках | 1800 | 0.81 |
* | 1600 | 0.64 |
* | 1400 | 0.58 |
* | 1200 | 0.52 |
Аглопоритобетон и бетоны на топливных (котельных) шлаках | 1800 | 0.93 |
* | 1600 | 0.78 |
* | 1400 | 0.65 |
* | 1200 | 0.54 |
* | 1000 | 0.44 |
Бетон на зольном гравии | 1400 | 0.58 |
* | 1200 | 0.47 |
* | 1000 | 0.35 |
Вермикулитобетон | 800 | 0.26 |
* | 600 | 0.17 |
* | 400 | 0.13 |
* | 300 | 0.11 |
Газобетон, пенобетон, газосиликат, пеносиликат | 1000 | 0.47 |
* | 800 | 0.37 |
* | 600 | 0.26 |
* | 400 | 0.15 |
* | 300 | 0.13 |
Газозолобенон и пенозолобетон | 1200 | 0.58 |
* | 1000 | 0.50 |
* | 800 | 0.41 |
Цементно-песчаный раствор | 1800 | 0.93 |
Сложный (песок, известь, цемент) раствор | 1700 | 0.87 |
Известково-песчаный раствор | 1600 | 0.81 |
Цементно-шлаковый раствор | 1400 | 0.64 |
* | 1200 | 0.58 |
Цементно-перлитовый раствор | 1000 | 0.30 |
* | 800 | 0.26 |
Гипсо-перлитовый раствор | 600 | 0.23 |
Поризованный гипсо-перлитовый раствор | 500 | 0.19 |
* | 400 | 0.15 |
Плиты из гипса | 1200 | 0.47 |
* | 1000 | 0.35 |
Листы гипсовые обшивочные (сухая штукатурка) | 800 | 0.21 |
Кладка из глиняного кирпича на цементно-песчаном растворе | 1800 | 0.81 |
Кладка из глиняного кирпича на цементно-шлаковом растворе | 1700 | 0.76 |
Кладка из глиняного кирпича на цементно-перлитовом растворе | 1600 | 0.70 |
Кладка из силикатного кирпича на цементно-песчаном растворе | 1800 | 0.87 |
Кладка из трепельного кирпича на цементно-песчаном растворе | 1200 | 0.52 |
* | 1000 | 0.47 |
Кладка из шлакового кирпича на цементно-песчаном растворе | 1500 | 0.70 |
Кладка из керамического пустотного кирпича плотностью 1400 кг/куб.м.на цементно-песчаном растворе | 1600 | 0.64 |
Кладка из керамического пустотного кирпича плотностью 1300 кг/куб.м.на цементно-песчаном растворе | 1400 | 0.58 |
Кладка из керамического пустотного кирпича плотностью 1000 кг/куб.м.на цементно-песчаном растворе | 1200 | 0.52 |
Кладка из силикатного одиннадцатипустотного кирпича на цементно-песчаном растворе | 1500 | 0.81 |
Кладка из силикатного четырнадцатипустотного кирпича на цементно-песчаном растворе | 1400 | 0.76 |
Облицовка гранитом, гнейсом, базальтом | 2800 | 3.49 |
Облицовка мрамором | 2800 | 2.91 |
Облицовка известняком | 2000 | 1.28 |
* | 1800 | 1.05 |
* | 1600 | 0.81 |
* | 1400 | 0.58 |
Облицовка туфом | 2000 | 1.05 |
* | 1800 | 0.81 |
* | 1600 | 0.64 |
* | 1400 | 0.52 |
* | 1200 | 0.41 |
* | 1000 | 0.29 |
Сосна, ель поперек волокон | 500 | 0.18 |
Сосна, ель вдоль волокон | 500 | 0.35 |
Дуб поперек волокон | 700 | 0.23 |
Дуб вдоль волокон | 700 | 0.41 |
Фанера клееная | 500 | 0.18 |
Картон облицовочный | 1000 | 0.23 |
Картон строительный многослойный | 650 | 0.18 |
ДВП и ДСП | 1000 | 0.29 |
* | 800 | 0.23 |
* | 600 | 0.16 |
* | 400 | 0.13 |
* | 200 | 0.08 |
Плиты фибролитовые и арболитовые на портландцементе | 800 | 0.30 |
* | 600 | 0.23 |
* | 400 | 0.16 |
* | 300 | 0.14 |
Плиты камышитовые | 300 | 0.14 |
* | 200 | 0.09 |
Плиты торфяные теплоизоляционные | 300 | 0.08 |
* | 200 | 0.064 |
Пакля | 150 | 0.07 |
Маты минераловатные прошивные и на синтетическом связующем | 125 | 0.07 |
* | 75 | 0.064 |
* | 50 | 0.06 |
Плиты минераловатные на синтетическом и битумном связующих | 350 | 0.11 |
* | 300 | 0.09 |
* | 200 | 0.08 |
* | 100 | 0.07 |
* | 50 | 0.06 |
Плиты минераловатные повышенной жесткости на органофосфатном связующем | 200 | 0.076 |
Плиты минераловатные полужесткие на крахмальном связующем | 200 | 0.08 |
* | 125 | 0.064 |
Плиты из стеклянного штапельного волокна на синтетическом связующем | 50 | 0.064 |
Маты из стекловолокна прошивные | 150 | 0.07 |
Пенополистирол | 150 | 0.06 |
* | 100 | 0.052 |
* | 40 | 0.05 |
Пенопласт ПХВ-1 и ПВ-1 | 125 | 0.064 |
* | 100 и меньше | 0.052 |
Пенополиуретан | 80 | 0.05 |
* | 60 | 0.041 |
* | 40 | 0.04 |
Плиты из резольно-фенолформальдегидного пенопласта | 100 | 0.076 |
* | 75 | 0.07 |
* | 50 | 0.064 |
* | 40 | 0.06 |
Перлитопластбетон | 200 | 0.06 |
* | 100 | 0.05 |
Перлитофосфогелевые изделия | 300 | 0.12 |
* | 200 | 0.09 |
Засыпка гравия керамзитового | 800 | 0.23 |
* | 600 | 0.20 |
* | 400 | 0.14 |
* | 300 | 0.13 |
* | 200 | 0.12 |
Засыпка гравия шунгизитового | 800 | 0.23 |
* | 600 | 0.20 |
* | 400 | 0.14 |
Засыпка щебня из доменного шлака, шлаковой пемзы и аглопорита | 800 | 0.26 |
* | 600 | 0.21 |
* | 400 | 0.16 |
Засыпка щебня и песка из перлита вспученного | 600 | 0.12 |
* | 400 | 0.09 |
* | 200 | 0.08 |
Засыпка вермикулита вспученного | 200 | 0.11 |
* | 100 | 0.08 |
Засыпка песка | 1600 | 0.58 |
Пеностекло или газостекло | 400 | 0.14 |
* | 300 | 0.12 |
* | 200 | 0.09 |
Листы асбестоцементные плоские | 1800 | 0.52 |
* | 1600 | 0.41 |
Битумы нефтяные | 1400 | 0.27 |
* | 1200 | 0.22 |
* | 1000 | 0.17 |
Изделия из вспученного перлита на битумном связующем | 400 | 0.13 |
* | 300 | 0.099 |
Рубероид | 600 | 0.17 |
Линолеум поливинилхлоридный многослойный | 1800 | 0.38 |
* | 1600 | 0.33 |
Линолеум поливинилхлоридный на тканевой подоснове | 1800 | 0.35 |
* | 1600 | 0.29 |
* | 1400 | 0.23 |
Сталь стержневая арматурная | 7850 | 58 |
Чугун | 7200 | 50 |
Алюминий | 2600 | 221 |
Медь | 8500 | 407 |
Стекло оконное | 2500 | 0.76 |
Теплопроводность строительных материалов – основные понятия, табличные значения, расчеты
Ведущие тенденции современного строительства – это возведение домов с максимальной энергоэффективностью. То есть с возможностью создания и поддержания комфортных условий проживания при минимальных затратах энергоносителей. Понятно, что многим нашим строителям, ведущим возведение своих жилых владений самостоятельно, до таких показателей пока далековато, но стремиться к этому – необходимо всегда.
Теплопроводность строительных материаловПрежде всего, это касается минимизации тепловых потерь через строительные конструкции. Достигается такое снижение эффективной термоизоляцией, выполненной на основании теплотехнических расчетов. Проектирование в идеале должны проводить специалисты, но часто обстоятельства понуждают владельцев жилья и такие вопросы брать в свои руки. Значит, необходимо иметь общие представления о базовых понятиях строительной теплотехники. Прежде всего – что такое теплопроводность строительных материалов, в чем она измеряется, как просчитывается.
Если разобраться с этими «азами», то будет проще всерьез, со знанием дела , а не по наитию, заниматься вопросами утепления своего жилья.
Если не рассматривать каких-то теоретических условий, то в реальности все физические тела, жидкости или газы обладают способностью к передаче тепла. Иными словами, чтобы было понятнее, если какой-то объект начинают нагревать с одной из сторон, он становится проводником тепла, нагреваясь сам и передавая тепловую энергию дальше. Точно так же – и при охлаждении, только с «обратным знаком».
Даже на простом бытовом уровне всем понятно, что эта способность выражена у разных материалов в очень отличающейся степени. Например, одно дело мешать готовящееся на плите кипящее блюдо деревянной лопаткой, и совсем другое – металлической ложкой, которая практически моментально разогреется до такой температуры, что ее невозможно будет держать в руках. Этот пример наглядно показывает, что теплопроводность металла во много раз выше, чем у дерева.
«Практическое применение» огромной разницы в теплопроводности материалов – пробка, подсунутая под скобу металлической крышки кастрюли. Снять такую крышку с кипящей на плите посуды можно голыми пальцами, не опасаясь ожога.И таких примеров – масса, буквально на каждом шагу. Например, прикоснитесь рукой к обычной деревянной двери в комнате, и к металлической ручке, прикрученной на ней. По ощущениям – ручка холоднее. Но такого не может быть – все предметы в помещении имеют примерно равную температуру. Просто металл ручки быстрее отвел на себя тепло тела, что и вызвало ощущения более холодной поверхности.
Коэффициент теплопроводности материалаСуществует специальная единица, которая характеризует любой материал, как проводник тепла. Называется она коэффициентом теплопроводности, обозначается обычно греческой буквой λ, и измеряется в Вт/(м×℃). (Во многих встречающихся формулах вместо градусов Цельсия ℃ указаны градусы Кельвина, К, но сути это не меняет).
Этот коэффициент показывает способность материала передавать определенное количество тепла на определённое расстояние за единицу времени. Причем, это показатель характеризует именно материал, то есть без привязки к каким бы то ни было размерам.
Такие коэффициенты рассчитаны для практически любых строительных и иных материалов. Ниже в данной публикации приведены таблицы для различных групп – растворов, бетонов, кирпичной и каменной кладки, утеплителей, древесины, металлов и т.д. Даже беглого взгляда на них достаточно, чтобы убедиться, насколько эти коэффициенты могут отличаться.
Очень часто производители стройматериалов того или иного предназначения в череде паспортных характеристик указывают и коэффициент теплопроводности.
Материалы, которые отличаются высокой проводимостью тепла, например, металлы, как раз и находят часто применение в роли теплоотводов или теплообменников. Классический пример – радиаторы отопления, в которых чем лучше их стенки будут передавать нагрев от теплоносителя, тем эффективнее их работа.
А вот для большинства строительных материалов – ситуация обратная. То есть чем меньше коэффициент теплопроводности материала, из которого возведена условная стенка, тем меньше тепла будет терять здание с приходом холодов. Или, тем меньше можно будет сделать толщину стены при одинаковых показателях теплопроводности.
И на титульной картинке к статье, и на иллюстрации ниже показаны весьма наглядные схемы, как будет различаться толщина стены из разных материалов при равных способностях удержать тепло в доме. Комментарии, наверное, не нужны.
Одинаковая термоизоляционная способность – и совершенно разные толщины. Хороший пример по разнице в теплопроводности.В справочной литературе часто указывается не одно значение коэффициента теплопроводности для какого-то материала, а целых три. (А иногда – и больше, так как этот коэффициент может меняться с изменением температуры). И это – правильно, так как на теплопроводные качества влияют и условия эксплуатации. И в первую очередь – влажность.
Это свойственно большинству материалов – при насыщении влагой коэффициент теплопроводности увеличивается. И если ставится цель выполнить расчеты максимально точно, с привязкой к реальным условиям эксплуатации, то рекомендуется не пренебрегать этой разницей.
Итак, коэффициент может даваться расчетный, то есть для совершенно сухого материала и лабораторных условий. Но для реальных расчетов берут его или для режима эксплуатации А, или для режима Б.
Эти режимы складываются консолидировано из климатических особенностей региона и из особенностей эксплуатации конкретного здания (помещения).
Тип своей климатической зоны по уровню влажности можно определить по предлагаемой карте-схеме:
Климатические зоны территории России по уровню влажности: 1 –влажная; 2 – нормальная; 3 – сухая.Особенности влажностного режима помещений определяются по следующей таблице:
Таблица определения влажностного режима помещений
Влажностной режим помещения | Относительная влажность внутреннего воздуха при температуре: | ||
---|---|---|---|
до 12°С | от 13 до 24°С | 25°С и выше | |
Сухой | до 60% | до 50% | до 40% |
Нормальный | от 61 до 75% | от 51 до 60% | от 41 до 50% |
Влажный | 76% и более | от 61 до 75% | от 51 до 60% |
Мокрый | – | 76% и более | 61% и более |
Кстати, о влажности!..
А хорошо ли вы представляете себе, что такое относительная влажность воздуха. И какой она должна быть в помещениях для поддержания комфортного микроклимата? Если с этим ясности нет – добро пожаловать к специальной публикации нашего портала, посвященной
приборам измерения относительной влажности.
Итак, имея данные карты-схемы и таблицы, можно по второй таблице определиться с выбором режима А или Б, от которого будет зависеть реальная величина коэффициента теплопроводности.
Таблица для выбора режима эксплуатации ограждающих конструкций
Влажностной режим помещения (по таблице) | Зоны влажности (в соотвествии с картой-схемой) | ||
---|---|---|---|
3 – сухая | 2 – нормальная | 1 – влажная | |
Сухой | А | А | Б |
Нормальный | А | Б | Б |
Влажный или мокрый | Б | Б | Б |
Вот по этому режиму и выбирается из табличных данных наиболее близкий к реальности коэффициент теплопроводности.
Таблицы будут приведены ниже, под теоретической частью.
Сопротивление теплопередачеИтак, коэффициент теплопроводности характеризует сам материал. Но с практической точки зрения, наверное, важнее иметь какую-то величину, которая будет описывать теплопроводные способности конкретной конструкции. То есть уже с учетом особенностей ее строения и размеров.
Такая единица измерения есть, и называется она сопротивлением теплопередаче. Ее можно считать обратной величиной коэффициенту теплопроводности, с одновременным учетом толщины материала.
Обозначается сопротивление теплопередаче (или, как его часто именуют, термическое сопротивление) латинской буквой R. Если «плясать» от коэффициента теплопроводности, то определяется оно по следующей формуле.
R = h/λ
где:
R — сопротивление теплопередаче однослойной однородной ограждающей конструкции, м²×℃/Вт;
h
λ — коэффициент теплопроводности материала, из которого изготовлена эта ограждающая конструкция, Вт/(м×℃).
Очень часто в строительстве используются многослойные конструкции. В том числе одним из слоев нередко выступает утеплительный материал с очень низким коэффициентом теплопроводности – специально, чтобы максимально повысить значение термического сопротивления. Дело в том, что общее значение суммируется из сопротивлений всех слоев, составляющих ограждающую конструкцию. И к ним добавляется сопротивление приграничных слоев воздуха на внешней и внутренней поверхностях конструкции.
Формула сопротивления перегородки с n-слоев будет такой:
Rsum = R₁ + R₂ + …+Rn + Rai + Rao
где:
Rsum— суммарное термическое сопротивление ограждающей конструкции;
R₁ … Rn— сопротивления слоев, от 1 до n;
Rai— сопротивление пристенного слоя воздуха внутри;
Rao— сопротивление пристенного слоя воздуха снаружи.
Для каждого из слоев сопротивление рассчитывается отдельно, исходя из коэффициента теплопроводности материала и толщины.
Есть специальная методика расчета и коэффициентов воздушных прослоек вдоль стены снаружи и внутри. Но для упрощенных расчётов их вполне можно взять равными суммарно 0,16 м²×℃/Вт – большой погрешности не будет.
Кстати, если в конструкции перегородки предусмотрена воздушная полость, не сообщающаяся с внешним воздухом, то она тоже дает весомую добавку к общему сопротивлению теплопередаче. Значения сопротивления теплопередаче воздушных изолированных прослоек показаны в таблице ниже:
Таблица термических сопротивлений замкнутых воздушных прослоек
Толщина воздушной прослойки, в метрах | В и Г ▲ | Г▼ | ||
---|---|---|---|---|
tв > 0 ℃ | tв | tв > 0 ℃ | tв | |
0.01 | 0.13 | 0.15 | 0.14 | 0.15 |
0.02 | 0.14 | 0.15 | 0.15 | 0.19 |
0.03 | 0.14 | 0.16 | 0.16 | 0.21 |
0.05 | 0.14 | 0.17 | 0.17 | 0.22 |
0.1 | 0.15 | 0.18 | 0.18 | 0.23 |
0.15 | 0.15 | 0.18 | 0.19 | 0.24 |
0,2-0,3 | 0.15 | 0.19 | 0.19 | 0.24 |
Примечания: | ||||
В и Г ▲ – воздушная прослойка вертикальная, или горизонтальная, с рапространением тепла снизу вверх | ||||
Г▼ – воздушная прослойка горизонтальная при распространении тепла сверху вниз | ||||
tв > 0 ℃ – положительная температура воздуха в прослойке | ||||
tв | ||||
Если любая из поверхностей воздушной прослойки, или обе одновременно, оклеены алюминиесвой фольгой, то значение сопротивления теплопередаче принимают вдвое большим. |
Наименование материала | ρ Средняя плотность материала кг/м³ | λ₀ Коэффициент теплопроводности в идеальных условиях и в сухом состоянии Вт/(м×℃) | λА Коэффициент теплопроводности для условий эксплуатации А Вт/(м×℃) | λБ Коэффициент теплопроводности для условий эксплуатации Б Вт/(м×℃) |
---|---|---|---|---|
Кирпичная кладка из сплошного кирпича на различных растворах | ||||
Стандартный керамический (глиняный) – на цементно-песчаном кладочном растворе | 1800 | 0,56 | 0,70 | 0,81 |
Стандартный керамический на цементно-шлаковом растворе | 1700 | 0,52 | 0,64 | 0,76 |
Стандартный керамический на цементно-перлитовом растворе | 1600 | 0,47 | 0,58 | 0,70 |
Силикатный на цементно-песчаном кладочном растворе | 1800 | 0,70 | 0,76 | 0,87 |
Трепельный термооизоляционный, на цементно-песчаном кладочном растворе | 1200 | 0,35 | 0,47 | 0,52 |
– то же, но с плотностью | 1000 | 0,29 | 0,41 | 0,47 |
Шлаковый, на цементно-песчаном кладочном растворе | 1500 | 0,52 | 0,64 | 0,70 |
Кладка из пустотного кирпича | ||||
Кирпич керамический, с плотностью 1400 кг/м³, на цементно-песчаном кладочном растворе | 1600 | 0,47 | 0,58 | 0,64 |
– то же, но с плотностью кирпича 1300 кг/м³ | 1400 | 0,41 | 0,52 | 0,58 |
– то же, но с плотностью кирпича 1000 кг/м³ | 1200 | 0,35 | 0,47 | 0,52 |
Кирпич силикатный, одиннадцатипустотный, на цементно-песчаном кладочном растворе | 1500 | 0,64 | 0,70 | 0,81 |
– то же, четырнадцатипустотный | 1400 | 0,52 | 0,64 | 0,76 |
Кладка или облицовка поверхностей натуральным камнем | ||||
Гранит или базальт | 2800 | 3,49 | 3,49 | 3,49 |
Мрамор | 2800 | 2,91 | 2,91 | 2,91 |
Туф | 2000 | 0,76 | 0,93 | 1,05 |
– то же, но с плотностью | 1800 | 0,56 | 0,70 | 0,81 |
– то же, но с плотностью | 1600 | 0,41 | 0,52 | 0,64 |
– то же, но с плотностью | 1400 | 0,33 | 0,43 | 0,52 |
– то же, но с плотностью | 1200 | 0,27 | 0,35 | 0,41 |
– то же, но с плотностью | 1000 | 0,21 | 0,24 | 0,29 |
Известняк | 2000 | 0,93 | 1,16 | 1,28 |
– то же, но с плотностью | 1800 | 0,70 | 0,93 | 1,05 |
– то же, но с плотностью | 1600 | 0,58 | 0,73 | 0,81 |
– то же, но с плотностью | 1400 | 0,49 | 0,56 | 0,58 |
Наименование материала | ρ кг/м³ | λ₀ Вт/(м×℃) | λА Вт/(м×℃) | λБ Вт/(м×℃) |
---|---|---|---|---|
Бетоны на плотном заполнителе | ||||
Железобетон | 2500 | 1.69 | 1.92 | 2.04 |
Бетон на натуральном гравии или щебне | 2400 | 1.51 | 1.74 | 1.86 |
Бетоны на натуральных пористых заполнителях | ||||
Пемзобетон | 1600 | 0.52 | 0.6 | 0.68 |
– то же, но с плотностью | 1400 | 0.42 | 0.49 | 0.54 |
– то же, но с плотностью | 1200 | 0.34 | 0.4 | 0.43 |
– то же, но с плотностью | 1000 | 0.26 | 0.3 | 0.34 |
– то же, но с плотностью | 800 | 0.19 | 0.22 | 0.26 |
Туфобетон | 1800 | 0.64 | 0.87 | 0.99 |
– то же, но с плотностью | 1600 | 0.52 | 0.7 | 0.81 |
– то же, но с плотностью | 1400 | 0.41 | 0.52 | 0.58 |
– то же, но с плотностью | 1200 | 0.29 | 0.41 | 0.47 |
Бетон на вулканическом шлаке | 1600 | 0.52 | 0.64 | 0.7 |
– то же, но с плотностью | 1400 | 0.41 | 0.52 | 0.58 |
– то же, но с плотностью | 1200 | 0.33 | 0.41 | 0.47 |
– то же, но с плотностью | 1000 | 0.24 | 0.29 | 0.35 |
– то же, но с плотностью | 800 | 20 | 0.23 | 0.29 |
Бетоны на искусственных пористых наполнителях | ||||
Керамзитобетон на кварцевом песке с поризацией | 1200 | 0.41 | 0.52 | 0.58 |
– то же, но с плотностью | 1000 | 0.33 | 0.41 | 0.47 |
– то же, но с плотностью | 800 | 0.23 | 0.29 | 0.35 |
Керамзитобетон на керамзитовом песке или керамзитопенобетон | 1800 | 66 | 0.8 | 0.92 |
– то же, но с плотностью | 1600 | 0.58 | 0.67 | 0.79 |
– то же, но с плотностью | 1400 | 0.47 | 0.56 | 0.65 |
– то же, но с плотностью | 1200 | 0.36 | 0.44 | 0.52 |
– то же, но с плотностью | 1000 | 0.27 | 0.33 | 0.41 |
– то же, но с плотностью | 800 | 0.21 | 0.24 | 0.31 |
– то же, но с плотностью | 600 | 0.16 | 0.2 | 0.26 |
– то же, но с плотностью | 500 | 0.14 | 0.17 | 0.23 |
Керамзитобетон на перлитовом песке | 1000 | 0.28 | 0.35 | 0.41 |
– то же, но с плотностью | 800 | 0.22 | 0.29 | 0.35 |
Перлитобетон | 1200 | 0.29 | 0.44 | 0.5 |
– то же, но с плотностью | 1000 | 0.22 | 0.33 | 0.38 |
– то же, но с плотностью | 800 | 0.16 | 0.27 | 0.33 |
– то же, но с плотностью | 600 | 0.12 | 0.19 | 0.23 |
Шлакопемзобетон | 1800 | 0.52 | 0.63 | 0.76 |
– то же, но с плотностью | 1600 | 0.41 | 0.52 | 0.63 |
– то же, но с плотностью | 1400 | 0.35 | 0.44 | 0.52 |
– то же, но с плотностью | 1200 | 0.29 | 0.37 | 0.44 |
– то же, но с плотностью | 1000 | 0.23 | 0.31 | 0.37 |
Шлакопемзопено и шлакопемзогазобетон | 1600 | 0.47 | 0.63 | 0.7 |
– то же, но с плотностью | 1400 | 0.35 | 0.52 | 0.58 |
– то же, но с плотностью | 1200 | 0.29 | 0.41 | 0.47 |
– то же, но с плотностью | 1000 | 0.23 | 0.35 | 0.41 |
– то же, но с плотностью | 800 | 0.17 | 0.29 | 0.35 |
Вермикулетобетон | 800 | 0.21 | 0.23 | 0.26 |
– то же, но с плотностью | 600 | 0.14 | 0.16 | 0.17 |
– то же, но с плотностью | 400 | 0.09 | 0.11 | 0.13 |
– то же, но с плотностью | 300 | 0.08 | 0.09 | 0.11 |
Ячеистые бетоны | ||||
Газобетон, пенобетон, газосиликат, пеносиликат | 1000 | 0.29 | 0.41 | 0.47 |
– то же, но с плотностью | 800 | 0.21 | 0.33 | 0.37 |
– то же, но с плотностью | 600 | 0.14 | 0.22 | 0.26 |
– то же, но с плотностью | 400 | 0.11 | 0.14 | 0.15 |
– то же, но с плотностью | 300 | 0.08 | 0.11 | 0.13 |
Газозолобетон, пенозолобетон | 1200 | 0.29 | 0.52 | 0.58 |
– то же, но с плотностью | 1000 | 0.23 | 0.44 | 0.59 |
– то же, но с плотностью | 800 | 0.17 | 0.35 | 0.41 |
Наименование материала | ρ кг/м³ | λ₀ Вт/(м×℃) | λА Вт/(м×℃) | λБ Вт/(м×℃) |
---|---|---|---|---|
Обычный цементно-песчаный раствор | 1800 | 0.58 | 0.76 | 0.93 |
Сложный раствор из цемента, песка, извести | 1700 | 0.52 | 0.7 | 0.87 |
Цементно-шлаковый раствор | 1400 | 0.41 | 0.52 | 0.64 |
Цементно-перлитовый раствор | 1000 | 0.21 | 0.26 | 0.3 |
– то же, но с плотностью | 800 | 0.16 | 0.21 | 0.26 |
Известково-песчаный раствор | 1600 | 0.47 | 0.7 | 0.81 |
– то же, но с плотностью | 1200 | 0.35 | 0.47 | 0.58 |
Гипсово-перлитовый раствор | 600 | 0.14 | 0.19 | 0.23 |
Гипсово-перлитовый поризованный раствор | 500 | 0.12 | 0.15 | 0.19 |
– то же, но с плотностью | 400 | 0.09 | 0.13 | 0.15 |
Гипсовые плиты литые конструкционные | 1200 | 0.35 | 0.41 | 0.47 |
– то же, но с плотностью | 1000 | 0.23 | 0.29 | 0.35 |
Листы гипсокартона (сухая штукатурка) | 800 | 0.15 | 0.19 | 0.21 |
Наименование материала | ρ кг/м³ | λ₀ Вт/(м×℃) | λА Вт/(м×℃) | λБ Вт/(м×℃) |
---|---|---|---|---|
Хвойная древесина (сосна иди ель) поперек волокон | 500 | 0,09 | 0,14 | 0,18 |
– они же — вдоль волокон | 500 | 0,18 | 0,29 | 0,35 |
Древесина плотных лиственных пород (дуб, бук, ясень) поперек волокон | 700 | 0,1 | 0,18 | 0,23 |
– они же — вдоль волокон | 700 | 0,23 | 0,35 | 0,41 |
Клееная фанера | 600 | 0,12 | 0,15 | 0,18 |
Облицовочный картон | 1000 | 0,18 | 0,21 | 0,23 |
Картон строительный многослойный | 650 | 0,13 | 0,15 | 0,18 |
Плиты древесно-волокнистые (ДВП), древесно-стружечные (ДСП), ориентированно-стружечные (ОСП) | 1000 | 0,15 | 0,23 | 0,29 |
– то же, но для плотности | 800 | 0,13 | 0,19 | 0,23 |
– то же, но для плотности | 600 | 0,11 | 0,13 | 0,16 |
– то же, но для плотности | 400 | 0,08 | 0,11 | 0,13 |
– то же, но для плотности | 200 | 0,06 | 0,07 | 0,08 |
Плиты фибролитовые, арболит на основе портландцемента | 800 | 0,16 | 0,24 | 0,3 |
– то же, но для плотности | 600 | 0,12 | 0,18 | 0,23 |
– то же, но для плотности | 400 | 0,08 | 0,13 | 0,16 |
– то же, но для плотности | 300 | 0,07 | 0,11 | 0,14 |
Плиты камышитовые | 300 | 0,07 | 0,09 | 0,14 |
– то же, но для плотности | 200 | 0,06 | 0,07 | 0,09 |
Плиты торфяные термоизоляционные | 300 | 0,064 | 0,07 | 0,08 |
– то же, но для плотности | 200 | 0,052 | 0,06 | 0,064 |
Пакля строительная | 150 | 0,05 | 0,06 | 0,07 |
Наименование материала | ρ кг/м³ | λ₀ Вт/(м×℃) | λА Вт/(м×℃) | λБ Вт/(м×℃) |
---|---|---|---|---|
Минеральная вата, стекловата | ||||
Маты минеральной ваты прошивные или на синтетическом связующем | 125 | 0.056 | 0.064 | 0.07 |
– то же, но для плотности | 75 | 0.052 | 0.06 | 0.064 |
– то же, но для плотности | 50 | 0.048 | 0.052 | 0.06 |
Плиты минеральной ваты на синтетическом и битумном связующих — мягкие, полужесткие и жесткие | 350 | 0.091 | 0.09 | 0.11 |
– то же, но для плотности | 300 | 0.084 | 0.087 | 0.09 |
– то же, но для плотности | 200 | 0.07 | 0.076 | 0.08 |
– то же, но для плотности | 100 | 0.056 | 0.06 | 0.07 |
– то же, но для плотности | 50 | 0.048 | 0.052 | 0.06 |
Плиты минеральной ваты на органофосфатном связующем — повышенной жесткости | 200 | 0.064 | 0.07 | 0.076 |
Плиты из стеклянного штапельного волокна на синтетическом связующем | 50 | 0.056 | 0.06 | 0.064 |
Маты и полосы из стеклянного волокна прошивные | 150 | 0.061 | 0.064 | 0.07 |
Синтетические утеплители | ||||
Пенополистирол | 150 | 0.05 | 0.052 | 0.06 |
– то же, но для плотности | 100 | 0.041 | 0.041 | 0.052 |
– то же, но для плотности | 40 | 0.038 | 0.041 | 0.05 |
Пенопласт ПХВ-1 и ПВ-1 | 125 | 0.052 | 0.06 | 0.064 |
– то же, но для плотности | 100 и менее | 0.041 | 0.05 | 0.052 |
Пенополиуретан плитный | 80 | 0.041 | 0.05 | 0.05 |
– то же, но для плотности | 60 | 0.035 | 0.041 | 0.041 |
– то же, но для плотности | 40 | 0.029 | 0.04 | 0.04 |
Пенополиуретан напылением | 35 | 0.027 | 0.033 | 0.035 |
Плиты из резольноформальдегидного пенопласта | 100 | 0.047 | 0.052 | 0.076 |
– то же, но для плотности | 75 | 0.043 | 0.05 | 0.07 |
– то же, но для плотности | 50 | 0.041 | 0.05 | 0.064 |
– то же, но для плотности | 40 | 0.038 | 0.041 | 0.06 |
Пенополиэтилен | 30 | 0.03 | 0.032 | 0.035 |
Плиты из полиизоцианурата (PIR) | 35 | 0.024 | 0.028 | 0.031 |
Перлитопласт-бетон | 200 | 0.041 | 0.052 | 0.06 |
– то же, но для плотности | 100 | 0.035 | 0.041 | 0.05 |
Перлитофосфогелевые изделия | 300 | 0.076 | 0.08 | 0.12 |
– то же, но для плотности | 200 | 0.064 | 0.07 | 0.09 |
Каучук вспененный | 85 | 0.035 | 0.04 | 0.045 |
Утеплители на натуральной основе | ||||
Эковата | 60 | 0.041 | 0.054 | 0.062 |
– то же, но для плотности | 45 | 0.038 | 0.05 | 0.055 |
– то же, но для плотности | 35 | 0.035 | 0.042 | 0.045 |
Пробка техническая | 50 | 0.037 | 0.043 | 0.048 |
Листы пробковые | 220 | 0.035 | 0.041 | 0.045 |
Плиты льнокостричные термоизоляционные | 250 | 0.054 | 0.062 | 0.071 |
Войлок строительный шерстяной | 300 | 0.057 | 0.065 | 0.072 |
– то же, но для плотности | 150 | 0.045 | 0.051 | 0.059 |
Древесные опилки | 400 | 0.092 | 1.05 | 1.12 |
– то же, но для плотности | 200 | 0.071 | 0.078 | 0.085 |
Засыпки минеральные | ||||
Керамзит – гравий | 800 | 0.18 | 0.21 | 0.23 |
– то же, но для плотности | 600 | 0.14 | 0.17 | 0.2 |
– то же, но для плотности | 400 | 0.12 | 0.13 | 0.14 |
– то же, но для плотности | 300 | 0.108 | 0.12 | 0.13 |
– то же, но для плотности | 200 | 0.099 | 0.11 | 0.12 |
Шунгизит – гравий | 800 | 0.16 | 0.2 | 0.23 |
– то же, но для плотности | 600 | 0.13 | 0.16 | 0.2 |
– то же, но для плотности | 400 | 0.11 | 0.13 | 0.14 |
Щебень из доменного шлака, шлаковой пемзы и аглоперита | 800 | 0.18 | 0.21 | 0.26 |
– то же, но для плотности | 600 | 0.15 | 0.18 | 0.21 |
– то же, но для плотности | 400 | 1.122 | 0.14 | 0.16 |
Щебень и песок из вспученного перлита | 600 | 0.11 | 0.111 | 0.12 |
– то же, но для плотности | 400 | 0.076 | 0.087 | 0.09 |
– то же, но для плотности | 200 | 0.064 | 0.076 | 0.08 |
Вермикулит вспученный | 200 | 0.076 | 0.09 | 0.11 |
– то же, но для плотности | 100 | 0.064 | 0.076 | 0.08 |
Песок строительный сухой | 1600 | 0.35 | 0.47 | 0.58 |
Пеностекло или газостекло | ||||
Пеностекло или газо-стекло | 400 | 0.11 | 0.12 | 0.14 |
– то же, но для плотности | 300 | 0.09 | 0.11 | 0.12 |
– то же, но для плотности | 200 | 0.07 | 0.08 | 0.09 |
Наименование материала | ρ кг/м³ | λ₀ Вт/(м×℃) | λА Вт/(м×℃) | λБ Вт/(м×℃) |
---|---|---|---|---|
Асбестоцементные | ||||
Листы асбестоцементные плоские («плоский шифер») | 1800 | 0.35 | 0.47 | 0.52 |
– то же, но для плотности | 1600 | 0.23 | 0.35 | 0.41 |
На битумной основе | ||||
Битумы нефтяные строительные и кровельные | 1400 | 0.27 | 0.27 | 0.27 |
– то же, но для плотности | 1200 | 0.22 | 0.22 | 0.22 |
– то же, но для плотности | 1000 | 0.17 | 0.17 | 0.17 |
Асфальтобетон | 2100 | 1.05 | 1.05 | 1.05 |
Изделия из вспученного перлита на битумном связующем | 400 | 0.111 | 0.12 | 0.13 |
– то же, но для плотности | 300 | 0.067 | 0.09 | 0.099 |
Рубероид, пергамин, толь, гибкая черепица | 600 | 0.17 | 0.17 | 0.17 |
Линолеумы и наливные полимерные полы | ||||
Линолеум поливинилхлоридный многослойный | 1800 | 0.38 | 0.38 | 0.38 |
– то же, но для плотности | 1600 | 0.33 | 0.33 | 0.33 |
Линолеум поливинилхлоридный на тканевой подоснове | 1800 | 0.35 | 0.35 | 0.35 |
– то же, но для плотности | 1600 | 0.29 | 0.29 | 0.29 |
– то же, но для плотности | 1400 | 0.23 | 0.23 | 0.23 |
Пол наливной полиуретановый | 1500 | 0.32 | 0.32 | 0.32 |
Пол наливной эпоксидный | 1450 | 0.029 | 0.029 | 0.029 |
Наименование материала | ρ кг/м³ | λ₀ Вт/(м×℃) | λА Вт/(м×℃) | λБ Вт/(м×℃) |
---|---|---|---|---|
Сталь, в том числе – арматурная стержневая | 7850 | 58 | 58 | 58 |
Чугун | 7200 | 50 | 50 | 50 |
Алюминий | 2600 | 221 | 221 | 221 |
Медь | 8500 | 407 | 407 | 407 |
Бронза | 7500÷9300 | 25÷105 | 25÷105 | 25÷105 |
Латунь | 8100÷8800 | 70÷120 | 70÷120 | 70÷120 |
Стекло кварцевое оконное | 2500 | 0.76 | 0.76 | 0.76 |
Сейчас для утепления различных строений используются, преимущественно, синтетические материалы. Они имеют отличные характеристики, а также в большинстве своем очень удобны в монтаже.
Исходя из значений в таблицах выше, из категории синтетических утеплителей одним из самых энергоэффективных является PIR-плита. При плотности всего 35 кг/м³ коэффициент теплопроводности у нее в среднем составляет 0,024 Вт/м*К. Но он может быть и меньше в зависимости от технологии производства PIR-плиты у того или иного производителя.
Сравнение теплопроводности PIR-плит и других материаловТак, например, PIR-плиты LOGICPIR от российского производителя ТЕХНОНИКОЛЬ имеют показатель теплопроводности всего 0,022 Вт/м*К. Почему значение так снижается? Дело в том, что этот вид утеплителя с обеих сторон имеет фольгированный слой. Фольга, как известно, сама по себе способна отлично отражать тепловую энергию в обратную сторону, то есть в помещение. Благодаря этому свойству энергоэффективность материала растет, а теплопотери в доме снижаются. Таким образом PIR-утеплитель, имеющий такой слой с одной и другой стороны, гораздо лучше выполняет свои функции, чем, например, PIR-материал с бумажным технологическим покрытием.
В целом же LOGICPIR — обычная PIR-плита, которая представляет собой пористый материал с множеством микроячеек, наполненных воздухом. Она очень тонкая (толщина варьируется в пределах 2-5 см), легкая, не нагружает строительные конструкции, но при этом прочная и достаточно плотная, чтобы выдерживать некоторые физические воздействия. Инертна к химическим воздействиям, биологически устойчива и, кроме того, не склонна к возгораниям.
PIR-плита ТЕХНОНИКОЛЬВо время эксплуатации (а срок использования PIR-плит LOGICPIR составляет 50 лет) материал не теряет своих свойств. Его коэффициент теплопроводности не меняется даже при намокании: сам по себе утеплитель не впитывает воду. Дополнительную парозащиту обеспечивает и тот самый фольгированный слой — если при монтаже плит проклеить все стыки алюминиевым скотчем, то формируется непрерывный слой пароизоляции, не пропускающий влагу. Словом, это неплохой вариант синтетического утеплителя с одними из самых высоких характеристик.
Видео: Утепление каркасного дома PIR плитамиДля чего используются такие расчеты в практическом приложении?Оценка эффективности имеющейся термоизоляцииА для чего бывает необходимо вычислять это сопротивление, какая от этого практическая польза?
Такими расчетами можно очень точно оценить степень термоизоляции своего жилья.
Дело в том, что для различных климатических регионов России специалистами рассчитаны так называемые нормативные показатели этого сопротивления теплопередаче, отдельно для стен, перекрытий и покрытий. То есть если сопротивление конструкции отвечает этой норме, то за утепление можно быть спокойным.
Значение этих нормированных сопротивлений для разных строительных конструкций можно найти, воспользовавшись предлагаемой картой схемой.
Карта-схема территории России для определения нормированных значений сопротивлений теплопередаче.Если не дотягивает – надо принимать меры, усиливать термоизоляцию, чтобы минимизировать потери тепла. И, стало быть, решить обратную задачу. То есть с использованием той же формулы (сопротивление от коэффициента теплопроводности и толщины) найти ту толщину утепления, которая восполнит имеющийся «дефицит» до нормы.
Термоизоляционную конструкцию сразу следует делать с опорой на проведенные теплотехнические расчеты.Ну а если термоизоляции пока нет, то тут и вовсе все просто. Тогда потребуется определить, какой слой выбранного утеплительного материала обеспечит выход на нормированное значение сопротивления теплопередаче.
Определение уровня тепловых потерьЕще одна важная задача – это определение величины тепловых потерь через ограждающую конструкцию. Такие вычисления бывают необходимы когда, например, определяется требуемая мощность системы отопления. Как по помещениям — для правильной расстановки обогревательных приборов (радиаторов), так и общая — для выбора оптимальной модели котла.
Каждая конструкция характеризуется своим уровнем тепловых потерь, которые необходимо определять и для правильного планирования системы отопления, и для совершенствования системы термоизоляции.Дело в том, что это сопротивление описывается еще одной формулой, уже от разницы температур и количества тепла, уходящего через ограждающую конструкцию площадью один квадратный метр.
R = Δt / q
Δt — разница температур по обе стороны конструкции, ℃.
q — удельное количество теряемого тепла, Вт.
То есть если известна площадь ограждающей конструкции и ее термическое сопротивление (определенное, например, через толщину и коэффициент теплопроводности), если известно, для каких условий производится расчет (например, нормальная температура в помещении и самые сильные морозы, присущие данной местности), то можно спрогнозировать и тепловые потери через эту конструкцию.
Q = S × Δt/R
Q — теплопотери через ограждающую конструкцию, Вт.
S — площадь этой конструкции, м².
Такие расчеты в помещении проводятся для всех ограждающих конструкций, контактирующих с холодом, и затем определяется суммарные потери, которые должны компенсироваться системой отопления. Или, если эти потери получаются слишком большими – это становится побудительным мотивом к усовершенствованию системы термоизоляции – что-то с ней не так.
Еще одна ремарка. Это мы говорили о конструкциях, состоящих из нескольких слоев разных строительных и утеплительных материалов. А как быть с окнами? Как для них просчитывается сопротивление теплопередаче?
Методика здесь – несколько иная, и самостоятельно заниматься такими расчетами вряд ли имеет смысл. Можно воспользоваться таблицей, в которой уже имеются готовые значения сопротивления для различных типов конструкций окон.
Таблица приведенных значений сопротивления теплопередаче для окон, остекленных балконных дверей, световых проемов (фонарей)
Материал и схема запонения проема | Приведенное термическое Ro, м ² × °С/Вт | |
---|---|---|
Д и ПВХ | А | |
Двойное остекление в спаренных переплетах | 0.4 | – |
Двойное остекление в раздельных переплетах | 0.44 | 0,34* |
Тройное остекление в раздельно-спаренных переплетах | 0.55 | 0.46 |
Однокамерный стеклопакет: | ||
– из обычного стекла | 0.38 | 0.34 |
– из стекла с твердым селективным покрытием | 0.51 | 0.43 |
– из стекла с мягким селективным покрытием | 0.56 | 0.47 |
Двухкамерный стеклопакет: | ||
– из обычного стекла (с межстекольным расстоянием 6 мм) | 0.51 | 0.43 |
– из обычного стекла (с межстекольным расстоянием 12 мм) | 0.54 | 0.45 |
– из стекла с твердым селективным покрытием | 0.58 | 0.48 |
– из стекла с мягким селективным покрытием | 0.68 | 0.52 |
– из стекла с твердым селективным покрытием и заполнением аргоном | 0.65 | 0.53 |
Обычное стекло и однокамерный стеклопакет в раздельных переплетах: | ||
– из обычного стекла | 0.56 | – |
– из стекла с твердым селективным покрытием | 0.65 | – |
– из стекла с мягким селективным покрытием | 0.72 | – |
– из стекла с твердым селективным покрытием и заполнением аргоном | 0.69 | – |
Обычное стекло и двухкамерный стеклопакет в раздельных переплетах: | ||
– из обычного стекла | 0.68 | – |
– из стекла с твердым селективным покрытием | 0.74 | – |
– из стекла с мягким селективным покрытием | 0.81 | – |
– из стекла с твердым селективным покрытием и заполнением аргоном | 0.82 | – |
Два однокамерных стеклопакета в спаренных переплетах | 0.7 | – |
Два однокамерных стеклопакета в раздельных переплетах | 0.74 | – |
Четырехслойное остекление в двух спаренных переплетах | 0.8 | – |
Блоки стеклянные пустотные (с шириной кладочных швов 6 мм) размером: | ||
-200×200 ×100 мм | 0,31 (без переплета) | |
-250×250 ×100 мм | 0,33 (без переплета) | |
Примечания: | ||
Д и ПВХ – переплеты из дерева или пластика (поливинилхлорида) | ||
А – переплеты из алюмииия | ||
* – перепеты из стали | ||
все указанные значения даны для площади остекления 75% от площади светового проема |
Понятно, что тепловые потери будут считаться, исходя из площади остекления и разницы температур.
Надо заметить, что профессиональные теплотехнические расчеты учитывают еще и множество различных поправочных коэффициентов, в том числе на инсоляцию (воздействие солнечных лучей), светопоглощающие и отражающие свойства поверхностей, неоднородность конструкций и другие. Но для самостоятельной первичной оценки достаточно и того алгоритма, что приведен выше.
Для любителей же более обстоятельного подхода можно порекомендовать следующий видеосюжет:
Видео: Алгоритмы профессионального расчета сопротивления теплопередаче стенМы же завершим публикацию онлайн-калькулятором, который вполне позволяет на бытовом уровне решить ряд задач, о которых шла речь выше.
Калькулятор расчета термического сопротивления ограждающей конструкцииПерейти к расчётам
Пояснения по работе с калькуляторомПрограмма несложна, но все же требует некоторых пояснений.
Предлагаемый алгоритм расчета позволяет провести вычисления сопротивления теплопередаче для любой ограждающей конструкции, включающей от одного до пяти различных слоев.
- Первый слой пусть будет считаться по умолчанию основным. Для него указывается:
— его толщина в миллиметрах (так сделано для удобства, а перевод в метры программа выполнит самостоятельно).
— коэффициент теплопроводности материала, из которого создан этот слой. Значение берется из таблиц, с учетом режима эксплуатации А или Б. При вводе значения в калькулятор вместо запятой в качестве десятичного разделителя используется точка.
- Вторым слоем предлагается указать имеющуюся (если есть) или планируемую термоизоляцию. Здесь уже на выбор – если оставить по умолчанию «нет», то программа проигнорирует этот слой. Если согласиться – появятся поля ввода данных, те же толщина и коэффициент теплопроводности.
- Аналогично по выбору пользователя вводятся или игнорируются еще три произвольных слоя. Это, кстати, могут быть внешняя и внутренняя отделка, если она выполнена из значимых для теплопроводности материалов, многослойная кладка стены и т.п.
- Если задача стоит только в определении сопротивления теплопередаче, то можно сразу переходить к клавише «РАССЧИТАТЬ…».
- Ну а если есть желание еще и найти величину тепловых потерь через рассчитываемую ограждающую конструкцию, то ставится отметка «да, включить дополнительный расчёт». В этом случае появятся еще три поля ввода данных – площадь ограждающей конструкции, температура в помещении и температура на улице.
Уличную температуру для расчетов, как правило, берут минимальную, свойственную самой холодной декаде зимы в регионе проживания. Так задается необходимый запас мощности отопительного оборудования и эффективности системы утепления. Домашнюю температуру обычно считают в пределах 20÷24 ℃ для жилых помещений. Для нежилых (подъезды, коридоры, кладовые и т.п.) можно ограничиться +15 ℃. Для ванных, душевых, бань – порядка 35 ℃.
Рассчитанное термическое сопротивление показывается первой строкой появляющегося результата. Если был выбран вариант с вычислением тепловых потерь, то их значение (в ваттах) будет указано во второй строке.
Таблица теплопроводности строительных материалов и утеплителей
Автор aquatic На чтение 6 мин. Просмотров 10.2k. Обновлено
Строительство каждого объекта лучше начинать с планировки проекта и тщательного расчета теплотехнических параметров. Точные данные позволит получить таблица теплопроводности строительных материалов. Правильное возведение зданий способствует оптимальным климатическим параметрам в помещении. А таблица поможет правильно подобрать сырье, которое будут использоваться для строительства.
Теплопроводность материалов влияет на толщину стен
Назначение теплопроводностиТеплопроводность является показателем передачи тепловой энергии от нагреваемых предметов в помещении к предметам с более низкой температурой. Процесс теплообмена производится, пока температурные показатели не уравняются. Для обозначения тепловой энергии используется специальный коэффициент теплопроводности строительных материалов. Таблица поможет увидеть все требуемые значения. Параметр обозначает, сколько тепловой энергии пропускается через единицу площади в единицу времени. Чем больше данное обозначение, тем качественнее будет теплообмен. При возведении зданий необходимо применять материал с минимальным значением тепловой проводимости.
На схеме представлены показатели различных вариантов
Коэффициент теплопроводности это такая величина, которая равна количеству теплоты, проходящей через метр толщины материала за час. Использование подобной характеристики обязательно для создания лучшей теплоизоляции. Теплопроводность следует учесть при подборе дополнительных утепляющих конструкций.
Сравнение характеристик разных типов сырья
Что оказывает влияние на показатель теплопроводности?Теплопроводность определяется такими факторами:
- пористость определяет неоднородность структуры. При пропуске тепла через такие материалы процесс охлаждения незначительный;
- повышенное значение плотности влияет на тесные соприкосновения частиц, что способствует более быстрому теплообмену;
- повышенная влажность увеличивает данный показатель.
Характеристики различных материалов
Использование значений коэффициента теплопроводности на практикеМатериалы представлены конструкционными и теплоизоляционными разновидностями. Первый вид обладает большими показателями теплопроводности. Они применяются для строительства перекрытий, ограждений и стен.
При помощи таблицы определяются возможности их теплообмена. Чтобы данный показатель был достаточно низким для нормального микроклимата в помещении стены из некоторых материалов должны быть особенно толстыми. Чтобы этого избежать, рекомендуется использовать дополнительные теплоизолирующие компоненты.
При выборе утеплителя нужно изучить характеристики каждого варианта
Показатели теплопроводности для готовых построек. Виды утепленийПри создании проекта нужно учитывать все способы утечки тепла. Оно может выходить через стены и крышу, а также через полы и двери. Если вы неправильно проведете расчеты проектирования, то придется довольствоваться только тепловой энергией, полученной от отопительных приборов. Здания, построенные из стандартного сырья: камня, кирпича либо бетона нужно дополнительно утеплять.
Монтаж минеральной ваты
Дополнительная теплоизоляция проводится в каркасных зданиях. При этом деревянный каркас придает жесткости конструкции, а утепляющий материал прокладывается в пространство между стойками. В зданиях из кирпича и шлакоблоков утепление производится снаружи конструкции.
Выбирая утеплители необходимо обращать внимание на такие факторы, как уровень влажности, влияние повышенных температур и типа сооружения. Учитывайте определенные параметры утепляющих конструкций:
- показатель теплопроводности оказывает влияние на качество теплоизолирующего процесса;
- влагопоглощение имеет большое значение при утеплении наружных элементов;
- толщина влияет на надежность утепления. Тонкий утеплитель помогает сохранить полезную площадь помещения;
- важна горючесть. Качественное сырье имеет способность к самозатуханию;
- термоустойчивость отображает способность выдерживать температурные перепады;
- экологичность и безопасность;
- звукоизоляция защищает от шума.
Характеристики разных видов утеплителей
В качестве утеплителей применяются следующие виды:
- минеральная вата устойчива к огню и экологична. К важным характеристикам относится низкая теплопроводность;
Данный материал относится к самым доступным и простым вариантам
- пенопласт – это легкий материал с хорошими утеплительными свойствами. Он легко устанавливается и обладает влагоустойчивостью. Рекомендуется для применения в нежилых строениях;
- базальтовая вата в отличие от минеральной отличается лучшими показателями стойкости к влаге;
- пеноплэкс устойчив к влажности, повышенным температурам и огню. Имеет прекрасные показатели теплопроводности, прост в монтаже и долговечен;
Для пеноплекса характерна пористая структура
- пенополиуретан известен такими качествами, как негорючесть, хорошие водоотталкивающие свойства и высокая пожаростойкость;
- экструдированный пенополистирол при производстве проходит дополнительную обработку. Обладает равномерной структурой;
Данный вариант бывает разной толщины
- пенофол представляет из себя многослойный утепляющий пласт. В составе присутствует вспененный полиэтилен. Поверхность пластины покрывается фольгой для обеспечения отражения.
Для теплоизоляции могут применяться сыпучие типы сырья. Это бумажные гранулы или перлит. Они имеют стойкость к влаге и к огню. А из органических разновидностей можно рассмотреть волокно из древесины, лен или пробковое покрытие. При выборе, особое внимание уделяйте таким показателям как экологичность и пожаробезопасность.
Таблица теплопроводности строительных материалов: особенности показателейОбратите внимание! При конструировании теплоизоляции, важно продумать монтаж гидроизолирующей прослойки. Это позволит избежать высокой влажности и повысит сопротивляемость теплообмену.
Таблица теплопроводности строительных материалов содержит показатели различных видов сырья, которое применяется в строительстве. Используя данную информацию, вы можете легко посчитать толщину стен и количество утеплителя.
Утепление производится в определенных местах
Как использовать таблицу теплопроводности материалов и утеплителей?В таблице сопротивления теплопередаче материалов представлены наиболее популярные материалы. Выбирая определенный вариант теплоизоляции важно учитывать не только физические свойства, но и такие характеристики как долговечность, цена и легкость установки.
Знаете ли вы, что проще всего выполнять монтаж пенооизола и пенополиуретана. Они распределяются по поверхности в виде пены. Подобные материалы легко заполняют полости конструкций. При сравнении твердых и пенных вариантов, нужно выделить , что пена не образует стыков.
Коэффициент разнообразных типов сырья
Значения коэффициентов теплопередачи материалов в таблицеПри произведении вычислений следует знать коэффициент сопротивления теплопередаче. Данное значение является отношением температур с обеих сторон к количеству теплового потока. Для того чтобы найти теплосопротивление определенных стен и используется таблица теплопроводности.
Значения плотности и теплопроводности
Все расчеты вы можете провести сами. Для этого толщина прослойки теплоизолятора делится на коэффициент теплопроводности. Данное значение часто указывается на упаковке, если это изоляция. Материалы для дома измеряются самостоятельно. Это касается толщины, а коэффициенты можно отыскать в специальных таблицах.
Теплопроводность некоторых конструкций
Коэффициент сопротивления помогает выбрать определенный тип теплоизоляции и толщину слоя материала. Сведения о паропроницаемости и плотности можно посмотреть в таблице.
При правильном использовании табличных данных вы сможете выбрать качественный материал для создания благоприятного микроклимата в помещении.
Теплопроводность строительных материалов (видео)теплопроводность строительных материалов
Теплопроводность строительных материалов это своего рода оценка , которая описывает способность того или иного тела проводить тепло. В данной статье пойдет речь именно об этом, а для большего представления о теплопроводности различных материалов и не только, ниже будет приведена таблица.
Как вы понимаете все материалы обладают разными свойствами и соответственно разную теплопроводность, которая в свою очередь влияет на температуру внутри помещения. Если теплопроводность низкая, значит и теплообмен будет низким. Другими словами, дома зимой тепло будет сохраняться, а летом будет прохладно.
Кстати, очень удобно что теперь все обувные интернет-магазины нижнего новгорода (http://rmau.ru/obuv) собраны на одном сайте. Перейдите по указанной ссылке и выберите обувь для себя и близких из очень большого ассортимента с разными ценовыми категориями.
Существует три вида процессов теплообмена
– Первое – конечно теплопроводность,
– Второе – конвекция,
– Третье – будет тепловым излучением.
Говоря о первом виде теплопроводности можно сказать что, это своего рода передача тепла от тела к телу либо частицами находящиеся внутри тела с разной температурой, за счет активного движения молекулы обмениваются энергией наименьших частиц в теле.
Все это проходит благодаря беспорядочному движению атомов и молекул. Так как данный теплообмен может протекать в разных физических телах, которые имеют неравномерное распределение температуры. Теплопередача будет зависеть от состояния тела в конкретный период времени.
Говоря о втором виде теплопроводности, а именно о конвекции, можно сказать что очень часто все виды теплопередачи протекают вместе. В этом процессе обязательно частицы с различными температурами будут соприкасаться, из чего следует, что конвекция сопровождается теплопроводностью. Конвекция происходит от перемещения участков среды с разными температурами. Само тепло переноситься только совместно с данной средой и зависит от нее. Так же данный процесс иногда называют конвективным теплообменом.
Теплоотдачу можно объяснить как конвективный теплообмен проходящий между стеной которая стоит неподвижно и меняющейся средой.
Третий вид тепловое излучение – благодаря которому происходит процесс передачи тепла между телами с участием электромагнитных волн.
Для того чтобы строить различного вида постройки необходимо обязательно знать теплопроводность утеплителей и строительных материалов, чтобы в итоге получить то что планировалось. Теплопроводность стен зависит от материалов из которых эти стены состоят.
Единицей измерения способности к проведению тепла, является коэффициент теплопроводности. Он равен такому количеству тепла которое пройдет через различные материалы или тела с толщиной 1 м и имеющий площадь 1кв.м/сек с одной температурой по периметру.
Интересный факт: теплопроводность кирпича в отличие от дерева ниже. К примеру- для того чтобы получить с помощью кирпича тот же эффект что от дерева, нужно выложить стену из кирпича толщиной в три раза превышающую толщину стены из дерева.
Теплопроводность пенопласта равна 0,31-0,33 Вт/м*К, с плотностью 15 кг/м3- 50 кг/м3
Теплопроводность стали равна 58 Вт/м*К, с плотностью 7850 кг/м3
Для более расширенного представления о теплопроводности разных материалов, обобщим все в таблицу.
Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:
Теплопроводность твердых материалов
Материал |
Коэффициент Теплопроводности ( Вт/м . К) |
Кварцевая вата |
0.004 – 0.04 |
Воздух |
0.025 |
Дерево |
0.04 – 0.4 |
Спирт и масла |
0.1 – 0.21 |
Полипропилен |
0.25 |
Минеральное масло |
0.138 |
Резина |
0.16 |
Цемент |
0.29 |
Эпоксидная смола с кварцевых наполнением |
0.30 |
Эпоксидная смола |
0.59 |
Вода (жидкая) |
0.6 |
Теплопроводящая смазка |
0.7 – 3 |
Стекло |
1.1 |
Почва |
1.5 |
Бетон, камень |
1.7 |
Лед |
2 |
Кремний |
2.4 |
Нерж. сталь |
12.11 ~ 45.0 |
Свинец |
35.3 |
Алюминий |
237 (чистый) |
Золото |
318 |
Медь |
401 |
Серебро |
429 |
Алмаз |
900 – 2320 |
Графен |
(4840±440) – (5300±480) |
Примечание: источниками справочных данных являются публикации в Интернете, поэтому они не могут считаться «официальными» и «абсолютно точными». Как правило, в Интернет справочниках не приводятся ссылки на научные работы, являющиеся основой опубликованных данных. Мы стараемся брать информацию из наиболее надежных научных сайтов. Однако если кого-то интересуют ссылки на эксперименты, советуем произвести самостоятельно углубленный поиск в Интернете. Будем признательны за любые комментарии к нашим справочным таблицам, а особенно за уточнения существующей информации или дополнение справочных данных.
Коэффициент теплопроводности строительных материалов таблица
Первый вопрос, который возникает, у того, кто решил построить собственный дом, – какой использовать для этого материал. От этого зависит выбор фундамента, в свою очередь, а также теплопроводность стен. На это влияет наличие пор, плотность и прочие характеристики стройматериала. Главнейшим из них является теплопроводность. Коэффициенты теплопроводности строительных материалов, конечно, неодинаковы. И выбирать нужно материал наиболее подходящий для постройки дома в данной местности.
Узнать значение коэффициента теплопроводности можно из документации производителя на этот материал. Коэффициент теплопроводности строительных материалов, таблица тоже поможет выяснить интересующую величину. К примеру, теплопроводность дерева лучше, чем у кирпича. Поэтому, кирпичные стены в доме должны быть втрое толще стен из сосновых бревен, чтобы было также тепло.
Определение понятия
Коэффициентом теплопроводности называется физическая величина, показывающая количество тепла, проходящего за час через метровую толщину материала. Температура на той поверхности, через которую тепло выходит, должна быть на 1°С меньше, чем с другой стороны.
Коэффициенты теплопроводности строительных материалов учитываются во многих случаях. Важно их знать, например, при выборе теплоизоляционного материала для стен здания. В этом случае очень важен правильный расчет. Из-за ошибки сместится точка росы, на стенах, в результате, появится влага, в доме будет холодно и сыро.
Поэтому, коэффициент теплопроводности строительных материалов, таблица обязательно должна быть внимательно изучена во избежание промашек.
Комбинация материалов
Качество производимых утеплителей, благодаря современным технологиям, очень высокое, и строительная индустрия получает весьма широкие возможности. В холодных регионах не нужно возводить дома с большой шириной стен. Надо лишь правильно скомбинировать строительный и теплоизоляционный материалы. Если вам нужно узнать коэффициент теплопроводности строительных материалов, таблица поможет в этом.
Поскольку теплопроводность кирпича небольшая, компенсировать это можно путем использования пенополистирола, к примеру, имеющего коэффициент теплопроводности 0,03 Вт/м град. Вместо кирпича выгодно использовать ячеистый бетон с такими же параметрами, как у дерева. Даже в лютые морозы в доме, построенном из этого материала, сохраняется тепло.
Благодаря таким приемам, стоимость постройки зданий сократилась. Также на возведение сооружения требуется меньше времени. Огромный плюс в том, что нет необходимости в массивном основании, что отдельно дает немалую экономию. Иногда нужен просто легкий столбчатый или ленточный фундамент.
Теплопроводность и каркасное строительство
Все вышесказанное особенно актуально при постройке каркасных домов. Использование материалов низкой теплопроводности привело к тому, что сейчас с применением каркасной технологии строится большое количество коттеджей, складов, магазинов и других сооружений. А возводить каркасные здания можно в зонах с любым климатом.
Теплоизоляционный материал в случае с каркасно-щитовыми зданиями помещается между листами фанеры и плитами OSB. Каким именно должен быть утеплитель в данных климатических условиях, определить можно, используя «коэффициент теплопроводности строительных материалов таблица» на нашем сайте. Будет это пенополиуретан или минеральная вата, толщина утеплителя выбирается в зависимости от величины коэффициента теплопроводности теплоизоляционного материала.
Наподобие того, как утраивается комбинация стен и утеплителя, делается и кровля строения. Применение этой технологии позволяет построить здание в короткий срок, а денежные затраты при этом минимальны.
Минеральная вата и пенополистирол являются лидерами среди материалов-утеплителей для фасадов. Насчет минеральной ваты однозначного мнения нет. Одни специалисты утверждают, что этот материал накапливает конденсат, и использоваться может только вместе с паронепроницаемой мембраной. Но в этом случае стены не «дышат», поэтому целесообразность использования этих материалов остается под вопросом.
По мнению других, устранить эту проблему можно путем устройства вентилируемых фасадов.
Пенополистирол помимо того, что хорошо пропускает воздух, имеет невысокую теплопроводность. Этот показатель зависит от плотности материала. Еще одной важной характеристикой является паропроницаемость. Проветривать помещение в этом случае не нужно.
Высокий уровень паронепроницаемости и низкая теплопроводность стен дома обеспечат отличные условия проживания.
У каких строительных материалов выше коэффициент теплопроводности
Теплоизоляция необходима в любом помещении, где температура в какое-либо время года не должна быть равной температуре окружающей среды.
Оптимальная температура в помещении достигается с помощью работы обогревательных или охлаждающих устройств.
Чтобы искусственно настроенная температура внутри здания не изменялась из-за диффузии неодинаково нагретых частей внутри и снаружи здания, используют строительные материалы с наименьшим коэффициентом теплопроводности.
Что такое теплопроводность?
Теплопроводность — физическое свойство тела (тел) обменивать внутреннюю энергию с помощью диффузии атомов и молекул, которые хаотически перемещаются от более нагретых частей к более холодным.
Атомы и молекулы двигаются в хаотичном порядке до тех пор, пока температура по всему занимаемому объёму не выровняется.
Чем больше теплопроводность вещества, тем быстрее сквозь него передаётся более высокая или более низкая температура.
Теплопроводность определяется количеством теплоты в Дж, которая, при разнице температур в противоположно расположенных параллельных плоскостях в 1 К, проходит через 1 м² за 1 ч.
Коэффициент теплопроводности выражают в Вт/м*К.
Роль коэффициента теплопроводности при принятии архитектурно-строительного решения
Теплопроводность твёрдых тел, каковыми являются все строительные материалы, проявляется за счёт переноса тепла, происходящего в результате колебаний кристаллической решётки.
Большая теплопроводность строительного материала недопустима для возведения архитектурных сооружений. Чем больше теплопроводность, тем меньше теплоизоляционные качества материала, необходимые для поддержания в помещении температуры, отличной от температуры окружающей среды.
Строительные материалы с низкой теплопроводностью помогают сохранить достигнутый градус в помещении вне зависимости от погодных условий, благодаря минимальному поддержанию диффузии между разными по температуре частицами.
Чем меньше коэффициент теплопроводности материала, тем лучше его теплоизоляционные качества.
Хорошая теплоизоляция избавит от сквозняков, холодных стен, быстрого остывания, промерзания или нагрева помещения, позволит существенно сэкономить на устройствах обогрева или охлаждения.
Хотите узнать о конструкции ленточного фундамента?
Или почитайте ЗДЕСЬ об установке пластиковых окон своими руками.
Конструкционные материалы и их теплопроводность
Теплопроводность вещества зависит от его плотности. Чем больше плотность вещества, тем выше теплопроводность. С увеличением пористости понижается ее коэффициент.
Низкий коэффициент теплопроводности материала определяет его хорошие теплоизоляционные качества.
Бетон
- Плотность: 500 кг/м³–2 500 кг/м³. Показатель зависит от состава смеси.
- Теплопроводность: 1,28–1,51 Вт/м*К. Показатель меняется в зависимости от консистенции бетона.
Бетонная смесь используется для заливки монолитного фундамента, а бетонные блоки – для закладки фундамента и возведения стен.
Железобетон
- Плотность: 2 500 кг/м3; бетонная смесь без вибрирования (применения глубинного вибратора) – 2 400 кг/м3.
- Теплопроводность: 1,69 Вт/м*К.
Лёгкий бетон на пористых заполнителях называют ячеистым бетоном.
Используют в качестве конструкционного и теплоизоляционного материала. Самые распространённые строительные материалы из бетона на пористых заполнителях — газобетон, пенобетон, керамзитобетон.
Данные материалы применяются для возведения многоэтажных, частных домов и для дополнительных пристроек: бань, гаражей, сараев.
Керамзитобетон
Полнотелые керамзитобетонные блоки производятся с помощью вибропрессования. Не имеют пустот и отверстий. Часто используются для кладки несущих стен или закладки фундамента.
Пустотелые керамзитобетонные блоки делают с применением специальных форм, позволяющих при заливке смеси сформировать герметичные или сквозные пустоты.
Обладают меньшей прочностью по сравнению с полнотелыми керамзитобетонными блоками. Имеют меньшую теплопроводность, что делает их оптимальным материалом для возведения нетяжёлых конструкций с требуемой высокой теплоизоляцией.
- Плотность: 500 кг/м³–1 800 кг/м³.
- Теплопроводность: 0,14–0,66 Вт/м*К.
Газобетон
Изготавливается из газосиликата. С помощью специализированных газообразователей внутри блока формируют приблизительно сферические поры (пустоты), их диаметр 1–3 мм.
- Плотность: 300–800 кг/м3. Зависит от количества и размера пустот.
- Теплопроводность: 0,1–0,3 Вт/м*К.
Пенобетон
Изготавливается с применением пенообразующих добавок. Имеет пористую структуру.
- Плотность: 600–1 000 кг/м3.
- Теплопроводность: 0,1–0,38 Вт/м*К.
Саманный кирпич
Изготавливается из глины и наполнителя.
- Плотность: 500 кг/м³–1 900 кг/м³;
- Теплопроводность: 0,1–0,4 Вт/м*К.
Керамический кирпич
Изготавливается из обожжённой глины.
- Плотность: полнотелый – 1 600 кг/м³–1 900 кг/м³; пустотелый – 1 100 кг/м³–1 400 кг/м³;
- Теплопроводность: полнотелый – 0,56–0,86 Вт/м*К; пустотелый–0,35–0,41 Вт/м*К.
Силикатный кирпич
Изготавливается из песка и извести.
- Плотность: 1 100 кг/м³–1 900 кг/м³;
- Теплопроводность: 0,81–0,87 Вт/м*К.
Дерево
- Плотность: 150 кг/м³–2 100 кг/м³;
- Теплопроводность: 0,2–0,23 Вт/м*К.
Строительные конструкционные материалы, даже с низкой теплопроводностью, нуждаются в дополнительном утеплении.
Хотите узнать о материалах для черновой отделки помещения?
Или почитайте ЗДЕСЬ о несъемной опалубке из пенополистирола.
А в этой статье вы узнаете, как выбрать лотки для ливневки: http://realconstruct.ru/engineer/water/lotki-livnevka.html
Утеплители и их теплопроводность
Используются для утепления фундамента, пола, стен здания внутри и снаружи, потолка и крыши.
Пенопласт
- Плотность: 15 кг/м³–50 кг/м³;
- Теплопроводность: 0,31–0,33 Вт/м*К.
Пенополистирол
- Плотность: 15 кг/м³–50 кг/м³;
- Теплопроводность: 0,028–0,035 Вт/м*К.
Минеральная вата
Минеральная вата имеет способность впитывать влагу. Вода легко накапливается, но очень долго испаряется из данного звуко- и теплоизоляционного материала.
Если минвата перенасытится влагой, то потеряет свои основные изоляционные свойства. Чтобы не допустить впитывание влаги, минвату с двух сторон герметично закупоривают слоем гидроизоляции.
Стекловата
- Плотность: 15 кг/м³–45 кг/м³;
- Теплопроводность: 0,038–0,046 Вт/м*К.
Базальтовая (каменная) вата
- Плотность: 30 кг/м³–200 кг/м³;
- Теплопроводность: 0,035–0,042 Вт/м*К.
Эковата
- Плотность: 30 кг/м³–110 кг/м³;
- Теплопроводность: 0,032–0,041 Вт/м*К.
Сравнительные характеристики теплопроводности конструкционных строительных материалов и утеплителей необходимо проанализировать, выбрав для постройки или дополнительной теплоизоляции самый подходящий материал.
Видео о характеристиках теплоизоляционных материалов
Теплопроводность обычных материалов
В этой статье представлены данные о теплопроводности для ряда распространенных материалов. Теплопроводность измеряет способность материала пропускать тепло через проводимость.
Теплопроводность измеряет способность материала пропускать тепло через проводимость. Теплопроводность материала сильно зависит от состава и структуры. Вообще говоря, плотные материалы, такие как металлы и камень, являются хорошими проводниками тепла, в то время как вещества с низкой плотностью, такие как газ и пористая изоляция, плохо проводят тепло.
Теплопроводность материалов требуется для анализа сетей теплового сопротивления при изучении теплопередачи в системе.
Дополнительную информацию см. В статье «Значения теплопроводности для других металлов и сплавов».
В следующих таблицах показаны значения теплопроводности для обычных веществ.
Материал | Температура | Теплопроводность | Температура | Теплопроводность | |
---|---|---|---|---|---|
Почвы и земля | |||||
Глина | 20 | 0.600 | 68 | 0,347 | |
Гравий | 20 | 2,50 | 68 | 1,44 | |
Недра (Влажность 8%) | 20 | 0,900 | 68 | 0,520 | |
Грунт, сухой песок | 20 | 0,300 | 68 | 0,173 | |
Влажный песок (Влажность 8%) | 20 | 0,600 | 68 | 0,347 | |
Строительные материалы | |||||
Кирпич (здание) | 20 | 0.720 | 68 | 0,416 | |
Кирпич (глинозем) | 430 | 3,10 | 806 | 1,79 | |
Клинкер (цемент) | 20 | 0,700 | 68 | 0,404 | |
Бетон, тяжелый | 20 | 1,30 | 68 | 0,751 | |
Бетон, изоляция | 20 | 0,207 | 68 | 0,120 | |
Бетон легкий | 20 | 0.418 | 68 | 0,242 | |
Стекло | 20 | 0,935 | 68 | 0,540 | |
Дерево | 20 | 0,170 | 68 | 0,098 | |
Изоляция | |||||
Асбест | 0 | 0,160 | 32 | 0,092 | |
100 | 0,190 | 212 | 0,110 | ||
200 | 0.210 | 392 | 0,121 | ||
Силикат кальция | 20 | 0,046 | 68 | 0,027 | |
Пробка | 30 | 0,043 | 86 | 0,025 | |
Стекловолокно | 20 | 0,042 | 68 | 0,024 | |
Магнезия 85% | 20 | 0,070 | 68 | 0,040 | |
Магнезит | 200 | 3.80 | 392 | 2,20 | |
Слюда | 50 | 0,430 | 122 | 0,248 | |
Rockwool | 20 | 0,034 | 68 | 0,020 | |
Резина, мягкая | 20 | 0,130 | 68 | 0,075 | |
Твердая резина | 0 | 0,150 | 32 | 0,087 | |
Опилки | 20 | 0.052 | 68 | 0,030 | |
Пенополиуретан (жесткий) | 20 | 0,026 | 68 | 0,015 | |
Прочие твердые вещества | |||||
Алмаз | 20 | 2300 | 68 | 1,329 | |
Графит | 0 | 151 | 32 | 87,2 | |
Кожа человека | 20 | 0,370 | 68 | 0.214 | |
Жидкости | |||||
Уксусная кислота, 50% | 20 | 0,350 | 68 | 0,202 | |
Ацетон | 30 | 0,170 | 86 | 0,098 | |
Анилин | 20 | 0,170 | 68 | 0,098 | |
Бензол | 30 | 0,160 | 86 | 0,092 | |
Хлорид кальция, 30% | 30 | 0.550 | 86 | 0,318 | |
Этанол, 80% | 20 | 0,240 | 68 | 0,139 | |
Глицерин, 60% | 20 | 0,380 | 68 | 0,220 | |
Глицерин, 40% | 20 | 0,450 | 68 | 0,260 | |
Гептан | 30 | 0,140 | 86 | 0,081 | |
Ртуть | 20 | 8.54 | 68 | 4,93 | |
28 | 8,36 | 82 | 4,83 | ||
Серная кислота, 90% | 30 | 0,360 | 86 | 0,208 | |
Серная кислота, 60 % | 30 | 0,430 | 86 | 0,248 | |
Вода | 20 | 0,613 | 68 | 0,354 | |
30 | 0.620 | 86 | 0,358 | ||
60 | 0,660 | 140 | 0,381 | ||
Газы | |||||
Воздух | 0 | 0,024 | 32 | 0,014 | |
20 | 0,026 | 68 | 0,015 | ||
100 | 0,031 | 212 | 0,018 | ||
Диоксид углерода | 0 | 0,015 | 32 | 0.009 | |
Этан | 0 | 0,018 | 32 | 0,010 | |
Этилен | 0 | 0,017 | 32 | 0,010 | |
Гелий | 20 | 0,152 | 68 | 0,088 | |
Водород | 0 | 0,170 | 32 | 0,098 | |
Метан | 0 | 0,029 | 32 | 0.017 | |
Азот | 0 | 0,024 | 32 | 0,014 | |
Кислород | 0 | 0,024 | 32 | 0,014 | |
Вода (пар) | 100 | 0,025 | 212 | 0,014 |
Теги статьи
Материалы с экстремальной теплопроводностью, разработанные фононами
Kittel, C. Введение в физику твердого тела 7-е изд. (Wiley, 1996).
Peierls, R. Zur kinetischen Theorie der Wärmeleitung in Kristallen. Ann. Phys. 395 , 1055–1101 (1929).
Google Scholar
Аллен П. Б. и Фельдман Дж. Л. Теплопроводность неупорядоченных гармонических твердых тел. Phys. Ред. B 48 , 12581–12588 (1993).
CAS Google Scholar
Клеменс П. Г. Рассеяние низкочастотных волн решетки статическими дефектами. Proc. Phys. Soc. А 68 , 1113 (1955).
Google Scholar
Каллавей Дж. Модель решеточной теплопроводности при низких температурах. Phys. Ред. 113 , 1046–1051 (1959).
CAS Google Scholar
Кэхилл, Д.G. et al. Наноразмерный тепловой перенос. J. Appl. Phys. 93 , 793 (2003).
CAS Google Scholar
Cahill, D. G. et al. Наноразмерный тепловой перенос. II. 2003–2012 гг. Заявл. Phys. Ред. 1 , 011305 (2014).
Google Scholar
Dresselhaus, M. S. et al. Новые направления низкоразмерных термоэлектрических материалов. Adv. Матер. 19 , 1043–1053 (2007).
CAS Google Scholar
Волз, С. Г. и Чен, Г. Молекулярно-динамическое моделирование теплопроводности кристаллов кремния. Phys. Ред. B 61 , 2651 (2000).
CAS Google Scholar
МакГоги, А. Дж. Х. и Ларкин, Дж. М. Предсказание свойств фононов на основе моделирования равновесной молекулярной динамики. Annu. Преподобный Тепло. Трансф. 17 , 49–87 (2014).
Google Scholar
Бройдо Д. А., Малорни М., Бирнер Г., Минго Н. и Стюарт Д. А. Собственная решеточная теплопроводность полупроводников из первых принципов. Заявл. Phys. Lett. 91 , 231922 (2007).
Google Scholar
Чжан В., Фишер Т.С. и Минго, Н. Метод атомистической функции Грина: эффективный подход к моделированию наноразмерного переноса фононов. Номер. Высокая температура. Трансф. B 51 , 333–349 (2007).
CAS Google Scholar
Марколонго А., Умари П. и Барони С. Микроскопическая теория и квантовое моделирование атомного переноса тепла. Nat. Phys. 12 , 80–84 (2015).
Google Scholar
Барток, А. П., Пейн, М. К., Кондор, Р. и Чани, Г. Потенциалы приближения Гаусса: точность квантовой механики без учета электронов. Phys. Rev. Lett. 104 , 136403 (2010).
Google Scholar
Дай Дж. И Тиан З. Строгий формализм ангармонической атомистической функции Грина для трехмерных интерфейсов. Phys. Ред. B 101 , 041301 (R) (2020).
Google Scholar
Minnich, A.J. et al. Метод спектроскопии теплопроводности для измерения длины свободного пробега фононов. Phys. Rev. Lett. 107 , 095901 (2011).
CAS Google Scholar
Siemens, M. E. et al. Квазибаллистический перенос тепла от границ раздела наноразмеров, наблюдаемый с помощью сверхбыстрых когерентных пучков мягкого рентгеновского излучения. Nat. Матер. 9 , 26–30 (2010).
CAS Google Scholar
Канг, Дж. С., Ли, М., Ву, Х., Нгуен, Х. и Ху, Ю. Экспериментальное наблюдение высокой теплопроводности в арсениде бора. Наука 361 , 575–578 (2018).
CAS Google Scholar
Tian, F. et al. Необычно высокая теплопроводность в объемных кристаллах арсенида бора. Наука 361 , 582–585 (2018).
CAS Google Scholar
Li, S. et al. Высокая теплопроводность в кубических кристаллах арсенида бора. Наука 361 , 579–581 (2018).
CAS Google Scholar
van Roekeghem, A., Carrete, J., Oses, C., Curtarolo, S. & Mingo, N. Высокопроизводительный расчет теплопроводности высокотемпературных твердых фаз: случай оксидов и фторидные перовскиты. Phys. Ред. 6 , 041061 (2016).
Google Scholar
Сейф, Х. Р. и др. Переосмысление фононов: проблема беспорядка. npj Comput. Матер. 3 , 49 (2017).
Google Scholar
Kim, W. et al. Снижение теплопроводности и повышение термоэлектрической добротности за счет внедрения наночастиц в кристаллические полупроводники. Phys. Rev. Lett. 96 , 045901 (2006).
Google Scholar
Poudel, B. et al. Высокие термоэлектрические характеристики массивных сплавов наноструктурированного теллурида сурьмы висмута. Наука 320 , 634–638 (2008).
CAS Google Scholar
Лукьянова М.Н. и др. Когерентная фононная теплопроводность в сверхрешетках. Наука 338 , 936–939 (2012).
CAS Google Scholar
Ravichandran, J. et al. Кроссовер от некогерентного к когерентному рассеянию фононов в эпитаксиальных оксидных сверхрешетках. Nat. Матер. 13 , 168–172 (2014).
CAS Google Scholar
Лукьянова М.Н. и др. Локализация фононов в теплопроводности. Sci. Adv. 4 , eaat9460 (2018).
CAS Google Scholar
Ферми Э., Паста П., С. У. и Цингоу М. Исследования нелинейных задач (Калифорнийский университет, 1955).
Huberman, S. et al. Наблюдение второго звука в графите при температурах выше 100 К. Science 364 , 375–379 (2019).
CAS Google Scholar
Слак, Г. А. Неметаллические кристаллы с высокой теплопроводностью. J. Phys. Chem. Твердые тела 34 , 321–335 (1973).
CAS Google Scholar
Линдсей, Л., Бройдо, Д. А. и Рейнеке, Т. Л. Определение из первых принципов сверхвысокой теплопроводности арсенида бора: конкурента алмаза? Phys. Rev. Lett. 111 , 025901 (2013).
CAS Google Scholar
Равичандран, Н. К. и Бройдо, Д. Фонон-фононные взаимодействия в прочно связанных твердых телах: правила отбора и процессы высшего порядка. Phys. Ред. 10 , 021063 (2020).
CAS Google Scholar
Фен Т., Линдсей Л. и Руан X. Четырехфононное рассеяние значительно снижает внутреннюю теплопроводность твердых тел. Phys. Ред. B 96 , 161201 (R) (2017).
Google Scholar
Lv, B. et al. Экспериментальное исследование предложенного сверхтеплопроводника: БА. Заявл. Phys. Lett. 106 , 074105 (2015).
Google Scholar
Линдсей, Л., Бройдо, Д. А. и Рейнеке, Т. Л. Фононно-изотопное рассеяние и теплопроводность в материалах с большим изотопным эффектом: исследование из первых принципов. Phys. Ред. B 88 , 144306 (2013).
Google Scholar
Zheng, Q. et al.Теплопроводность GaN, 71 GaN и SiC от 150 К до 850 К. Phys. Rev. Mater. 3 , 014601 (2019).
CAS Google Scholar
Гу, X., Вэй, Й., Инь, X., Ли, Б. и Ян, Р. Фононно-тепловые свойства двумерных материалов. Ред. Мод. Phys. 90 , 041002 (2018).
CAS Google Scholar
Линдсей, Л., Бройдо, Д. А. и Минго, Н. Решеточная теплопроводность однослойных углеродных нанотрубок: за пределами приближения времени релаксации и правил отбора фонон-фононного рассеяния. Phys. Ред. B 80 , 125407 (2009).
Google Scholar
Линдси, Л., Бройдо, Д. А. и Минго, Н. Изгибные фононы и тепловой перенос в графене. Phys. Ред. B 82 , 115427 (2010).
Google Scholar
Ким П., Ши Л., Маджумдар А. и Макьюэн П. Л. Измерения переноса тепла отдельных многослойных нанотрубок. Phys. Rev. Lett. 87 , 215502 (2001).
CAS Google Scholar
Маруяма, С. Молекулярно-динамическое моделирование теплопроводности в ОСНТ конечной длины. Phys. B 323 , 193–195 (2002).
CAS Google Scholar
Баландин А.А. и др. Превосходная теплопроводность однослойного графена. Nano Lett. 8 , 902–907 (2008).
CAS Google Scholar
Шмидт, А. Дж., Чен, X. и Чен, Г. Накопление импульсов, радиальная теплопроводность и анизотропная теплопроводность в переходном термоотражении насос-зонд. Rev. Sci. Instrum. 79 , 114902 (2008).
Google Scholar
Минго, Н. и Бройдо, Д. А. Зависимость теплопроводности углеродных нанотрубок от длины и «проблема длинных волн». Nano Lett. 5 , 1221–1225 (2005).
CAS Google Scholar
Лепри, С. Теплопроводность в классических низкоразмерных решетках. Phys. Rep. 377 , 1–80 (2003).
CAS Google Scholar
Чанг, К. В., Окава, Д., Гарсия, Х., Маджумдар, А. и Зеттл, А. Нарушение закона Фурье в теплопроводниках из нанотрубок. Phys. Rev. Lett. 101 , 075903 (2008).
CAS Google Scholar
Xu, X. et al. Зависимая от длины теплопроводность в подвешенном однослойном графене. Nat. Commun. 5 , 3689 (2014).
CAS Google Scholar
Takabatake, T., Suekuni, K., Nakayama, T. & Kaneshita, E. Электронно-кристаллические термоэлектрические клатраты фононного стекла: эксперименты и теория. Ред. Мод. Phys. 86 , 669–716 (2014).
CAS Google Scholar
Clarke, D. R. & Phillpot, S.R. Термобарьерные покрытия. Mater. Сегодня 8 , 22–29 (2005).
CAS Google Scholar
Weathers, A. et al. Стеклоподобная теплопроводность в наноструктурах сложного анизотропного кристалла. Phys. Ред. B 96 , 214202 (2017).
Google Scholar
Christensen, M. et al. Исключение пересечения мод дремоты в термоэлектрических материалах. Nat. Матер. 7 , 811–815 (2008).
CAS Google Scholar
Сейлз, Б. К., Мандрус, Д. и Уильямс, Р. К. Заполненные антимониды скуттерудита: новый класс термоэлектрических материалов. Наука 272 , 1325–1328 (1996).
CAS Google Scholar
Mukhopadhyay, S. et al. Двухканальная модель сверхнизкой теплопроводности кристаллического Tl 3 VSe 4 . Наука 360 , 1445–1458 (2018).
Google Scholar
Hoogeboom-Pot, K. M. et al. Новый режим переноса тепла в наномасштабе: коллективная диффузия увеличивает эффективность рассеивания. Proc. Natl Acad. Sci. США 112 , 4846–4851 (2015).
CAS Google Scholar
Lee, S. et al. Резонансное соединение приводит к низкой теплопроводности решетки. Nat. Commun. 5 , 3525 (2014).
Google Scholar
Delaire, O. et al. Гигантское ангармоническое рассеяние фононов в PbTe. Nat. Матер. 10 , 614–619 (2011).
CAS Google Scholar
Tian, Z. et al. Фононная проводимость в PbSe, PbTe и PbTe 1− x Se x из расчетов из первых принципов. Phys. Ред. B 85 , 184303 (2012).
Google Scholar
Li, C. W. et al. Гигантский фононный ангармонизм, управляемый орбитой, в SnSe. Nat. Phys. 11 , 1063–1069 (2015).
CAS Google Scholar
Ma, H. et al. Сверхкомпактный и мягкий (CH 3 NH 3 ) 3 Bi 2 I 9 кристалл со сверхнизкой теплопроводностью. Phys. Rev. Lett. 123 , 155901 (2019).
CAS Google Scholar
Qian, X., Gu, X. & Yang, R. Решеточная теплопроводность органо-неорганического гибридного перовскита CH 3 NH 3 PbI 3 . Заявл. Phys. Lett. 108 , 063902 (2016).
Google Scholar
Pisoni, A. et al.Сверхнизкая теплопроводность в органо-неорганическом гибридном перовските CH 3 NH 3 PbI 3 . J. Phys. Chem. Lett. 5 , 2488–2492 (2014).
CAS Google Scholar
Чжу Т. и Эртекин Е. Смешанный фононный и нефононный транспорт в гибридных перовскитах галогенида свинца: двойственность стекла и кристалла, динамический беспорядок и ангармонизм. Energy Environ. Sci. 12 , 216–229 (2019).
CAS Google Scholar
Иоффе А.Ф. Полупроводниковые термоэлементы и термоэлектрическое охлаждение. Phys. Сегодня 12 , 42 (1959).
Google Scholar
Тамура С. Изотопное рассеяние дисперсионных фононов в Ge. Phys. Ред. B 27 , 858–866 (1983).
CAS Google Scholar
Гарг Дж., Бонини Н., Козинский Б. и Марзари Н. Роль беспорядка и ангармонизма в теплопроводности кремний-германиевых сплавов: исследование из первых принципов. Phys. Rev. Lett. 106 , 045901 (2011).
Google Scholar
Мураками Т., Шига Т., Хори Т., Эсфарджани К. и Шиоми Дж. Важность локальных силовых полей для снижения теплопроводности решетки в PbTe 1− x Se x сплавов. Europhys. Lett. 102 , 46002 (2013).
Google Scholar
Arrigoni, M., Carrete, J., Mingo, N. & Madsen, G.KH. Количественное предсказание решеточной теплопроводности в случайных полупроводниковых сплавах из первых принципов: роль беспорядка силовых постоянных. Phys. Ред. B 98 , 115205 (2018).
CAS Google Scholar
Симончелли М., Марзари Н. и Маури Ф. Единая теория теплопереноса в кристаллах и стеклах. Nat. Phys. 15 , 809–813 (2019).
CAS Google Scholar
Исаева, Л., Барбалинардо, Г., Донадио, Д. и Барони, С. Моделирование переноса тепла в кристаллах и стеклах на основе единого решеточно-динамического подхода. Nat. Commun. 10 , 3853 (2019).
Google Scholar
Янг Р. и Чен Г. Моделирование теплопроводности периодических двумерных нанокомпозитов. Phys. Ред. B 69 , 195316 (2004).
Google Scholar
Казимир, Х. Б. Г. Замечание о теплопроводности кристаллов. Physica 5 , 495–500 (1938).
Google Scholar
Chiritescu, C. et al. Сверхнизкая теплопроводность в неупорядоченных слоистых кристаллах WSe 2 . Наука 315 , 351–353 (2007).
CAS Google Scholar
Vaziri, S. et al. Сверхвысокая теплоизоляция неоднородно-слоистых двумерных материалов. Sci. Adv. 5 , eaax1325 (2019).
CAS Google Scholar
Чен Г. Теплопроводность и перенос баллистических фононов в поперечном направлении сверхрешеток. Phys. Ред. B 57 , 14958 (1998).
CAS Google Scholar
Маджумдар А. Микромасштабная теплопроводность в тонких диэлектрических пленках. J. Heat. Трансф. 115 , 7–16 (1993).
Google Scholar
Chen, G. in Последние тенденции в исследованиях термоэлектрических материалов III Vol. 71 (изд. Тритт, Т. М.) Гл.5, 203–259 (Elsevier, 2001).
Венкатасубраманян Р. Уменьшение решеточной теплопроводности и поведение, подобное локализации фононов в сверхрешеточных структурах. Phys. Ред. B 61 , 3091 (2000).
CAS Google Scholar
Чен Г. Теплопроводность фононных волн в тонких пленках и сверхрешетках. J. Heat. Трансф. 121 , 945–953 (1999).
Google Scholar
Янг Б. и Чен Г. Частично когерентная фононная теплопроводность в сверхрешетках. Phys. Ред. B 67 , 195311 (2003).
Google Scholar
Maire, J. et al. Настройка теплопроводности волновой природой фононов. Sci. Adv. 3 , e1700027 (2017).
Google Scholar
Сперлинг, Л. Х. Введение в физику полимеров (Wiley, 2005).
Лю, Дж. И Ян, Р. Зависимая от длины теплопроводность одиночных протяженных полимерных цепей. Phys. Ред. B 86 , 104307 (2012).
Google Scholar
Zhang, T. & Luo, T. Теплопроводность одиночных цепей и кристаллических волокон полиэтилена под влиянием морфологии. J. Appl. Phys. 112 , 094304 (2012).
Google Scholar
Генри А. и Чен Г. Высокая теплопроводность одиночных полиэтиленовых цепей с использованием моделирования молекулярной динамики. Phys. Rev. Lett. 101 , 235502 (2008).
Google Scholar
Zhang, T., Wu, X. & Luo, T. Полимерные нановолокна с выдающейся теплопроводностью и термостабильностью: фундаментальная связь между молекулярными характеристиками и макроскопическими термическими свойствами. J. Phys.Chem. C 118 , 21148–21159 (2014).
CAS Google Scholar
Шулумба, Н., Хеллман, О. и Минних, А. Дж. Решеточная теплопроводность молекулярных кристаллов полиэтилена из первых принципов, включая ядерные квантовые эффекты. Phys. Rev. Lett. 119 , 185901 (2017).
Google Scholar
Ван Х., Кавяны М.И Хуанг, Б. Фононное соединение и транспорт в отдельных полиэтиленовых цепях: сравнительное исследование с объемным кристаллом. Наноразмер 9 , 18022–18031 (2017).
CAS Google Scholar
Ван Х., Хо В., Сегалман Р. А. и Кэхилл Д. Г. Теплопроводность высокомодульных полимерных волокон. Макромолекулы 46 , 4937–4943 (2013).
CAS Google Scholar
Шен, С., Генри, А., Тонг, Дж., Чжэн, Р., Чен, Г. Полиэтиленовые нановолокна с очень высокой теплопроводностью. Nat. Nanotechnol. 5 , 251–255 (2010).
CAS Google Scholar
Shrestha, R. et al. Кристаллические полимерные нановолокна со сверхвысокой прочностью и теплопроводностью. Nat. Commun. 9 , 1664 (2018).
Google Scholar
Xu, Y. et al. Наноструктурированные полимерные пленки с металлоподобной теплопроводностью. Nat. Commun. 10 , 1771 (2019).
Google Scholar
Singh, V. et al. Высокая теплопроводность цепочечного аморфного политиофена. Nat. Nanotechnol. 9 , 384–390 (2014).
CAS Google Scholar
Ronca, S., Игараши, Т., Форте, Г. и Растоги, С. Металлическая теплопроводность в легком изоляторе: ленты и пленки из сверхвысокомолекулярного полиэтилена, обработанные твердым телом. Полимер 123 , 203–210 (2017).
CAS Google Scholar
Zhu, B. et al. Новые полиэтиленовые волокна с очень высокой теплопроводностью благодаря аморфной реструктуризации. ACS Omega 2 , 3931–3944 (2017).
CAS Google Scholar
Смит, М. К., Сингх, В., Калаитциду, К. и Кола, Б. А. Поверхности массива поли (3-гексилтиофен) нанотрубок с регулируемым смачиванием и контактным переносом тепловой энергии. ACS Nano 9 , 1080–1088 (2015).
CAS Google Scholar
Lu, C. et al. Теплопроводность электропрядения из оксида полиэтилена с ориентированной цепью (ПЭО). Полимер 115 , 52–59 (2017).
CAS Google Scholar
Kurabayashi, K., Asheghi, M. & Goodson, K. E. Измерение анизотропии теплопроводности в полиимидных пленках. J. Microelectromech. Syst. 8 , 180–191 (1999).
CAS Google Scholar
Wei, X., Zhang, T. & Luo, T. Зависимая от конформации цепи теплопроводность аморфных полимерных смесей: влияние меж- и внутрицепочечных взаимодействий. Phys. Chem. Chem. Phys. 18 , 32146–32154 (2016).
CAS Google Scholar
Shanker, A. et al. Высокая теплопроводность аморфных полимеров, полученных электростатическим способом. Sci. Adv. 3 , e1700342 (2017).
Google Scholar
Xie, X. et al. Высокая и низкая теплопроводность аморфных макромолекул. Phys. Ред. B 95 , 035406 (2017).
Google Scholar
Xu, Y. et al. Конъюгированный полимер, полученный методом молекулярной инженерии, с высокой теплопроводностью. Sci. Adv. 4 , eaar3031 (2018).
Google Scholar
Kim, G.H. et al. Высокая теплопроводность в смесях аморфных полимеров за счет искусственных межцепочечных взаимодействий. Nat. Матер. 14 , 295–300 (2015).
CAS Google Scholar
Миядзаки, Ю., Нишияма, Т., Такахаши, Х., Ктагири, Ж.-И. & Такезава Ю. Разработка высокотеплопроводных эпоксидных композитов. В 2009 Конференция IEEE по электрической изоляции и диэлектрическим явлениям 638–641 (IEEE, 2009).
Cui, L. et al. Теплопроводность переходов одиночных молекул. Nature 572 , 628–633 (2019).
CAS Google Scholar
Wang, Z. et al. Сверхбыстрая мгновенная теплопроводность молекулярных цепочек. Наука 317 , 787–790 (2007).
CAS Google Scholar
Русс, Б., Глауделл, А., Урбан, Дж. Дж., Чабиник, М. Л. и Сегалман, Р. А. Органические термоэлектрические материалы для сбора энергии и контроля температуры. Nat. Rev. Mater. 1 , 16050 (2016).
Дуда, Дж. К., Хопкинс, П. Э., Шен, Ю. и Гупта, М. С. Исключительно низкая теплопроводность пленок PCBM производного фуллерена. Phys. Rev. Lett. 110 , 015902 (2013).
Google Scholar
Liu, J. et al. Сверхнизкая теплопроводность тонких пленок органического и неорганического цинкона, осажденных атомарным / молекулярным слоем. Nano Lett. 13 , 5594–5599 (2013).
CAS Google Scholar
Ong, W.-L. И Мален, Дж. А. Тепловой перенос в наноструктурированных органо-неорганических гибридных материалах. Annu. Преподобный Тепло. Трансф. 19 , 67–126 (2016).
CAS Google Scholar
Yang, J. et al. Тонкие сверхатомные пленки, обрабатываемые в растворе. J. Am. Chem. Soc. 141 , 10967–10971 (2019).
CAS Google Scholar
Li, R., Lee, E. & Luo, T. Единый потенциал глубокой нейронной сети, способный предсказывать теплопроводность кремния в различных фазах. Mater. Сегодня Phys. 12 , 100181 (2019).
Google Scholar
Цянь, X., Peng, S., Ли, X., Wei, Y. & Yang, R. Моделирование теплопроводности с использованием возможностей машинного обучения: приложение к кристаллическому и аморфному кремнию. Mater. Сегодня Phys. 10 , 100140 (2019).
Google Scholar
Ju, S. et al. Создание наноструктур для транспорта фононов с помощью байесовской оптимизации. Phys. Ред. 7 , 021024 (2017).
Google Scholar
Wu, S. et al. Обнаружение полимеров с высокой теплопроводностью с помощью машинного обучения с использованием алгоритма молекулярного дизайна. npj Comput. Матер. 5 , 66 (2019).
Google Scholar
Каррет, Дж., Ли, В., Минго, Н., Ван, С. и Куртароло, С. Обнаружение полупроводников Half-Heusler с беспрецедентно низкой теплопроводностью с помощью высокопроизводительного моделирования материалов. Phys. Ред. 4 , 011019 (2014).
CAS Google Scholar
Cho, J. et al. Электрохимически регулируемая теплопроводность оксида лития-кобальта. Nat. Commun. 5 , 4035 (2014).
CAS Google Scholar
Tomko, J. A. et al. Настраиваемый перенос тепла и обратимое переключение теплопроводности в топологически связанных биологических материалах. Nat. Nanotechnol. 13 , 959–964 (2018).
CAS Google Scholar
Ihlefeld, J. F. et al. Фононная теплопроводность, регулируемая по напряжению при комнатной температуре, через реконфигурируемые границы раздела в тонких сегнетоэлектрических пленках. Nano Lett. 15 , 1791–1795 (2015).
CAS Google Scholar
Shin, J. et al. Световое переключение теплопроводности в азобензольных полимерах. Proc. Natl Acad. Sci. США 116 , 5973–5978 (2019).
CAS Google Scholar
Lu, Q. et al. Двунаправленная настройка переноса тепла в SrCoO x с электрохимически индуцированными фазовыми переходами. Nat. Матер. 19 , 655–662 (2020).
CAS Google Scholar
Menyhart, K.& Крарти, М. Потенциальная экономия энергии от развертывания динамических изоляционных материалов для жилых зданий в США. Сборка. Environ. 114 , 203–218 (2017).
Google Scholar
Hao, M., Li, J., Park, S., Moura, S. & Dames, C. Эффективное терморегулирование литий-ионных аккумуляторов с пассивным терморегулятором на границе раздела на основе сплава с памятью формы . Nat. Энергетика 3 , 899–906 (2018).
CAS Google Scholar
Lyeo, H.-K. и другие. Теплопроводность материала с фазовым переходом Ge 2 Sb 2 Te 5 . Заявл. Phys. Lett. 89 , 151904 (2006).
Google Scholar
Caccia, M. et al. Металлокерамические композиты для теплообменников в солнечных электростанциях. Nature 562 , 406–409 (2018).
CAS Google Scholar
Глассбреннер, К. Дж. И Слак, Г. А. Теплопроводность кремния и германия от 3 ° К до точки плавления. Phys. Ред. 134 , A1058 – A1069 (1964).
Google Scholar
Аллен П. Б., Фельдман Дж. Л., Фабиан Дж. И Вутен Ф. Диффузоны, локоны и пропагоны: характер атомных колебаний в аморфном Si. Philos. Mag. B 79 , 1715–1731 (1999).
CAS Google Scholar
Помпе Г. и Хегенбарт Э. Теплопроводность аморфного Si при низких температурах. Phys. Статус Solidi B 47 , 103–108 (1988).
Google Scholar
Кэхилл, Д. Г., Фишер, Х. Э., Клитснер, Т., Шварц, Э. Т. и Поль, Р.О. Теплопроводность тонких пленок: измерения и понимание. J. Vac. Sci. Technol. А 7 , 1259–1266 (1989).
CAS Google Scholar
Кэхилл Д. Г., Катияр М. и Абельсон Дж. Р. Теплопроводность тонких пленок a -Si: H. Phys. Ред. B 50 , 6077–6081 (1994).
CAS Google Scholar
МакГоги, А. Дж. Х., Джайн, А., Ким, Х.-Й. Фононные свойства и теплопроводность из первых принципов, динамики решетки и уравнения переноса Больцмана. J. Appl. Phys. 125 , 011101 (2019).
Google Scholar
Шиоми, Дж., Эсфарджани, К. и Чен, Г. Теплопроводность соединений полугейслера на основе расчетов из первых принципов. Phys. Ред. B 84 , 104302 (2011).
Google Scholar
Johnson, J. A. et al. Прямое измерение недиффузионного переноса тепла при комнатной температуре на микронные расстояния в силиконовой мембране. Phys. Rev. Lett. 110 , 025901 (2013).
Google Scholar
Ху, Й., Зенг, Л., Миннич, А. Дж., Дрессельхаус, М. С. и Чен, Г. Спектральное картирование теплопроводности с помощью баллистического переноса в нанометровом масштабе. Nat. Nanotechnol. 10 , 701–706 (2015).
CAS Google Scholar
Chen, K. et al. Сверхвысокая теплопроводность в кубическом нитриде бора, обогащенном изотопами. Наука 367 , 555–559 (2020).
CAS Google Scholar
Морелли, Д. Т. и Слэк, Г. А. в Материалы с высокой теплопроводностью (ред. Шинде, С.Л. и Гоэла, Дж. С.) Гл. 2, 37–68 (Springer, 2005).
Dames, C. Подтверждена сверхвысокая теплопроводность арсенида бора. Наука 361 , 549–550 (2018).
CAS Google Scholar
Гири, А. и Хопкинс, П. Достижение лучшего проводника тепла. Nat. Матер. 19 , 481–490 (2020).
Google Scholar
Канг, Дж. С., Ву, Х. и Ху, Ю. Тепловые свойства и фононная спектральная характеристика синтетического фосфида бора для применений с высокой теплопроводностью. Nano Lett. 17 , 7507–7514 (2017).
CAS Google Scholar
Qian, X., Jiang, P. & Yang, R. Анизотропная теплопроводность карбида кремния 4H и 6H, измеренная с использованием термоотражения во временной области. Mater. Сегодня Phys. 3 , 70–75 (2017).
Google Scholar
Cuffe, J. et al. Восстановление вкладов фононов в среднюю длину свободного пробега в теплопроводность с использованием наноразмерных мембран. Phys. Ред. B 91 , 245423 (2015).
Google Scholar
Лю В. и Ашеги М. Измерение теплопроводности ультратонких слоев монокристаллического кремния. J. Heat. Трансф. 128 , 75–83 (2006).
CAS Google Scholar
Ашеги, М., Леунг, Ю. К., Вонг, С., Гудсон, К. Э. Фононно-граничное рассеяние в тонких слоях кремния. Заявл. Phys. Lett. 71 , 1798–1800 (1997).
CAS Google Scholar
Гудсон, К. Э. и Джу, Ю. С. Теплопроводность в новых электронных пленках. Annu. Rev. Mater. Sci. 29 , 261–293 (1999).
CAS Google Scholar
Li, D. et al. Теплопроводность индивидуальных кремниевых нанопроволок. Заявл. Phys. Lett. 83 , 2934–2936 (2003).
CAS Google Scholar
Дэймс, К. и Чен, Г. Теоретическая фононная теплопроводность нанопроволок сверхрешетки Si / Ge. J. Appl. Phys. 95 , 682–693 (2004).
CAS Google Scholar
Чой, К. Л., Вонг, Ю. У., Янг, Г. В., Канамото, Т. Модуль упругости и теплопроводность ультратянутого полиэтилена. J. Polym. Sci. B 37 , 3359–3367 (1999).
CAS Google Scholar
Piraux, L., Kinany-Alaoui, M., Issi, J.П., Бегин Д. и Бийо Д. Теплопроводность ориентированной полиацетиленовой пленки. Solid State Commun. 79 , 427–429 (1989).
Google Scholar
Андерсон П. В., Гальперин Б. И. и Варма К. М. Аномальные низкотемпературные термические свойства стекол и спиновых стекол. Philos. Mag. 25 , 1–9 (1972).
CAS Google Scholar
Кэхилл Д., Уотсон С. и Поль Р. Нижний предел теплопроводности неупорядоченных кристаллов. Phys. Ред. B 46 , 6131–6140 (1992).
CAS Google Scholar
Ван Х., Лиман К. Д., Трит Н. Д., Чабиниц М. Л. и Кэхилл Д. Г. Сверхнизкая теплопроводность производных фуллерена. Phys. Ред. B 88 , 075310 (2013).
Google Scholar
Чен З. и Деймс К. Анизотропная модель минимальной теплопроводности. Заявл. Phys. Lett. 107 , 1
Google Scholar
Джанноцци П., де Жиронколи С., Павоне П. и Барони С. Ab initio расчет дисперсии фононов в полупроводниках. Phys. Ред. B 43 , 7231–7242 (1991).
CAS Google Scholar
Зиман Дж. М. Электроны и фононы: теория явлений переноса в твердых телах (Oxford Univ. Press, 2001).
Дебернарди, А., Барони, С., Молинари, Э. Время жизни ангармонических фононов в полупроводниках из теории возмущений функционала плотности. Phys. Rev. Lett. 75 , 1819–1822 (1995).
CAS Google Scholar
Li, W., Carrete, J., A. Katcho, N.& Минго, Н. ShengBTE: решатель уравнения переноса Больцмана для фононов. Comput. Phys. Commun. 185 , 1747–1758 (2014).
CAS Google Scholar
Ян Ф. и Деймс К. Спектры средней длины свободного пробега как инструмент для понимания теплопроводности в объеме и наноструктурах. Phys. Ред. B 87 , 035437 (2013).
Google Scholar
Dames, C. & Chen, G. в Справочнике по термоэлектричеству : от макроса до нано (ред. Роу, Д. М.), гл. 42 (Тейлор и Фрэнсис, 2006).
Эсфарджани К., Чен Г. и Стокс Х. Т. Перенос тепла в кремнии на основе расчетов из первых принципов. Phys. Ред. B 84 , 085204 (2011).
Google Scholar
Ли С., Бройдо Д., Эсфарджани К. и Чен Г. Гидродинамический перенос фононов в подвешенном графене. Nat. Commun. 6 , 6290 (2015).
CAS Google Scholar
Cepellotti, A. et al. Фононная гидродинамика в двумерных материалах. Nat. Commun. 6 , 6400 (2015).
CAS Google Scholar
Минго, Н., Хаузер, Д., Кобаяши, Н. П., Плиссонье, М., Шакури, А. Подход «наночастицы в сплаве» к эффективным термоэлектрикам: силициды в SiGe. Nano Lett. 9 , 711–715 (2009).
CAS Google Scholar
Тадано Т. и Цунеюки С. Самосогласованные фононные расчеты динамических свойств решетки в кубическом SrTiO 3 с ангармоническими силовыми постоянными из первых принципов. Phys. Ред. B 92 , 054301 (2015).
Google Scholar
Ляо, Б.и другие. Значительное уменьшение решеточной теплопроводности за счет электрон-фононного взаимодействия в кремнии с высокими концентрациями носителей: исследование из первых принципов. Phys. Rev. Lett. 114 , 115901 (2015).
Google Scholar
Zhou, J. et al. Ab initio оптимизация эффекта фононного увлечения для низкотемпературного термоэлектрического преобразования энергии. Proc. Natl Acad. Sci. США 112 , 14777–14782 (2015).
CAS Google Scholar
Кэхилл Д. и Поль Р. О. Теплопроводность аморфных твердых тел над плато. Phys. Ред. B 35 , 4067–4073 (1987).
CAS Google Scholar
Dames, C. Измерение теплопроводности тонких пленок: 3 омега и родственные электротермические методы. Annu. Преподобный Тепло. Трансф. 16 , 7–49 (2013).
Google Scholar
Кэхилл, Д. Г. Анализ теплового потока в слоистых структурах для определения термоотражения во временной области. Rev. Sci. Instrum. 75 , 5119–5122 (2004).
CAS Google Scholar
Schmidt, A.J., Cheaito, R. & Chiesa, M. Метод термоотражения в частотной области для характеристики тепловых свойств. Rev. Sci. Instrum. 80 , 094901 (2009).
Google Scholar
Мазнев А.А., Джонсон Дж. А. и Нельсон К.А. Возникновение недиффузионного фононного транспорта при нестационарном распаде тепловой решетки. Phys. Ред. B 84 , 195206 (2011).
Google Scholar
Jiang, P., Qian, X. & Yang, R. Учебное пособие: термоотражение во временной области (TDTR) для определения тепловых свойств объемных и тонкопленочных материалов. J. Appl. Phys. 124 , 161103 (2018).
Google Scholar
Qian, X., Ding, Z., Shin, J., Schmidt, A.J. и Chen, G. Точное измерение плоской теплопроводности слоистых материалов без датчика металлической пленки с использованием термоотражения в частотной области. Rev. Sci. Instrum. 91 , 064903 (2020).
CAS Google Scholar
Кох, Ю. К. и Кэхилл, Д. Г. Частотная зависимость теплопроводности полупроводниковых сплавов. Phys. Ред. B 76 , 075207 (2007).
Google Scholar
Хуа, К., Чен, X., Равичандран, Н. К. и Миннич, А. Дж. Экспериментальная метрология для получения коэффициентов передачи тепловых фононов на твердых границах раздела. Phys. Ред. B 95 , 205423 (2017).
Google Scholar
Ляо Б., Мазнев А. А., Нельсон К. А. и Чен Г. Фотовозбужденные носители заряда подавляют суб-терагерцовую фононную моду в кремнии при комнатной температуре. Nat. Commun. 7 , 13174 (2016).
CAS Google Scholar
Zhou, J. et al. Прямое наблюдение большого влияния электрон-фононного взаимодействия на перенос тепла фононов. Nat. Commun. 11 , 6040 (2020).
CAS Google Scholar
Что такое теплопроводность? – Matmatch
Теплопроводность – это мера способности определенного материала передавать или проводить тепло.Проводимость возникает, когда в материале присутствует температурный градиент. Его единицы равны (Вт / мК) и обозначаются либо λ, либо k.
Второй закон термодинамики определяет, что тепло всегда будет течь от более высокой температуры к более низкой температуре.
Уравнение теплопроводности рассчитывается по следующей формуле:
представляет собой тепловую энергию, передаваемую материалом в единицу времени. Это выражается в джоулях в секунду или в ваттах.
- k – постоянная теплопроводности.
- A – площадь поверхности, через которую проходит тепловая энергия, измеряется в м2.
- ∆T – разница температур в градусах Кельвина.
- L означает толщину материала, через который передается тепло, и измеряется в м.
- Чтобы вычислить константу теплопроводности, можно использовать следующее уравнение:
Теплопроводность конкретного материала зависит от его плотности, влажности, структуры, температуры и давления.
Как это измеряется?
Некоторые распространенные методы измерения теплопроводности:
Метод защищенной горячей плиты:
Метод защищенной горячей пластины – широко используемый метод установившегося состояния для измерения теплопроводности. Материал, который необходимо проверить, помещают между горячей и холодной пластинами. Параметры, используемые для расчета теплопроводности, – это установившаяся температура, тепло, используемое для более теплой пластины, и толщина материала.Его можно использовать для температурных диапазонов 80-1500 К, а также для таких материалов, как пластик, стекло и образцы изоляции. Это очень точно, но на проведение теста уходит много времени.
Метод горячей проволоки:
Метод горячей проволоки – это переходный метод, который может использоваться для определения теплопроводности жидкостей, твердых тел и газов. Стандартный метод горячей проволоки, используемый для жидкостей, включает нагретую проволоку, помещаемую в образец. Теплопроводность определяется путем сравнения графика температуры проволоки с логарифмом времени, когда указаны плотность и емкость.
В случае твердых тел требуется небольшая модификация этого метода, при которой горячая проволока опирается на основу так, чтобы твердое тело не проникало внутрь. Он работает в диапазоне температур 298 – 1800 K и является быстрым и точным методом, но имеет ключевое ограничение в том, что он работает только с материалами с низкой проводимостью.
Сравнительный метод резки:
Сравнительный метод отрезного стержня – это метод устойчивого состояния, который может использоваться для испытания металлов, керамики и пластмасс.Тепловой поток проходит через образцы, теплопроводность которых известна и неизвестна, следовательно, можно проводить сравнение температурных градиентов. Он работает в диапазоне температур 293 – 1573 К, но измерения относительно неточны.
Метод лазерной вспышки:
Метод лазерной вспышки – это переходный метод, при котором лазерный импульс доставляет короткий тепловой импульс к переднему концу образца, а изменение температуры измеряется на заднем конце образца.Он работает в диапазоне температур 373 – 3273 К и может использоваться как для твердых, так и для жидкостей. Он имеет преимущество в скорости и высокой точности, но стоит довольно дорого.
Метод теплового расходомера:
Метод измерителя теплового потока является методом стационарного режима и аналогичен методу с защищенной горячей пластиной, за исключением того, что для измерения теплового потока через образец используются преобразователи теплового потока, а не основной нагреватель. Тепловой поток определяется на основании падения температуры внутри терморезистора.Измерители теплового потока используются в диапазоне температур 373–573 K и могут применяться для пластмасс, керамики, изоляционных материалов и стекла. Основное преимущество расходомеров тепла заключается в том, что они относительно просты в настройке, однако измерения не особенно точны.
Какие материалы имеют самую высокую / самую низкую теплопроводность?
Как и ожидалось, материалы, которые хорошо проводят тепло, такие как металлы, имеют более высокую константу теплопроводности, чем материалы, которые не проводят тепло так эффективно, как полимеры и дерево.
В группе металлов серебро имеет самую высокую константу теплопроводности, а висмут – самую низкую.
Теплопроводность неметаллических жидкостей намного ниже теплопроводности металлов, а самая низкая теплопроводность наблюдается у газов. Среди газов водород и гелий обладают относительно высокой теплопроводностью.
Какие приложения требуют высокой / низкой теплопроводности?
Материалы с фазовым переходом, используемые для аккумуляторов тепловой энергии, таких как системы отопления и охлаждения, должны иметь высокую теплопроводность, чтобы максимизировать эффективность, тогда как материалы с низкой теплопроводностью обычно используются для теплоизоляции.
Факторы, влияющие на теплопроводность | Sciencing
Теплопроводность, также называемая теплопроводностью, представляет собой поток энергии от чего-то более высокой температуры к чему-то более низкой температуре. Он отличается от электропроводности, которая имеет дело с электрическими токами. Несколько факторов влияют на теплопроводность и скорость передачи энергии. Как указывает веб-сайт Physics Info, поток измеряется не количеством передаваемой энергии, а скоростью ее передачи.
Материал
Тип материала, используемого для теплопроводности, может влиять на скорость потока энергии между двумя областями. Чем больше проводимость материала, тем быстрее течет энергия. Согласно гипертексту физики, материал с наибольшей проводимостью – это гелий II, сверхтекучая форма жидкого гелия, которая существует только при очень низких температурах. Другие материалы с высокой проводимостью – это алмазы, графит, серебро, медь и золото. Жидкости имеют низкий уровень проводимости, а газы еще ниже.
Длина
Длина материала, через который должна проходить энергия, может влиять на скорость, с которой она течет. Чем короче длина, тем быстрее будет течь. Теплопроводность может продолжать увеличиваться даже при увеличении длины – просто она может увеличиваться более медленными темпами, чем раньше.
Разница температур
Теплопроводность зависит от температуры. В зависимости от материала проводника с повышением температуры часто повышается и теплопроводность материала, увеличивая поток энергии.
Типы поперечного сечения
Тип поперечного сечения, например круглый, C- и полый, может влиять на теплопроводность, согласно Журналу материаловедения. В статье сообщается, что коэффициент температуропроводности композитов, армированных углеродным волокном С-образной и полой формы, примерно в два раза выше, чем у композитов круглого типа.
Электропроводность, теплопроводность, плотность, температура плавления
Таблица свойств проводящих материалов, металлов и нержавеющей стали:
Электропроводность и удельное сопротивление, теплопроводность, величина теплового расширения, плотность и температура плавления.
Электропроводность (10.E6 Сименс / м) | Удельное электрическое сопротивление (10.E-8 Ом · м) | Теплопроводность (Вт / м · К) | Коэффициент теплового расширения 10E-6 (K-1) от 0 до 100 ° C | Плотность (г / см3) | Температура плавления или ухудшения (° C) | |
---|---|---|---|---|---|---|
Серебро | 62,1 | 1,6 | 420 | 19,1 | 10,5 | 961 |
Медь | 58,7 | 1,7 | 386 | 17 | 8,9 | 1083 |
Золото | 44,2 | 2,3 | 317 | 14,1 | 19,4 | 1064 |
Алюминий | 36,9 | 2,7 | 237 | 23,5 | 2,7 | 660 |
Молибден | 18,7 | 5,34 | 138 | 4,8 | 10,2 | 2623 |
цинк | 16,6 | 6,0 | 116 | 31 | 7,1 | 419 |
Литий | 10,8 | 9,3 | 84,7 | 56 | 0,54 | 181 |
Латунь | 15,9 | 6,3 | 150 | 20 | 8,5 | 900 |
Никель | 14,3 | 7,0 | 91 | 13,3 | 8,8 | 1455 |
Сталь | 10,1 | 9,9 | 80 | 12,1 | 7,9 | 1528 |
Палладий | 9,5 | 10,5 | 72 | 11 | 12 | 1555 |
Платиновый | 9,3 | 10,8 | 107 | 9 | 21,4 | 1772 |
Вольфрам | 8,9 | 11,2 | 174 | 4,5 | 19,3 | 3422 |
Олово | 8,7 | 11,5 | 67 | 23,5 | 7,3 | 232 |
Бронза 67Cu33Sn | 7,4 | 13,5 | 85 | 17 | 8,8 | 1040 |
Карбоновая сталь | 5,9 | 16,9 | 54 | 12 | 7,7 | 1400 |
Карбон | 5,9 | 16,9 | 129 | 0,2 | 1,8 | 2500 |
Свинец | 4,7 | 21,3 | 35 | 29 | 11,3 | 327 |
Титан | 2,4 | 41,7 | 21 | 8,9 | 4,5 | 1668 |
Нержавеющая сталь 316L EN1.4404 | 1,32 | 76,0 | 15 | 16,5 | 7,9 | 1535 |
Нержавеющая сталь 304 EN1.4301 | 1,37 | 73,0 | 16,3 | 16,5 | 7,9 | 1450 |
Нержавеющая сталь 310 EN1.4841 | 1,28 | 78 | 14,2 | 17 | 7,75 | 2650 |
Меркурий | 1,1 | 90,9 | 8 | 61 | 13,5 | -39 |
FeCrAl | 0,74 | 134 | 16 | 11,1 | 7,2 | + -1440 |
Электропроводность
ЭлектропроводностьЭлектропроводность – мера легкость, с которой электрический заряд или тепло могут проходить через материал.А проводник – это материал, который дает очень небольшое сопротивление потоку электрический ток или тепловая энергия. Материалы классифицируются как металлы, полупроводники и изоляторы. Металлы – самые проводящие и изоляторы. (керамика, дерево, пластик) наименее проводящие. |
Электропроводность говорит нам, насколько хорошо материал позволяет электричеству проходить через него.Многие люди думают о медных проводах как о чем-то, что имеет отличные электрические характеристики. проводимость. | |
Теплопроводность говорит нам, с какой легкостью тепловая энергия (тепло для большинства целей) может перемещаться по материалу. Некоторые материалы, такие как металлы, позволяют теплу перемещаться через них довольно быстро. Представьте, что одной рукой вы касаетесь кусок металла, а с другой – кусок дерева.Какой материал становится холоднее? Если бы вы сказали «металл», вы были бы правы. Но, Фактически, оба материала имеют одинаковую температуру. Это относительное теплопроводность. Металл обладает более высокой теплопередачей или термической способностью. проводимость, чем у дерева, позволяя теплу от вашей руки уходить быстрее. Если вы хотите, чтобы что-то оставалось холодным, лучше всего это завернуть во что-нибудь который не обладает высокой теплопередачей или высокой теплопроводностью, это был бы изолятор.Керамика и полимеры обычно являются хорошими изоляторами, но вы должны помнить, что полимеры обычно имеют очень низкую температуру плавления. Это означает, что если вы разрабатываете что-то, что сильно нагревается, полимер может расплавиться в зависимости от температуры плавления. |
Серебро имеет самую высокую электропроводность из всех металлов. Фактически, серебро определяет проводимость – все другие металлы сравниваются с Это.По шкале от 0 до 100 серебро занимает 100 место, медь – 97, а золото. на 76. Из-за этого свойства, а также из-за того, что он не зажигает легко, серебро обычно используется в электрических цепях и контактах. Серебро также используется в аккумуляторах, где надежность является обязательной и применяются ограничения по весу, например, для портативных хирургических инструментов, слуховых аппаратов, кардиостимуляторов и космическое путешествие. |
ССЫЛКИ
http: // www.Physics4kids.com/files/elec_conduct.html
План урока для учителей о проводимости – http://www.infinitepower.org/pdf/09-Lesson-Plan.pdf
Все информация на этой странице взята из U of C – Щелкните по Кембриджскому университету значок для благодарностей. |
Произошла ошибка при настройке пользовательского файла cookie
Этот сайт использует файлы cookie для повышения производительности.Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.
Настройка вашего браузера для приема файлов cookie
Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:
- В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки вашего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
- Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались.Чтобы принять файлы cookie с этого сайта, используйте кнопку «Назад» и примите файлы cookie.
- Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
- Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
- Вы установили приложение, которое отслеживает или блокирует установку файлов cookie.Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.
Почему этому сайту требуются файлы cookie?
Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.
Что сохраняется в файле cookie?
Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.
Как правило, в cookie-файлах может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.