Теплопроводность высокая это – Теплопроводность металлов и сплавов, коэффициент теплопроводности

Содержание

Теплопроводность — Википедия

Теплопрово́дность — способность материальных тел проводить энергию (теплоту) от более нагретых частей тела к менее нагретым частям тела, осуществляемому хаотически движущимися частицами тела (атомами, молекулами, электронами и т. п.). Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества.

Теплопроводностью называется также количественная характеристика способности тела проводить тепло. В сравнении тепловых цепей с электрическими это аналог проводимости.

Количественно способность вещества проводить тепло характеризуется коэффициентом теплопроводности. Эта характеристика равна количеству теплоты, проходящему через однородный образец материала единичной длины и единичной площади за единицу времени при единичной разнице температур (1 К). В Международной системе единиц (СИ) единицей измерения коэффициента теплопроводности является Вт/(м·K).

Исторически считалось, что передача тепловой энергии связана с перетеканием гипотетического теплорода от одного тела к другому. Однако с развитием молекулярно-кинетической теории явление теплопроводности получило своё объяснение на основе взаимодействия частиц вещества. Молекулы в более нагретых частях тела движутся быстрее и передают энергию посредством столкновений медленным частицам в более холодных частях тела.

Закон теплопроводности Фурье

В установившемся режиме плотность потока энергии, передающейся посредством теплопроводности, пропорциональна градиенту температуры:

q→=−ϰgrad(T),{\displaystyle {\vec {q}}=-\varkappa \,\mathrm {grad} (T),}

где q→{\displaystyle {\vec {q}}} — вектор плотности теплового потока — количество энергии, проходящей в единицу времени через единицу площади, перпендикулярной каждой оси, ϰ{\displaystyle \varkappa } — коэффициент теплопроводности (удельная теплопроводность), T{\displaystyle T} — температура. Минус в правой части показывает, что тепловой поток направлен противоположно вектору grad(T){\displaystyle \mathrm {grad} (T)} (то есть в сторону скорейшего убывания температуры). Это выражение известно как

закон теплопроводности Фурье.[1]

В интегральной форме это же выражение запишется так (если речь идёт о стационарном потоке тепла от одной грани параллелепипеда к другой):

P=−ϰSΔTl,{\displaystyle P=-\varkappa {\frac {S\Delta T}{l}},} [Вт/(м·К) · (м2·К)/м = Вт/(м·К) · (м·К) = Вт]

где P{\displaystyle P} — полная мощность тепловых потерь, S{\displaystyle S} — площадь сечения параллелепипеда, ΔT{\displaystyle \Delta T} — перепад температур граней, l{\displaystyle l} — длина параллелепипеда, то есть расстояние между гранями.

Связь с электропроводностью

Связь коэффициента теплопроводности ϰ{\displaystyle \varkappa } с удельной электрической проводимостью σ{\displaystyle \sigma } в металлах устанавливает закон Видемана — Франца:

ϰσ=π23(ke)2T,{\displaystyle {\frac {\varkappa }{\sigma }}={\frac {\pi ^{2}}{3}}\left({\frac {k}{e}}\right)^{2}T,}
где k{\displaystyle k} — постоянная Больцмана;
e{\displaystyle e} — заряд электрона;
T{\displaystyle T} — абсолютная температура.

Коэффициент теплопроводности газов

В газах коэффициент теплопроводности может быть найден по приближённой формуле[2]

ϰ∼13ρcvλv¯,{\displaystyle \varkappa \sim {\frac {1}{3}}\rho c_{v}\lambda {\bar {v}},}

где ρ{\displaystyle \rho } — плотность газа, cv{\displaystyle c_{v}} — удельная теплоёмкость при постоянном объёме, λ{\displaystyle \lambda } — средняя длина свободного пробега молекул газа, v¯{\displaystyle {\bar {v}}} — средняя тепловая скорость. Эта же формула может быть записана как[3]

ϰ=ik3π3/2d2RTμ,{\displaystyle \varkappa ={\frac {ik}{3\pi ^{3/2}d^{2}}}{\sqrt {\frac {RT}{\mu }}},}

где i{\displaystyle i} — сумма поступательных и вращательных степеней свободы молекул (для двухатомного газа i=5{\displaystyle i=5}, для одноатомного i=3{\displaystyle i=3}), k{\displaystyle k} — постоянная Больцмана, μ{\displaystyle \mu } — молярная масса, T{\displaystyle T} — абсолютная температура, d{\displaystyle d} — эффективный (газокинетический) диаметр молекул, R{\displaystyle R} — универсальная газовая постоянная. Из формулы видно, что наименьшей теплопроводностью обладают тяжелые одноатомные (инертные) газы, наибольшей — легкие многоатомные (что подтверждается практикой, максимальная теплопроводность из всех газов — у водорода, минимальная — у радона, из нерадиоактивных газов — у ксенона).

Теплопроводность в сильно разреженных газах

Приведённое выше выражение для коэффициента теплопроводности в газах не зависит от давления. Однако если газ сильно разрежен, то длина свободного пробега определяется не столкновениями молекул друг с другом, а их столкновениями со стенками сосуда. Состояние газа, при котором длина свободного пробега молекул ограничивается размерами сосуда называют высоким вакуумом. При высоком вакууме теплопроводность убывает пропорционально плотности вещества (то есть пропорциональна давлению в системе): ϰ∼13ρcvlv¯∝P{\displaystyle \varkappa \sim {\frac {1}{3}}\rho c_{v}l{\bar {v}}\propto P}, где l{\displaystyle l} — размер сосуда, P{\displaystyle P} — давление.

Таким образом коэффициент теплопроводности вакуума тем ближе к нулю, чем глубже вакуум. Это связано с низкой концентрацией в вакууме материальных частиц, способных переносить тепло. Тем не менее, энергия в вакууме передаётся с помощью излучения. Поэтому, например, для уменьшения теплопотерь стенки термоса делают двойными, серебрят (такая поверхность лучше отражает излучение), а воздух между ними откачивают.

Обобщения закона Фурье

Следует отметить, что закон Фурье не учитывает инерционность процесса теплопроводности, то есть в данной модели изменение температуры в какой-то точке мгновенно распространяется на всё тело. Закон Фурье неприменим для описания высокочастотных процессов (и, соответственно, процессов, чьё разложение в ряд Фурье имеет значительные высокочастотные гармоники). Примерами таких процессов являются распространение ультразвука, ударные волны и т. п. Инерционность в уравнения переноса первым ввел Максвелл[4], а в 1948 году Каттанео был предложен вариант закона Фурье с релаксационным членом:[5]

τ∂q∂t=−(q+ϰ∇T).{\displaystyle \tau {\frac {\partial \mathbf {q} }{\partial t}}=-\left(\mathbf {q} +\varkappa \,\nabla T\right).}

Если время релаксации τ{\displaystyle \tau } пренебрежимо мало, то это уравнение переходит в закон Фурье.

Коэффициенты теплопроводности различных веществ

МатериалТеплопроводность, Вт/(м·K)
Графен4840 ± 440 — 5300 ± 480
Алмаз1001—2600
Графит278,4—2435
Арсенид бора[en]200—2000
Карбид кремния490
Серебро430
Медь401
Оксид бериллия370
Золото320
Алюминий202—236
Нитрид алюминия200
Нитрид бора180
Кремний150
Латунь97—111
Хром107
Железо92
Платина70
Олово67
Оксид цинка54
Сталь нелегированная47—58
Свинец35,3
Сталь нержавеющая (аустенитная) [6]15
Кварц8
Термопасты высокого качества 5—6
Гранит2,4
Бетон сплошной1,75
Бетон на гравии или щебне из природного камня1,51
Базальт1,3
Стекло1—1,15
Термопаста КПТ-80,7
Бетон на песке0,7
Вода при нормальных условиях0,6
Кирпич строительный0,2—0,7
Силиконовое масло0,16
Пенобетон0,05—0,3
Газобетон0,1—0,3
Древесина0,15
Нефтяные масла0,12
Свежий снег0,10—0,15
Пенополистирол (горючесть Г1)0,038—0,052
Экструдированный пенополистирол (горючесть Г3 и Г4)0,029—0,032
Стекловата0,032—0,041
Каменная вата0,034—0,039
Воздух (300 K, 100 кПа)0,022
Аэрогель0,017
Аргон (273—320 K, 100 кПа)0,017
Аргон (240—273 K, 100 кПа)0,015
Вакуум (абсолютный)0 (строго)

Также нужно учитывать передачу тепла из-за конвекции молекул и излучения. Например, при полной нетеплопроводности вакуума, тепловая энергия передаётся излучением (Солнце, инфракрасные теплогенераторы). В газах и жидкостях происходит перемешивание разнотемпературных слоёв естественным путём или искусственно (примеры принудительного перемешивания — фены, естественного — электрочайники). Также в конденсированных средах возможно «перепрыгивание» фононов из одного твердого тела в другое через субмикронные зазоры, что способствует распространению звуковых волн и тепловой энергии, даже если зазоры представляют собой идеальный вакуум.

Примечания

См. также

Ссылки

wikipedia.green

Теплопроводность Википедия

Теплопрово́дность — способность материальных тел проводить энергию (теплоту) от более нагретых частей тела к менее нагретым частям тела путём хаотического движения частиц тела (атомов, молекул, электронов и т. п.). Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества.

Теплопроводностью называется также количественная характеристика способности тела проводить тепло. В сравнении тепловых цепей с электрическими это аналог проводимости.

Количественно способность вещества проводить тепло характеризуется коэффициентом теплопроводности. Эта характеристика равна количеству теплоты, проходящему через однородный образец материала единичной длины и единичной площади за единицу времени при единичной разнице температур (1 К). В Международной системе единиц (СИ) единицей измерения коэффициента теплопроводности является Вт/(м·K).

Исторически считалось, что передача тепловой энергии связана с перетеканием гипотетического теплорода от одного тела к другому. Однако с развитием молекулярно-кинетической теории явление теплопроводности получило своё объяснение на основе взаимодействия частиц вещества. Молекулы в более нагретых частях тела движутся быстрее и передают энергию посредством столкновений медленным частицам в более холодных частях тела.

Закон теплопроводности Фурье

В установившемся режиме плотность потока энергии, передающейся посредством теплопроводности, пропорциональна градиенту температуры:

q→=−ϰgrad(T),{\displaystyle {\vec {q}}=-\varkappa \,\mathrm {grad} (T),}

где q→{\displaystyle {\vec {q}}} — вектор плотности теплового потока — количество энергии, проходящей в единицу времени через единицу площади, перпендикулярной каждой оси, ϰ{\displaystyle \varkappa } —

коэффициент теплопроводности (удельная теплопроводность), T{\displaystyle T} — температура. Минус в правой части показывает, что тепловой поток направлен противоположно вектору grad(T){\displaystyle \mathrm {grad} (T)} (то есть в сторону скорейшего убывания температуры). Это выражение известно как закон теплопроводности Фурье.[1]

В интегральной форме это же выражение запишется так (если речь идёт о стационарном потоке тепла от одной грани параллелепипеда к другой):

P=−ϰSΔTl,{\displaystyle P=-\varkappa {\frac {S\Delta T}{l}},} [Вт/(м·К) · (м2·К)/м = Вт/(м·К) · (м·К) = Вт]

где P{\displaystyle P} — полная мощность тепловых потерь, S{\displaystyle S} — площадь сечения параллелепипеда, ΔT{\displaystyle \Delta T} — перепад температур граней, l{\displaystyle l} — длина параллелепипеда, то есть расстояние между гранями.

Связь с электропроводностью

Связь коэффициента теплопроводности ϰ{\displaystyle \varkappa } с удельной электрической проводимостью σ{\displaystyle \sigma } в металлах устанавливает закон Видемана — Франца:

ϰσ=π23(ke)2T,{\displaystyle {\frac {\varkappa }{\sigma }}={\frac {\pi ^{2}}{3}}\left({\frac {k}{e}}\right)^{2}T,}
где k{\displaystyle k} — постоянная Больцмана,
e{\displaystyle e} — заряд электрона,
T{\displaystyle T} — абсолютная температура.

Коэффициент теплопроводности газов

В газах коэффициент теплопроводности может быть найден по приближённой формуле[2]

ϰ∼13ρcvλv¯,{\displaystyle \varkappa \sim {\frac {1}{3}}\rho c_{v}\lambda {\bar {v}},}

где ρ{\displaystyle \rho } — плотность газа, cv{\displaystyle c_{v}} — удельная теплоёмкость при постоянном объёме, λ{\displaystyle \lambda } — средняя длина свободного пробега молекул газа, v¯{\displaystyle {\bar {v}}} — средняя тепловая скорость. Эта же формула может быть записана как[3]

ϰ=ik3π3/2d2RTμ,{\displaystyle \varkappa ={\frac {ik}{3\pi ^{3/2}d^{2}}}{\sqrt {\frac {RT}{\mu }}},}

где i{\displaystyle i} — сумма поступательных и вращательных степеней свободы молекул (для двухатомного газа i=5{\displaystyle i=5}, для одноатомного i=3{\displaystyle i=3}), k{\displaystyle k} — постоянная Больцмана, μ{\displaystyle \mu } — молярная масса, T{\displaystyle T} — абсолютная температура, d{\displaystyle d} — эффективный (газокинетический) диаметр молекул, R{\displaystyle R} — универсальная газовая постоянная. Из формулы видно, что наименьшей теплопроводностью обладают тяжелые одноатомные (инертные) газы, наибольшей — легкие многоатомные (что подтверждается практикой, максимальная теплопроводность из всех газов — у водорода, минимальная — у радона, из нерадиоактивных газов — у ксенона).

Теплопроводность в сильно разреженных газах

Приведённое выше выражение для коэффициента теплопроводности в газах не зависит от давления. Однако если газ сильно разрежен, то длина свободного пробега определяется не столкновениями молекул друг с другом, а их столкновениями со стенками сосуда. Состояние газа, при котором длина свободного пробега молекул ограничивается размерами сосуда называют высоким вакуумом. При высоком вакууме теплопроводность убывает пропорционально плотности вещества (то есть пропорциональна давлению в системе): ϰ∼13ρcvlv¯∝P{\displaystyle \varkappa \sim {\frac {1}{3}}\rho c_{v}l{\bar {v}}\propto P}, где l{\displaystyle l} — размер сосуда, P{\displaystyle P} — давление.

Таким образом коэффициент теплопроводности вакуума тем ближе к нулю, чем глубже вакуум. Это связано с низкой концентрацией в вакууме материальных частиц, способных переносить тепло. Тем не менее, энергия в вакууме передаётся с помощью излучения. Поэтому, например, для уменьшения теплопотерь стенки термоса делают двойными, серебрят (такая поверхность лучше отражает излучение), а воздух между ними откачивают.

Обобщения закона Фурье

Следует отметить, что закон Фурье не учитывает инерционность процесса теплопроводности, то есть в данной модели изменение температуры в какой-то точке мгновенно распространяется на всё тело. Закон Фурье неприменим для описания высокочастотных процессов (и, соответственно, процессов, чьё разложение в ряд Фурье имеет значительные высокочастотные гармоники). Примерами таких процессов являются распространение ультразвука, ударные волны и т. п. Инерционность в уравнения переноса первым ввел Максвелл[4], а в 1948 году Каттанео был предложен вариант закона Фурье с релаксационным членом:[5]

τ∂q∂t=−(q+ϰ∇T).{\displaystyle \tau {\frac {\partial \mathbf {q} }{\partial t}}=-\left(\mathbf {q} +\varkappa \,\nabla T\right).}

Если время релаксации τ{\displaystyle \tau } пренебрежимо мало, то это уравнение переходит в закон Фурье.

Коэффициенты теплопроводности различных веществ

МатериалТеплопроводность, Вт/(м·K)
Графен4840 ± 440 — 5300 ± 480
Алмаз1001—2600
Графит278,4—2435
Арсенид бора[en]200—2000
Карбид кремния490
Серебро430
Медь401
Оксид бериллия370
Золото320
Алюминий202—236
Нитрид алюминия200
Нитрид бора180
Кремний150
Латунь97—111
Хром107
Железо92
Платина70
Олово67
Оксид цинка54
Сталь нелегированная47—58
Свинец35,3
Сталь нержавеющая (аустенитная) [6]15
Кварц8
Термопасты высокого качества5—12 (на основе соединений углерода)
Гранит2,4
Бетон сплошной1,75
Бетон на гравии или щебне из природного камня1,51
Базальт1,3
Стекло1—1,15
Термопаста КПТ-80,7
Бетон на песке0,7
Вода при нормальных условиях0,6
Кирпич строительный0,2—0,7
Силиконовое масло0,16
Пенобетон0,05—0,3
Газобетон0,1—0,3
Древесина0,15
Нефтяные масла0,12
Свежий снег0,10—0,15
Пенополистирол (горючесть Г1)0,038—0,052
Экструдированный пенополистирол (горючесть Г3 и Г4)0,029—0,032
Стекловата0,032—0,041
Каменная вата0,034—0,039
Воздух (300 K, 100 кПа)0,022
Аэрогель0,017
Аргон (273—320 K, 100 кПа)0,017
Аргон (240—273 K, 100 кПа)0,015
Вакуум (абсолютный)0 (строго)

Также нужно учитывать передачу тепла из-за конвекции молекул и излучения. Например, при полной нетеплопроводности вакуума, тепловая энергия передаётся излучением (Солнце, инфракрасные теплогенераторы). В газах и жидкостях происходит перемешивание разнотемпературных слоёв естественным путём или искусственно (примеры принудительного перемешивания — фены, естественного — электрочайники). Также в конденсированных средах возможно «перепрыгивание» фононов из одного твердого тела в другое через субмикронные зазоры, что способствует распространению звуковых волн и тепловой энергии, даже если зазоры представляют собой идеальный вакуум.

Примечания

См. также

Ссылки

wikiredia.ru

Ответы@Mail.Ru: что такое теплопроводность

Что такое утеплитель Это материалы, которые сами по себе не вырабатывают энергию. Они в силу своих свойств лишь препятствуют потерям тепла. Поэтому важнейшим их параметром является теплопроводность. Теплопроводность Это способность материалов проводить тепло. Количественно теплопроводность определяется коэффициентом теплопроводности (λ), выражающим количество тепла, проходящее через образец материала толщиной 1 м и площадью 1 м2 при разности температур на противолежащих поверхностях 1°К за 1 час. На величину теплопроводности теплоизоляционных материалов оказывают влияние плотность материала, вид, размеры и расположение пор (пустот) и т. д. Сильное влияние оказывает также температура материала и, особенно, его влажность. Количественно чем меньше теплопроводность, тем лучше. Утеплитель с теплопроводностью 0,029 Вт/(м*оК) лучше по этому показателю, чем утеплитель с теплопроводностью 0,036 Вт/(м*оК) . Теплопроводность замеряется при определённой температуре, например при 10оС или 25оС. При разных температурах замера для одного и того же вещества коэффициент различен, чем меньше температура измерения, тем он меньше. Наглядным представлением теплопроводности различных материалов являются такие таблицы, как приведена ниже, и в разной форме представляемые различными фирмами-производителями. ПЕНОПЛЭКС, 20мм Пенопласт, 30 мм Минеральная вата, 38 мм Дерево, 250 мм Ячеистый бетон, 270 мм Кирпичная кладка, 370 мм Это означает, что чем меньше коэффициент теплопроводности, тем меньше нужно взять толщину утеплителя для сохранения одинакового количества тепла в помещении.

передача тепловой энергии от объекта в окружающую среду.. ну это так, сказано не замудренно.

теплопроводность – свойство материала проводить тепло с той или иной скоростью. Скорость, с которой объект или поверхность передают тепло участку кожи при контактах с ним или поглощают тепло, исходящее от этого участка.

Это свойство различных материалов, веществ проводить, передавать тепло. Больше всего тепло проводят металлы. Меньше-пластмасс, газы, пенопласт, керамика, например.

Это свойство вещества передавать или принимать тепло с одной точки своего объёма в другую…

Теплопроводность это коэффициент который обозначает характеристику сопротивления теплопередаче данного материала. Более эффективные утеплители пеноплекс, пенопласт, роквол, изовер, урса и менее эффективные традиционные материалы дерево, кирпич, бетон, металл. Применение их в той или иной пропорции составляет энергоэффективную конструкцию современного здания.

Явление передачи внутренней энергии от одной части тела к другой или от одного тела к другому при их непосредственном контакте называется теплопроводностью.

<a rel=”nofollow” href=”https://vk.com/nayka2510_fizika” target=”_blank”>https://vk.com/nayka2510_fizika</a> Все, что непонятно, находится здесь;)

Типо тепло, светло, котлетки в обед…

Теплопрово́дность — способность материальных тел к переносу энергии (теплообмену) от более нагретых частей тела к менее нагретым частям тела, осуществляемому хаотически движущимися частицами тела

Теплопрово́дность — способность материальных тел к переносу энергии (теплообмену) от более нагретых частей тела к менее нагретым частям тела, осуществляемому хаотически движущимися частицами тела (атомами, молекулами, электронами и т. п.). Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества. Теплопроводностью называется также количественная характеристика способности тела проводить тепло. В сравнении тепловых цепей с электрическими это аналог проводимости. Количественно способность вещества проводить тепло характеризуется коэффициентом теплопроводности. Эта характеристика равна количеству теплоты, проходящему через однородный образец материала единичной длины и единичной площади за единицу времени при единичной разнице температур (1 К). В системе СИ единицей измерения коэффициента теплопроводности является Вт/(м·K). Исторически считалось, что передача тепловой энергии связана с перетеканием гипотетического теплорода от одного тела к другому. Однако с развитием молекулярно-кинетической теории явление теплопроводности получило своё объяснение на основе взаимодействия частиц вещества. Молекулы в более нагретых частях тела движутся быстрее и передают энергию посредством столкновений медленным частицам в более холодных частях тела.

touch.otvet.mail.ru

Теплопроводность – Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 13 ноября 2018; проверки требует 1 правка. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 13 ноября 2018; проверки требует 1 правка.

Теплопрово́дность — способность материальных тел проводить энергию (теплоту) от более нагретых частей тела к менее нагретым частям тела, осуществляемому хаотически движущимися частицами тела (атомами, молекулами, электронами и т. п.). Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества.

Теплопроводностью называется также количественная характеристика способности тела проводить тепло. В сравнении тепловых цепей с электрическими это аналог проводимости.

Количественно способность вещества проводить тепло характеризуется коэффициентом теплопроводности. Эта характеристика равна количеству теплоты, проходящему через однородный образец материала единичной длины и единичной площади за единицу времени при единичной разнице температур (1 К). В Международной системе единиц (СИ) единицей измерения коэффициента теплопроводности является Вт/(м·K).

Исторически считалось, что передача тепловой энергии связана с перетеканием гипотетического теплорода от одного тела к другому. Однако с развитием молекулярно-кинетической теории явление теплопроводности получило своё объяснение на основе взаимодействия частиц вещества. Молекулы в более нагретых частях тела движутся быстрее и передают энергию посредством столкновений медленным частицам в более холодных частях тела.

Закон теплопроводности Фурье[ | ]

В установившемся режиме плотность потока энергии, передающейся посредством теплопроводности, пропорциональна градиенту температуры:

q→=−ϰgrad(T),{\displaystyle {\vec {q}}=-\varkappa \,\mathrm {grad} (T),}

где q→{\displaystyle {\vec {q}}} — вектор плотности теплового потока — количество энергии, проходящей в единицу времени через единицу площади, перпендикулярной каждой оси, ϰ{\displaystyle \varkappa } — коэффициент теплопроводности (удельная теплопроводность), T{\displaystyle T} — температура. Минус в правой части показывает, что тепловой поток направлен противоположно вектору grad(T){\displaystyle \mathrm {grad} (T)} (то есть в сторону скорейшего убывания температуры). Это выражение известно как закон теплопроводности Фурье.[1]

В интегральной форме это же выражение запишется так (если речь идёт о стационарном потоке тепла от одной грани параллелепипеда к другой):

encyclopaedia.bid

Теплопроводность — Википедия

Теплопрово́дность — способность материальных тел к переносу энергии (теплообмену) от более нагретых частей тела к менее нагретым телам, осуществляемому хаотически движущимися частицами тела (атомами, молекулами, электронами и т. п.). Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества.

Теплопроводностью называется также количественная характеристика способности тела проводить тепло. В сравнении тепловых цепей с электрическими это аналог проводимости.

Количественно способность вещества проводить тепло характеризуется коэффициентом теплопроводности. Эта характеристика равна количеству теплоты, проходящему через однородный образец материала единичной длины и единичной площади за единицу времени при единичной разнице температур (1 К). В системе СИ единицей измерения коэффициента теплопроводности является Вт/(м·K).

Исторически считалось, что передача тепловой энергии связана с перетеканием гипотетического теплорода от одного тела к другому. Однако с развитием молекулярно-кинетической теории явление теплопроводности получило своё объяснение на основе взаимодействия частиц вещества. Молекулы в более нагретых частях тела движутся быстрее и передают энергию посредством столкновений медленным частицам в более холодных частях тела.

Закон теплопроводности Фурье[править]

В установившемся режиме плотность потока энергии, передающейся посредством теплопроводности, пропорциональна градиенту температуры:

где  — вектор плотности теплового потока — количество энергии, проходящей в единицу времени через единицу площади, перпендикулярной каждой оси,  — коэффициент теплопроводности (удельная теплопроводность),  — температура. Минус в правой части показывает, что тепловой поток направлен противоположно вектору grad T (то есть в сторону скорейшего убывания температуры). Это выражение известно как закон теплопроводности Фурье.[1]

В интегральной форме это же выражение запишется так (если речь идёт о стационарном потоке тепла от одной грани параллелепипеда к другой):

где  — полная мощность тепловых потерь,  — площадь сечения параллелепипеда,  — перепад температур граней,  — длина параллелепипеда, то есть расстояние между гранями.

Связь с электропроводностью[править]

Связь коэффициента теплопроводности с удельной электрической проводимостью в металлах устанавливает закон Видемана — Франца:

где  — постоянная Больцмана,  — заряд электрона.

Коэффициент теплопроводности газов[править]

В газах коэффициент теплопроводности может быть найден по приближённой формуле[2]

где  — плотность газа,  — удельная теплоёмкость при постоянном объёме,  — средняя длина свободного пробега молекул газа,  — средняя тепловая скорость. Эта же формула может быть записана как[3]

где  — сумма поступательных и вращательных степеней свободы молекул (для двухатомного газа i=5, для одноатомного i=3),  — постоянная Больцмана,  — молярная масса,  — абсолютная температура,  — эффективный (газокинетический) диаметр молекул,  — универсальная газовая постоянная. Из формулы видно, что наименьшей теплопроводностью обладают тяжелые одноатомные (инертные) газы, наибольшей — легкие многоатомные (что подтверждается практикой, максимальная теплопроводность из всех газов — у водорода, минимальная — у радона, из нерадиоактивных газов — у ксенона).

Теплопроводность в сильно разреженных газах[править]

Приведённое выше выражение для коэффициента теплопроводности в газах не зависит от давления. Однако если газ сильно разрежен, то длина свободного пробега определяется не столкновениями молекул друг с другом, а их столкновениями со стенками сосуда. Состояние газа, при котором длина свободного пробега молекул ограничивается размерами сосуда называют высоким вакуумом. При высоком вакууме теплопроводность убывает пропорционально плотности вещества (то есть обратно пропорционально давлению в системе): , где  — размер сосуда,  — давление.

Таким образом коэффициент теплопроводности вакуума тем ближе к нулю, чем глубже вакуум. Это связано с низкой концентрацией в вакууме материальных частиц, способных переносить тепло. Тем не менее, энергия в вакууме передаётся с помощью излучения. Поэтому, например, для уменьшения теплопотерь стенки термоса делают двойными, серебрят (такая поверхность лучше отражает излучение), а воздух между ними откачивают.

Обобщения закона Фурье[править]

Следует отметить, что закон Фурье не учитывает инерционность процесса теплопроводности, то есть в данной модели изменение температуры в какой-то точке мгновенно распространяется на всё тело. Закон Фурье неприменим для описания высокочастотных процессов (и, соответственно, процессов, чьё разложение в ряд Фурье имеет значительные высокочастотные гармоники). Примерами таких процессов являются распространение ультразвука, ударные волны и т. п. Инерционность в уравнения переноса первым ввел Максвелл[4], а в 1948 году Каттанео был предложен вариант закона Фурье с релаксационным членом:[5]

Если время релаксации пренебрежимо мало, то это уравнение переходит в закон Фурье.

Коэффициенты теплопроводности различных веществ[править]

МатериалТеплопроводность, Вт/(м·K)
Графен4840±440 — 5300±480
Алмаз1001—2600
Графит278,4—2435
Карбид кремния490
Серебро430
Медь401
Оксид бериллия370
Золото320
Алюминий202—236
Нитрид алюминия200
Нитрид бора180
Кремний150
Латунь97—111
Хром107
Железо92
Платина70
Олово67
Оксид цинка54
Сталь47
Свинец35,3
Кварц8
Гранит2,4
Базальт1,3
Стекло1-1,15
Термопаста КПТ-80,7
Вода при нормальных условиях0,6
Кирпич строительный0,2—0,7
Силиконовое масло0,16
Пенобетон0,05—0,3
Древесина0,15
Нефтяные масла0,12
Свежий снег0,10—0,15
Пенополистирол (горючесть Г1)0,038-0,052
Экструдированный пенополистирол (горючесть Г1 и Г40,032-0,034
Стекловата0,032-0,041
Каменная вата0,034-0,039
Воздух (300 K, 100 кПа)0,022
Вакуум (абсолютный)0 (строго)

Также нужно учитывать передачу тепла из-за конвекции молекул и излучения. Например, при полной нетеплопроводности вакуума, тепловая энергия передаётся излучением (Солнце, инфракрасные теплогенераторы). В газах и жидкостях происходит перемешивание разнотемпературных слоёв естественным путём или искусственно (примеры принудительного перемешивания — фены, электрочайники). Также в конденсированных средах возможно «перепрыгивание» фононов из одного твердого тела в другое через субмикронные зазоры, что способствует распространению звуковых волн и тепловой энергии, даже если зазоры представляют собой идеальный вакуум.

www.wikiznanie.ru

Коэффициент теплопроводности строительных материалов. Таблица значений

Комфорт в построенном здании зависит от многих факторов. На микроклимат в помещении, к примеру, оказывает влияние коэффициент теплопроводности строительных материалов. Таблица данных параметров позволит выбрать наиболее подходящий материал для создания комфортных условий в доме.

Благодаря правильно приозведенному расчету, в дальнейшем можно сэкономить на отоплении дома. Даже если на начальном этапе строительство производить из более дорогих материалов, со временем они полностью окупятся. В случае если для строительства используются материалы, интенсивно пропускающие тепло, необходимо проводить дополнительный объем работ по утеплению дома. Его осуществляют и снаружи, и внутри зданий. Но в любом случае это несет дополнительные затраты и времени, и средств.

Понятие теплопроводности

В физике под теплопроводностью понимают передачу теплоты от более нагретых частиц к менее нагретым в результате их непосредственного соприкосновения. Под частицами здесь понимают атомы, молекулы или свободные электроны.

Если говорить простым языком, то теплопроводность – это способность конкретного материала пропускать тепло. Стоит отметить, что перемещение тепла будет продолжаться, пока не наступит равновесие температур.

Потери тепла для разных участков зданий различны. Если говорить о частном доме, до теплопотери будут происходить:

  • через крышу – до 30 процентов;
  • через дымоходы, естественную вентиляцию и так далее – до 25 процентов;
  • через стены – до 15 процентов;
  • через пол – до 15 процентов;
  • через окна – до 15 процентов;
  • через примыкание – до 15 процентов.

Для многоквартирных домов эти показатели немного отличаются. Потери через крышу и стены будут ниже. А вот через окна будет уходить гораздо больше тепла.

Коэффициент теплопроводности

Теплопроводность материала характеризуется временным интервалом, в течение которого температурные показатели достигнут равновесия. Об этом свидетельствует коэффициент теплопроводности строительных материалов. Таблица показывает, что между временем и теплопроводностью в данном случае существует обратная зависимость. То есть чем меньше времени уходит на передачу тепла, тем больше значение теплопроводности.

На практике это значит, что здание будет остывать быстрее, если больше будет коэффициент теплопроводности строительных материалов. Таблица значений в данном случае просто необходима. В ней видно, сколько тепла потеряет здание через единицу площади.

Рассмотрим пример. Кирпич обладает теплопроводностью 0,67 кВт/(м2*К) (значение взято из соответствующих таблиц). Это значит, что 1 квадратный метр поверхности с толщиной один метр будет пропускать 0,67 ватт тепла. Это значение будет при условии, что разница в температурах двух поверхностей составляет один градус. При увеличении разности до 10 градусов теплопотери составят уже 6,7 ватт. В таких условиях при уменьшении толщины стены в 10 раз (то есть до 10 сантиметров), потери тепла составят 67 ват.

Изменение теплопроводности

На коэффициенты теплопроводности строительных материалов оказывают влияние различного рода факторы. Основными параметрами являются:

  • Плотность материала. Если плотность выше, значит, частицы внутри материала взаимодействуют друг с другом сильнее. Соответственно, передача тепловой энергии и установление равновесия температур произойдет быстрее. Следовательно, чем больше плотность, тем лучше материал пропускает тепло.
  • Пористость. Здесь наблюдается противоположная ситуация. Материалы с большой пористостью обладают неоднородной структурой. Большую часть объема занимает воздух, обладающий минимальным коэффициентом. Передача тепловой энергии через маленькие поры затруднена. Соответственно, теплопроводность будет увеличиваться.
  • Влажность. С увеличением влажности будет выше и коэффициент теплопроводности строительных материалов.

Таблица, приведенная выше, показывает точные значения для некоторых материалов.

Сравнение теплопроводности материалов на практике

Неопытному человеку сложно понять, что же собой представляют коэффициенты теплопроводности строительных материалов. СНиП дает точные значения, которые содержатся в таблице.

Чтобы лучше понять разницу данных значений, рассмотрим пример. Сравним несколько различных материалов. Количество пропускаемого ими тепла можно сделать одинаковым, если изменять толщину стены. Так, стена из бетонных панелей (с утеплителем) толщиной 14 сантиметров будет соответствовать деревянной стене с толщиной 15 сантиметров. То же значение теплопроводности будет характерно для керамзитобетона толщиной 30 сантиметров, пустотелого кирпича толщиной 51 сантиметр. Если брать обычный кирпич, то для получения данной теплопроводности необходимо построить стену толщиной 64 сантиметра.

Государственные стандарты

Определяется коэффициент теплопроводности строительных материалов (таблица) СНиП и другими документами. Так, для составления таблицы, которая размещена выше, были использованы такие документы, как СНиП 11-3-79, СНиП 23-02-2003, СП 50.13330.2012.

Если стандарты не дают значения коэффициента теплопроводности необходимого строительного материала, его можно узнать у производителя. Посмотрите на упаковке, не указан ли данный параметр там. Еще один выход – зайти на официальный сайт производителя.

Как видно, расчет теплопотерь играет важную роль в процессе строительства зданий. От этого будет зависеть уровень комфортного нахождения внутри помещения. Поэтому еще на этапе проектирования необходимо со всей тщательностью подходить к вопросу выбора строительных материалов. Это позволит снизить расход финансовых средств на отопление. При этом толщина выбранного материала для каждого региона будет отличаться. И зависеть она будет от климатических условий зоны проживания.

fb.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *