Теплопроводность плохая и хорошая: Какие материалы и вещества имеют хорошую теплопроводность, а какие плохую??? Помогите

Содержание

Теплопроводность

На предыдущем уроке, мы узнали, что существует три способа теплопередачи: теплопроводность, конвекция и излучение. Сегодня мы поговорим о теплопроводности. Вспомним опыты из предыдущего урока: тела нагревались и охлаждались друг от друга, находясь в непосредственном контакте. Например, летом около фонтана всегда прохладнее, потому что вода холоднее воздуха. Это и называется теплопроводностью — передача внутренней энергии от одного тела к другому при их непосредственном контакте.

Тело обладает плохой или хорошей теплопроводностью в зависимости от того, насколько быстро через это тело проходит тепло. Например, если поджечь деревянную палку с одного конца, то можно легко держать её за другой, не рискуя обжечься. Значит, дерево обладает плохой теплопроводностью. Также, если мы положим кирпич одним концом в огонь, то температура на разных концах будет сильно отличаться и чтобы нагреться потребуется достаточно длительное время.

Поэтому кирпич тоже имеет плохую теплопроводность.

Если поставить на плиту кастрюлю, то она очень скоро нагреется, потому что она металлическая. Значит, металлы обладают хорошей теплопроводностью.

Следует помнить, что процесс нагревания происходит постепенно. Когда мы хотим закипятить воду, мы наливаем её в кастрюлю, а кастрюлю ставим на плиту. Сначала нагревается дно кастрюли, т.к. оно непосредственно контактирует с плитой. Частицы дна кастрюли получают дополнительную энергию. Эти частицы, в свою очередь, начинают взаимодействовать с соседними частицами, также передавая им дополнительную энергию. Так происходит, пока все тело не нагреется. Здесь мы плавно переходим к теплопроводности жидкостей. Как мы знаем из бытового опыта, несмотря на то, что кастрюля нагревается почти сразу, нужно немного подождать, пока вода закипит. Из этого можно сделать вывод, что

у жидкостей не очень хорошая теплопроводность (за исключением жидких металлов, конечно). Этого можно было ожидать, т.к. теплопроводность происходит из-за взаимодействия частиц, а частицы в жидкостях находятся на большем расстоянии, чем в твердых телах. Логично предположить, что у газов теплопроводность ещё хуже, потому что в них молекулы расположены ещё дальше друг от друга. Сделаем несколько наблюдений.

Фен выдувает горячий воздух за счет электрической энергии, которую он потребляет из сети.

Однако, если встать чуть-чуть в стороне от потока воздуха, то тепло едва ли можно будет ощутить. Кроме того, мы знаем, что двойные окна значительно лучше сохраняют тепло, чем одинарные. Это происходит за счет небольшого слоя воздуха между ними. Значит, воздух обладает плохой теплопроводностью.

Итак, из этих примеров можно сделать вывод, что теплопроводность — это свойство тела и у каждого тела она разная. Шерсть, перья, волосы имеют плохую теплопроводность, что вполне логично, т.к. их основной функцией является защита от холода. Теперь, мы понимаем, что защитой от холода является препятствование передачи внутренней энергии тела окружающей среде. Плохая теплопроводность этих веществ объясняется тем, что их волокна содержат частички воздуха, как и волокна дерева.

Самой низкой теплопроводностью обладает вакуум (т.е. свободное пространство). И это неудивительно, ведь явление теплопроводности возникает при взаимодействии частиц, которых попросту нет в вакууме. Этим и объясняется тот факт, что в открытом космосе самая низкая температура в природе (мы не можем утверждать, что в космосе абсолютный вакуум, но открытый космос — это почти полностью освобожденное пространство). Возникает вопрос: как же тогда нам передаётся тепло от Солнца? Это происходит посредством излучения, о котором мы поговорим чуть позже.

Мы сталкиваемся с явлением теплопроводности в повседневной жизни. Теперь мы знаем, что если надо предохранить тело от охлаждения или нагревания, то к нему нужно применить материал с плохой теплопроводностью. И наоборот, если требуется нагреть или остудить тело, то используются материалы с хорошей теплопроводностью. Наглядный пример — это сковорода, которая сделана из металла, чтобы на ней можно было готовить.

Однако, ручка сковороды сделана из пластмассы, чтобы она не нагревалась.

Теперь мы можем объяснить, почему одежда нас «греет». На самом деле, она не греет, а сохраняет тепло. Зимние куртки наполняют материалом с плохой теплопроводностью. Таким образом, тепло нашего тела меньше передаётся окружающему нас холодному воздуху. Одежда предохраняет нас от непосредственного контакта с окружающей средой, а это играет решающую роль в теплопроводности. В результате, человек теряет гораздо меньше тепла.

Теплопроводность. Просто о сложном. – Блоги Mastergrad

 При выборе качественного теплоизоляционного материала потребитель должен принимать во внимание целый ряд параметров, среди которых неизменно присутствует показатель теплопроводности. Высокой или низкой должна быть теплопроводность, что такое «лямбда», на какие показатели теплопроводности ориентироваться – ответы на эти и другие самые распространенные вопросы, возникающие при покупке утеплителя, вы найдете в данной статье.

Слово «теплопроводность» или еще более запутанное «лямбда» знакомо каждому школьнику из курса физики за восьмой класс. Однако со временем информация, которой мы не пользуемся, забывается. Попробуем освежить в памяти эти несложные и очень полезные знания.

Теплопроводность, как уже было сказано выше, — одно из ключевых понятий в современном строительстве, особенно когда речь заходит о теплоизоляционных материалах. От теплопроводности зависит толщина вашей стены или кровли, вес всего дома, а следовательно, и прочность (несущая способность) фундамента, долговечность конструкций и многое другое.

Современное определение теплопроводности – понятие комплексное. И состоит из нескольких составных частей, отвечающих за перенос тепла (теплообмен).

 

 

На первый взгляд формула кажется пугающей, но на самом деле все просто.

Суммарная или итоговая теплопроводность состоит из теплопроводности за счет конвекции, теплопроводности твердой и газообразной фазы, а также теплопроводности, учитывающей теплообмен за счет излучения.

Запутались еще сильнее? Тогда по порядку. Разберем каждый элемент этой формулы более подробно.

 

Теплообмен (или теплопередача) – это способ изменения внутренней энергии без совершения работы над телом или самим телом.

Теплопередача всегда происходит в определенном направлении: от тел с более высокой температурой к телам с более низкой.

 

Из курса физики нам известно, что теплообмен включает в себя три вида передачи тепла: теплопроводность, конвекцию и излучение.

 

Теплопроводность — явление передачи внутренней энергии от одной части тела к другой или от одного тела к другому при их

непосредственном контакте.

Если вы опустите ложку в стакан с горячим напитком, нагреется не только та часть ложки, которая погружена в жидкость, но и та ее часть, которая находится над водой.

Теплопроводность различных веществ неодинакова, она может быть плохой (низкой) и хорошей (высокой). Хорошая теплопроводность у металлов. Плохая — у шерсти, дерева и пластиков. Самым плохим проводником тепла является вакуум.

Для примера вспомните кухонную посуду: кастрюли и сковородки. Вы вряд ли станете снимать металлическую кастрюлю, полную вкусного супа, с горячей плиты голыми руками, потому что существует реальная опасность обжечь руки. Вместо этого вы используете кухонное полотенце, силиконовые или тряпичные прихватки, то есть те материалы, которые плохо проводят тепло.

Именно поэтому «правильные» кастрюли и сковородки снабжены пластмассовыми или деревянными ручками, плохо проводящими тепло. Вспомнить хотя бы старую бабушкину сковородку с деревянной ручкой: сковородка горячая, а за ручку схватиться можно безо всяких прихваток.

Как объясняется это явление? Рассмотрим на примере нагревания металлического стержня (или ложки из примера со стаканом).

В металле, как и во всех твердых телах, молекулы совершают колебательные движения около некоторых положений равновесия. Скорость колебательного движения молекул металла при нагревании увеличивается в той части, которая ближе расположена к пламени или источнику тепла. Эти молекулы, взаимодействуя с соседними молекулами, передают им часть своей энергии. В результате чего повышается температура отрезка стержня. Затем увеличивается скорость колебательного движения молекул в следующих отрезках стержня и так далее, до тех пор, пока не прогреется весь стержень. Именно поэтому вакуум обладает самой плохой теплопроводностью: в нем практически отсутствуют молекулы, которые бы передавали энергию друг другу. Важно отметить, что сами молекулы, передавая кинетическую энергию, не меняют свое местоположение, то есть само вещество не перемещается.

С первым понятием разобрались, посмотрим, что же дальше.

 

 Следующая составляющая теплопроводности – это конвекция. У многих из вас на слуху такой прибор, как «конвектор». А вот почему он так называется, наверное, знает далеко не каждый. Хотя логично предположить, что название свое он получил за принцип работы – конвекцию.

Из курса физики следует, что конвекция — это перенос энергии струями жидкости или газа. Если в случае с теплопроводностью при теплообмене происходит перенос энергии, то при конвекции происходит перенос именно вещества.

Конвекторы (как и любые другие отопительные приборы) нагревают окружающий воздух, вследствие чего температура в комнате повышается и вам становится тепло. При этом струи теплого воздуха поднимаются вверх, а струи холодного опускаются вниз. Аналогично происходит процесс нагревания воды в чайнике: горячая вода поднимается, а холодная опускается на ее место. Этот же принцип заложен в отопительной системе для обогрева домов.

Различают два вида конвекции: естественная и вынужденная.

Нагревание воздуха в комнате солнечными лучами – это пример естественной конвекции. А вот если воздух нагревается тепловым вентилятором, то это уже вынужденная конвекция. Вентилятор заставляет воздух в комнате двигаться, при этом нагревая его до необходимой температуры. В качестве других примеров конвекции можно привести холодные и теплые морские течения, а также образование и движение облаков и ветров.

Переходим к следующей составляющей: излучение (лучистый теплообмен).

Излучение – это способ переноса энергии от одного тела к другому в виде электромагнитных волн. Как правило, это инфракрасное (IR) излучение. Этот принцип заложен еще в одном уникальном приборе – инфракрасном обогревателе.

Принцип его работы построен на том, что любое нагретое тело является источником излучения. Самый впечатляющий пример – Солнце. Пример поменьше – костер, распространяющий тепло на достаточно большое расстояние. В случае с обогревателем окружающие предметы нагреваются за счет электромагнитного излучения и в комнате становится тепло.

Этот вид теплообмена отличается тем, что может происходить и в вакууме. Ведь солнечная энергия как-то доходит до Земли.

Примечательно, что темные тела лучше поглощают и отдают энергию. Если необходимо максимально нагреть материал, его окрашивают в черный цвет. В качестве примера можно привести солнечные коллекторы (водонагреватели), которые устанавливаются на крышах домов. Эти устройства позволяют собирать тепло от солнца и нагревать теплоноситель, который затем передает тепло внутрь дома для обогрева помещений или нагрева воды.

Хуже всего поглощают энергию светлые материалы или материалы с отражающей способностью. Способность светлых тел хорошо отражать лучистую энергию учитывают в самых разных сферах: при строительстве самолетов, при возведении высотных зданий в жарких странах, даже при выборе цвета одежды в теплое время года. На окнах часто применяют металлизированные пленки, которые частично отражают солнечное тепло и спасают помещение от перегрева.

 

С базовыми принципами разобрались. Пришло время вернуться к нашей формуле.

Её разбор проведем на примере теплоизоляционного материала из пенополиизоцианурата (ПИР/PIR) — LOGICPIR.

LOGICPIR – это инновационный утеплитель, обладающий уникальными показателями теплопроводности – всего 0,021 Вт/м*К, позволяющий добиться максимальной экономии пространства при минимальной толщине теплоизоляции. Кроме того, PIR-плиты не впитывают влагу, тем самым предотвращая образование конденсата и надежно защищая ваш дом от появления плесенных грибов, клещей и бактерий, представляющих опасность для здоровья. LOGICPIR относится к новому поколению полиуретанов, окружающих нас повсеместно: начиная от деталей интерьера автомобилей, матрацев и обуви и заканчивая медициной, где самая поразительная сфера их применения – изготовление протезов для сердечно-сосудистой системы. Стоит ли говорить, что материал экологически безопасен, что подтверждено целым рядом сертификатов и заключений.

Итак, вернемся к теплопроводности.

Структурная и газовая теплопроводность – это теплопроводность компонентов, из которых состоит материал, а именно:

  • твердой фазы – теплопроводности полимерного каркаса с множеством ячеек с очень тонкими, но прочными стенками;
  • газообразной фазы – теплопроводность газа, который находится в ячейках.

Если сравнивать теплоизоляцию PIR с пеностеклом или пенобетоном, то по структуре эти материалы схожи. Все они ячеистые и наполнены газом. Однако теплопроводности этих материалов будут отличаться.

Стекло и бетон, в отличие от пластиков, проводят тепло интенсивнее, соответственно, пеностекло и пенобетон обладают большей теплопроводностью и их показатели в качестве теплоизоляторов несколько хуже. Даже полимеры отличаются друг от друга теплопроводностью.

Как было сказано ранее, представленные материалы ячеистые и в каждом находятся какие-то газы. В пеностекле и пенобетоне это, как правило, окружающий воздух, в PIR – инертные газы. Хуже всего тепло проводят инертные газы, содержание молекул в 1 м3 очень маленькое, расстояние между молекулами очень большое, поэтому передать энергию между молекулами довольно сложно. Намного лучше тепло проводит воздух, поскольку он состоит из смеси разных газов, молекул очень много и все они друг с другом взаимодействуют.

Конвекционную составляющую у мелкоячеистой теплоизоляции обычно не рассматривают, поскольку размер ячеек теплоизоляции PIR ничтожно мал (меньше 1мм) и газ в этих ячейках неподвижен.

Последняя составляющая – излучение. Снизить ее влияние можно за счет применения дополнительных материалов, способных отражать тепловой поток. Для этого можно окрасить материал, скажем, в белый цвет. В случае с теплоизоляционными плитами PIR за отражение тепла отвечает фольга, которая покрывает материал с обеих сторон. Помимо функции отражения тепла фольга также несет защитную функцию с точки зрения утечки вспенивающего газа. По своим свойствам фольга является практически идеальным пароизоляционным материалом, а значит, способна задерживать миграции газов во внешнюю среду из ячеек теплоизоляции.

В процессе эксплуатации легкие инертные газы замещаются на более тяжелый окружающий воздух с хорошей теплопроводностью. Это происходит у всех пористых материалов за счет диффузных процессов.

Рассмотрим в качестве примера обычный воздушный шарик, наполненный гелием, который можно сравнить с одной ячейкой вспененной теплоизоляции. Новый шарик все время стремится улететь высоко в небо. Если утром он еще висел под потолком, то со временем он постепенно опустится и будет висеть в центре комнаты, а еще через несколько часов лежать на полу. Т.е. все это время газ за счет диффузии медленно выходит из шарика, и тот теряет свою «летучесть».

Так же и с теплоизоляцией. «Шарики» (ячейки), которые ближе всего расположены к границе с окружающим воздухом постепенно изменяют свой газовый состав. Однако те «шарики», которые находятся глубоко в материале, делают это очень медленно или не делают вовсе, поскольку инертному газу очень сложно пройти огромное количество стенок соседних «шариков» и вырваться наружу.

Кроме того, поверхность теплоизоляции покрыта фольгой, препятствующей выходу газа, соответственно, теплопроводность материала (ее газовая составляющая) сохраняется.

Итоговую формулу теплопроводности PIR можно записать в виде:

 

Подведем итог. Теплоизоляция – это очень важный показатель. От нее зависит, насколько теплым будет ваш дом. У наиболее эффективной теплоизоляции все ее составляющие () должны быть как можно ниже. У современной изоляции на примере LOGICPIR это достигается за счет применения инертных газов, полимеров и специальных покрытий, отражающих тепловой поток. Уверены, что теперь вы не только сможете безошибочно выбрать теплоизоляционный материал, отвечающий самым высоким требованиям, но и поможете своим детям сдать физику на высший балл.

Спасибо компании «Технониколь» за помощь в подготовке материала

Теплопроводность – внеурочная деятельность (конкурсная работа) – Корпорация Российский учебник (издательство Дрофа – Вентана)

  • Участник: Шароглазова Ксения Сергеевна
  • Руководитель: Печерская Светлана Юрьевна
Цель данной работы: изучение явления теплопроводности, проделав ряд опытов с твердыми телами, жидкостями и газами.

Актуальность: В наше время разрабатываются новые материалы. Знания о теплопроводности различных веществ позволяет не только широко использовать их, но и предотвращать их вредное воздействие в быту, технике и природе.

Цель: изучение явления теплопроводности, проделав ряд опытов с твердыми телами, жидкостями и газами.

Задачи:

  • изучить теоретический материал по данному вопросу;
  • исследовать теплопроводность твердых тел;
  • исследовать теплопроводность жидкостей;
  • исследовать теплопроводность газов;
  • сделать выводы о полученных результатах.

Гипотеза: все вещества (твердые, жидкие и газообразные) имеют разную теплопроводность.

Оборудование: спиртовка, штатив, деревянная палочка, стеклянная палочка, медная проволока, пробирка с водой.

Элементы УМК к учебнику А.В.Перышкина: учебник «Физика. 8 класс» А.В.Перышкина

Содержание работы

Внутренняя энергия, как и любой вид энергии, может быть передана от одних тел к другим. Внутренняя энергия может передаваться и от одной части тела к другой. Так, например, если один конец гвоздя нагреть в пламени, то другой его конец, находящийся в руке, постепенно нагреется и будет жечь руку. Явление передачи внутренней энергии от одной части тела к другой или от одного тела к другому при их непосредственном контакте называется теплопроводностью.

Изучим это явление, проделав ряд опытов с твердыми телами, жидкостью и газом.

Видео: https://cloud.mail.ru/public/JCFY/CFTcCeqhE

Опыт 1

Исследование теплопроводности твердых тел на примере деревянной палочки, стеклянной палочки и медного стержня

Внесем в огонь конец деревянной палки. Он воспламенится.

Вывод: дерево обладает плохой теплопроводностью.

Поднесем к пламени спиртовки конец тонкой стеклянной палочки. Через некоторое время он нагреется, другой же конец останется холодным.

Вывод: стекло имеет плохую теплопроводность.

Если же мы будем нагревать в пламени конец металлического стержня, то очень скоро весь стержень сильно нагреется. Удержать его в руках мы уже не сможем.

Вывод: металлы хорошо проводят тепло, т. е. имеют большую теплопроводность. Наибольшей теплопроводностью обладают серебро и медь. 

Рассмотрим передачу тепла от одной части твердого тела к другой на следующем опыте. Закрепим один конец толстой медной проволоки в штативе. К проволоке прикрепим воском несколько гвоздиков (рис. 6). При нагревании свободного конца проволоки в пламени спиртовки воск будет таять. Гвоздики начнут постепенно отваливаться. Сначала отпадут те, которые расположены ближе к пламени, затем по очереди все остальные.


Выясним, как происходит передача энергии по проволоке. Скорость колебательного движения частиц металла увеличивается в той части проволоки, которая ближе расположена к пламени. Поскольку частицы постоянно взаимодействуют друг с другом, то увеличивается скорость движения соседних частиц. Начинает повышаться температура следующей части проволоки и т. д. Следует помнить, что при теплопроводности не происходит переноса вещества от одного конца тела к другому.

Опыт 2. Исследование теплопроводности жидкостей на примере воды

Рассмотрим теперь теплопроводность жидкостей. Возьмем пробирку с водой и станем нагревать ее верхнюю часть. Вода у поверхности скоро закипит, а у дна пробирки за это время она только нагреется (рис. 7). Значит, у жидкостей теплопроводность невелика, за исключением ртути и расплавленных металлов. Это объясняется тем, что в жидкостях молекулы расположены на больших расстояниях друг от друга, чем в твердых телах.

Вывод: теплопроводность жидкостей меньше теплопроводности металлов.


Опыт 3. Исследование теплопроводности газов

Исследуем теплопроводность газов.  

Сухую пробирку наденем на палец и нагреем в пламени спиртовки донышком вверх (рис. 8). Палец при этом долго не почувствует тепла. Это связано с тем, что расстояние между молекулами газа еще больше, чем у жидкостей и твердых тел.

Вывод: теплопроводность у газов еще меньше, чем у жидкостей. Итак, теплопроводность у различных веществ различна.


Выводы и их обсуждение

Вывод: Проведенные опыты показывают, что теплопроводность у различных веществ различна. Наибольшей теплопроводность обладают металлы, у жидкостей теплопроводность невелика и самая малая теплопроводность у газов.

Используя §4 учебника физики для 8 класса, представим результаты в виде таблицы:

ТЕПЛОПРОВОДНОСТЬ

ХОРОШАЯ

ПЛОХАЯ

металлы (серебро, медь, железо)

жидкости (вода)

 

газы (воздух)

 

вакуум

 

пористые тела, пробка, бумага, стекло, кирпич, пластмассы

 

волосы, перья птиц, шерсть

 

вата, войлок

Объяснение явления теплопроводности с молекулярно-кинетической точки зрения: теплопроводность — это перенос энергии от одной части тела к другой, который происходит при взаимодействии молекул или других частиц. В металлах частицы расположены близко, они постоянно взаимодействуют друг с другом. Скорость колебательного движения в нагретой части металла увеличивается и быстро передается соседним частицам. Повышается температура следующей части проволоки. В жидкостях и газах молекулы расположены на больших расстояниях, чем в металлах. В пространстве, где нет частиц, теплопроводность осуществляться не может.

Применение теплопроводности

Теплопроводность на кухне

Теплопроводность и ее регулировка важны в процессе приготовления пищи. Часто во время тепловой обработки продукта необходимо поддерживать высокую температуру, поэтому на кухне используют металлы (медь, алюминий…), так их теплопроводность и прочность выше, чем у других материалов. Из металла делают кастрюли, сковородки, противни, и другую посуду. Когда они соприкасаются с источником тепла, это тепло легко передается пище. Иногда бывает необходимо уменьшить теплопроводность — в этом случае используют кастрюли из материалов с более низкой теплопроводностью, или готовят способами, при которых пище передается меньшее количество тепла. Приготовление блюд на водяной бане — один из примеров уменьшения теплопроводности. Для посуды, предназначенной для приготовления пищи, не всегда используют материалы с высокой теплопроводностью. В духовом шкафу, например, часто используют керамическую посуду, теплопроводность которой намного ниже, чем у металлической посуды. Их самое главное преимущество — способность держать температуру. Хороший пример использования материалов с высокой теплопроводностью на кухне — плита. Например, конфорки электроплиты сделаны из металла, чтобы обеспечить хорошую передачу тепла от раскаленной спирали нагревательного элемента к кастрюле или сковородке. Люди используют материалы с низкой теплопроводностью между руками и посудой, чтобы не обжечься. Ручки многих кастрюль сделаны из пластмасс, а противни вынимают из духовки прихватками из ткани или пластмассы с низкой теплопроводностью.

Материалы с невысокой теплопроводностью также используют для поддержания температуры пищи неизменной. Так, например, чтобы утренний кофе или суп, который берут в путешествие или на обед на работу, оставался горячим, его наливают в термос, чашку или банку с хорошей теплоизоляцией. Чаще всего в них пища остается горячей (или холодной) благодаря тому, что между их стенками находится материал, плохо проводящий тепло. Это может быть пенопласт или воздух, который находится в закрытом пространстве между стенками сосуда. Он не дает теплу перейти в окружающую среду, пище — остыть, а рукам — получить ожог. Пенопласт используют также для стаканчиков и контейнеров для пищи навынос. В вакуумном сосуде Дьюара (известном как «термос», по названию торговой марки) между наружной и внутренней стенкой почти нет воздуха — это еще больше уменьшает теплопроводность.

Отопительная система

Задача любой системы отопления является эффективная передача энергии от теплоносителя (горячей воды) в помещение. Для этого используют специальные элементы системы отопления – радиаторы. Радиаторы предназначены для повышения теплопередачи накопившейся в системе тепловой энергии в помещение. Они представляют собой секционную или монолитную конструкцию, внутри которой циркулирует теплоноситель. Основные характеристики радиатора отопления: материал изготовления, тип конструкции, габаритные размеры (кол-во секций), теплоотдача. Чем выше этот показатель, тем меньше тепловых потерь будет при передаче энергии от теплоносителя в помещение. Лучший материал для изготовления радиаторов – это медь. Наиболее часто используют чугунные радиаторы; алюминиевые радиаторы; стальные радиаторы; биметаллические радиаторы.

Теплопроводность для тепла

Мы используем материалы с низкой теплопроводностью для поддержания постоянной температуры тела. Примеры таких материалов — шерсть, пух, и синтетическая шерсть. Кожа животных покрыта мехом, а птиц — пухом с низкой теплопроводностью, и мы заимствуем эти материалы у животных или создаем похожие на них синтетические ткани, и делаем из них одежду и обувь, которые защищают нас от холода. Кроме этого мы делаем одеяла, так как спать под ними удобнее, чем в одежде. Воздух имеет низкую теплопроводность, но проблема с холодным воздухом в том, что обычно он может свободно двигаться в любом направлении. Он вытесняет теплый воздух вокруг нас, и нам становится холодно. Если движение воздуха ограничить, например, заключив его между внешней и внутренней стенками сосуда, то он обеспечивает хорошую термоизоляцию. У снега и льда тоже низкая теплопроводность, поэтому люди, животные и растения используют их для теплоизоляции. В свежем не утрамбованном снеге внутри находится воздух, что еще больше уменьшает его теплопроводность, особенно потому, что теплопроводность воздуха ниже теплопроводности снега. Благодаря этим свойствам, ледяной и снежный покров защищает растения от замерзания. Животные роют ямки и целые пещеры для зимовья в снегу. Путешественники, переходящие через заснеженные районы, иногда роют подобные пещеры, чтобы в них переночевать. С древнейших времен люди строили убежища изо льда, а сейчас создают целые развлекательные центры и гостиницы. В них часто горит огонь, и люди спят в мехах и синтетических спальных мешках.

Для обеспечения нормальной жизнедеятельности в организме людей и животных необходимо поддерживать определенную температуру в очень узких пределах. У крови и других жидкостей, а также у тканей разная теплопроводность и ее можно регулировать в зависимости от потребностей и окружающей температуры. Так, например, организм может изменить количество крови на участке тела или во всем организме с помощью расширения или сужения сосудов. Наше тело также может сгущать и разжижать кровь. При этом теплопроводность крови, а, следовательно, и части тела, где эта кровь течет, изменяется.

Теплолечение

Современные методы лечения теплом могут быть разделены на три большие группы: 1) контактное приложение нагретых сред; 2) светотепловое облучение и 3) использование теплоты, образующейся в тканях при прохождении высокочастотного электрического тока. Остановимся на использовании нагретых сред. Для теплолечения выбираются среды, позволяющие создать в них значительный запас теплоты. Эта теплота затем должна медленно и постепенно передаваться организму во все время процедуры. Для этого среда должна иметь, возможно, высокую теплоемкость и сравнительно низкие теплопроводность и конвекционную способности. Для теплолечения в основном применяют следующие среды: воздух, воду, торф, лечебные грязи и парафин.

Теплопроводность в бане

Многие любят отдыхать в саунах или банях, но сидеть там на скамейках из материала с высокой теплопроводностью — было бы невозможно. Требуется много времени, чтобы сравнять температуру таких материалов с температурой тела, поэтому вместо них используют материалы с низкой теплопроводностью, например дерево, верхние слои которого намного быстрее принимают температуру тела. Так как в сауне температура поднимается достаточно высоко, люди часто надевают на голову шапочки из шерсти или войлока, чтобы защитить голову от жары. В турецких банях хамамах температура намного ниже, поэтому там для скамеек используют материал с более высокой теплопроводностью — камень.

Интересные факты о теплопроводности

Тепло ли колючим зверям в иголках?

Шерсть не только спасает зверей от холода, но и служит средством защиты. А чтобы защита была внушительнее и надежнее, волосяной покров порой видоизменяется, превращаясь в своеобразные доспехи. Иглы, например. Но вот сохраняет ли такое облачение присущие шерсти свойства, не зябнут ли ежи и дикобразы в своих колючих шубках?

Ученые Института проблем экологии и эволюции им. А.Н. Северова РАН обстоятельно изучили теплопроводные и теплоизоляционные свойства иголок, взятых со спины взрослого самца североамериканского дикобраза из коллекции Зоологического музея МГУ, и убедились, что греют эти самые иголки очень даже неплохо. Чтобы понять внутреннюю структуру игл, на них делали тонкие срезы, на которые напыляли золото для исследования в электронном микроскопе. Кератин — главная составляющая иголок — проводит тепло в 10 раз лучше, чем воздух. И благодаря этому иглы увеличивают теплопроводность «доспехов». Следовательно, возрастают и потери тепла с тела животного. Однако внутренняя пористая структура игл создает дополнительное экранирование теплового излучения, что, скорее всего, и компенсирует увеличение теплопроводности. Так что дикобраз, как и другие колючие звери, вовсе не страдает от холода. Иглистый покров сохраняет ровно столько тепла, сколько нужно теплокровному животному такого размера.

Полипропилен

Пока является лучшей основой для материалов (волокон, нитей, пряжи, полотен, тканей), используемых в производстве нательной спортивной одежды, термобелья и термоносков. Среди всех синтетических материалов, применяемых в этой области, он обладает самой низкой теплопроводностью. Поэтому одежда из полипропилена позволяет наилучшим образом сохранить тепло зимой и прохладу летом.

Какой материал имеет самую высокую теплопроводность?

Материалом с наивысшей теплопроводностью является вовсе не какой-нибудь металл (серебро или медь), как думают многие. Самую высокую теплопроводность имеет материал, который похож на стекло – алмаз. Его теплопроводность почти в 6 раз больше, чем у серебра или меди. Если изготовить чайную ложечку из алмаза, то воспользоваться ею не удастся, так как она будет обжигать пальцы в ту же секунду.

Из чего изготавливают сваи при строительстве зданий в регионах с вечной мерзлотой?

Большие трудности строителям зданий доставляет просадка фундамента особенно в регионах с вечной мерзлотой. Дома часто дают трещины из-за подтаивания грунта под ними. Фундамент передает почве какое-то количество теплоты. Поэтому здания начали строить на сваях. В этом случае тепло передается только теплопроводностью от фундамента свае и далее от сваи грунту. Из чего же надо делать сваи? Оказывается, сваи, выполненные из прочного твердого материала, внутри должны быть заполнены керосином. Летом свая проводит тепло сверху вниз плохо, т.к. жидкость обладает низкой теплопроводностью. Зимой свая за счет конвекции жидкости внутри неё, наоборот, будет способствовать дополнительному охлаждению грунта.

«Огнеупорный шарик»

Обычный воздушный шарик, надутый воздухом, легко воспламеняется в пламени свечи. Он тут же лопается. Если же к пламени свечи поднести такой же шарик, заполненный водой, он становится «огнеупорным». Теплопроводность воды в 24 раза больше, чем у воздуха. Значит, вода проводит тепло в 24 раза быстрее, чем воздух. Пока вода не испарится внутри шарика – он не лопнет.


Теплопроводность разных материалов

Теплопроводность – способность материала передавать теплоту. Для количественного определения этой характеристики используется коэффициент теплопроводности, который равен количеству тепла, проходящему за 1 час через образец материала толщиной 1 м и площадью 1 м 2 при разности температур на противоположных поверхностях 1°С. Теплопроводность выражается в Вт/(м К) или Вт/(м градус Цельсия).

Теплопроводность зависит от средней плотности и химико-минерального состава материала, его структуры, пористости, влажности и средней температуры материала. Чем больше пористость (меньше средняя плотность), тем ниже теплопроводность материала. С увеличением влажности материала теплопроводность резко увеличивается, т.е. снижаются показатели теплоизоляционных свойств материала.

Теплопроводность некоторых материалов, Вт/(м*k)

Хорошие проводники тепла

Серебро407
Медь384
Золото308
Алюминий209
Латунь111
Платина70
Олово65
Серый чугун50
Бронза47-58
Сталь47
Свинец35

Плохие проводники тепла

Ртуть8,2
Котельная накипь~3
Мрамор2,8
Лёд (0°С)2,23
Песчаник~2
Фарфор~1,4
Кварцевое стекло1,36
Бетон0,7-1,2
Стекло~0,7
Кирпич~0,7
Вода0,58

Теплоизоляторы

Асбест0,4-0,8
Поливинилхлорид~0,17
Кожа~0,15
Дерево0,1-0,2
Древесный уголь0,1-0,17
Пробка~0,05
Стекловата~0,05
Шамот0,04
Пенопласт0,04
Воздух0,034
Перо0,02
Вакуум0,00

ИССЛЕДОВАНИЕ ТЕПЛОПРОВОДНОСТИ РАЗЛИЧНЫХ ВЕЩЕСТВ

ИССЛЕДОВАНИЕ ТЕПЛОПРОВОДНОСТИ РАЗЛИЧНЫХ ВЕЩЕСТВ

Беляевский И.А. 1

1УККК-интернат

Абашин В. 1

1УККК-интернат

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке “Файлы работы” в формате PDF

 1. Введение.

Проект разработан в соответствии со стандартом среднего общего образования по физике. При написании данного проекта рассмотрено изучение тепловых явлений, применение их в быту и технике. Помимо теоретического материала большое внимание уделено исследовательской работе – это опыты, которые отвечают на вопросы «Какими способами можно изменить внутреннюю энергию тела», «Одинаковая ли теплопроводность различных веществ», «Почему струи теплого воздуха или жидкости поднимаются вверх», «Почему тела с темной поверхностью нагреваются сильнее»; поиск и обработка информации, фотографий.Время работы над проектом: 1 – 1,5 месяца.Цели проекта:* практическая реализация имеющихся у школьников знаний о тепловыхявлениях;* формирование навыков самостоятельной исследовательской деятельности;* развитие познавательных интересов;* развитие логического и технического мышлений;* развитие способностей к самостоятельному приобретению новых знаний по физике в соответствии с жизненными потребностями и интересами ;

2. Основная часть.

2.1. Теоретическая часть

В жизни мы действительно ежедневно встречаемся с тепловыми явлениями. Однако не всегда мы задумываемся, что эти явления можно объяснить, если хорошо знать физику. На уроках физики мы познакомились со способами изменения внутренней энергии: теплопередачей и совершением работы над телом или самим телом. При контакте двух тел с разными температурами происходит передача энергии от тела с более высокой температурой к телу с более низкой температурой. Этот процесс будет происходить до тех пор, пока температуры тел не сравняются (не наступит тепловое равновесие). При этом механическая работа не совершается. Процесс изменения внутренней энергии без совершения работы над телом или самим телом называется теплообменом или теплопередачей. При теплопередаче энергия всегда передается от более нагретого тела к менее нагретому. Обратный процесс самопроизвольно (сам по себе) никогда не происходит, т. е. теплообмен необратим. Теплообмен определяет или сопровождает многие процессы в природе: эволюцию звезд и планет, метеорологические процессы на поверхности Земли и др. Виды теплопередачи : теплопроводность, конвекция, излучение.

Теплопроводностью называется явление передачи энергии от более нагретых участков тела к менее нагретым в результате теплового движения и взаимодействия частиц, из которых состоит тело.

Наибольшей теплопроводностью обладают металлы — она у них в сотни раз больше, чем у воды. Исключением являются ртуть и свинец, но и здесь теплопроводность в десятки раз больше, чем у воды.

При опускании металлической спицы в стакан с горячей водой очень скоро конец спицы становился тоже горячим. Следовательно, внутренняя энергия, как и любой вид энергии, может быть передана от одних тел к другим. Внутренняя энергия может передаваться и от одной части тела к другой. Так, например, если один конец гвоздя нагреть в пламени, то другой его конец, находящийся в руке, постепенно нагреется и будет жечь руку.

2.2. Практическая часть.

Изучим это явление, проделав ряд опытов с твердыми телами, жидкостью и газом.

Опыт №1

Взяли различные предметы: одну алюминевую ложку, другую деревянную, третью – пластмассовую, четвертую – из нержавеющего сплава, а пятую – серебряную. Прикрепили к каждой ложке каплями меда скрепки для бумаг. Вложили ложки в стакан с горячей водой, чтобы ручки со скрепками торчали из него в разные стороны. Ложки нагреются, и по мере нагревания мед будет плавиться и скрепки отпадут.

Конечно, ложки должны быть одинаковые по форме и размеру. Где нагревание произойдет быстрее, тот металл лучше проводит тепло, более теплопроводен. Для этого опыта я взял стакан с кипятком и четыре вида ложек: алюминиевую, серебряную, пластмассовую и нержавеющую. Я опускал их по одной в стакан и засекал время: за сколько минут она нагреется. Вот, что у меня получилось:

Название материала

Время до момента нагрева

Алюминий

2,5 минуты

Дерево

6,5 минут

Пластмасса

4,5 минуты

Нержавейка

1 минута

Серебро

45 секунд

Вывод: ложки, изготовленные из дерева и пластмасса, греются дольше, чем ложки из металла, значит, металлы обладают хорошей теплопроводностью.

Опыт №2

Внесем в огонь конец деревянной палки. Он воспламенится. Другой конец палки, находящийся снаружи, будет холодным. Значит, дерево обладает плохой теплопроводностью.

Поднесем к пламени спиртовки конец тонкой стеклянной палочки. Через некоторое время он нагреется, другой же конец, останется холодным. Следовательно, и стекло имеет плохую теплопроводность

Если же мы будем нагревать в пламени конец металлического стержня, то очень скоро весь стержень сильно нагреется. Удержать его в руках мы уже не сможем.

Значит, металлы хорошо проводят тепло, т. е. имеют большую теплопроводность. На шта­ти­ве го­ри­зон­таль­но за­креп­лён стер­жень. На стержне через оди­на­ко­вые про­ме­жут­ки вер­ти­каль­но за­креп­ле­ны с по­мо­щью воска металлические гвоздики.

К краю стерж­ня под­но­сят свечу. По­сколь­ку край стерж­ня на­гре­ва­ет­ся, то по­сте­пен­но стер­жень про­гре­ва­ет­ся. Когда тепло до­хо­дит до места креп­ле­ния гвоздиков со стерж­нем, сте­а­рин пла­вит­ся, и гвоздик па­да­ет. Мы видим, что в дан­ном опыте нет пе­ре­но­са ве­ще­ства, со­от­вет­ствен­но, на­блю­да­ет­ся теп­ло­про­вод­ность.

Опыт №3

Различные металлы обладают различной теплопроводностью. В физическом кабинете есть прибор , с помощью которого мы можем убедиться в том, что различные металлы обладают разной теплопроводностью. Однако, в домашних условиях мы смогли в этом убедиться с помощью самодельного прибора.

Прибор для показа различной теплопроводности твердых веществ.

Мы изготовили прибор для показа различной теплопроводности твердых тел. Для этого использовали пустую банку из алюминиевой фольги, два резиновых кольца (самодельные), три отрезка проволоки из алюминия, меди и железа, плитку, горячую воду, 3 фигурки человечков с поднятыми вверх руками, вырезанные из бумаги.

Порядок изготовления прибора:

  1. проволоки изогнуть в виде буквы «Г»;

  2. укрепить их с внешней стороны банки при помощи резиновых колец;

  3. подвесить к горизонтальным частям проволочных отрезков (посредством расплавленного парафина или пластилина) бумажных человечков.

Проверка действия прибора. Налить в банку горячей воды (при необходимости подогреть банку с водой на электрической плитке) и наблюдать, какая фигурка упадет первой, второй, третьей.

Результаты. Упадет первой фигурка, закрепленная на медной проволоке, вторая – на алюминиевой, третья – на стальной.

Вывод. Разные твердые вещества обладают различной теплопроводностью.

Теплопроводность у различных веществ различна.

Опыт №4

Рассмотрим теперь теплопроводность жидкостей. Возьмём пробирку с водой и станем нагревать её верхнюю часть. Вода у поверхности скоро закипит, а у дна пробирки за это время она только нагреется. Значит, у жидкостей теплопроводность невелика.

Опыт №5

Исследуем теплопроводность газов. Сухую пробирку наденем на палец и нагреем в пламени спиртовки донышком вверх. Палец при этом долго не почувствует тепла. Это связано с тем, что расстояние между молекулами газа ещё больше, чем у жидкостей и твёрдых тел. Следовательно, теплопроводность у газов ещё меньше.

Плохой теплопроводностью обладают шерсть, волосы, перья птиц, бумага, снег и другие пористые тела.

Это связано с тем, что между волокнами этих веществ содержится воздух. А воздух – плохой теплопроводник.

Так под снегом сохраняется зеленая трава, озимые сохраняются от вымерзания.

Опыт №6

Распушил небольшой комок ваты и обернул им шарик термометра.Теперь подержал некоторое время термометр на определенном расстоянии от пламени и заметил, как поднялась температура. Затем тот же комок ваты сжал и туго обмотал им шарик термометра и снова поднес к лампе. Во втором случае ртуть поднимется гораздо быстрее. Значит, сжатая вата проводит тепло намного лучше!

Если возникает необходимость предохранить тело от охлаждения или нагревания, то применяют вещества с малой теплопроводностью. Так, для кастрюль, сковородок ручки делают из пластмассы или дерева.

Дома строят из бревен или кирпича, обладающих плохой теплопроводностью, а значит, предохраняют от охлаждения.

Самой низкой теплопроводностью обладает вакуум (освобожденное от воздуха пространство). Объясняется это тем, что теплопроводность — это перенос энергии от одной части тела к другой, который происходит при взаимодействии молекул или других частиц. В пространстве, где нет частиц, теплопроводность осуществляться не может.

3. Заключение.

– У различных веществ различная теплопроводность.

– Большой теплопроводностью обладают твердые тела (металлы), меньшей – жидкости, и плохой – газы.

– Теплопроводность различных веществ мы можем использовать в быту, технике и природе.

– Явление теплопроводности присуще всем веществам, независимо от того, в каком агрегатном состоянии они находятся.

Теперь без затруднения я смогу ответить и объяснить с физической точки зрения на вопросы:

1.Почему птицы в холодную погоду распушают свои перья?

(Между перьями находится воздух, а воздух плохой проводник тепла).

2. Почему шерстяная одежда лучше предохраняет от холода, чем синтетическая?

(Между шерстинками находится воздух, который плохо проводит тепло).

3. Почему зимой, когда погода холодная, кошки спят, свернувшись в клубок? (Свернувшись в клубок, они уменьшают площадь поверхности, отдающей тепло).

4. Зачем ручки паяльников, утюгов, сковородок, кастрюль делают из дерева или пластмассы? (Дерево и пластмасса обладают плохой теплопроводностью, поэтому при нагревании металлических предметов мы, держась за деревянную или пластмассовую ручку, не будем обжигать руки).

5. Зачем кусты теплолюбивых растений и кустов на зиму укрывают опилками?

(Опилки являются плохими проводниками тепла. Поэтому растения укрывают опилками, чтобы они не замёрзли).

6. Какие сапоги лучше защищают от мороза: тесные или просторные?

(Просторные, так как воздух плохо проводит тепло, он является ещё одной прослойкой в сапоге, которая сохраняет тепло).

4. Список используемой литературы.

Печатные издания:

1.А.В. Перышкин Физика 8 класс -М: Дрофа,2012г.

2.М.И.Блудов Беседы по физике часть1 -М: Просвещение 1984г.

Интернет – ресурсы:

1.http://class-fizika.narod.ru/8_3.htm

2.http://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BF%D0%BB%D0%BE%D0%BF%D1%80%D0%BE%D0%B2%D0%BE%D0%B4%D0%BD%D0%BE%D1%81%D1%82%D1%8C

12

Просмотров работы: 3413

Теплопроводность. Просто о сложном.: Новости и статьи: Строительство и технологии: Разумная Недвижимость

Статья. 30.10.2019

При выборе качественного теплоизоляционного материала потребитель должен принимать во внимание целый ряд параметров, среди которых неизменно присутствует показатель теплопроводности. Высокой или низкой должна быть теплопроводность, что такое «лямбда», на какие показатели теплопроводности ориентироваться – ответы на эти и другие самые распространенные вопросы, возникающие при покупке утеплителя, вы найдете в данной статье.

Слово «теплопроводность» или еще более запутанное «лямбда» знакомо каждому школьнику из курса физики за восьмой класс. Однако со временем информация, которой мы не пользуемся, забывается. Попробуем освежить в памяти эти несложные и очень полезные знания.

Теплопроводность, как уже было сказано выше, – одно из ключевых понятий в современном строительстве, особенно когда речь заходит о теплоизоляционных материалах. От теплопроводности зависит толщина вашей стены или кровли, вес всего дома, а следовательно, и прочность (несущая способность) фундамента, долговечность конструкций и многое другое.

Современное определение теплопроводности – понятие комплексное. И состоит из нескольких составных частей, отвечающих за перенос тепла (теплообмен).


На первый взгляд формула кажется пугающей, но на самом деле все просто.

Суммарная или итоговая теплопроводность состоит из теплопроводности за счет конвекции, теплопроводности твердой и газообразной фазы, а также теплопроводности, учитывающей теплообмен за счет излучения.

Запутались еще сильнее? Тогда по порядку. Разберем каждый элемент этой формулы более подробно.

Теплообмен (или теплопередача) – это способ изменения внутренней энергии без совершения работы над телом или самим телом.

Теплопередача всегда происходит в определенном направлении: от тел с более высокой температурой к телам с более низкой.

Из курса физики нам известно, что теплообмен включает в себя три вида передачи тепла: теплопроводность, конвекцию и излучение.


Теплопроводность – явление передачи внутренней энергии от одной части тела к другой или от одного тела к другому при их
непосредственном контакте.

Если вы опустите ложку в стакан с горячим напитком, нагреется не только та часть ложки, которая погружена в жидкость, но и та ее часть, которая находится над водой.


Теплопроводность различных веществ неодинакова, она может быть плохой (низкой) и хорошей (высокой). Хорошая теплопроводность у металлов. Плохая – у шерсти, дерева и пластиков. Самым плохим проводником тепла является вакуум.


Для примера вспомните кухонную посуду: кастрюли и сковородки. Вы вряд ли станете снимать металлическую кастрюлю, полную вкусного супа, с горячей плиты голыми руками, потому что существует реальная опасность обжечь руки. Вместо этого вы используете кухонное полотенце, силиконовые или тряпичные прихватки, то есть те материалы, которые плохо проводят тепло.

Именно поэтому «правильные» кастрюли и сковородки снабжены пластмассовыми или деревянными ручками, плохо проводящими тепло. Вспомнить хотя бы старую бабушкину сковородку с деревянной ручкой: сковородка горячая, а за ручку схватиться можно безо всяких прихваток.

Как объясняется это явление? Рассмотрим на примере нагревания металлического стержня (или ложки из примера со стаканом).


В металле, как и во всех твердых телах, молекулы совершают колебательные движения около некоторых положений равновесия. Скорость колебательного движения молекул металла при нагревании увеличивается в той части, которая ближе расположена к пламени или источнику тепла. Эти молекулы, взаимодействуя с соседними молекулами, передают им часть своей энергии. В результате чего повышается температура отрезка стержня. Затем увеличивается скорость колебательного движения молекул в следующих отрезках стержня и так далее, до тех пор, пока не прогреется весь стержень. Именно поэтому вакуум обладает самой плохой теплопроводностью: в нем практически отсутствуют молекулы, которые бы передавали энергию друг другу. Важно отметить, что сами молекулы, передавая кинетическую энергию, не меняют свое местоположение, то есть само вещество не перемещается.

С первым понятием разобрались, посмотрим, что же дальше.

 Следующая составляющая теплопроводности – это конвекция. У многих из вас на слуху такой прибор, как «конвектор». А вот почему он так называется, наверное, знает далеко не каждый. Хотя логично предположить, что название свое он получил за принцип работы – конвекцию.

Из курса физики следует, что конвекция – это перенос энергии струями жидкости или газа. Если в случае с теплопроводностью при теплообмене происходит перенос энергии, то при конвекции происходит перенос именно вещества. 

Конвекторы (как и любые другие отопительные приборы) нагревают окружающий воздух, вследствие чего температура в комнате повышается и вам становится тепло. При этом струи теплого воздуха поднимаются вверх, а струи холодного опускаются вниз. Аналогично происходит процесс нагревания воды в чайнике: горячая вода поднимается, а холодная опускается на ее место. Этот же принцип заложен в отопительной системе для обогрева домов.

Различают два вида конвекции: естественная и вынужденная.

Нагревание воздуха в комнате солнечными лучами – это пример естественной конвекции. А вот если воздух нагревается тепловым вентилятором, то это уже вынужденная конвекция. Вентилятор заставляет воздух в комнате двигаться, при этом нагревая его до необходимой температуры. В качестве других примеров конвекции можно привести холодные и теплые морские течения, а также образование и движение облаков и ветров.

Переходим к следующей составляющей: излучение (лучистый теплообмен). 


Излучение – это способ переноса энергии от одного тела к другому в виде электромагнитных волн. Как правило, это инфракрасное (IR) излучение. Этот принцип заложен еще в одном уникальном приборе – инфракрасном обогревателе.

Принцип его работы построен на том, что любое нагретое тело является источником излучения. Самый впечатляющий пример – Солнце. Пример поменьше – костер, распространяющий тепло на достаточно большое расстояние. В случае с обогревателем окружающие предметы нагреваются за счет электромагнитного излучения и в комнате становится тепло.

Этот вид теплообмена отличается тем, что может происходить и в вакууме. Ведь солнечная энергия как-то доходит до Земли.


Примечательно, что темные тела лучше поглощают и отдают энергию. Если необходимо максимально нагреть материал, его окрашивают в черный цвет. В качестве примера можно привести солнечные коллекторы (водонагреватели), которые устанавливаются на крышах домов. Эти устройства позволяют собирать тепло от солнца и нагревать теплоноситель, который затем передает тепло внутрь дома для обогрева помещений или нагрева воды.


Хуже всего поглощают энергию светлые материалы или материалы с отражающей способностью. Способность светлых тел хорошо отражать лучистую энергию учитывают в самых разных сферах: при строительстве самолетов, при возведении высотных зданий в жарких странах, даже при выборе цвета одежды в теплое время года. На окнах часто применяют металлизированные пленки, которые частично отражают солнечное тепло и спасают помещение от перегрева.

С базовыми принципами разобрались. Пришло время вернуться к нашей формуле


Её разбор проведем на примере теплоизоляционного материала из пенополиизоцианурата (ПИР/PIR) – LOGICPIR.

LOGICPIR – это инновационный утеплитель, обладающий уникальными показателями теплопроводности – всего 0,022 Вт/м*К, позволяющий добиться максимальной экономии пространства при минимальной толщине теплоизоляции. Кроме того, PIR-плиты не впитывают влагу, тем самым предотвращая образование конденсата и надежно защищая ваш дом от появления плесенных грибов, клещей и бактерий, представляющих опасность для здоровья. LOGICPIR относится к новому поколению полиуретанов, окружающих нас повсеместно: начиная от деталей интерьера автомобилей, матрацев и обуви и заканчивая медициной, где самая поразительная сфера их применения – изготовление протезов для сердечно-сосудистой системы. Стоит ли говорить, что материал экологически безопасен, что подтверждено целым рядом сертификатов и заключений.

Итак, вернемся к теплопроводности.

Структурная и газовая теплопроводность – это теплопроводность компонентов, из которых состоит материал, а именно:

·       твердой фазы – теплопроводности полимерного каркаса с множеством ячеек с очень тонкими, но прочными стенками;

·       газообразной фазы – теплопроводность газа, который находится в ячейках.


Если сравнивать теплоизоляцию PIR с пеностеклом или пенобетоном, то по структуре эти материалы схожи. Все они ячеистые и наполнены газом. Однако теплопроводности этих материалов будут отличаться. 

Стекло и бетон, в отличие от пластиков, проводят тепло интенсивнее, соответственно, пеностекло и пенобетон обладают большей теплопроводностью и их показатели в качестве теплоизоляторов несколько хуже. Даже полимеры отличаются друг от друга теплопроводностью.

Как было сказано ранее, представленные материалы ячеистые и в каждом находятся какие-то газы. В пеностекле и пенобетоне это, как правило, окружающий воздух, в PIR – инертные газы. Хуже всего тепло проводят инертные газы, содержание молекул в 1 м3 очень маленькое, расстояние между молекулами очень большое, поэтому передать энергию между молекулами довольно сложно. Намного лучше тепло проводит воздух, поскольку он состоит из смеси разных газов, молекул очень много и все они друг с другом взаимодействуют.

Конвекционную составляющую у мелкоячеистой теплоизоляции обычно не рассматривают, поскольку размер ячеек теплоизоляции PIR ничтожно мал (меньше 1мм) и газ в этих ячейках неподвижен.

Последняя составляющая – излучение. Снизить ее влияние можно за счет применения дополнительных материалов, способных отражать тепловой поток. Для этого можно окрасить материал, скажем, в белый цвет. В случае с теплоизоляционными плитами PIR за отражение тепла отвечает фольга, которая покрывает материал с обеих сторон. Помимо функции отражения тепла фольга также несет защитную функцию с точки зрения утечки вспенивающего газа. По своим свойствам фольга является практически идеальным пароизоляционным материалом, а значит, способна задерживать миграции газов во внешнюю среду из ячеек теплоизоляции.

В процессе эксплуатации легкие инертные газы замещаются на более тяжелый окружающий воздух с хорошей теплопроводностью. Это происходит у всех пористых материалов за счет диффузных процессов.

Рассмотрим в качестве примера обычный воздушный шарик, наполненный гелием, который можно сравнить с одной ячейкой вспененной теплоизоляции. Новый шарик все время стремится улететь высоко в небо. Если утром он еще висел под потолком, то со временем он постепенно опустится и будет висеть в центре комнаты, а еще через несколько часов лежать на полу. Т.е. все это время газ за счет диффузии медленно выходит из шарика, и тот теряет свою «летучесть».


Так же и с теплоизоляцией. «Шарики» (ячейки), которые ближе всего расположены к границе с окружающим воздухом постепенно изменяют свой газовый состав. Однако те «шарики», которые находятся глубоко в материале, делают это очень медленно или не делают вовсе, поскольку инертному газу очень сложно пройти огромное количество стенок соседних «шариков» и вырваться наружу.

Кроме того, поверхность теплоизоляции покрыта фольгой, препятствующей выходу газа, соответственно, теплопроводность материала (ее газовая составляющая) сохраняется.

Итоговую формулу теплопроводности PIR можно записать в виде:


Подведем итог. Теплоизоляция – это очень важный показатель. От нее зависит, насколько теплым будет ваш дом. У наиболее эффективной теплоизоляции все ее составляющие  должны быть как можно ниже. 

У современной изоляции на примере LOGICPIR это достигается за счет применения инертных газов, полимеров и специальных покрытий, отражающих тепловой поток. Уверены, что теперь вы не только сможете безошибочно выбрать теплоизоляционный материал, отвечающий самым высоким требованиям, но и поможете своим детям сдать физику на высший балл. 

Любезно предоставлено компанией ТЕХНОНИКОЛЬ.


Разумная Недвижимость

По информации портала. При использовании материала гиперссылка на Razned.ru обязательна.

Хорошая теплопроводность – Большая Энциклопедия Нефти и Газа, статья, страница 2

Хорошая теплопроводность

Cтраница 2

Хорошей теплопроводностью материалы должны обладать прежде всего в высокофорсированных теплообменниках, когда общую интенсивность передачи тепла в аппарате в значительной степени определяет величина термического сопротивления теплопере-дающей стенки.  [16]

Помимо хорошей теплопроводности и электропроводности, что обусловлено медной основой этих сплавов, бронзы и латуни обладают в большей или меньшей степени способностью прирабатываться и противостоять износу при трении без смазки.  [17]

Вследствие хорошей теплопроводности он расплавляется труднее меди, но в жидком состоянии остается дольше, чем другие металлы. Обладает высокой пластичностью как в холодном, так и в горячем состоянии, хорошо сваривается, но плохо обрабатывается резанием и имеет низкие литейные качества.  [18]

Вследствие хорошей теплопроводности пропитанного графита его широко применяют при изготовлении теплообменников. Кроме того, из него делают трубопроводную арматуру.  [19]

Вследствие хорошей теплопроводности пропитанного графита его широко – применяют при изготовлении теплообменников. Кроме, того, из него делают трубопроводную арматуру.  [20]

Вследствие хорошей теплопроводности пропитанного графита его широко применяют для изготовления теплообменников и трубопроводной арматуры. Пропитанный графит стоек во многих химически активных средах, в том числе в кислотах – азотной ( низкой концентрации), плавиковой ( концентрацией до 40 %), серной ( до 50 %), соляной, уксусной, муравьиной, фосфорной.  [21]

При достаточно хорошей теплопроводности стенок сосуда фоточувствительный элемент принимает температуру, близкую к температуре хладоагента.  [23]

При хорошей теплопроводности материала зерен катализатора его температура остается постоянной. При не слишком малых скоростях потока тепло отводится в основном движущимся газом.  [24]

Отметить хорошую теплопроводность меди и железа ( проволока быстро нагревается) и плохую теплопроводность стекла.  [25]

Обладает хорошей теплопроводностью и малым удельным сопротивлением. До 200 С устойчив к атмосферной коррозии. Применяется при изготовлении керамических и слюдяных конденсаторов ( вжигание серебра в керамику и слюду для получения обкладок), для изготовления припоев марок Пер, а также для покрытия медных проводов.  [26]

Медь отличается хорошей теплопроводностью и стойкостью против атмосферной коррозии.  [27]

Графит обладает хорошей теплопроводностью и высокой химической стойкостью; его применяют в качестве / конструкционного материала в химическом машиностроении для изготовления теплообменной аппаратуры. Природный графит содержит примеси, поэтому в химической промышленности используется искусственный электродный графит с пористостью 20 – 30 %, иногда достигающей 50 %, Графитированный пористый материал ПГ-50 с пористостью 47 – 58 % применяется в качестве фильтров для расплавленной серы и ее соединений.  [28]

Металлы отличаются хорошей теплопроводностью) которая осуществляется, в основном, за счет переноса энергии свободными электронами.  [29]

Графит обладает хорошей теплопроводностью и высокой химической стойкостью; его применяют в качестве конструкционного материала в химическом машиностроении5 56 – 58 для изготовления теплообменной аппаратуры.  [30]

Страницы:      1    2    3    4

Термодинамика

– Почему стекло хорошо проводит тепло?

термодинамика – Почему стекло хорошо проводит тепло? – Обмен физическими стеками
Сеть обмена стеков

Сеть Stack Exchange состоит из 178 сообществ вопросов и ответов, включая Stack Overflow, крупнейшее и пользующееся наибольшим доверием онлайн-сообщество, где разработчики могут учиться, делиться своими знаниями и строить свою карьеру.

Посетить Stack Exchange
  1. 0
  2. +0
  3. Авторизоваться Зарегистрироваться

Physics Stack Exchange – это сайт вопросов и ответов для активных исследователей, ученых и студентов-физиков.Регистрация займет всего минуту.

Зарегистрируйтесь, чтобы присоединиться к этому сообществу

Кто угодно может задать вопрос

Кто угодно может ответить

Лучшие ответы голосуются и поднимаются наверх

Спросил

Просмотрено 18к раз

$ \ begingroup $

AFAIK Glass – изолятор, в нем нет свободных электронов.Говорят, что металл является хорошим проводником тепла, потому что у него есть свободные электроны, а у стекла нет свободных электронов, почему это хороший проводник тепла?

Qmechanic ♦

151 11 золотой знак

Создан 18 апр.

Xiè JìléiXiè Jìléi

25711 золотых знаков33 серебряных знака77 бронзовых знаков

$ \ endgroup $ 1 $ \ begingroup $

Существует как минимум два механизма теплопроводности – свободные электроны и тепловые фононы.Первый механизм может преобладать в металлах, второй важен в диэлектриках. Я не искал теплопроводность стекла, но такой превосходный диэлектрик, как алмаз, имеет более высокую теплопроводность, чем любой металл, насколько мне известно.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *