Тепловое сопротивление материалов таблица – Теплодомус : Расчет теплопотерь

Содержание

Коэффициенты теплопроводности строительных материалов в таблицах

 

Любое строительство независимо от его размера всегда начинается с разработки проекта. Его цель – спроектировать не только внешний вид будущего строения, еще и просчитать основные теплотехнические характеристики. Ведь основной задачей строительства считается сооружение прочных, долговечных зданий, способных поддерживать здоровый и комфортный микроклимат, без лишних затрат на отопление. Несомненную помощь при выборе сырья, используемого для возведения постройки, окажет таблица теплопроводности строительных материалов: коэффициенты.

Тепло в доме напрямую зависит от коэффициента теплопроводности строительных материалов.

Блок: 1/6 | Кол-во символов: 628
Источник: http://remoo.ru/materialy/osnovnaya-tablitsa-teploprovodnosti-stroitelnyih-materialov

Разделы статьи

Теплопроводность: понятие и теория

Теплопроводность представляет собой процесс перемещения тепловой энергии от прогретых частей к холодным. Обменные процессы происходят до полного равновесия температурного значения.

Комфортный микроклимат в доме зависит от качественной теплоизоляции всех поверхностей

Процесс теплопередачи характеризуется промежутком времени, в течение которого выравниваются температурные значения. Чем больше времени проходит, тем ниже теплопроводность строительных материалов, свойства которых отображает таблица. Для определения данного показателя применяется такое понятие как коэффициент теплопроводности. Он определяет, какое количество тепловой энергии проходит через единицу площади определенной поверхности. Чем данный показатель больше, тем с большей скоростью будет остывать здание. Таблица теплопроводности нужна при проектировании защиты постройки от теплопотерь. При этом можно снизить эксплуатационный бюджет.

Потери тепла на разных участках постройки будут отличаться

Полезный совет! При постройке домов стоит использовать сырье с минимальной проводимостью тепла.

Блок: 2/6 | Кол-во символов: 1095
Источник: https://HomeMyHome.ru/teploprovodnost-stroitelnykh-materialov-tablica.html

Что такое теплопроводность и термическое сопротивление

При выборе строительных материалов для строительства необходимо обращать внимание на характеристики материалов. Одна из ключевых позиций — теплопроводность. Она отображается коэффициентом теплопроводности. Это количество тепла, которое может провести тот или иной материал за единицу времени. То есть, чем меньше этот коэффициент, тем хуже материал проводит тепло. И наоборот, чем выше цифра, тем тепло отводится лучше.

Диаграмма, которая иллюстрирует разницу в теплопроводности материалов

Материалы с низкой теплопроводностью используются для утепления, с высокой — для переноса или отвода тепла. Например, радиаторы делают из алюминия, меди или стали, так как они хорошо передают тепло, то есть имеют высокий коэффициент теплопроводности. Для утепления используются материалы с низким коэффициентом теплопроводности — они лучше сохраняют тепло. В случае если объект состоит из нескольких слоев материала, его теплопроводность определяется как сумма коэффициентов всех материалов. При расчетах, рассчитывается теплопроводность каждой из составляющих «пирога», найденные величины суммируются. В общем получаем теплоизоляцонную способность ограждающей конструкции (стен, пола, потолка).

Теплопроводность строительных материалов показывает количество тепла, которое он пропускает за единицу времени

Есть еще такое понятие как тепловое сопротивление. Оно отображает способность материала препятствовать прохождению по нему тепла. То есть, это обратная величина по отношению к теплопроводности. И, если вы видите материал с высоким тепловым сопротивлением, его можно использовать для теплоизоляции. Примером теплоизоляционных материалов может случить популярная минеральная или базальтовая вата, пенопласт и т.д. Материалы с низким тепловых сопротивлением нужны для отведения или переноса тепла. Например, алюминиевые или стальные радиаторы используют для отопления, так как они хорошо отдают тепло.

Блок: 2/5 | Кол-во символов: 1952
Источник: https://stroychik.ru/strojmaterialy-i-tehnologii/teploprovodnost-stroitelnyh-materialov

Таблица теплопроводности теплоизоляционных материалов

Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше  (а лучше — хоть немного больше) рекомендованной для вашего региона.

Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций

При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

Наименование материала /Коэффициент теплопроводности Вт/(м·°C)

В сухом состоянииПри нормальной влажностиПри повышенной влажности
Войлок шерстяной0,036-0,0410,038-0,0440,044-0,050
Каменная минеральная вата 25-50 кг/м30,0360,0420,,045
Каменная минеральная вата 40-60 кг/м3 0,0350,0410,044
Каменная минеральная вата 80-125 кг/м30,0360,0420,045
Каменная минеральная вата 140-175 кг/м30,0370,0430,0456
Каменная минеральная вата 180 кг/м30,0380,0450,048
Стекловата 15 кг/м30,0460,0490,055
Стекловата 17 кг/м30,0440,0470,053
Стекловата 20 кг/м30,040,0430,048
Стекловата 30 кг/м30,040,0420,046
Стекловата 35 кг/м30,0390,0410,046
Стекловата 45 кг/м30,0390,0410,045
Стекловата 60 кг/м30,0380,0400,045
Стекловата 75 кг/м30,040,0420,047
Стекловата 85 кг/м30,0440,0460,050
Пенополистирол (пенопласт, ППС)0,036-0,0410,038-0,0440,044-0,050
Экструдированный пенополистирол (ЭППС, XPS)0,0290,0300,031
Пенобетон, газобетон на цементном растворе, 600 кг/м30,140,220,26
Пенобетон, газобетон на цементном растворе, 400 кг/м30,110,140,15
Пенобетон, газобетон на известковом растворе, 600 кг/м30,150,280,34
Пенобетон, газобетон на известковом растворе, 400 кг/м30,130,220,28
Пеностекло, крошка, 100 — 150 кг/м30,043-0,06
Пеностекло, крошка, 151 — 200 кг/м30,06-0,063
Пеностекло, крошка, 201 — 250 кг/м30,066-0,073
Пеностекло, крошка, 251 — 400 кг/м30,085-0,1
Пеноблок 100 — 120 кг/м30,043-0,045
Пеноблок 121- 170 кг/м30,05-0,062
Пеноблок 171 — 220 кг/м30,057-0,063
Пеноблок 221 — 270 кг/м30,073
Эковата0,037-0,042
Пенополиуретан (ППУ) 40 кг/м30,0290,0310,05
Пенополиуретан (ППУ) 60 кг/м30,0350,0360,041
Пенополиуретан (ППУ) 80 кг/м30,0410,0420,04
Пенополиэтилен сшитый0,031-0,038
Вакуум0
Воздух +27°C. 1 атм0,026
Ксенон0,0057
Аргон0,0177
Аэрогель (Aspen aerogels)0,014-0,021
Шлаковата0,05
Вермикулит
0,064-0,074
Вспененный каучук0,033
Пробка листы 220 кг/м30,035
Пробка листы 260 кг/м30,05
Базальтовые маты, холсты0,03-0,04
Пакля0,05
Перлит, 200 кг/м30,05
Перлит вспученный, 100 кг/м30,06
Плиты льняные изоляционные, 250 кг/м30,054
Полистиролбетон, 150-500 кг/м30,052-0,145
Пробка гранулированная, 45 кг/м30,038
Пробка минеральная на битумной основе, 270-350 кг/м30,076-0,096
Пробковое покрытие для пола, 540 кг/м30,078
Пробка техническая, 50 кг/м30,037

Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП , СП , СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей. Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала.

Блок: 3/5 | Кол-во символов: 3533
Источник: https://stroychik.ru/strojmaterialy-i-tehnologii/teploprovodnost-stroitelnyh-materialov

Применение показателя теплопроводности на практике

В строительстве все материалы условно подразделяются на теплоизоляционные и конструкционные. Конструкционное сырье отличается наибольшими показателями теплопроводности, но именно его применяют для постройки стен, перекрытий, прочих ограждений. Согласно таблице теплопроводности строительных материалов, при возведении стен из железобетона, для низкого теплообмена с окружающей средой толщина конструкции должна быть около 6 метров. В таком случае строение получится огромным, громоздким и потребует немалых затрат.

Наглядный пример — при какой толщине различных материалов их коэффициент теплопроводности будет одинаковым

Поэтому при возведении постройки следует отдельное внимание уделять дополнительным теплоизолирующим материалам. Слой теплоизоляции может не понадобиться только для построек из дерева или пенобетона, но даже при использовании подобного низкопроводного сырья толщина конструкции должна быть не менее 50 см.

Нужно знать! У теплоизоляционных материалов значения показателя теплопроводности минимальны.

Блок: 4/6 | Кол-во символов: 1066
Источник: http://remoo.ru/materialy/osnovnaya-tablitsa-teploprovodnosti-stroitelnyih-materialov

Эффективность многослойных конструкций

Плотность и теплопроводность

В настоящее время нет такого строительного материала, высокая несущая способность которого сочеталась бы с низкой теплопроводностью. Строительство зданий по принципу многослойных конструкций позволяет:

  • соответствовать расчётным нормам строительства и энергосбережения;
  • оставлять размеры ограждающих конструкций в пределах разумного;
  • уменьшить материальные затраты на строительство объекта и его обслуживание;
  • добиться долговечности и ремонтопригодности (например, при замене одного листа минеральной ваты).

Комбинация конструкционного материала и теплоизоляционного позволяет обеспечить прочность и снизить потерю тепловой энергии до оптимального уровня. Поэтому при проектировании стен при расчётах учитывается каждый слой будущей ограждающей конструкции.

Важно также учитывать плотность при строительстве дома и при его утеплении.

Плотность вещества – фактор, влияющий на его теплопроводность, способность задерживать в себе основной теплоизолятор – воздух.

Расчёт толщины стен и утеплителя

Расчёт толщины стены зависит от следующих показателей:

  • плотности;
  • расчётной теплопроводности;
  • коэффициента сопротивления теплопередачи.

Согласно установленных норм, значение показателя сопротивления теплопередачи наружных стен должно быть не менее 3,2λ Вт/м •°С.

 

Значения таблиц теплопроводности строительных материалов применяются при расчётах:

  • теплоизоляции фасадов;
  • общестроительной изоляции;
  • изоляционных материалов при устройстве кровли;
  • технической изоляции.

Задача выбора оптимальных материалов для строительства, конечно же, подразумевает более комплексный подход. Однако даже такие простые расчёты уже на первых этапах проектирования позволяют определить наиболее подходящие материалы и их количество.

Блок: 4/4 | Кол-во символов: 2577
Источник: https://kotel.guru/uteplenie/dom/koefficienty-teploprovodnosti-stroitelnyh-materialov-v-tablicah.html

Коэффициент теплопроводности строительных материалов: как применяется на практике и таблица

Практические значение коэффициента – это правильно проведенный расчет толщины несущих конструкций с учетом используемых утеплителей. Необходимо отметить, что возводимое здание – это несколько ограждающих конструкций, через которые происходит утечка тепла. И у каждой их них свой процент теплопотерь.

  • через стены уходит до 30% тепловой энергии общего расхода.
  • Через полы – 10%.
  • Через окна и двери – 20%.
  • Через крышу – 30%.

Теплопотери дома

То есть, получается так, что если неправильно рассчитать теплопроводность всех ограждений, то проживающим в таком доме людям придется довольствоваться лишь 10% тепловой энергии, которое выделяет отопительная система. 90% – это, как говорят, выброшенные на ветер деньги.

 

 

“Идеальный дом должен быть построен из теплоизоляционных материалов, в котором все 100% тепла будут оставаться внутри. Но по таблице теплопроводности материалов и утеплителей вы не найдете тот идеальный стройматериал, из которого можно было бы возвести такое сооружение. Потому что пористая структура – это низкие несущие способности конструкции. Исключением может быть древесина, но и она не идеал.”

Стена из бревен – одна из самых утепленных

Поэтому при строительстве домов стараются использовать разные строительные материалы, дополняющие друг друга по теплопроводности. При этом очень важно соотносить толщину каждого элемента в общей строительной конструкции. В этом плане идеальным домом можно считать каркасный. У него деревянная основа, уже можно говорить о теплом доме, и утеплители, которые закладываются между элементами каркасной постройки. Конечно, с учетом средней температуры региона придется точно рассчитать толщину стен и других ограждающих элементов. Но, как показывает практика, вносимые изменения не столь значительны, чтобы можно было бы говорить о больших капитальных вложениях.

Устройство каркасного дома в плане его утепления

Рассмотрим несколько часто используемых строительных материалов и проведем сравнение их теплопроводность по толщине.

Теплопроводность кирпича: таблица по разновидностям

ФотоВид кирпичаТеплопроводность, Вт/м*К

Керамический полнотелый0,5-0,8
Керамический щелевой0,34-0,43
Поризованный0,22
Силикатный полнотелый0,7-0,8
Силикатный щелевой0,4
Клинкерный0,8-0,9

Тепловая проводимость кирпичной кладки при разнице температуры в 10°С

Теплопроводность дерева: таблица по породам

Порода дереваБерезаДуб поперек волоконДуб вдоль волоконЕльКедрКленЛиственница

Теплопроводность, Вт/м С0,150,20,40,110,0950,190,13

Порода дереваЛипаПихтаПробковое деревоСосна поперек волоконСосна вдоль волоконТополь

Теплопроводность, Вт/м С0,150,150,0450,150,40,17

Коэффициент теплопроводности пробкового дерева самый низкий из всех пород древесины. Именно пробка часто используется в качестве теплоизоляционного материала при проведении утеплительных мероприятий.

У древесины теплопроводность ниже, чем у бетона и кирпича

Теплопроводность металлов: таблица

Данный показатель у металлов изменяется с изменением температуры, в которой они применяются. И здесь соотношение такое – чем выше температура, тем ниже коэффициент. В таблице покажем металлы, которые используются в строительной сфере.

Вид металлаСтальЧугунАлюминийМедь

Теплопроводность, Вт/м С4762236328

Теперь, что касается соотношения с температурой.

  • У алюминия при температуре -100°С теплопроводность составляет 245 Вт/м*К. А при температуре 0°С – 238. При +100°С – 230, при +700°С – 0,9.
  • У меди: при -100°С –405, при 0°С – 385, при +100°С – 380, а при +700°С – 350.

Тепловая проводимость у меди выше, чем у стали почти в семь раз

Таблица теплопроводности других материалов

В основном нас будет интересовать таблица теплопроводности изоляционных материалов. Необходимо отметить, что если у металлов данный параметр зависит от температуры, то у утеплителей от их плотности. Поэтому в таблице будут расставлены показатели с учетом плотности материалом.

Теплоизоляционный материалПлотность, кг/м³Теплопроводность, Вт/м*К

Минеральная вата (базальтовая)500,048
1000,056
2000,07
Стекловата1550,041
2000,044
Пенополистирол400,038
1000,041
1500,05
Пенополистирол экструдированный330,031
Пенополиуретан320,023
400,029
600,035
800,041

И таблица теплоизоляционных свойств строительных материалов. Основные из них уже рассмотрены, обозначим те, которые в таблицы не вошли, и которые относятся к категории часто используемых.

Строительный материалПлотность, кг/м³Теплопроводность, Вт/м*К

Бетон24001,51
Железобетон25001,69
Керамзитобетон5000,14
Керамзитобетон18000,66
Пенобетон3000,08
Пеностекло4000,11

Коэффициент теплопроводности воздушной прослойки

Всем известно, что воздух, если его оставить внутри строительного материала или между слоями стройматериалов, это великолепный утеплитель. Почему так происходит, ведь сам воздух, как таковой, не может сдерживать тепло. Для этого надо рассмотреть саму воздушную прослойку, огражденную двумя слоями стройматериалов. Один из них соприкасается с зоной положительных температур, другой с зоной отрицательный.

Воздушная прослойка между внешней облицовкой и теплоизоляционным слоем

Тепловая энергия движется от плюса к минусу, и встречает на своем пути слой воздуха. Что происходит внутри:

  1. Конвекция теплого воздуха внутри прослойки.
  2. Тепловое излучение от материала с плюсовой температурой.

Поэтому сам тепловой поток – это сумма двух факторов с добавлением теплопроводности первого материала. Необходимо сразу отметить, что излучение занимает большую часть теплового потока. Сегодня все расчеты теплосопротивления стен и других несущих ограждающих конструкций проводят на онлайн-калькуляторах. Что касается воздушной прослойки, то такие расчеты провести сложно, поэтому берутся значения, которые в 50-х годах прошлого столетия были получены лабораторными исследованиями.

Воздушная прослойка внутри стены

В них четко оговаривается, что если разница температур стен, ограниченных воздухом, составляет 5°С, то излучение возрастает с 60% до 80%, если увеличить толщину прослойки с 10 до 200 мм. То есть, общий объем теплового потока остается тот же, излучение вырастает, а значит, теплопроводность стены падает. И разница значительная: с 38% до 2%. Правда, возрастает конвекция с 2% до 28%. Но так как пространство замкнутое, то движение воздуха внутри него никак не действует на внешние факторы.

Блок: 5/6 | Кол-во символов: 6383
Источник: https://seti.guru/tablitsyi-teploprovodnosti-raznyih-stroitelnyih-materialov

Особенности теплопроводности готового строения

Планируя проект будущего дома, нужно обязательно учесть возможные потери тепловой энергии. Большая часть тепла уходит через двери, окна, стены, крышу и полы.

В многоквартирных домах потери тепла будут отличаться по сравнению с частным строением

Если не выполнять расчеты по теплосбережению дома, то в помещении будет прохладно. Рекомендуется постройки из кирпича, бетона и камня дополнительно утеплять.

Утепление построек из бетона или камня повышает комфортные условия внутри здания

Полезный совет! Перед тем как утеплять жилище, необходимо продумать качественную гидроизоляцию. При этом даже повышенная влажность не повлияет на особенности теплоизоляции в помещении.

Разновидности утепления конструкций

Теплое здание получится при оптимальном сочетании конструкции из прочных материалов и качественного теплоизолирующего слоя. К подобным сооружениям можно отнести следующие:

Монтажные работы по утеплению каркасного сооружения требуют использования дополнительных конструктивных элементов

  • здание из стандартных материалов: шлакоблоков или кирпича. При этом утепление часто проводится по наружной стороне.

Особенности монтажа теплоизолирующего материала с внутренней стороны

Блок: 5/6 | Кол-во символов: 1212
Источник: https://HomeMyHome.ru/teploprovodnost-stroitelnykh-materialov-tablica.html

Расчет толщины стены по теплопроводности вручную по формулам или калькулятором

Рассчитать толщину стены не так просто. Для этого нужно сложить все коэффициенты теплопроводности материалов, которые были использованы для сооружения стены. К примеру, кирпич, штукатурный раствор снаружи, плюс наружная облицовка, если такая будет использоваться. Внутренние выравнивающие материалы, это может быть все та же штукатурка или гипсокартонные листы, другие плитные или панельные покрытия. Если есть воздушная прослойка, то учитывают и ее.

Толщина стен из разных стройматериалов с одинаковым тепловым сопротивлением

Есть так называемая удельная теплопроводность по регионам, которую берут за основу. Так вот расчетная величина не должна быть больше удельной. В таблице ниже по городам дана удельная тепловая проводимость.

РегионМоскваСанкт-ПетербургРостовСочи

Теплопроводность3,143,182,752,1

То есть, чем южнее, тем общая теплопроводность материалов должна быть меньше. Соответственно, можно уменьшать и толщину стены. Что касается онлайн-калькулятора, то предлагаем ниже посмотреть видео, на котором разбирается, как правильно пользоваться таким расчетным сервисом.

 

Блок: 6/6 | Кол-во символов: 1313
Источник: https://seti.guru/tablitsyi-teploprovodnosti-raznyih-stroitelnyih-materialov

Кол-во блоков: 10 | Общее кол-во символов: 19759
Количество использованных доноров: 5
Информация по каждому донору:

  1. https://stroychik.ru/st

kachestvolife.club

Что такое теплопроводность и термическое сопротивление, формула расчета теплового сопротивления – СамСтрой

Последние годы при строительстве дома или его ремонте большое внимание уделяется энергоэффективности. При уже существующих ценах на топливо это очень актуально. Причем похоже что дальше экономия будет приобретать все большую важность. Чтобы правильно подобрать состав и толщин материалов в пироге ограждающих конструкций (стены, пол, потолок, кровля) необходимо знать теплопроводность строительных материалов. Эта характеристика указывается на упаковках с материалами, а необходима она еще на стадии проектирования. Ведь надо решить из какого материала строить стены, чем их утеплять, какой толщины должен быть каждый слой.

Что такое теплопроводность и термическое сопротивление

При выборе строительных материалов для строительства необходимо обращать внимание на характеристики материалов. Одна из ключевых позиций — теплопроводность. Она отображается коэффициентом теплопроводности. Это количество тепла, которое может провести тот или иной материал за единицу времени. То есть, чем меньше этот коэффициент, тем хуже материал проводит тепло. И наоборот, чем выше цифра, тем тепло отводится лучше.

Диаграмма, которая иллюстрирует разницу в теплопроводности материалов

Материалы с низкой теплопроводностью используются для утепления, с высокой — для переноса или отвода тепла. Например, радиаторы делают из алюминия, меди или стали, так как они хорошо передают тепло, то есть имеют высокий коэффициент теплопроводности. Для утепления используются материалы с низким коэффициентом теплопроводности — они лучше сохраняют тепло. В случае если объект состоит из нескольких слоев материала, его теплопроводность определяется как сумма коэффициентов всех материалов. При расчетах, рассчитывается теплопроводность каждой из составляющих «пирога», найденные величины суммируются. В общем получаем теплоизоляцонную способность ограждающей конструкции (стен, пола, потолка).

Теплопроводность строительных материалов показывает количество тепла, которое он пропускает за единицу времени

Есть еще такое понятие как тепловое сопротивление. Оно отображает способность материала препятствовать прохождению по нему тепла. То есть, это обратная величина по отношению к теплопроводности. И, если вы видите материал с высоким тепловым сопротивлением, его можно использовать для теплоизоляции. Примером теплоизоляционных материалов может случить популярная минеральная или базальтовая вата, пенопласт и т.д. Материалы с низким тепловых сопротивлением нужны для отведения или переноса тепла. Например, алюминиевые или стальные радиаторы используют для отопления, так как они хорошо отдают тепло.

Таблица теплопроводности теплоизоляционных материалов

Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше  (а лучше — хоть немного больше) рекомендованной для вашего региона.

Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций

При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

Наименование материала

Коэффициент теплопроводности Вт/(м·°C)

В сухом состоянии

При нормальной влажности

При повышенной влажности

Войлок шерстяной

0,036-0,041

0,038-0,044

0,044-0,050

Каменная минеральная вата 25-50 кг/м3

0,036

0,042

0,,045

Каменная минеральная вата 40-60 кг/м3

0,035

0,041

0,044

Каменная минеральная вата 80-125 кг/м3

0,036

0,042

0,045

Каменная минеральная вата 140-175 кг/м3

0,037

0,043

0,0456

Каменная минеральная вата 180 кг/м3

0,038

0,045

0,048

Стекловата 15 кг/м3

0,046

0,049

0,055

Стекловата 17 кг/м3

0,044

0,047

0,053

Стекловата 20 кг/м3

0,04

0,043

0,048

Стекловата 30 кг/м3

0,04

0,042

0,046

Стекловата 35 кг/м3

0,039

0,041

0,046

Стекловата 45 кг/м3

0,039

0,041

0,045

Стекловата 60 кг/м3

0,038

0,040

0,045

Стекловата 75 кг/м3

0,04

0,042

0,047

Стекловата 85 кг/м3

0,044

0,046

0,050

Пенополистирол (пенопласт, ППС)

0,036-0,041

0,038-0,044

0,044-0,050

Экструдированный пенополистирол (ЭППС, XPS)

0,029

0,030

0,031

Пенобетон, газобетон на цементном растворе, 600 кг/м3

0,14

0,22

0,26

Пенобетон, газобетон на цементном растворе, 400 кг/м3

0,11

0,14

0,15

Пенобетон, газобетон на известковом растворе, 600 кг/м3

0,15

0,28

0,34

Пенобетон, газобетон на известковом растворе, 400 кг/м3

0,13

0,22

0,28

Пеностекло, крошка, 100 – 150 кг/м3

0,043-0,06

Пеностекло, крошка, 151 – 200 кг/м3

0,06-0,063

Пеностекло, крошка, 201 – 250 кг/м3

0,066-0,073

Пеностекло, крошка, 251 – 400 кг/м3

0,085-0,1

Пеноблок 100 – 120 кг/м3

0,043-0,045

Пеноблок 121- 170 кг/м3

0,05-0,062

Пеноблок 171 – 220 кг/м3

0,057-0,063

Пеноблок 221 – 270 кг/м3

0,073

Эковата

0,037-0,042

Пенополиуретан (ППУ) 40 кг/м3

0,029

0,031

0,05

Пенополиуретан (ППУ) 60 кг/м3

0,035

0,036

0,041

Пенополиуретан (ППУ) 80 кг/м3

0,041

0,042

0,04

Пенополиэтилен сшитый

0,031-0,038

Вакуум

0

Воздух +27°C. 1 атм

0,026

Ксенон

0,0057

Аргон

0,0177

Аэрогель (Aspen aerogels)

0,014-0,021

Шлаковата

0,05

Вермикулит

0,064-0,074

Вспененный каучук

0,033

Пробка листы 220 кг/м3

0,035

Пробка листы 260 кг/м3

0,05

Базальтовые маты, холсты

0,03-0,04

Пакля

0,05

Перлит, 200 кг/м3

0,05

Перлит вспученный, 100 кг/м3

0,06

Плиты льняные изоляционные, 250 кг/м3

0,054

Полистиролбетон, 150-500 кг/м3

0,052-0,145

Пробка гранулированная, 45 кг/м3

0,038

Пробка минеральная на битумной основе, 270-350 кг/м3

0,076-0,096

Пробковое покрытие для пола, 540 кг/м3

0,078

Пробка техническая, 50 кг/м3

0,037

Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей. Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала.

Таблица теплопроводности строительных материалов

Стены, перекрытия, пол, делать можно из разных материалов, но так повелось, что теплопроводность строительных материалов обычно сравнивают с кирпичной кладкой. Этот материал знаю все, с ним проще проводить ассоциации. Наиболее популярны диаграммы, на которых наглядно продемонстрирована разница между различными материалами. Одна такая картинка есть в предыдущем пункте, вторая — сравнение кирпичной стены и стены из бревен — приведена ниже. Именно потому для стен из кирпича и другого материала с высокой теплопроводностью выбирают теплоизоляционные материалы. Чтобы было проще подбирать, теплопроводность основных строительных материалов сведена в таблицу.

Сравнивают самые разные материалы

Название материала, плотность

Коэффициент теплопроводности

в сухом состоянии

при нормальной влажности

при повышенной влажности

ЦПР (цементно-песчаный раствор)

0,58

0,76

0,93

Известково-песчаный раствор

0,47

0,7

0,81

Гипсовая штукатурка

0,25

Пенобетон, газобетон на цементе, 600 кг/м3

0,14

0,22

0,26

Пенобетон, газобетон на цементе, 800 кг/м3

0,21

0,33

0,37

Пенобетон, газобетон на цементе, 1000 кг/м3

0,29

0,38

0,43

Пенобетон, газобетон на извести, 600 кг/м3

0,15

0,28

0,34

Пенобетон, газобетон на извести, 800 кг/м3

0,23

0,39

0,45

Пенобетон, газобетон на извести, 1000 кг/м3

0,31

0,48

0,55

Оконное стекло

0,76

Арболит

0,07-0,17

Бетон с природным щебнем, 2400 кг/м3

1,51

Легкий бетон с природной пемзой, 500-1200 кг/м3

0,15-0,44

Бетон на гранулированных шлаках, 1200-1800 кг/м3

0,35-0,58

Бетон на котельном шлаке, 1400 кг/м3

0,56

Бетон на каменном щебне, 2200-2500 кг/м3

0,9-1,5

Бетон на топливном шлаке, 1000-1800 кг/м3

0,3-0,7

Керамическийй блок поризованный

0,2

Вермикулитобетон, 300-800 кг/м3

0,08-0,21

Керамзитобетон, 500 кг/м3

0,14

Керамзитобетон, 600 кг/м3

0,16

Керамзитобетон, 800 кг/м3

0,21

Керамзитобетон, 1000 кг/м3

0,27

Керамзитобетон, 1200 кг/м3

0,36

Керамзитобетон, 1400 кг/м3

0,47

Керамзитобетон, 1600 кг/м3

0,58

Керамзитобетон, 1800 кг/м3

0,66

ладка из керамического полнотелого кирпича на ЦПР

0,56

0,7

0,81

Кладка из пустотелого керамического кирпича на ЦПР, 1000 кг/м3)

0,35

0,47

0,52

Кладка из пустотелого керамического кирпича на ЦПР, 1300 кг/м3)

0,41

0,52

0,58

Кладка из пустотелого керамического кирпича на ЦПР, 1400 кг/м3)

0,47

0,58

0,64

Кладка из полнотелого силикатного кирпича на ЦПР, 1000 кг/м3)

0,7

0,76

0,87

Кладка из пустотелого силикатного кирпича на ЦПР, 11 пустот

0,64

0,7

0,81

Кладка из пустотелого силикатного кирпича на ЦПР, 14 пустот

0,52

0,64

0,76

Известняк 1400 кг/м3

0,49

0,56

0,58

Известняк 1+600 кг/м3

0,58

0,73

0,81

Известняк 1800 кг/м3

0,7

0,93

1,05

Известняк 2000 кг/м3

0,93

1,16

1,28

Песок строительный, 1600 кг/м3

0,35

Гранит

3,49

samstroy.com

Теплопроводность стройматериалов – таблица 1

Для того, чтобы грамотно построить теплотехническую схему дома, тут без вопросов, потребуется знать теплопроводность материалов. Любых – строительных и тех, что к строительным отнести никак нельзя.

Алексей Арсентьев любезно согласился опубликовать собираемые им на протяжении долгого времени таблицы по теплопроводности материалов. Я же, со своей стороны, как обычно буду немного комментировать таблицы и акцентировать внимание на некоторых моментах, чтобы вам, тем, кто будет ими пользоваться, было понятно «что и как».

Итак, таблиц будет несколько – я буду их выкладывать одну за другой, и тут же буду комментировать. Все таблицы пойдут в категории «Теплотехника», хотя некоторые возможно отнести и к категории «Строительные материалы».

Из таблиц сознательно исключены материалы, которые слабо применимы или вообще никак не встречаются в частном строительстве.

Однако, некоторые материалы в этих таблицах у вас, возможно, вызовут удивление – как они вообще здесь оказались? Например, вода, медь, иней, лед и тому подобные вещества.

Изо льда и меди мы конечно не строим частный дом. Но в его стенах и перекрытиях, а также в других частях дома, они присутствуют. Например, электропроводка – вот вам и медь.

Или наледь на стенах – вот вам и иней, и вода в твердом состоянии.

Часто в зимний период в доме становится холоднее, даже если регулятор газового котла выкручен до отказа. Котел пожирает кубометры газа, а в доме не становится теплее. Что же происходит? – думает обеспокоенный хозяин. И невдомек ему, что утеплитель на стенах набрал влаги и потерял значительную часть своих теплоизолирующих свойств в связи с увеличившейся теплопроводностью.

Так что всегда полезно знать не только теплопроводность пенополистирола, но и теплопроводность воды.

Итак, смотрим первую таблицу:

В ней для застройщика – практика, в первую очередь интерес представляет теплопроводность дерева, гипсокартона, ДСП и железобетона. О теплопроводности дерева я хотел бы поговорить в отдельном материале, так как у Алексея есть отдельная таблица по видам дерева, применяемого в строительстве.

Из приведенной же выше таблицы пока видно, что дерево в этой группе – лучший изолятор с теплопроводностью поперек волокон 0,10-0,15 Вт/(м*С). Если же рассматривать группу ДСП, гипсокартон и дерево вдоль волокон – то их теплопроводность – до 0,2 Вт/(м*С). Естественно, утепляться гипсокартонном никто не советует. Однако при монтаже в 2 плотных слоя (32 мм) гипсокартон уже представляет собой преграду теплу или холоду с приличным теплосопротивлением.

Самая хорошая теплопроводность из группы неметаллов у бетона (железобетона) и, как следствие, самое низкое теплосопротивление. Построили фундамент – утепление необходимо, если ваш дом находится в регионе России, для которого характерны низкие температуры в зимний период.
Ну, и смотрите следующую таблицу по теплопроводности материалов на нашем сайте.

dom-data.ru

Полный коэффициент теплообмена. Тепловое и термическое сопротивление.

Полный коэффициент теплообмена. Тепловое и термическое сопротивление.

Полный коэффициент теплообмена для стен или теплообменников может быть вычислен как:

1 / U A = 1 / h1 A1 + dxw / k A + 1 / h2 A2         (1)

где

U = полный коэффициент теплообмена (Вт/м2К)

A = площадь поверхности теплообмена для каждой из сторон(м2)

k = теплопроводность материала (Вт/мК)

h = коэффициент теплообмена для каждого рабочей среды(Вт/м2К)

dxw = толщина стенки (м)

Теплопроводность – k – для нескольких материалов: .

  • ПП-Полипропилен – 0.12 Вт/мК
  • Нержавеющая стальl – 21 Вт/мК
  • Алюминий – 221 Вт/мК

Коэффициент  теплообменаhзависит от

  • разновидности рабочей среды – газ или жикость
  • свойств потока, таких как скорость, например
  • другие температурные и поточные свойства

Коэффициент теплообмена для нескольких распространенных рабочих сред:

  • Воздух – 10 to 100 Вт/м2К
  • Вода – 500 to 10 000 Вт/м2К

Тепловое сопротивление (термическое)

Полный коэффициент теплообмена также может быть вычислен с помощью оценки теплового сопротивления (термического). Стена разбивается на зоны с разным тепловым (термическим)  сопротивлением, где

  • теплообмен между 1й рабочей средой и стенкой описывается одним коэффициентом теплового (термического) сопротивления
  • теплообмен через стенку описывается вторым коэффициентом
  • обмен между стенкой и второй рабочей средой описывается третьим коэффициентом

Покрытие поверхности или слои сгоревших продуктов дают дополнительное тепловое (термическое) сопротивление стенке, снижая при этом полный коэффициент теплообмена.

Общая формула:

Rt=(T2-T1)/P

где:

  • Rt — тепловое (термическое) сопротивление на участке тепловой цепи, K / Вт
  • T2 — температура начала участка, K
  • T1 — температура конца участка, K
  • P — тепловой поток, протекающий через участок цепи, Вт

Пример – Теплообмен в теплообменнике

Плоский теплообменник передает тепло от рабочей среды A к рабочей среде B. Толщина тонкой стенки 0.1 мм и материал либо ПП-Полипропилен,либо алюминий либо нержавеющая сталь.

Рабочие тела А и В – воздух с коэффициентом теплообмена hair = 50 Вт/м2К.

Полный коэффициент теплообмена U на единицу площади выражается как:

U = 1 / (1 / hA + dxw / k + 1 / hB)         (1b)

Используя данные ниже можно посчитать полный коэффициент теплообмена для:

  • ПП-Полипропилен : U = 24.5 Вт/м2К
  • Сталь : U = 25.0 Вт/м2К
  • Алюминий : U = 25.0 Вт/м2К

 

tehtab.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *