Теплопроводность низкая это – Низкая теплопроводность это хорошо или плохо

Содержание

Низкая теплопроводность – Большая Энциклопедия Нефти и Газа, статья, страница 1

Низкая теплопроводность

Cтраница 1

Низкая теплопроводность рассматриваемых изоляционных материалов приводит к повышенному нагреву и быстрому износу режущих частей инструмента. Это, во-первых, вызывает необходимость применять инструмент, геометрические параметры которого способствовали бы наилучшему отводу тепла из зоны резания. Во-вторых, режущие части инструмента должны быть износоустойчивыми, а поэтому для них целесообразно применять пластинки из твердых сплавов ( например, ВК6, ВК8 и др.) или иногда применять инструмент из быстрорежущей стали.  [1]

Низкая теплопроводность и узкий интервал кристаллизации болыпннотва титановых сшивов позволяют использовать их в качестве материала для сварных конструкций. Для улуаения комплекса свойств сварное соединение подвергают, как правило, термической обработке.  [2]

Низкая теплопроводность и сравнительно высокий коэффициент линейного расширения обусловливают низкую термостойкость изделий. Термостойкость циркониевых изделий может быть значительно повышена, если в состав масо ввести добавки ( 10 – 15 %) моноклинного ZrO2, обладающего более низким коэффициентом. В этом случае благодаря наличию ZrO2 различных модификаций, обладающих разными коэффициентами линейного расширения, образуются микротрещины, способствующие более свободному смещению зерен при изменении температуры. Повышенной термостойкостью обладают изделия, изготовленные из электроплавлен-ного диоксида циркония.  [4]

Низкая теплопроводность обусловливает большие градиенты температуры топливного сердечника. Диоксиды – это керамика, поэтому вследствие больших температурных градиентов возникают высокие механические напряжения, приводящие к растрескиванию и возможному разрушению топливных таблеток.  [6]

Низкая теплопроводность теплоизоляционных и многих строительных материалов объясняется тем, что они имеют пористую структуру, причем в их ячейках заключен воздух, плохо проводящий тепло.  [8]

Низкая теплопроводность, большая химическая активность, способность образовывать твердые растворы с элементами, входящими в состав абразивных материалов; невысокая твердость и другие специфические свойства титановых сплавов, благоприятствующие интенсивному протеканию адгезионных и диффузионных явлений в зоне шлифования при высокой контактной температуре, с малыми объемами ее локализации ведут не только к быстрой потере режущей способности инструмента и снижению производительности, но и к изменению физико-механических свойств обрабатываемой поверхности и прилегающих к ней слоев металла. В поверхностных слоях формируются значительные остаточные напряжения, появляется склонность к разрушению детали при нагрузках, особенно когда поверхности имеют цилиндрическую форму.  [9]

Низкая теплопроводность и большая теплоемкость практически всех известных полимерных материалов служат причиной возникновения в зоне резания высоких температур, что приводит к растягивающим термическим напряжениям. По этой причине, по-видимому, для всех термопластов требуются малые скорости резания при малых подачах, а также охлаждение в зоне резания. Для хрупких реактопластов требуются высокие скорости резания при малых подачах.  [10]

Низкая теплопроводность и электропроводность эмали обеспечивает удобство эксплуатации аппаратов во многих технологических процессах.  [11]

Низкая теплопроводность их объясняется наличием большого количества мелких пор, заполненных неподвижным воздухом.  [13]

Низкая теплопроводность и малая теплостойкость пластмасс требуют высокой теплопроводности материала инструмента. Конструктивные и геометрические параметры резца должны способствовать лучшему теплоотводу из зон резания и трения.  [14]

Низкая теплопроводность и высокая теплоемкость затрудняют равномерное распределение температурного поля в расплаве полимера. Следовательно, возможность и условия формования термопластов в изделия определяются их реологическими свойствами и стойкостью к термоокислительной деструкции при повышенной температуре.  [15]

Страницы:      1    2    3    4

www.ngpedia.ru

Теплопроводность строительных материалов, что это, таблица

Последние годы при строительстве дома или его ремонте большое внимание уделяется энергоэффективности. При уже существующих ценах на топливо это очень актуально. Причем похоже что дальше экономия будет приобретать все большую важность. Чтобы правильно подобрать состав и толщин материалов в пироге ограждающих конструкций (стены, пол, потолок, кровля) необходимо знать теплопроводность строительных материалов. Эта характеристика указывается на упаковках с материалами, а необходима она еще на стадии проектирования. Ведь надо решить из какого материала строить стены, чем их утеплять, какой толщины должен быть каждый слой.  

Что такое теплопроводность и термическое сопротивление

При выборе строительных материалов для строительства необходимо обращать внимание на характеристики материалов. Одна из ключевых позиций — теплопроводность. Она отображается коэффициентом теплопроводности. Это количество тепла, которое может провести тот или иной материал за единицу времени. То есть, чем меньше этот коэффициент, тем хуже материал проводит тепло. И наоборот, чем выше цифра, тем тепло отводится лучше.

Диаграмма, которая иллюстрирует разницу в теплопроводности материалов

Материалы с низкой теплопроводностью используются для утепления, с высокой — для переноса или отвода тепла. Например, радиаторы делают из алюминия, меди или стали, так как они хорошо передают тепло, то есть имеют высокий коэффициент теплопроводности. Для утепления используются материалы с низким коэффициентом теплопроводности — они лучше сохраняют тепло. В случае если объект состоит из нескольких слоев материала, его теплопроводность определяется как сумма коэффициентов всех материалов. При расчетах, рассчитывается теплопроводность каждой из составляющих «пирога», найденные величины суммируются. В общем получаем теплоизоляцонную способность ограждающей конструкции (стен, пола, потолка).

Теплопроводность строительных материалов показывает количество тепла, которое он пропускает за единицу времени

Есть еще такое понятие как тепловое сопротивление. Оно отображает способность материала препятствовать прохождению по нему тепла. То есть, это обратная величина по отношению к теплопроводности. И, если вы видите материал с высоким тепловым сопротивлением, его можно использовать для теплоизоляции. Примером теплоизоляционных материалов может случить популярная минеральная или базальтовая вата, пенопласт и т.д. Материалы с низким тепловых сопротивлением нужны для отведения или переноса тепла. Например, алюминиевые или стальные радиаторы используют для отопления, так как они хорошо отдают тепло.

Таблица теплопроводности теплоизоляционных материалов

Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше  (а лучше — хоть немного больше) рекомендованной для вашего региона.

Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций

При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

Наименование материалаКоэффициент теплопроводности Вт/(м·°C)
В сухом состоянииПри нормальной влажностиПри повышенной влажности
Войлок шерстяной0,036-0,0410,038-0,0440,044-0,050
Каменная минеральная вата 25-50 кг/м30,0360,0420,,045
Каменная минеральная вата 40-60 кг/м30,0350,0410,044
Каменная минеральная вата 80-125 кг/м30,0360,0420,045
Каменная минеральная вата 140-175 кг/м30,0370,0430,0456
Каменная минеральная вата 180 кг/м30,0380,0450,048
Стекловата 15 кг/м30,0460,0490,055
Стекловата 17 кг/м30,0440,0470,053
Стекловата 20 кг/м30,040,0430,048
Стекловата 30 кг/м30,040,0420,046
Стекловата 35 кг/м30,0390,0410,046
Стекловата 45 кг/м30,0390,0410,045
Стекловата 60 кг/м30,0380,0400,045
Стекловата 75 кг/м30,040,042
0,047
Стекловата 85 кг/м30,0440,0460,050
Пенополистирол (пенопласт, ППС)0,036-0,0410,038-0,0440,044-0,050
Экструдированный пенополистирол (ЭППС, XPS)0,0290,0300,031
Пенобетон, газобетон на цементном растворе, 600 кг/м30,140,220,26
Пенобетон, газобетон на цементном растворе, 400 кг/м30,110,140,15
Пенобетон, газобетон на известковом растворе, 600 кг/м30,150,280,34
Пенобетон, газобетон на известковом растворе, 400 кг/м30,130,220,28
Пеностекло, крошка, 100 — 150 кг/м30,043-0,06
Пеностекло, крошка, 151 — 200 кг/м30,06-0,063
Пеностекло, крошка, 201 — 250 кг/м30,066-0,073
Пеностекло, крошка, 251 — 400 кг/м30,085-0,1
Пеноблок 100 — 120 кг/м30,043-0,045
Пеноблок 121- 170 кг/м30,05-0,062
Пеноблок 171 — 220 кг/м30,057-0,063
Пеноблок 221 — 270 кг/м30,073
Эковата0,037-0,042
Пенополиуретан (ППУ) 40 кг/м30,0290,0310,05
Пенополиуретан (ППУ) 60 кг/м30,0350,0360,041
Пенополиуретан (ППУ) 80 кг/м30,0410,0420,04
Пенополиэтилен сшитый0,031-0,038
Вакуум0
Воздух +27°C. 1 атм0,026
Ксенон0,0057
Аргон0,0177
Аэрогель (Aspen aerogels)0,014-0,021
Шлаковата0,05
Вермикулит0,064-0,074
Вспененный каучук0,033
Пробка листы 220 кг/м30,035
Пробка листы 260 кг/м30,05
Базальтовые маты, холсты0,03-0,04
Пакля0,05
Перлит, 200 кг/м30,05
Перлит вспученный, 100 кг/м30,06
Плиты льняные изоляционные, 250 кг/м30,054
Полистиролбетон, 150-500 кг/м30,052-0,145
Пробка гранулированная, 45 кг/м30,038
Пробка минеральная на битумной основе, 270-350 кг/м30,076-0,096
Пробковое покрытие для пола, 540 кг/м30,078
Пробка техническая, 50 кг/м30,037

Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей. Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала.

Таблица теплопроводности строительных материалов

Стены, перекрытия, пол, делать можно из разных материалов, но так повелось, что теплопроводность строительных материалов обычно сравнивают с кирпичной кладкой. Этот материал знаю все, с ним проще проводить ассоциации. Наиболее популярны диаграммы, на которых наглядно продемонстрирована разница между различными материалами. Одна такая картинка есть в предыдущем пункте, вторая — сравнение кирпичной стены и стены из бревен — приведена ниже. Именно потому для стен из кирпича и другого материала с высокой теплопроводностью выбирают теплоизоляционные материалы. Чтобы было проще подбирать, теплопроводность основных строительных материалов сведена в таблицу.

Сравнивают самые разные материалы

Название материала, плотностьКоэффициент теплопроводности
в сухом состояниипри нормальной влажностипри повышенной влажности
ЦПР (цементно-песчаный раствор)0,580,760,93
Известково-песчаный раствор0,470,70,81
Гипсовая штукатурка0,25
Пенобетон, газобетон на цементе, 600 кг/м30,140,220,26
Пенобетон, газобетон на цементе, 800 кг/м30,210,330,37
Пенобетон, газобетон на цементе, 1000 кг/м30,290,380,43
Пенобетон, газобетон на извести, 600 кг/м30,150,280,34
Пенобетон, газобетон на извести, 800 кг/м30,230,390,45
Пенобетон, газобетон на извести, 1000 кг/м30,310,480,55
Оконное стекло0,76
Арболит0,07-0,17
Бетон с природным щебнем, 2400 кг/м31,51
Легкий бетон с природной пемзой, 500-1200 кг/м30,15-0,44
Бетон на гранулированных шлаках, 1200-1800 кг/м30,35-0,58
Бетон на котельном шлаке, 1400 кг/м30,56
Бетон на каменном щебне, 2200-2500 кг/м30,9-1,5
Бетон на топливном шлаке, 1000-1800 кг/м30,3-0,7
Керамическийй блок поризованный0,2
Вермикулитобетон, 300-800 кг/м30,08-0,21
Керамзитобетон, 500 кг/м30,14
Керамзитобетон, 600 кг/м30,16
Керамзитобетон, 800 кг/м30,21
Керамзитобетон, 1000 кг/м30,27
Керамзитобетон, 1200 кг/м30,36
Керамзитобетон, 1400 кг/м30,47
Керамзитобетон, 1600 кг/м30,58
Керамзитобетон, 1800 кг/м30,66
ладка из керамического полнотелого кирпича на ЦПР0,560,70,81
Кладка из пустотелого керамического кирпича на ЦПР, 1000 кг/м3)0,350,470,52
Кладка из пустотелого керамического кирпича на ЦПР, 1300 кг/м3)0,410,520,58
Кладка из пустотелого керамического кирпича на ЦПР, 1400 кг/м3)0,470,580,64
Кладка из полнотелого силикатного кирпича на ЦПР, 1000 кг/м3)0,70,760,87
Кладка из пустотелого силикатного кирпича на ЦПР, 11 пустот0,640,70,81
Кладка из пустотелого силикатного кирпича на ЦПР, 14 пустот0,520,640,76
Известняк 1400 кг/м30,490,560,58
Известняк 1+600 кг/м30,580,730,81
Известняк 1800 кг/м30,70,931,05
Известняк 2000 кг/м30,931,161,28
Песок строительный, 1600 кг/м30,35
Гранит3,49
Мрамор2,91
Керамзит, гравий, 250 кг/м30,10,110,12
Керамзит, гравий, 300 кг/м30,1080,120,13
Керамзит, гравий, 350 кг/м30,115-0,120,1250,14
Керамзит, гравий, 400 кг/м30,120,130,145
Керамзит, гравий, 450 кг/м30,130,140,155
Керамзит, гравий, 500 кг/м30,140,150,165
Керамзит, гравий, 600 кг/м30,140,170,19
Керамзит, гравий, 800 кг/м30,18
Гипсовые плиты, 1100 кг/м30,350,500,56
Гипсовые плиты, 1350 кг/м30,230,350,41
Глина, 1600-2900 кг/м30,7-0,9
Глина огнеупорная, 1800 кг/м31,4
Керамзит, 200-800 кг/м30,1-0,18
Керамзитобетон на кварцевом песке с поризацией, 800-1200 кг/м30,23-0,41
Керамзитобетон, 500-1800 кг/м30,16-0,66
Керамзитобетон на перлитовом песке, 800-1000 кг/м30,22-0,28
Кирпич клинкерный, 1800 — 2000 кг/м30,8-0,16
Кирпич облицовочный керамический, 1800 кг/м30,93
Бутовая кладка средней плотности, 2000 кг/м31,35
Листы гипсокартона, 800 кг/м30,150,190,21
Листы гипсокартона, 1050 кг/м30,150,340,36
Фанера клеенная0,120,150,18
ДВП, ДСП, 200 кг/м30,060,070,08
ДВП, ДСП, 400 кг/м30,080,110,13
ДВП, ДСП, 600 кг/м30,110,130,16
ДВП, ДСП, 800 кг/м30,130,190,23
ДВП, ДСП, 1000 кг/м30,150,230,29
Линолеум ПВХ на теплоизолирующей основе, 1600 кг/м30,33
Линолеум ПВХ на теплоизолирующей основе, 1800 кг/м30,38
Линолеум ПВХ на тканевой основе, 1400 кг/м30,20,290,29
Линолеум ПВХ на тканевой основе, 1600 кг/м30,290,350,35
Линолеум ПВХ на тканевой основе, 1800 кг/м30,35
Листы асбоцементные плоские, 1600-1800 кг/м30,23-0,35
Ковровое покрытие, 630 кг/м30,2
Поликарбонат (листы), 1200 кг/м30,16
Полистиролбетон, 200-500 кг/м30,075-0,085
Ракушечник, 1000-1800 кг/м30,27-0,63
Стеклопластик, 1800 кг/м30,23
Черепица бетонная, 2100 кг/м31,1
Черепица керамическая, 1900 кг/м30,85
Черепица ПВХ, 2000 кг/м30,85
Известковая штукатурка, 1600 кг/м30,7
Штукатурка цементно-песчаная, 1800 кг/м31,2

Древесина — один из строительных материалов с относительно невысокой теплопроводностью. В таблице даны ориентировочные данные по разным породам. При покупке обязательно смотрите плотность и коэффициент теплопроводности. Далеко не у всех они такие, как прописаны в нормативных документах.

НаименованиеКоэффициент теплопроводности
В сухом состоянииПри нормальной влажностиПри повышенной влажности
Сосна, ель поперек волокон0,090,140,18
Сосна, ель вдоль волокон0,180,290,35
Дуб вдоль волокон0,230,350,41
Дуб поперек волокон0,100,180,23
Пробковое дерево0,035
Береза0,15
Кедр0,095
Каучук натуральный0,18
Клен0,19
Липа (15% влажности)0,15
Лиственница0,13
Опилки0,07-0,093
Пакля0,05
Паркет дубовый0,42
Паркет штучный0,23
Паркет щитовой0,17
Пихта0,1-0,26
Тополь0,17

Металлы очень хорошо проводят тепло. Именно они часто являются мостиком холода в конструкции. И это тоже надо учитывать, исключать прямой контакт используя теплоизолирующие прослойки и прокладки, которые называются термическим разрывом. Теплопроводность металлов сведена в другую таблицу.

НазваниеКоэффициент теплопроводности НазваниеКоэффициент теплопроводности
Бронза22-105Алюминий202-236
Медь282-390Латунь97-111
Серебро429Железо92
Олово67Сталь47
Золото318

Как рассчитать толщину стен

Для того чтобы зимой в доме было тепло, а летом прохладно, необходимо чтобы ограждающие конструкции (стены, пол, потолок/кровля) должны иметь определенное тепловое сопротивление. Для каждого региона эта величина своя. Зависит она от средних температур и влажности в конкретной области.

Термическое сопротивление ограждающих
конструкций для регионов России

Для того чтобы счета за отопление не были слишком большими, подбирать строительные материалы и их толщину надо так, чтобы их суммарное тепловое сопротивление было не меньше указанного в таблице.

Расчет толщины стены, толщины утеплителя, отделочных слоев

Для современного строительства характерна ситуация, когда стена имеет несколько слоев. Кроме несущей конструкции есть утепление, отделочные материалы. Каждый из слоев имеет свою толщину. Как определить толщину утеплителя? Расчет несложен. Исходят из формулы:

Формула расчета теплового сопротивления

R — термическое сопротивление;

p — толщина слоя в метрах;

k — коэффициент теплопроводности.

Предварительно надо определиться с материалами, которые вы будете использовать при строительстве. Причем, надо знать точно, какого вида будет материал стен, утепление, отделка и т.д. Ведь каждый из них вносит свою лепту в теплоизоляцию, и теплопроводность строительных материалов учитывается в расчете.

Сначала считается термическое сопротивление конструкционного материала (из которого будет строится стена, перекрытие и т.д.), затем «по остаточному» принципу подбирается толщина выбранного утеплителя. Можно еще принять в расчет теплоизоляционных характеристики отделочных материалов, но обычно они идут «плюсом» к основным. Так закладывается определенный запас «на всякий случай». Этот запас позволяет экономить на отоплении, что впоследствии положительно сказывается на бюджете.

Пример расчета толщины утеплителя

Разберем на примере. Собираемся строить стену из кирпича — в полтора кирпича, утеплять будем минеральной ватой. По таблице тепловое сопротивление стен для региона должно быть не меньше 3,5. Расчет для этой ситуации приведен ниже.

  1. Для начала просчитаем тепловое сопротивление стены из кирпича. Полтора кирпича это 38 см или 0,38 метра, коэффициент теплопроводности кладки из кирпича 0,56. Считаем по приведенной выше формуле: 0,38/0,56 = 0,68. Такое тепловое сопротивление имеет стена в 1,5  кирпича.
  2. Эту величину отнимаем от общего теплового сопротивления для региона: 3,5-0,68 = 2,82. Эту величину необходимо «добрать» теплоизоляцией и отделочными материалами.

    Рассчитывать придется все ограждающие конструкции

  3. Считаем толщину минеральной ваты. Ее коэффициент теплопроводности 0,045. Толщина слоя будет: 2,82*0,045 = 0,1269 м или 12,7 см. То есть, чтобы обеспечить требуемый уровень утепления, толщина слоя минеральной ваты должна быть не меньше 13 см.

Если бюджет ограничен, минеральной ваты можно взять 10 см, а недостающее покроется отделочными материалами. Они ведь будут изнутри и снаружи. Но, если хотите, чтобы счета за отопление были минимальными, лучше отделку пускать «плюсом» к расчетной величине. Это ваш запас на время самых низких температур, так как нормы теплового сопротивления для ограждающих конструкций считаются по средней температуре за несколько лет, а зимы бывают аномально холодными. Потому теплопроводность строительных материалов, используемых для отделки просто не принимают во внимание.

openfile.ru

Коэффициент теплопроводности металлов при низких температура

    Коэффициент теплопроводности металлов. Количественной теории теплопроводности на сегодня не существует. Это связано со сложными, не поддающимися аналитическому описанию механизмами рассеяния фононов и электронов на примесях и атомах, внедренных в решетку, на вакансиях и дислокациях. Справочные данные могут служить лишь для весьма приближенных оценок, поскольку не представляется возможным простым способом и с необходимой точностью определить физическую и химическую чистоту образца, коэффициент теплопроводности которого очень чувствителен при низких температурах к содержанию примесей и характеру их распределения в металле. На рис. 3.11 приведены температурные зависимости теплопроводности для различных образцов меди, отличающихся химической чистотой. Как следует из рис. [c.232]
    Следует отметить, что для очень чистых металлов при низких температурах наблюдается максимум коэффициента теплопроводности, зачастую превышающий его значение при комнатной температуре во много раз. При температурах, близких к комнатной, коэффициент теплопроводности чистых металлов почти не зависит от температуры. Величина (или даже само существование) [c.149]

    На фиг. 9.7 приведены кривые зависимости от температуры коэффициентов теплопроводности для некоторых металлов, обычно считающихся хорошими проводниками тепла. Следует отметить, что для очень чистых металлов при низких температурах наблюдается максимум коэффициента теплопроводности, причем максимальная величина зачастую во много раз превышает коэффициент теплопроводности при комнатной температуре. При температурах, близких к комнатной, коэффициент теплопроводности чистых металлов почти не зависит от температуры. Величина (или лаже само существование максимума) сильно зависит от наличия [c.381]

    Если теплопроводность не зависит от температуры, то, как видно из рис. 1-1, температура внутри стенки убывает по линейному закону от до 1 ,2- Теплошроводность различных веществ дается в приложении. Как видно из таблиц, среди твердых тел металлы обладают наилучшей теплопроводностью. Например, коэффициент теплопроводности чугуна равняется приблизительно А5 ккал/м – ч – град, меди— приблизительно 300 ккал/м-ч-град. Металлические сплавы имеют значительно более низкую теплопроводность, чем чистые металлы. Например, величины теплопроводности нержавеющей стали около 13,3 ккал/м-ч-град. Величины теплопроводности неметаллических веществ составляют приблизительно от 0,05 до 3 ккал/м-ч-град. [c.27]

    Из приведенных данных видно, что величина Я для различных материалов изменяется в широких пределах это в значительной мере определяет их назначение. Низкая теплопроводность теплоизоляционных материалов объясняется их пористой структурой, в ячейках которой заключен воздух, плохо проводящий тепло. Для большинства металле коэффициенты теплопроводности с возрастанием температуры уменьшаются, тогда как для газов они возрастают. [c.113]

    С наличием металлической проводимости тесно связаны высокая теплопроводность и оптические свойства металлических веществ. Так, электроны могут вследствие их высокой подвижности осуществлять отвод тепла путем переноса энергии из областей с более высокой температурой в области с более низкой температурой. Высокие коэффициенты поглощения и отражения излучения у металлов объясняются наличием в энергетических зонах очень тесно расположенных чередующихся занятых и свободных состояний. Этим обусловлены металлический блеск и непрозрачность. В тонкодисперсном состоянии все металлы имеют черный цвет. [c.360]

    Деление элементов и простых веществ на металлы и неметаллы в известной степени неоднозначно, С одной стороны, металлы и неметаллы различают по их физическим свойствам, которые проявляются у соответствующих простых веществ. Так, для металлов характерны высокая теплопроводность и электрическая проводимость, отрицательный температурный коэффициент проводимости, специфический металлический блеск, ковкость, пластичность и т.п. Физические свойства неметаллов существенно иные они хрупки, обладают низкой теплопроводностью и электрической проводимостью с положительным температурным коэффициентом (возрастание с температурой) и т.п. С другой стороны, различие между металлами и неметаллами проявляется в их химических свойствах для первых характерны основные свойства оксидов и гидроксидов и восстановительное действие, для вторых — кислотный характер оксидов и гидроксидов и окислительная активность. Ориентируясь на физические свойства, к типичным металлам следует отнести, например, медь, серебро и золото, обладающие наиболее высокой электрической проводимостью и пластичностью. Однако по химическим свойствам эти вещества вовсе не относятся к типичным металлам, поскольку стоят в ряду стандартных электродных потенциалов (ряд напряжений) после водорода. В то же время для элементов IА-группы, являющихся по химическим свойствам самыми активными металлами, некоторые физические характеристики (например, электрическая проводимость) выражены не так ярко. Таким образом, подразделяя элементы на металлы и неметаллы, всегда следует иметь в виду, по каким свойствам это деление осуществляется по химическим или по физическим. [c.244]

    Значения коэффициентов теплопроводности газов приведены в табл. 2.1, 2.19 и 2.20, жидкостей — в табл. 2.2, 2.18, 2.22, жидких металлов — в табл. 2.21, воды вблизи критической и сверхкритической областей— на рис. 2.21, твердых тел—в табл. 2.3—2.6. Расчетный метод определения коэффициента теплопроводности бинарной смеси газов с известными X см. в п. 2.16.1 значения X полимеров — в [1], окислов—[2, 3], карбидов—[4], газов и жидкостей — [5—7], смесей и композиционных материалов—[7, 8], различных веществ при низких температурах — [9, 11], теплоизоляционных и огнеупорных материалов — в кн. 3, разд. 1. [c.116]

    Для определения излучательной и поглощательной способностей металлов при низких температурах широко применяется калориметрический метод, аналогичный стационарному методу определения коэффициента теплопроводности. Калориметр представляет собой шаровой или цилиндрический сосуд из стекла или металла, подвешенный на горловине в кожухе такой же формы. Внутренний сосуд заполняется сжиженным газом, например жидким азотом количество тепла, притекающее к внутреннему сосуду, определяется по скорости испарения жидкости. Побочный приток тепла по горловине должен быть сравнительно небольшим, что обеспечивают соответствующим выбором ее размеров и материала или установкой на горловине охранной камеры. В межстенном пространстве поддерживают высокий вакуум. Калориметр помещают в термостат, в котором поддерживается температура 293—300° К- [c.171]

    ТЕПЛОПРОВОДНОСТЬ МЕТАЛЛОВ И СПЛАВОВ ПРИ НИЗКИХ ТЕМПЕРАТУРАХ (коэффициент теплопроводности X, ккал/м-ч-град [Л. 395]) [c.610]

    Фторопласт-4 (другие названия фторлон-4, политетрафторэтилен) содержит наполнители, имеет белый или серый цвет, плотность 2,1 — 2,3 г/сл , предел прочности 160—250 кгс/см , твердость 3—4 единицы по Бринеллю он гибок, пластичен. Допустимая рабочая температура от — 270 до+250 °С. Фторопласт обладает текучестью на холоду, поэтому для работы при низких температурах прокладки из него следуе

www.chem21.info

Низкая теплопроводность – материал – Большая Энциклопедия Нефти и Газа, статья, страница 1

Низкая теплопроводность – материал

Cтраница 1

Низкая теплопроводность материала ( исследования показывают [96], что уже на расстоянии 0 15 – 0 20 мм от зоны резания температура материала близка к температуре окружающей среды) требует применения при разрезке обильного охлаждения. Это вполне осуществимо при разрезке органопластика, так как этот материал обладает значительно большей водостойкостью по сравнению с другими ВКПМ.  [1]

При конструировании аппаратов из ферросилида необходимо учитывать низкую теплопроводность материала и избегать местных нагревов и перегревов, которые могут являться причиной образования трещин. Поэтому целесообразно осуществлять введение в аппаратуру из ферросилида горячих и холодных жидкостей, а также пара при помощи специальных форсунок. Высокая твердость и хрупкость сплава не позвляют производить нарезание резьб на деталях из ферросилида; в случае необходимости резьбового соединения неточную резьбу можно получить непосредственно отливкой. Другим способом получения резьбы является заливка латунных или стальных стержней, в которых затем нарезается резьба.  [2]

Но целиком использовать возможности скоростных режимов резания для пластмасс не удается из-за низкой теплопроводности материалов, которая вызывает значительное накопление тепла в детали, сильный разогрев инструмента и детали, что особенно опасно для термолластичных материалов. Для уменьшения разогрева необходимо в режущем инструменте увеличить задний угол, что приводит к значительному уменьшению трения. Широко пользуются также охлаждением жидкостью или обдувкой сжатым воздухом.  [3]

Разность температур между внутренней и внешней поверхностью может превышать 100 градусов при высоком тепловом эффекте и низкой теплопроводности материала пористого тела.  [5]

Факторами, способствующими распространению возникшего горения, являются: большая теплотворная способность материала, присутствие его в достаточных количествах, низкая теплопроводность материала, а также наличие условий для легкого устранения продуктов горения.  [6]

Теплозащитный аблирующий материал должен обладать определенным запасом механической прочности для того, чтобы сохранить деструктирующие слои в заданном геометрическом пространстве. Кроме того, благодаря низкой теплопроводности материала слои, находящиеся на некоторой глубине, находятся при температуре, которая не приводит к большому разупрочнению, их можно использовать в качестве элементов несущей конструкции. В связи с этим необходимы данные об изменении прочностных характеристик материала в процессе деструкции поверхностного слоя. Деструкция происходит в тех слоях, к которым подводится тепловой поток. Следовательно, материал находится в неоднородном асимметричном тепловом и термонапряженном состоянии.  [7]

По данным В. А. Каменецкого [32], скорость скольжения v 1 5 м / с, при которой проводились испытания, является предельной для деталей, работающих в условиях сухого трения. В подшипниках из полиамидов вследствие низкой теплопроводности материала скорость скольжения заметно влияет на температуру и грузоподъемность.  [8]

Приводятся результаты испытаний рассматриваемых материалов как при глубоком охлаждении ( до – 196 С), так и при повышенной температуре ( до 4 – 600 С), исследуется влияние одностороннего нагрева на прочность стеклопластиков. Последняя характеристика оказывается существенной вследствие низкой теплопроводности материала.  [9]

Слоистые стеклопластики с термореактивным связующим разрезают с помощью ленточных или дисковых пил. Необходимо предпринимать дополнительные меры предосторожности из-за низкой теплопроводности материала и возможности его расслоения в результате вибрации.  [10]

Температура формуемых листов должна быть 130 – 150 С. Нагревать листы целесообразно с двух сторон из-за низкой теплопроводности материала. Скорости формования пеноматериалов должны быть меньше, чем при переработке монолитных материалов, вследствие более низких прочностных показателей первых.  [11]

Температура формуемых листов должна быть 130 – 150 С. Нагревать листы целесообразно с двух сторон из-за низкой теплопроводности материала. Скорости формования некоматериалов должны быть меньше, чем при переработке монолитных материалов, вследствие более низких прочностных показателей первых.  [12]

В обычных сушильных печах, например, поверхностному испарению препятствует относительно высокая влажность в горячей атмосфере, необходимая для обеспечения проникновения тепла в толщу материала. Этот процесс протекает медленно и неэкономично вследствие низкой теплопроводности материала и трудности регулировки. Это относится к таким материалам как древесина, пшеница, волокна и другие. Если материалы нагреваются неравномерно, то оптимальная максимальная скорость сушки может быть установлена для каждого частного случая путем подбора температуры воздуха и относительной влажности. Выход влаги зависит от градиента влагосодержания ( от материала к воздуху) и коэффициента диффузии. Последний существенно растет с ростом температуры материала.  [13]

Результаты температурной тарировки показывают, что при нагреве разность температур образца и наконечника индентора незначительна. Кроме того, при соприкосновении индентора с образцом их температуры выравниваются за счет быстрого прогрева вершины, тепло-отвод от которой затруднен из-за низкой теплопроводности материала наконечника.  [14]

Главное внимание при конструировании подшипников с вкладышами из пластмасс должно быть уделено правильному назначению величин удельных нагрузок и скоростей скольжения, а также снижению отрицательного влияния низкой теплопроводности материала.  [15]

Страницы:      1    2

www.ngpedia.ru

Теплопроводность — Википедия

Теплопрово́дность — способность материальных тел проводить энергию (теплоту) от более нагретых частей тела к менее нагретым частям тела, осуществляемому хаотически движущимися частицами тела (атомами, молекулами, электронами и т. п.). Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества.

Теплопроводностью называется также количественная характеристика способности тела проводить тепло. В сравнении тепловых цепей с электрическими это аналог проводимости.

Количественно способность вещества проводить тепло характеризуется коэффициентом теплопроводности. Эта характеристика равна количеству теплоты, проходящему через однородный образец материала единичной длины и единичной площади за единицу времени при единичной разнице температур (1 К). В Международной системе единиц (СИ) единицей измерения коэффициента теплопроводности является Вт/(м·K).

Исторически считалось, что передача тепловой энергии связана с перетеканием гипотетического теплорода от одного тела к другому. Однако с развитием молекулярно-кинетической теории явление теплопроводности получило своё объяснение на основе взаимодействия частиц вещества. Молекулы в более нагретых частях тела движутся быстрее и передают энергию посредством столкновений медленным частицам в более холодных частях тела.

Закон теплопроводности Фурье

В установившемся режиме плотность потока энергии, передающейся посредством теплопроводности, пропорциональна градиенту температуры:

q→=−ϰgrad(T),{\displaystyle {\vec {q}}=-\varkappa \,\mathrm {grad} (T),}

где q→{\displaystyle {\vec {q}}} — вектор плотности теплового потока — количество энергии, проходящей в единицу времени через единицу площади, перпендикулярной каждой оси, ϰ{\displaystyle \varkappa } — коэффициент теплопроводности (удельная теплопроводность), T{\displaystyle T} — температура. Минус в правой части показывает, что тепловой поток направлен противоположно вектору grad(T){\displaystyle \mathrm {grad} (T)} (то есть в сторону скорейшего убывания температуры). Это выражение известно как закон теплопроводности Фурье.[1]

В интегральной форме это же выражение запишется так (если речь идёт о стационарном потоке тепла от одной грани параллелепипеда к другой):

P=−ϰSΔTl,{\displaystyle P=-\varkappa {\frac {S\Delta T}{l}},} [Вт/(м·К) · (м2·К)/м = Вт/(м·К) · (м·К) = Вт]

где P{\displaystyle P} — полная мощность тепловых потерь, S{\displaystyle S} — площадь сечения параллелепипеда, ΔT{\displaystyle \Delta T} — перепад температур граней, l{\displaystyle l} — длина параллелепипеда, то есть расстояние между гранями.

Связь с электропроводностью

Связь коэффициента теплопроводности ϰ{\displaystyle \varkappa } с удельной электрической проводимостью σ{\displaystyle \sigma } в металлах устанавливает закон Видемана — Франца:

ϰσ=π23(ke)2T,{\displaystyle {\frac {\varkappa }{\sigma }}={\frac {\pi ^{2}}{3}}\left({\frac {k}{e}}\right)^{2}T,}
где k{\displaystyle k} — постоянная Больцмана;
e{\displaystyle e} — заряд электрона;
T{\displaystyle T} — абсолютная температура.

Коэффициент теплопроводности газов

В газах коэффициент теплопроводности может быть найден по приближённой формуле[2]

ϰ∼13ρcvλv¯,{\displaystyle \varkappa \sim {\frac {1}{3}}\rho c_{v}\lambda {\bar {v}},}

где ρ{\displaystyle \rho } — плотность газа, cv{\displaystyle c_{v}} — удельная теплоёмкость при постоянном объёме, λ{\displaystyle \lambda } — средняя длина свободного пробега молекул газа, v¯{\displaystyle {\bar {v}}} — средняя тепловая скорость. Эта же формула может быть записана как[3]

ϰ=ik3π3/2d2RTμ,{\displaystyle \varkappa ={\frac {ik}{3\pi ^{3/2}d^{2}}}{\sqrt {\frac {RT}{\mu }}},}

где i{\displaystyle i} — сумма поступательных и вращательных степеней свободы молекул (для двухатомного газа i=5{\displaystyle i=5}, для одноатомного i=3{\displaystyle i=3}), k{\displaystyle k} — постоянная Больцмана, μ{\displaystyle \mu } — молярная масса, T{\displaystyle T} — абсолютная температура, d{\displaystyle d} — эффективный (газокинетический) диаметр молекул, R{\displaystyle R} — универсальная газовая постоянная. Из формулы видно, что наименьшей теплопроводностью обладают тяжелые одноатомные (инертные) газы, наибольшей — легкие многоатомные (что подтверждается практикой, максимальная теплопроводность из всех газов — у водорода, минимальная — у радона, из нерадиоактивных газов — у ксенона).

Теплопроводность в сильно разреженных газах

Приведённое выше выражение для коэффициента теплопроводности в газах не зависит от давления. Однако если газ сильно разрежен, то длина свободного пробега определяется не столкновениями молекул друг с другом, а их столкновениями со стенками сосуда. Состояние газа, при котором длина свободного пробега молекул ограничивается размерами сосуда называют высоким вакуумом. При высоком вакууме теплопроводность убывает пропорционально плотности вещества (то есть пропорциональна давлению в системе): ϰ∼13ρcvlv¯∝P{\displaystyle \varkappa \sim {\frac {1}{3}}\rho c_{v}l{\bar {v}}\propto P}, где l{\displaystyle l} — размер сосуда, P{\displaystyle P} — давление.

Таким образом коэффициент теплопроводности вакуума тем ближе к нулю, чем глубже вакуум. Это связано с низкой концентрацией в вакууме материальных частиц, способных переносить тепло. Тем не менее, энергия в вакууме передаётся с помощью излучения. Поэтому, например, для уменьшения теплопотерь стенки термоса делают двойными, серебрят (такая поверхность лучше отражает излучение), а воздух между ними откачивают.

Видео по теме

Обобщения закона Фурье

Следует отметить, что закон Фурье не учитывает инерционность процесса теплопроводности, то есть в данной модели изменение температуры в какой-то точке мгновенно распространяется на всё тело. Закон Фурье неприменим для описания высокочастотных процессов (и, соответственно, процессов, чьё разложение в ряд Фурье имеет значительные высокочастотные гармоники). Примерами таких процессов являются распространение ультразвука, ударные волны и т. п. Инерционность в уравнения переноса первым ввел Максвелл[4], а в 1948 году Каттанео был предложен вариант закона Фурье с релаксационным членом:[5]

τ∂q∂t=−(q+ϰ∇T).{\displaystyle \tau {\frac {\partial \mathbf {q} }{\partial t}}=-\left(\mathbf {q} +\varkappa \,\nabla T\right).}

Если время релаксации τ{\displaystyle \tau } пренебрежимо мало, то это уравнение переходит в закон Фурье.

Коэффициенты теплопроводности различных веществ

МатериалТеплопроводность, Вт/(м·K)
Графен4840 ± 440 — 5300 ± 480
Алмаз1001—2600
Графит278,4—2435
Арсенид бора[en]200—2000
Карбид кремния490
Серебро430
Медь401
Оксид бериллия370
Золото320
Алюминий202—236
Нитрид алюминия200
Нитрид бора180
Кремний150
Латунь97—111
Хром107
Железо92
Платина70
Олово67
Оксид цинка54
Сталь нелегированная47—58
Свинец35,3
Сталь нержавеющая (аустенитная) [6]15
Кварц8
Термопасты высокого качества5—6
Гранит2,4
Бетон сплошной1,75
Бетон на гравии или щебне из природного камня1,51
Базальт1,3
Стекло1—1,15
Термопаста КПТ-80,7
Бетон на песке0,7
Вода при нормальных условиях0,6
Кирпич строительный0,2—0,7
Силиконовое масло0,16
Пенобетон0,05—0,3
Газобетон0,1—0,3
Древесина0,15
Нефтяные масла0,12
Свежий снег0,10—0,15
Пенополистирол (горючесть Г1)0,038—0,052
Экструдированный пенополистирол (горючесть Г3 и Г4)0,029—0,032
Стекловата0,032—0,041
Каменная вата0,034—0,039
Воздух (300 K, 100 кПа)0,022
Аэрогель0,017
Аргон (273—320 K, 100 кПа)0,017
Аргон (240—273 K, 100 кПа)0,015
Вакуум (абсолютный)0 (строго)

Также нужно учитывать передачу тепла из-за конвекции молекул и излучения. Например, при полной нетеплопроводности вакуума, тепловая энергия передаётся излучением (Солнце, инфракрасные теплогенераторы). В газах и жидкостях происходит перемешивание разнотемпературных слоёв естественным путём или искусственно (примеры принудительного перемешивания — фены, естественного — электрочайники). Также в конденсированных средах возможно «перепрыгивание» фононов из одного твердого тела в другое через субмикронные зазоры, что способствует распространению звуковых волн и тепловой энергии, даже если зазоры представляют собой идеальный вакуум.

Примечания

См. также

Ссылки

wiki2.red

Теплопроводность – это… Что такое Теплопроводность?

Теплопрово́дность — это процесс переноса внутренней энергии от более нагретых частей тела (или тел) к менее нагретым частям (или телам), осуществляемый хаотически движущимися частицами тела ( атомами, молекулами, электронами и т.п.). Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества. Явление теплопроводности заключается в том, что кинетическая энергия атомов и молекул, которая определяет температуру тела, передаётся другому телу при их взаимодействии или передаётся из более нагретых областей тела к менее нагретым областям. Иногда теплопроводностью называется также количественная оценка способности конкретного вещества проводить тепло.

Численная характеристика теплопроводности материала равна количеству теплоты, проходящей через материал площадью 1 кв.м за единицу времени (секунду) при единичном температурном градиенте. Данная численная характеристика используется для расчета теплопроводности для калибрования и охлаждения профильных изделий.

Исторически считалось, что передача тепловой энергии связана с перетеканием теплорода от одного тела к другому. Однако более поздние опыты, в частности, нагрев пушечных стволов при сверлении, опровергли реальность существования теплорода как самостоятельного вида материи. Соответственно, в настоящее время считается, что явление теплопроводности обусловлено стремлением объектов занять состояние более близкое к термодинамическому равновесию, что выражается в выравнивании температуры.

Закон теплопроводности Фурье

В установившемся режиме плотность потока энергии, передающейся посредством теплопроводности, пропорциональна градиенту температуры:

где  — вектор плотности теплового потока — количество энергии, проходящей в единицу времени через единицу площади, перпендикулярной каждой оси,  — коэффициент теплопроводности (иногда называемый просто теплопроводностью),  — температура. Минус в правой части показывает, что тепловой поток направлен противоположно вектору grad T (то есть в сторону скорейшего убывания температуры). Это выражение известно как закон теплопроводности Фурье.[1]

В интегральной форме это же выражение запишется так (если речь идёт о стационарном потоке тепла от одной грани параллелепипеда к другой):

где  — полная мощность тепловых потерь,  — площадь сечения параллелепипеда,  — перепад температур граней,  — длина параллелепипеда, то есть расстояние между гранями.

Коэффициент теплопроводности измеряется в Вт/(м·K).

Коэффициент теплопроводности вакуума

Коэффициент теплопроводности вакуума почти ноль (чем глубже вакуум, тем ближе к нулю). Это связано с низкой концентрацией в вакууме материальных частиц, способных переносить тепло. Тем не менее, тепло в вакууме передаётся с помощью излучения. Поэтому, например, для уменьшения теплопотери стенки термоса делают двойными, серебрят (такая поверхность лучше отражает излучение), а воздух между ними откачивают.

Связь с электропроводностью

Связь коэффициента теплопроводности с удельной электрической проводимостью в металлах устанавливает закон Видемана — Франца:

где  — постоянная Больцмана,  — заряд электрона.

Коэффициент теплопроводности газов

Коэффициент теплопроводности газов определяется формулой[2]

Где: i — сумма поступательных и вращательных степеней свободы молекул (для двухатомного газа i=5, для одноатомного i=3), k — постоянная Больцмана, M — молярная масса, T — абсолютная температура, d — эффективный диаметр молекул, R — универсальная газовая постоянная. Из формулы видно, что наименьшей теплопроводностью обладают тяжелые одноатомные (инертные) газы, наибольшей — легкие многоатомные (что подтверждается практикой, максимальная теплопроводность из всех газов — у водорода, минимальная — у радона, из не радиоактивных газов – у ксенона).

Обобщения закона Фурье

Следует отметить, что закон Фурье не учитывает инерционность процесса теплопроводности, то есть в данной модели изменение температуры в какой-то точке мгновенно распространяется на всё тело. Закон Фурье не применим для описания высокочастотных процессов (и, соответственно, процессов, чьё разложение в ряд Фурье имеет значительные высокочастотные гармоники). Примерами таких процессов являются распространение ультразвука, ударные волны и т.п. Инерционность в уравнения переноса первым ввел Максвелл[3], а в 1948 году Каттанео был предложен вариант закона Фурье с релаксационным членом:[4]

Если время релаксации пренебрежимо мало, то это уравнение переходит в закон Фурье.

Коэффициенты теплопроводности различных веществ

МатериалТеплопроводность, Вт/(м·K)
Графен(4840±440) — (5300±480)
Алмаз1001—2600
Графит278,4—2435
Карбид кремния490
Серебро430
Медь382—390
Оксид бериллия370
Золото320
Алюминий202—236
Нитрид алюминия200
Нитрид бора180
Кремний150
Латунь97—111
Хром93,7
Железо92
Платина70
Олово67
Оксид цинка54
Сталь47
Кварц8
Стекло1-1,15
КПТ-80,7
Вода при нормальных условиях0,6
Кирпич строительный0,2—0,7
Силиконовое масло0,16
Пенобетон0,14—0,3
Древесина0,15
Нефтяные масла0,12
Свежий снег0,10—0,15
Вата0,055
Воздух (300 K, 100 кПа)0,026
Вакуум (абсолютный)0 (строго)

другие вещества

МатериалТеплопроводность, Вт/(м·K)
Кальций201
Бериллий201
Вольфрам173
Магний156
Родий150
Иридий147
Молибден138
Рутений117
Хром93,9
Осмий87,6
Титан21,9
Тефлон0,25
Бумага0,14
Полистирол0,082
Шерсть0,05
Минеральная вата0,045
Пенополистирол0,04
Стекловолокно0,036
Пробковое дерево0,035
Пеноизол0,035
Каучук вспененный0,03
Аргон0,0177
Аэрогель0,017
Ксенон0,0057

На практике нужно также учитывать проводимость тепла за счет конвекции молекул и проникаемости излучений. Например, при полной нетеплопроводности вакуума, тепло может передаваться за счет излучения (пример — Солнце, установки инфракрасного излучения). А газ или жидкость могут обмениваться нагретыми или охлажденными слоями самостоятельно или искусственно (пример — фен, греющие вентиляторы). Так же в конденсированных средах возможно «перепрыгивание» фононов из одного твердого тела в другое через субмикронные зазоры, что способствует распространению звуковых волн и тепла, даже если зазоры представляют собой идеальный вакуум.

Примечания

См. также

Ссылки

med.academic.ru

Теплопроводность – это… Что такое Теплопроводность?

Теплопрово́дность — это процесс переноса внутренней энергии от более нагретых частей тела (или тел) к менее нагретым частям (или телам), осуществляемый хаотически движущимися частицами тела ( атомами, молекулами, электронами и т.п.). Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества. Явление теплопроводности заключается в том, что кинетическая энергия атомов и молекул, которая определяет температуру тела, передаётся другому телу при их взаимодействии или передаётся из более нагретых областей тела к менее нагретым областям. Иногда теплопроводностью называется также количественная оценка способности конкретного вещества проводить тепло.

Численная характеристика теплопроводности материала равна количеству теплоты, проходящей через материал площадью 1 кв.м за единицу времени (секунду) при единичном температурном градиенте. Данная численная характеристика используется для расчета теплопроводности для калибрования и охлаждения профильных изделий.

Исторически считалось, что передача тепловой энергии связана с перетеканием теплорода от одного тела к другому. Однако более поздние опыты, в частности, нагрев пушечных стволов при сверлении, опровергли реальность существования теплорода как самостоятельного вида материи. Соответственно, в настоящее время считается, что явление теплопроводности обусловлено стремлением объектов занять состояние более близкое к термодинамическому равновесию, что выражается в выравнивании температуры.

Закон теплопроводности Фурье

В установившемся режиме плотность потока энергии, передающейся посредством теплопроводности, пропорциональна градиенту температуры:

где  — вектор плотности теплового потока — количество энергии, проходящей в единицу времени через единицу площади, перпендикулярной каждой оси,  — коэффициент теплопроводности (иногда называемый просто теплопроводностью),  — температура. Минус в правой части показывает, что тепловой поток направлен противоположно вектору grad T (то есть в сторону скорейшего убывания температуры). Это выражение известно как закон теплопроводности Фурье.[1]

В интегральной форме это же выражение запишется так (если речь идёт о стационарном потоке тепла от одной грани параллелепипеда к другой):

где  — полная мощность тепловых потерь,  — площадь сечения параллелепипеда,  — перепад температур граней,  — длина параллелепипеда, то есть расстояние между гранями.

Коэффициент теплопроводности измеряется в Вт/(м·K).

Коэффициент теплопроводности вакуума

Коэффициент теплопроводности вакуума почти ноль (чем глубже вакуум, тем ближе к нулю). Это связано с низкой концентрацией в вакууме материальных частиц, способных переносить тепло. Тем не менее, тепло в вакууме передаётся с помощью излучения. Поэтому, например, для уменьшения теплопотери стенки термоса делают двойными, серебрят (такая поверхность лучше отражает излучение), а воздух между ними откачивают.

Связь с электропроводностью

Связь коэффициента теплопроводности с удельной электрической проводимостью в металлах устанавливает закон Видемана — Франца:

где  — постоянная Больцмана,  — заряд электрона.

Коэффициент теплопроводности газов

Коэффициент теплопроводности газов определяется формулой[2]

Где: i — сумма поступательных и вращательных степеней свободы молекул (для двухатомного газа i=5, для одноатомного i=3), k — постоянная Больцмана, M — молярная масса, T — абсолютная температура, d — эффективный диаметр молекул, R — универсальная газовая постоянная. Из формулы видно, что наименьшей теплопроводностью обладают тяжелые одноатомные (инертные) газы, наибольшей — легкие многоатомные (что подтверждается практикой, максимальная теплопроводность из всех газов — у водорода, минимальная — у радона, из не радиоактивных газов – у ксенона).

Обобщения закона Фурье

Следует отметить, что закон Фурье не учитывает инерционность процесса теплопроводности, то есть в данной модели изменение температуры в какой-то точке мгновенно распространяется на всё тело. Закон Фурье не применим для описания высокочастотных процессов (и, соответственно, процессов, чьё разложение в ряд Фурье имеет значительные высокочастотные гармоники). Примерами таких процессов являются распространение ультразвука, ударные волны и т.п. Инерционность в уравнения переноса первым ввел Максвелл[3], а в 1948 году Каттанео был предложен вариант закона Фурье с релаксационным членом:[4]

Если время релаксации пренебрежимо мало, то это уравнение переходит в закон Фурье.

Коэффициенты теплопроводности различных веществ

МатериалТеплопроводность, Вт/(м·K)
Графен(4840±440) — (5300±480)
Алмаз1001—2600
Графит278,4—2435
Карбид кремния490
Серебро430
Медь382—390
Оксид бериллия370
Золото320
Алюминий202—236
Нитрид алюминия200
Нитрид бора180
Кремний150
Латунь97—111
Хром93,7
Железо92
Платина70
Олово67
Оксид цинка54
Сталь47
Кварц8
Стекло1-1,15
КПТ-80,7
Вода при нормальных условиях0,6
Кирпич строительный0,2—0,7
Силиконовое масло0,16
Пенобетон0,14—0,3
Древесина0,15
Нефтяные масла0,12
Свежий снег0,10—0,15
Вата0,055
Воздух (300 K, 100 кПа)0,026
Вакуум (абсолютный)0 (строго)

другие вещества

МатериалТеплопроводность, Вт/(м·K)
Кальций201
Бериллий201
Вольфрам173
Магний156
Родий150
Иридий147
Молибден138
Рутений117
Хром93,9
Осмий87,6
Титан21,9
Тефлон0,25
Бумага0,14
Полистирол0,082
Шерсть0,05
Минеральная вата0,045
Пенополистирол0,04
Стекловолокно0,036
Пробковое дерево0,035
Пеноизол0,035
Каучук вспененный0,03
Аргон0,0177
Аэрогель0,017
Ксенон0,0057

На практике нужно также учитывать проводимость тепла за счет конвекции молекул и проникаемости излучений. Например, при полной нетеплопроводности вакуума, тепло может передаваться за счет излучения (пример — Солнце, установки инфракрасного излучения). А газ или жидкость могут обмениваться нагретыми или охлажденными слоями самостоятельно или искусственно (пример — фен, греющие вентиляторы). Так же в конденсированных средах возможно «перепрыгивание» фононов из одного твердого тела в другое через субмикронные зазоры, что способствует распространению звуковых волн и тепла, даже если зазоры представляют собой идеальный вакуум.

Примечания

См. также

Ссылки

brokgauz.academic.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *