Теплопроводность стеновых материалов – : ()

Содержание

Теплопроводность стен дома, расчет теплопроводности

Теплопроводность стен дома. Какой дом теплее?

Расчет теплопроводности стен частного дома

Как и обещал, поговорим о теплопроводности материалов при строительстве дома и какой же все таки выбрать материал для дома и технологию строительства, основываясь на ваши цели в плане его использования. Произведем расчет теплопроводности стен дома. Сравним материалы, посчитаем, какой дом экономичнее всего отапливать. Особенно, это важно для нас, т.к. нам необходимо отапливать дом около 6 месяцев в году, а в некоторых регионах России еще больше. Проще говоря, какой же дом действительно экономит нам наши деньги?
Речь пойдет о теплопроводности стены, почему стены? Да, потому что выбор основного материала для стен определяет тип, этапы, технологию строительства,  а так же теплоэффективность  дома в итоге.

Выбираем материал стен дома, основываясь на теплопроводность материалов

Из курса физики мы знаем, что любая система стремится к равновесию. Поэтому, если у нас есть перепады температур, тогда сразу же возникает перетекание тепла. Т.е. тепловая энергия перетекает из теплого в холодное.  Таким образом, наш дом будет отдавать свое тепло наружу через все, что только возможно, стены, крышу, пол, окна, двери, как видно на фото из-за разницы температур. В итоге дом полностью остынет и приравняется к внешней температуре.

Поэтому чтобы восполнить эту теплопотерю необходимо постоянно в холодное время отапливать дом. То с какой скоростью перетекает тепло из горячей зоны в холодную и есть теплопроводность. Как мы понимаем, разные материалы имеют разную теплопроводность и можно померить это благодаря коэффициенту теплопроводности.

Посчитать это можно по данной формуле расчета коэффициента теплопроводности. То есть, сколько тепла за единицу времени протекает через 1 кв.м. материала при градиенте температур 1 градус на 1 метр (на рисунке это показано с одной стороны куба 20 градусов с другой 19 градусов)

Коэффициент теплопроводности кирпича, коэффициент теплопроводности дерева

Мы видим из подсчетов, что у дерева теплопроводность в 3 раза меньше. Это означает, что при прочих равных условиях (равная толщина материала и температур) протекаемость тепла в кирпиче в 3 раза быстрее, а в дереве в 3 раза медленнее относительно кирпича. Поэтому дерево более энергосберегающий материал. Если мы хотим чтобы у кирпича была такая теплопотеря, как у дерева, значит, толщину кирпича нужно увеличить втрое. Простая арифметика!

Теперь посмотрим, что будет в случае с каркасным домом. В каркасном доме 90% объема стены занимает утеплитель,  в нашем случае возьмем самый экологичный материал – каменную вату на базальтовой основе. На фото мы видим, что коэффициент теплопроводности 0,038, а это в 5 раз меньше теплопроводность, чем у дерева, а с кирпичом разница аж в 15 раз.

На одной из выставок, я увидел замечательный стенд, который наши расчеты и подтверждает.
На этом стенде сравниваются: сверху дерево (клееный брус), пеноблок и каркасник.
Все материалы равной толщины. С одной стороны материал нагревается пленочным теплым полом, с другой стороны стоит термометр, который показывает уровень исходящего тепла. Конечно, качество фото оставляет желать лучшего.
Итак… смотрим на стенд с разных сторон

Смотрим на нижние показатели на градуснике, к сожалению практически не видно цифр на градуснике, поэтому я назову их сверху вниз:

Дерево – 28° С
Пеноблок – почти 30° С
Каркасная стена – 25° С

Каркасная стена забирает победную золотую медаль, это не сложно объяснить, т.к. утеплитель имеет меньшую плотность и дает большую воздушность, а значит максимально удерживает тепло.

Расход энергии на отопление, расчет расходов на отопление

Меня так же интересовала, какой будет расход тепловой энергии и сколько нужно будет затрачивать в месяц на отопление дома, с помощью электричества, хотя Россия и богата газом, к сожалению, его еще далеко не везде провели.
Давайте вместе научимся считать, сколько придется платить за электричество своего дома.
Возьмем, к примеру, дом 7*7 с высотой стен в 5 метров.

Формула расчета тепла

zamer-doma.ru

Теплопроводность стеновых материалов | Хаус Маркет

При строительстве индивидуальных коттеджей и домов важно учитывать теплопроводность стен постройки. Теплопроводность – это способность материала изменять свою температуру под воздействием окружающей среды, пропускать через себя тепловую энергию. Количественная оценка подобной способности называется коэффициент теплопроводности. Иными словами, коэффициент теплопроводности представляет собой характеристику, которая равняется количеству теплоты (численность измеряется в килокалориях), способной пройти через материал стены толщиной 1 метр и площадью 1 кв. м. за час времени. При этом разница температуры с противоположных сторон поверхности должна составлять 1 градус по Цельсию. Единица измерения коэффициента теплопроводности – Вт/метр*град. При домостроении этот показатель крайне важен, ведь, чем ниже теплопроводность стен коттеджа, тем выше уровень теплоизоляции, и, следовательно, больше экономия. В доме, стены которого имеют низкую теплопроводность, будет прохладно летом, тепло и уютно в холодное время года. Иными словами, перед выбором строительных материалов необходимо рассчитать коэффициент теплопроводности в стенах, оценить, насколько эффективным будет утепление, а также есть ли в нём необходимость. Проведём сравнительный анализ теплопроводности стен, построенных из различных материалов, которые на сегодняшний день наиболее распространены в строительстве домов.

На сегодняшний день одним из популярных материалов, используемым в малоэтажном коттеджном строительстве, является кирпич. Коэффициент теплопроводности силикатного кирпича составляет 0,90 Вт/метр*град на 1 метр. Коэффициент теплопроводности керамического кирпича несколько ниже. Он составляет 0,81 на 1 метр. Расчёты показывают, что теплопроводность кирпича практически в 4 раза выше, чем у древесины. Следовательно, и стена из данного материала для обеспечения в доме максимального комфорта должна быть в несколько раз шире. Так, например, коэффициент стены из силикатного кирпича шириной 12 см. составит 7,50 Вт/метр*град, а шириной 48 см – 1,68 Вт/метр*град. Вывод напрашивается довольно простой – строительство стен из кирпича и их утепление обойдётся довольно дорого, как и последующий обогрев коттеджа в зимнее время.

Сегодня в строительстве коттеджей довольно часто используют ячеистый бетон. Выделяют три разновидности данного материала: газобетон, пенобетон и газосиликат. Ячеистый бетон в 3-4 раза легче обычного. И при этом теплопроводность стены ниже в 2-3 раза, чем из простого бетона, а звукоизоляция гораздо лучше. Так, например, коэффициент газобетона составляет от 0,10 Вт/метр*град до 0,14 Вт/метр*град на 1 метр. Однако основным недостатком ячеистого бетона является то, что он с годами впитывает в свои поры влагу. В климатических условиях нашей страны, где обильные осадки не являются редкостью, использование данного материала при строительстве жилых домов не всегда целесообразно.

Основным достоинством деревянных стен является именно низкая теплопроводность. Таким образом, в деревянном доме комфортно находиться в любую погоду. Так, коэффициент теплопроводности древесины (поперек волокон) составляет 0,09 Вт/м °С в сухом состоянии.

Особое внимание хотелось бы уделить каркасным стенам. Расчёты показывают, что именно данные конструкции имеют самый низкий показатель теплопроводности, и, следовательно, обладают великолепными изоляционными свойствами. Каркасные стены представляют собой стоечно-балочные конструкции, которые изготовлены из лёгких стальных профилей или деревянных балок. Затем между стойками укладывают утеплитель (например, базальтовую вату), снаружи стены зашиваются листовым материалом. Теплопроводность каркасных стен в два раза ниже стен домов из бруса. Это действительно революционный показатель, который не позволяет усомниться в том, что каркасные стены – действительно лучшее решение для строительства коттеджей в условиях климата России. Каркасные дома прекрасно подходят для зимнего проживания. При небольшой толщине каркасные стены обладают прекрасными энергосберегающими характеристиками, а это значит, что Вы сможете сэкономить не только при строительстве, но и при обогреве дома в зимний период. Так, толщина каркасных стен, как правило, не превышает 15 см. Даже если в холодное время дом не отапливался, прогреть его до комфортной температуры можно за несколько часов.

housemarket.ru

Таблица теплопроводности кирпича, его плотность, морозостойкость и теплоемкость

Сфера применения материала определяется его эксплуатационными характеристиками. Комплекс рассматриваемых свойств должны соответствовать требованиям, предъявляемых строительному кирпичу при сооружении внешних стен, перекрытий, фундамента. Возведение конструкций подразумевает выбор изделий различного назначения:

  • Силикатный – рядовой, лицевой, пустотелый, полнотелый.
  • Керамический – жаростойкий и все разновидности предыдущего вида.
  • Клинкерный – для облицовки фасадов.

Оглавление:

  1. Коэффициент теплопроводности
  2. Что такое теплоемкость?
  3. Значение морозостойкости

Теплотехнические характеристики

Показатели определяют энергопотребление дома, затраты на обогрев помещений. Проектирование сооружений, расчеты ограждающих конструкций учитывают эти параметры.

Коэффициент теплопроводности

Материалы обладают свойством проводить тепло от нагретой поверхности в более холодную область. Процесс происходит в результате электромагнитного взаимодействия атомов, электронов и квазичастиц (фононы). Основной показатель величины – коэффициент теплопроводности (λ, Вт/), определяемый как количество теплоты, проходящее через единицу площади сечения за единичный интервал времени. Малое значение положительно влияет на сохранение теплового режима.

Согласно ГОСТ 530-2012 эффективность кладки в сухом состоянии характеризуется коэффициентом теплопроводности:

  • ≤ 0.20 – высокая;
  • 0.2 < λ ≤ 0.24 – повышенная;
  • 0.24 — 0.36 – эффективная;
  • 0.36 — 0.46 – условно-эффективная;
  • ˃ 0.46 – обыкновенная (малоэффективная).

Чем больше плотность, тем выше теплопроводность – не совсем верное утверждение. Структура содержит закрытые поры и полости (пустотелый), наполненные воздухом с коэффициентом ≈ 0,026. Благодаря этому, изделия со щелевыми отверстиями лучше поддерживают тепловой режим внутри сооружений. В инженерных расчетах необходимо учитывать величину теплопроводности кладочной смеси, значение показателя выбирают от 0.47 и выше, в зависимости от состава.

Видλ, Вт/м°C
Красный полнотелый0,56 ~ 0,81
-//- пустотелый0,35 ~ 0,87
Силикатный кирпич полнотелый0,7 ~ 0,87
-//- пустотелый0,52 ~ 0,81

Теплопроводность красного изделия ниже, чем у силикатного.

Физические процессы нагрева и удержания тепла можно охарактеризовать величинами:

  • Коэффициент теплоотдачи – теплообмен на границе поверхности твердого тела и воздушной среды. Это мощность теплового потока, приходящаяся на плоскость 1 м², обратно пропорциональная разнице температур тела и теплоносителя (воздух). Чем выше теплопроводность, тем больше теплоотдача.
  • Полное тепловое сопротивление – способность противостоять передаче тепла. Значение обратно пропорционально коэффициенту теплопередачи. Исходя из расчетной формулы R = L/λ, легко рассчитать оптимальную толщину кладки. λ – постоянный параметр, R – тепловое сопротивление указано в таблице 4 СП 131.13330.2012 для климатических зон России.

Теплоемкость

Необходимое количество тепла, подведенного к телу для увеличения температуры на 1 Кельвин – определение понятия «полная теплоемкость». Единица измерения: Дж/К или Дж/°C. Чем больше объем и масса тела (толщина стен и перекрытий), тем выше теплоемкость материала, лучше поддерживается благоприятный температурный режим. Наиболее точно это свойство подтверждают характеристики:

  • Удельная теплоемкость кирпича – количество тепла, необходимое для нагрева единичной массы вещества за единичный интервал времени. Единица измерения: Дж/кг*К или Дж/кг*°C. Используется для инженерных расчетов.
  • Объемная теплоемкость – количество тепла, потребляемое телом единичного объема для нагрева за единицу времени. Измеряется в Дж/м³*К или Дж/кг*°C.
Вид изделияУдельная теплоемкость, Дж/кг*°С
Красный полнотелый880
пустотелый840
Силикатный полнотелый840
пустотелый750

Тепловая конвекция непрерывна: радиаторы нагревают воздух, который передает тепло стенам. При понижении температуры в помещениях происходит обратный процесс. Увеличение удельной теплоемкости, снижение коэффициента теплопроводности стен обеспечивают сокращение затрат на обогрев дома. Толщина кладки может быть оптимизирована рядом действий:

  • Применение теплоизоляции.
  • Нанесение штукатурки.
  • Использование пустотного кирпича или камня (исключено для фундамента здания).
  • Кладочный раствор с оптимальными теплотехническими параметрами.

Таблица с характеристиками различных видов кладок. Использованы данные СП 50.13330.2012:

Плотность, кг/м³Удельная теплоемкость, кДж/кг*°СКоэффициент теплопроводности, Вт/м*°C

Обыкновенный глиняный кирпич на различном кладочном растворе

Цементно-песчаный18000.880.56
Цементно-перлитовый16000.88 0.47

Силикатный

Цементно-песчаный18000.880.7

Пустотный красный различной плотности (кг/м³) на ЦПС

140016000.880.47
130014000.880.41
100012000.880.35

Морозостойкость кирпичной кладки

Устойчивость к воздействию отрицательных температур – показатель, влияющий на прочность и долговечность конструкции. Кладка в процессе эксплуатации насыщается влагой. В зимний период вода, проникая в поры, превращается в лед, увеличивается в объеме и разрывает полость, в которой находится – происходит разрушение. Морозоустойчивость, как правило, низкая, водопоглощение не должно превышать 20 %.

Определение количества циклов замораживания и оттаивания без потери прочности каждого вида изделия позволяет выявить морозоустойчивость (F). Значение получают опытным путем. В лаборатории проводят многократную заморозку в холодильных камерах и естественное оттаивание образцов.

Коэффициент морозостойкости – отношение прочности на сжатие опытного и исходного элемента. Изменение показателя более 5 %, наличие трещин, отколов сигнализируют об окончании испытаний. Марки изделий содержат характеристики по морозостойкости: F15 (20, 25, 35, 50, 75, 100, 150). Цифровой параметр указывает на количество циклов: чем выше число, тем надежнее возводимая система.

Приобретение кирпича высокой марки морозостойкости опустошит бюджет, заложенный на строительство. Меры по улучшению свойств конструкций, продлению срока эксплуатации в зонах холодного климата без увеличения расходов:

  • Применение паро- и гидроизоляции.
  • Обработка кладки гидрофобными составами.
  • Контроль, своевременное исправление дефектов.
  • Надежная гидроизоляция фундамента.

От выбора материала для кладки, его удельной теплоемкости, теплопроводности, морозостойкости зависит срок и комфорт эксплуатации дома. Сложные расчеты, составление сметы расходов лучше доверить опытным специалистам, имеющим опыт в строительстве и проектировании.

stroitel-lab.ru

Сравнительные характеристики стеновых строительных материалов


Некоторые свойства стеновых материалов в таблице:
Наименование материалаПлотность
ρ кг/м3
Прочность
R МПа
Коэффициент теплопроводности
λ Вт/(м °С)
Бетоны:   
керамзитобетон10007,5-100,33
керамзитопенобетон8005,0-7,50,21
ячеистый8005,0-7,50,21
газосиликат6002,5-3,50,14
газобетон4001,0-1,50,1
пенобетон7002,5-5,00,16
монолитной укладки *3000,50,07
Кирпич:   
силикатный18007,5-150,70
керамический18007,5-100,56
Базальтовые плиты2500,50,052
Базальтоволокнистые плиты Parok1000,80,037
Пенопласт ПБС250,080,036
Пенокерамика3001,00,085
Ракушечник1200…18000,46…0,73
Шлакоблок12005…100,47
Древесина5000,09

* Мобильные установки в строительных условиях

Сравнительные характеристики теплопроводности стен из различных материалов

Плотность керамического кирпича 1650 кг/м3
Плотность силикатного кирпича 1850 кг/м3

Ширина стены (см)
121820243036404860728496
Теплопроводность
(ВТ/м*час*· 0С)
Коэф.
на 1 метр
Тепропроводность стены
Керамический
кирпич
0,816,754,54,053,372,702,252,021,681,351,130,960,84
Силикатный
кирпич
0,907,505,004,503,753,002,502,251,871,501,251,070,93
Ячеистый бетон
D 600

(газобетон)
0,141,160,770,700,580,460,380,350,290,230,190,160,14
Ячеистый бетон
D 500

(газобетон)
0,121,00,660,600,500,400,330,300,250,200,160,140,12
Ячеистый бетон
D 400

(газобетон)
0,100,80,550,500,410,330,270,250,200,160,130,120,10

Примечание: чем ниже коэффициент теплопроводности, тем выше теплоизоляция стены, тем больше экономия средств (зимой для обогрева, летом для охлаждения).

Инструкция по кладке наружних и внутренних стен из газобетонных блоков

Статья с сайта aerocrete.com

pro100stroyka.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *