Утепление потолка опилками: Утепление потолка опилками: отзывы и рекомендации

Содержание

Использование опилок в качестве утеплителя. Как правильно это делать, полезные советы.

Опилки являются универсальным натуральным утеплителем. С помощью этого материала можно сделать теплыми не только полы в доме, но и утеплить стены и крышу. Во время бурного развития технологий опилки, как утеплитель, по-прежнему не утрачивают своей популярности. Наши советы помогут правильно выполнить полное утепление дома опилками своими руками.

Как использовать опилки в качестве утеплителя

Древесные опилки – это отходы распиловки и переработки древесины, мелкая стружка и древесная пыль. Опилки применяются в частном строительстве в качестве основного материала для изготовления блоков. Либо как самый простой и достаточно качественный натуральный утеплитель для дач, загородных домов и различных хозяйственных построек. Однако одни опилки (насыпью) применяются очень редко. К опилкам примешивают песок, известь, медный купорос, цемент, различные антисептики и защитные пропитки, – именно так получают практичные и долговечные утепляющие смеси.

Слой опилок с то же шириной, что и у минеральной ваты, обладает теми же практическими и качественными характеристиками. Это значит, что расход материала будет приблизительно одинаков. Но опилки, это натуральный утеплитель, он сохраняет все свойства и экологичность дерева. Опилки, предварительно смешанные с необходимыми компонентами, можно легко засыпать в любое труднодоступное место. После этого смесь тщательно утрамбовывают. Таким образом получается защитная прослойка с отличными тепло- и звукоизолирующими параметрами.

Следует отметить, почему опилки, как утеплитель, не стоит применять в чистом виде без примесей. У такого материала два главных недостатка: сухие опилки легко воспламеняются и также являются облюбованным местом грызунов. К тому же опилки очень сильно впитывают влагу. Именно поэтому к опилкам примешивают известь, гипс, медный купорос и другие компоненты – такая смесь трудно возгораема и безразлична вредителям.

Утеплители из опилок

Строительная промышленность на основе опилок наладила выпуск древесных блоков, арболита, опилочных гранул и олкобетона. У всех этих материалов два основных немаловажных качества: они обладают прекрасными термоизоляционными свойствами и входят в разряд самых дешевых строительных материалов.

опилочные гранулы

Этот утеплитель получают путем гранулирования опилок с добавлением антисептика, антиперена и клея из карбоксиметилцеллюлозы. Такие гранулы (окатыши) обладают низкой горючестью и непривлекательны для грызунов. Применяются в качестве утеплителя в частном и малоэтажном промышленном строительстве.


опилкобетон

Для получения опилкобетона (опилкобетонных блоков) смешивают опилки, желательно из хвойных пород дерева, песок, известь и цемент. В эту смесь постепенно и малыми порциями добавляют воду и постоянно перемешивают массу. Главное в этом процессе – правильно рассчитать количество воды. Перемешивать смесь можно не только вручную, но и с помощью бетономешалки. Полученная смесь формируется в блоки и просушивается (от 1до 3 месяцев). Такой утеплитель превышает показатели кирпича по теплопроводности, он огнестоек и по показателям сравним со шлакобетоном.

Для утепления стен формируются небольшие плоские блоки шириной 10-20 см.

арболит

Такой легкий бетон получают путем смешивания органического наполнителя, цемента и химических добавок. В качестве основного составляющего (до 90%) могут быть использованы опилки, древесная стружка или щепа, солома, льняная костра, измельченная древесина. Для минерализации смеси добавляется хлорид кальция (CaCl₂). Этот ингредиент способствует правильному процессу отвердевания полученной смеси.

Арболит применяется как утеплитель блоками или плитами, он обладает хорошей устойчивостью к нагрузкам, огнестойкостью и теплопроводностью. Однако, как и все утеплители с применением опилок, требует устройства качественной гидроизоляции.

Как сделать утеплитель для стен из опилок

Самым простым способом утепления стен опилками является засыпка их в стены при строительстве каркасного дома. Именно поэтому, чаще всего опилки как утеплитель стен применяют при строительстве дачных домиков.


В качестве утеплителя подходят опилки крупной фракции или мелкая стружка, полученные от распиловки исключительно древесины. Опилки и отходы мебельного производства, остающиеся от переработки ДСП, ОСБ, МДФ применять нельзя, так как в них изначально входят связующие материалы, такие отходы слишком мелкие (пылеобразные) и не являются экологически чистыми.

При таком методе к опилкам примешиваются цемент и известь. Иногда мастера советуют добавлять в смесь строительный гипс, для получения монолитной структуры. Но гипс очень быстро схватывается, такую смесь придется замешивать в малых количествах, что будет весьма трудоемко и долго по времени. Именно поэтому применяют цемент, он будет постепенно забирать из опилок лишнюю влагу и связывать их, такой утеплитель станет надежным и долговечным. Свежим опилкам следует дать «отлежаться» пару месяцев – в них содержатся вещества, препятствующие связыванию цемента с водой.

Опилки перед изготовлением смеси необходимо пропитать антисептиком для предотвращения гниения. Это может быть медный купорос или борная кислота. Можно добавить антисептический препарат в воду для изготовления смеси. Для отпугивания мелких грызунов смешиваются опилки с известью, как утеплитель это достаточно качественный продукт, при этом вредители к нему безразличны.

Точную пропорцию смеси, в которой применяются опилки с цементом как утеплитель, определить достаточно сложно, параметры зависят от фракции и влажности самих опилок. В среднем понадобится:

  1. Опилки – 10 ведер.
  2. Цемент – 1 ведро.
  3. Известь – 0,5-1 ведро.
  4. Вода – от 5 л.

Все сухие ингредиенты смеси перемешиваются, затем добавляется вода. Очень важно правильно рассчитать нужное количество воды, ее можно добавлять при помощи лейки. Если взять небольшое количество смеси в руку и сжать, то комок должен быть эластичным, не рассыпаться, но и вода не должна при этом отжиматься.

Смесь в каркасные стены засыпается порциями и утрамбовывается. После каждой порции должна быть установлена разделительная доска, после чего процесс повторяется заново. Действие утепляющей смеси основано на том, что при трамбовке влага, содержащаяся в опилках, «схватывает» цемент. После просушки получается слой утеплителя с отличными теплоизоляционными параметрами.

Толщина утеплителя из опилок для жилого дома – 25-30 см. Если необходимо утеплить дачный домик, который будет эксплуатироваться зимой очень редко, то достаточно толщины слоя в стенах 15 см и в перекрытиях 20-25 см. Все места прохождения труб дымохода следует обезопасить пожаростойкими материалами. Кабели электропроводки заключают в металлические трубы. Все пожароопасные места (выключатели, розетки) следует оборудовать несгораемыми материалами.

Внимание! Не следует устраивать пароизоляцию стен с утеплителем из опилок. Стены должны «дышать», то есть быть паропроницаемыми.

Опилки для утепления потолка

К вопросу утепления потолка следует подойти очень тщательно, так как через потолок теряется около 20% тепла. При этом опилки как утеплитель потолка должны быть вылежанными, сухими, на них не должно быть грибка и плесени. Есть несколько вариантов изготовления утеплителя для потолка. Например, можно изготовить смесь с применение цемента, а можно применить глину.

утеплитель из опилок с добавлением цемента

Что бы правильно сделать утеплитель из опилок своими руками с цементом потребуется произвести следующие работы:

  1. Черновой потолок необходимо выслать пергамином или другим гидроизоляционным материалом. При этом потолочные балки, как и все деревянные конструкции в доме, должны быть обработаны огнезащитными эмульсиями.
  2. Смешивают в соотношении 10: 1 опилки и цемент. После этого добавляют воду так, чтобы смесь была слегка влажной (1-1,5 ведер воды). После перемешивания смеси опилки выглядят смазанными в цементе.
  3. Полученную смесь укладывают между балками по поверхности перекрытий, затем утрамбовывают. Толщина слоя утеплителя уложенного между балок около 25 см. Особый секрет такой теплоизоляционной прослойки – хорошая утрамбовка смеси.

Работы следует проводить в начале лета, что бы дать возможность слою утеплителя просохнуть.

Опилки, применяемые для потолка, могут быть как мелкими, так и крупным. Однако следует учитывать, что чем мельче опилки, тем больше потребуется воды, следовательно, смесь будет более вязкой. Для ее схватывания понадобится большее количество цемента.

Внимание! Чем больше цемента добавляется к утепляющей смеси из опилок, тем слабее ее теплоизоляционные параметры.

утеплитель из опилок с добавлением глины

Обычные глина и опилки как утеплитель применяются давно, такая смесь имеет отличные качественные характеристики. Утепление потолка выполняется последовательно:

  1. Перед началом работ потолочные перекрытия накрывают гидроизолирующей пленкой, так как смесь будет достаточно жидкой.
  2. Следует приготовить глиняную воду: 5 ведер глины заливают водой до получения сметанообразной консистенции. В бетономешалку заливают 2-3 ведра глиняной воды и засыпают опилки. Размешивают до густой, вязкой массы.
  3. Смесь наносится на потолок равномерно слоем 10 см, разглаживается и утрамбовывается. Для засыхания понадобится около месяца. При этом поверхность может слегка растрескаться, – ее можно затереть раствором глины. Поверх рекомендуется проложить доски для свободного продвижения по чердаку.

Утепленный опилками пол

Здесь сразу же стоит сделать оговорку. Утепление пола опилками несколько отличается от других методов, так как полы требуется постоянно мыть, а опилки как утеплитель пола очень сильно напитывают воду. Поэтому следует позаботиться об их надежной защите, при этом, не забывая о том, что опилочная смесь должна постоянно подсушиваться («дышать»). В качестве защитной пленки лучше всего применять пергамин. Причем он укладывается как под слой смеси из опилок, так и на него, непосредственно под доски чистового пола.

На основе опилок производится эковата. Это достаточно дешевый утеплитель на основе натуральных компонентов. В его состав входят все те же цемент и известь. К ним может быть добавлен песок. Наносить такой теплоизоляционный слой можно вручную или при помощи специального аппарата.

Такой механический метод позволяет укладывать эковату как сухим, так и увлажненным способом.

Эковата нагнетается прямо в пространство пола между лагами. Обычно такую работу доверяют специалистам, так как нет смысла покупать дорогую установку для разового применения.

Естественно, обычную опилочную смесь из цемента и извести можно заложить в качестве утеплителя самостоятельно. Расход материала в этом случае увеличится на 40%.

Процесс утепления пола происходит в следующей последовательности:

  1. При необходимости выполняется частичный или полный демонтаж пола. Все деревянные балки, перекрытия, бруски обрабатываются антипиреновой эмульсией.
  2. К балкам монтируется черновой пол из любой низкосортной или вторичной древесины. Все дерево должно быть обработано антипиреном и антисептиком.
  3. На черновой пол укладывают доски или щиты. На это вспомогательное основание расстилают укрывной паропроницаемый материал (пергамин).
  4. Полученную из опилок смесь, насыпают слоем около 10 см.
  5. Уложенный утеплитель должен просохнуть. При этом утеплитель осядет на 3-4 см.
  6. После высыхания утеплителя укладывается пергамин и монтируется чистовой пол.

Утеплитель из опилок своими руками – это экологически чистый продукт, именно поэтому , не смотря на огромное разнообразие современных строительных материалов, он пользуется вниманием и популярностью. При соблюдении всех норм производства и пожарной безопасности, дом с таким утеплителем будет теплым , сухим и экологически чистым.

фото и видео утепления, отзывы

Согласно данным наблюдений через потолок помещение теряет около 20% тепла. Связано это с тем, что, во-первых, площадь потолочного перекрытиявесьма велика, а во-вторых, нагретый воздухвсегда поднимается вверх, и не встретив на пути преграды в виде теплоизолятора,вместо того чтобы обогревать комнату, будет растрачен нанагрев холодного потолка и крыши.

Владельцы частных коттеджей знакомы с этим фактом не в теории, а на практике.

Теплоизоляция потолка: особенности

Максимальным теплоизолирующим эффектом обладает воздух. Преграда в виде двух листов материала с воздушной прослойкой между ними,служит, куда лучшим утеплителем, чем те же два листа, соединенные вместе. Это принцип весьма широко используется: стеклопакет с воздушным или газовым заполнением, дверной тамбур, и все современные утеплители. Последние представляют собой некую пористую или волокнистую структуру. Причем материал является тем лучшим изолятором, чем больше пор содержит.

Теплоизоляция потолка в частном доме основывается на использовании того же метода: создания воздушной прослойки между двумя изолирующими слоями. При этом в качестве одного слоя выступает крыша, а в роли второго – пол на чердаке.

Крыша, особенно когда ее покрывает снег, отлично удерживает тепло, а воздух на чердаке служит теплоизолирующим слоем. Для того чтобы пол послужил изолятором,он засыпается одним из видов сыпучих материалов в зависимости от характера перекрытия -дерево или бетон. В итоге весь утепленный чердак служит теплоизолятором потолка в доме.

Непременными условием является холодный чердак. Если он превращен в мансарду, предлагаемый способ не годится.

Материалы

Древесные опилки – один из самых древних материалов, используемых для утепления. Несомненнымдостоинством его является легкость и сохранение свойственных дереву тепло- и звукоизоляционных свойств: при самой тщательной трамбовке в слое опилок сохраняется воздух. Стоимость материала весьма доступна, а в некоторых случаях, если поблизости есть деревообрабатывающее предприятие, опилки можно получить бесплатно, как утверждают отзывы.

Недостатком выступает горючесть, поэтому материал используется только в смесях – с глиной, цементом, песком и гипсом. Перед тем как утеплить потолок следует проверить качество опилок – они должны быть хорошо высушены и хрустеть при сжатии.

Послойное утепление

Этот метод реализуется в тех случаях, когда чердак не является подсобным помещением и не используется для хранения или сушки каких-либо материалов. Предполагается, что на чердаке настлан деревянный пол. Все работы осуществляются своими руками.

  1. Поверхность пола обмазывается глиной – консистенция раствора сметаноподобная. Затем пол засыпается песком. В случае если после высыхания или в процессе эксплуатации глиняная поверхность растрескается, песок засыпает щель, и теплоизоляция потолка не нарушается.
  2. Так как опилки – лакомое блюдо для грызунов, то перед его укладкой пол засыпается смесью гашеной извести и карбида. Материал, как показывают отзывы,рекомендуется обработать антисептиком, добавить к нему листья табака и битое стекло.
  3. На полу размещается слой опилок, толщиной от 150 до 300 мм в зависимости от требуемой степени утепления. Оптимальным для средней полосы считается слой в 250-300 мм.
  4. Для предупреждения возможности возгорания опил присыпается слоем мелкого шлака.

Настил деревянных досок сверху утеплителя не предполагается. Возможно размещение отдельных досок для перемещения по чердаку.

Утепление с помощью смеси опилок и глины

Поверхность пола прикрывается гидроизолирующимматериалом –допустима даже обычная поливинилхлоридная пленка. Можно предварительно разместить под ней картон в качестве еще одного слоя изолятора, но следует помнить, что это горючий материал и не способствует понижению пожароопасности.

  1. Приготавливается раствор: дляэтого глина – около пяти ведер, засыпаетсяв бочку и заливается водой. Материал должен хорошо перемешаться с водой, чтобы образовать смесь с консистенцией жидкой сметаны. Два ведра смеси помещаются в бетономешалку, затем туда же загружается опил: полученная масса должны быть довольно густой.Замесить раствор можно и своими руками, но это потребует больше времени и усилий.
  2. Смесь наносится равномерным слоем толщиной в 10 см навсю поверхность пола. Высушивается утеплитель в течение нескольких дней – от 3-х до 7. Поверхность глиняно-опилочного покрытия может потрескаться. В этом случае трещины рекомендуется затереть обычной глиной.
  3. Чердак можно застелить деревянными досками. О том, как утеплить потолок с помощью опилоки глины более подробно рассказано на видео.

Вместо глины может быть использован цемент. Для этого опилки – 10 частей, смешиваются с цементом – 1–2 части, и заливаются водой.Здесь допускается использовать влажный опил. Затем смесь распределяется по поверхности пола толщиной до 200 мм. Достоинством такого способа являетсяпрочность, долговечность и слабая чувствительность к действию влаги. Недостатком – длительный сроквысушивания, так как цементу для достижения должной прочности требуется не меньше месяца.

Утеплить таким образом потолок рекомендуется весной для того, чтобы за лето материал достигнул требуемых свойств.

дешево и эффективно Потолок из опилок

Правильно и качественно утепленный потолок позволяет значительно сэкономить на расходах за электроэнергию. Утепление потолка с помощью опилок – самый простой и экономичный вариант. Для выполнения данного процесса не потребуется привлечение специалистов, а для покупки материала достаточно потратиться совсем немного. Об особенностях и технологии утепления потолка с использованием опилок рассмотрим далее.

Актуальность утепления потолка с опилками в частном доме

Хотя строительный рынок и предполагает наличие огромного количества современных теплоизоляционных материалов, их стоимость является достаточно высокой. Для обеспечения качественного утепления потолка потребуется очень сильно потратиться. Поэтому, с целью экономии, но в то же время, для получения качественно утепленного потолка используют опилки.

Среди преимуществ применения опилок на потолке выделяют:

  • доступную стоимость материала, кроме того, возможен вариант приобретения опилок на деревообрабатывающих фабриках или предприятиях практически за бесценок;
  • универсальность применения, опилки подходят для утепления разного рода потолков и имеют практически неограниченную сферу использования;
  • легкость установки данного утеплителя не предполагает использование дополнительных крепежей или скоб, которые зафиксируют утеплитель на поверхности;
  • длительность эксплуатации опилок, используемых в качестве утеплителя, проверена годами, в соотношении с современными материалами, которые появились не так давно.

Выбор опилок для утепления потолка

Существует несколько разновидностей опилок, которые различаются прежде всего по размеру. Выделяют материал:

  • мелкофракционный;
  • среднефракционный;
  • большой фракции.

Предпочтение лучше отдать второму варианту, так как мелкие опилки достаточно сложные в работе, а крупные – не способны обеспечить качественную теплоизоляцию.

При возможности выберите опилки, которые образовались в процессе распила столярного производства в сушке, они не нуждаются в дополнительной подготовке и практически не подвержены гниению.

При покупке опилок, которые образовались от кругляков с естественной влажностью, они должны быть просушены. Для этого, разложите их на горизонтальной поверхности, например, под навесом на неделю. Если погода за эти дни была влажной, то время сушки следует увеличить.

В соотношении с типом древесины из которой изготовлены опилки, лучше отдать предпочтение хвойным породам деревьев. Так как именно они характеризуются высоким содержанием смолы, которая предотвращает развитие в опилках всякого рода насекомых.

В процессе утепления бани отличным вариантом станет лиственница. Такие опилки должны быть смешанные с пеплом, во избежание их гниения. После покупки опилок должно пройти от 6 до 12 месяцев. Таким образом, уровень сахара, который является провокатором гнили снизится, и риск гниения уменьшится.

Следите за отсутствием в опилках посторонних примесей и различного рода мусора. При его наличии, следует просеять опилки через сито. Крупные частицы мусора выберите самостоятельно.

Требования к опилкам, используемым при утеплении потолка:

  • выдержка от полугода до одного года;
  • отсутствие влаги;
  • отсутствие плесени;
  • средняя фракция.

Как правильно утеплить потолок опилками: приготовление раствора

Существует огромное количество составов, которые пригодны для утепления потолка, чаще всего их основными компонентами выступают опилки, известь, цемент, песок, глина.

Предлагаем универсальный рецепт, испробованный годами. Для его приготовления потребуется наличие:

  • просушенных опилок, по отношению ко всем компонентам их должно быть в десять раз больше;
  • одной части извести;
  • сколько же и цемента;
  • в качестве антисептического средства необходимо использовать три ложки буры или медного купороса;
  • количество воды зависит от желаемой консистенции раствора и от влажности опилок, среднее значение от 5 до 10 частей.

Процедура приготовления данного состава состоит в следующем:

1. Смешайте ранее приготовленный цемент с известью.

2. Пересыпьте опилки в чистую посуду в виде старой ванны.

3. Чтобы приготовить раствор предпочтительнее использовать бетономешалку, так смесь получится однородной, а сцепление между компонентами значительно улучшиться.

4. Сначала в бетономешалку засыпают опилки, затем смесь извести с цементом.

5. Вода наливается в ведро, в которое наливается три столовых ложки антисептика. Учтите, что данный материал достаточно токсичный, поэтому в процессе работ следует воспользоваться перчатками и маской.

6. Постепенно залейте воду, в ранее смешанные сухие компоненты. Следите за его консистенцией. Для проверки раствора достаточно взять небольшую его часть и сделать из нее комок. При разжимании ладоней он должен держать форму. Кроме того, в нем не должна присутствовать лишняя влага.

Этот вариант больше всего приемлем в процессе утепления потолка, который находится в бане. При этом, применение медного купороса в данном случае является недопустимым, так как в процессе воздействия на него высокой температуры он начинает выделять вредные для здоровья человека вещества.

Чтобы приготовить такой состав потребуется наличие:

  • опилок;
  • глины;
  • извести;
  • воды.

Соотношение компонентом по порядку из употребления составляет: десять к пяти к одному к 8-15 частям воды.

В начале выполнения работ следует заняться глиной. Ее нужно замочить двумя частями воды и оставить на время, пока она полностью не размокнет.

Все остальные компоненты смешиваются между собой, смесь должна стать сметанообразной, в ней не должно быть комков. Опилки, после покупки нужно выдержать на протяжении минимум пол года. Так как в растворе отсутствует антисептик, то снижение в них сахара, позволит избежать их гниения.

Полученный раствор смешивается с глиной. Учтите, что опилки добавляются постепенно, при этом смесь, должна тщательно перемешиваться. Готовый раствор должен обладать вязкостью и густотой.

Для проверки его качества используйте обыкновенную палку, при установке ее в резервуар, в котором находится смесь, она должна в нем держаться. При наличии слишком жидкого раствора, следует подождать около 24 часов до его загустения. При этом, не следует накрывать его с помощью крышки, чтобы не препятствовать испарению влаги.

Существует вариант точно такого же рецепта, в котором глина заменена гипсом. С его помощью также удается утеплить баню, однако, его приготовление должно осуществляться исключительно порционно, из-за высокой скорости застывания гипса.

Технология утепления потолка дома опилками

Утепление потолка опилками возможно только на верхней его части. Для проведения данного процесса потребуется приобрести деревянные доски, которыми прошиваются перекрытия балок. По толщине доски должны быть около 30 мм. Самым экономичным вариантом станет использование стандартных строганных досок, ранее просушенных от влаги.

Хотя, по рекомендациям специалистов, более качественный способ – использование шпунтованной доски. Для фиксации досок на балках используются гвозди или саморезы. Учтите, что масса, используемая в качестве утеплителя имеет достаточно большой вес, поэтому фиксация досок должна производиться особым способом.

Крепежи вбиваются в доски под наклоном, при чем каждый раз его нужно менять в противоположном направлении. Длина гвоздей должна составлять около 10 см, а саморезов 5 см.

Поверх досок устанавливается пароизоляционная пленка на основе поливинилхлорида. Возможен вариант использования рубероида. Пленка устанавливается с нахлестом в 11-14 см, для проклеивания стыковых участков используется битум или скотч. Учтите, что торцевые участки пленки должны выходить за поверхность стен на 100-150 мм. При наличии пустот, на боковых участках, для избавления от них используется монтажная пена. Пленка фиксируется на боковых участках стен с помощью степлера.

Далее производится раскладывание опилок, которые хорошенько разравниваются и утрамбовываются. Насыпь должна быть такой высоты, чтобы дойти до перекрытия. Далее, рекомендуется посыпать слой опилок золой, которая обладает хорошими антисептическими характеристиками и помогает предотвратить их гниение.

После этого, опилки должны полежать на своем месте около двух, трех недель, чтобы излишняя влага из них испарилась. Далее, они покрываются пароизоляционным материалом. Именно он поможет предотвратить контакт утеплителя с влагой. Для фиксации пароизолятора на балках используется степлер. Таким образом, получится конструкция в виде конверта, снизу, по бокам с сверху которой установлена пароизоляция, а внутри находятся опилки.

Особенности утепления потолка опилками в бане

Технология утепления бани немного отличается от утепления обычного жилого помещения. Прежде всего, это связано с повышенной влажностью, которая присутствует в этом помещении. Для того, чтобы осуществить подшивку потолка используются широкие доски. Для изоляции трубы дымохода следует обшить его листом из стали или асбеста. На чердаке производится установка пароизоляции, учтите, что материал должен быть устойчивым перед воздействием высокой температуры, рубероид, не подойдет для этих целей, так как существует риск его загорания или размягчения. Вариант с пленкой из поливинилхлорида также не рекомендуется применять.

Пароизоляция также укладывается нахлестом на 12-13 см, на стенах материал загибается аж до 20 см. Далее укладывается смесь, в составе которой присутствует глина и опилки, которые хорошо разравниваются и утрамбовываются. Если планируется проводить утепление бани летнего типа, то достаточно уложить опилки слоем в 5 см, в противном случае, толщина слоя увеличивается до 15 см.

Далее следует подождать до высыхания раствора, при наличии небольших трещин, которые образовались после высыхания, следует обработать их с помощью такого же раствора. По рекомендациям специалистов, добавление каменной соли в состав готовой смеси для утепления, помогает предотвратить ее растрескивание. На два ведра глины, потребуется около 15-20 столовых ложек соли.

Раствор полностью высохнет где-то через месяц, при условии, что работы проводятся в теплое время года. Для улучшения антисептических свойств раствора, сверху он посыпается тонким слоем извести. После застывания теплоизоляционного материала, он покрывается тем же пароизолятором, образующим конверт. Если чердачное помещение бани планируется использовать в качестве места для отдыха или кладовки, то на пароизолятор укладывается настил из досок.

При использовании утеплителя на основе гипса, он укладывается порционно, тонкими слоями, так как гипс отличается высокой скоростью высыхания. Использование данного типа утеплителя возможно как на прямых участках, так и на наклонных поверхностях. Учтите, что при наличии электрических проводов на чердаке, они должны быть изолированы в специальной гофре.

Потолок с опилками: варианты утепления

Чтобы в опилках не заводились грызуны, во избежание появления пожара, в растворе должна присутствовать известь. Чтобы защитить теплоизоляционный материал от плесени рекомендуется добавлять антисептик, такой как борная кислота или медный купорос.

Возможен вариант утепления потолка опилками с цементом, для этого, потребуется в точности определить слой утеплителя, укладываемый на потолке. От правильности расчета слоя зависит качество теплоизоляции. Чем суровее климат местности и чем выше теплопотери здания, тем толще слой цементно-опилочного раствора потребуется.

При круглогодичном использовании здания, минимальная толщина слоя должна составлять 25 см.

На одну часть цемента потребуется около десяти частей опилок и одна часть извести. Далее антисептик разводиться с водой и этой смесью поливаются готовые ингредиенты.

Для утепление потолка в доме опилками потребуется выполнить ряд действий:

  • по всей площади потолка расстилается материал в виде картона или пергамина;
  • далее производится равномерное распределение ранее приготовленного состава;
  • хорошая утрамбовка позволит избавиться от скопления воздуха в смеси.

По прошествии двух недель раствор становится прочным, при ходьбе он должен хрустеть, но в то же время не прогибаться.

Утепление потолка опилками с известью и глиной проводится практически также. Опилки, в данном случае, должны быть хорошо просушенными и качественными. Чтобы приготовить раствор, сначала нужно залить водой глину. Далее она перемешивается до однородной консистенции. Постепенно в глину добавляются опилки, пока смесь не приобретет среднюю густоту. На потолке расстилается пергамин или пленка, фиксируемая с помощью степлера. Минимальная толщина слоя, наносимого на поверхность составляет 50 мм. После тщательной утрамбовки раствора его оставляют для высыхания, минимум на 3 дня. Все образовавшиеся щели заделывают такой же смесью. Полное высыхание материала осуществляется по прошествии одного месяца.

Еще одним вариантом является утепление потолка опилками с гипсом. В таком случае, соотношение ингредиентов составляет: 85 % к 10 % к 5 %, опилки: известь: гипс. Для начала опилки следует обработать с помощью антисептика, и хорошенько высушить. Далее производится тщательное перемешивание всех вышеуказанных компонентов между собой. В конце добавляется вода, с помощью которой регулируется консистенция состава. Толщина данного слоя должна составлять около 250 мм. Хорошая утрамбовка должна избавить материал от усадки и от воздуха. Все работы должны проводиться очень быстро, так как гипс очень быстро схватывается.

Утепление потолка опилками видео:

Малоэтажный дом состоит из нескольких конструктивных элементов – фундамент, этажи и чердачное помещение с крышей. Жилую зону и вспомогательные помещения (кухня, санузел, кладовка) от подкрышного пространства отделяет перекрытие . Последнее выполняет несколько функций:

  • отделяет верхний и нижний этаж, создавая изолированные помещения;
  • для нижнего помещения – это потолок;
  • верхнее помещение – пол.

Кроме прочностных функций, перекрытие должно проявлять теплоизолирующие свойства. И иногда, с целью сохранения тепла, делают утепление потолка опилками в частном доме.

Необходимость теплоизоляции

Воздух, нагреваясь, поднимается вверх. Там, под потолком, он отдает часть своей тепловой энергии перекрытию и опускается вниз за следующей порцией тепла. Если верхняя строительная конструкция обладает значительным коэффициентом теплоотдачи, то потери тепла будут существенными. Из этого факта следует, что утеплять следует не только фундамент, стены и крышу, но и межэтажное перекрытие. Такую операцию необходимо проводить и при переоборудовании чердачного помещения в мансарду – она не всегда используется.

Виды утепления

Теплоизоляция верхнего перекрытия может быть осуществлена несколькими способами:

  • создание подушки из легкого бетона, в состав которого входит теплоизолятор, например, керамзит, вермикулит;
  • использование плит из минеральной ваты, например, из стекловолокна;
  • применение технологической пены.

Все эти и другие способы имеют право на существование, но у них есть несколько существенных недостатков:

  • достаточно трудоемки в исполнении;
  • имеют не низкую цену;
  • требуют применения специального оборудования.

Впрочем, есть один вид, несправедливо забытый – это утепление потолка опилками.

Преимущества, недостатки применения

Применение древесного материала имеет ряд несомненных преимуществ:

  1. В качестве основного теплоизолятора применяется натуральный, природный, экологически чистый материал.
  2. Древесина обладает малым коэффициентом теплопропускания – это теплая» по тактильным ощущениям масса.
  3. Обладает отличной звукоизоляцией – это немаловажный фактор в доме, особенно если на чердаке будет обустроено жилое помещение.
  4. Опилки являются отходами деревообработки – у них малая стоимость.
  5. Этот утеплитель имеет малую удельную плотность – с мешком сухого материала справится любой человек.
  6. Опилочная масса технологична в применении.

Вместе с этим, есть ряд отрицательных моментов:

  1. Древесная субстанция гигроскопична, – измельченное дерево хорошо поглощает влагу из воздуха, при превышении атмосферной влажности более 60–70 %.
  2. Материал легко повреждается грызунами, на увлажненном субстрате может появиться плесень, грибок, начаться гниение.
  3. Опилки хорошо поддерживают горение – наличие воздуха в их составе способствует развитию тления в течение нескольких часов.

Способы утепления

Все этапы работ по использованию в качестве утеплителя опилок, можно выполнить своими руками. Существуют несколько способов применения природного утеплителя:

  • сухой;
  • с добавкой глины;
  • на основе цементного связующего.

Суть этого метода заключается в покрытии древесными отходами всей поверхности чердачного основания. Для такого вида утепления используют хорошо просушенный материал. Определить примерную степень влажности исходного материала можно методом «комкования». Сухие опилки, будучи сжатыми в ладонях, легко рассыпаются, издают хрустящий скрипучий звук. Влажный материал под воздействием механической нагрузки слипается в комок.

Этапы работ:

  1. Возможные зазоры между досками потолочного перекрытия заполняют монтажной пеной или перекрывают всю поверхность плотным картоном. Последний можно зафиксировать посредством мебельного степлера. Можно применить более прочный материал, также являющийся продуктом переработки древесных отходов, например, ДВП (древесно-волокнистая плита) или ДСП (древесно-стружечная плита).
  2. Насыпается крупная фракция опилок, в том числе мелкая щепа. Толщина покрытия около 10 см. Материал равномерно распределяется по всей поверхности и утрамбовывается, например, ногами или деревянной толкушей.
  3. Далее следует примерно такой же слой из мелких опилок, который также подвергается уплотнению.
  4. При использовании помещения в качестве чердака, необходимо слой утеплителя покрыть паропроницаемой пленкой. Полиэтилен и другие подобные материалы использовать нельзя, в противном случае, возможно возникновение опрелости опилок с последующим их загниванием.
  5. Устраивается перекрытие, например, из досок, фанеры, ДСП.

В композиции с глиной

Такой состав применяют для утепления перекрытия, находящегося над влажным помещением, например, прачечной, ванной или баней.

Последовательность:

  1. Производится замес глины с опилками. Процедура осуществляется на огражденной площадке или в большой емкости – подойдет старая ванна или металлическая бочка, разрезанная вдоль. Соотношение: на 8–10 объемных частей опила, берется 1–2 части глины. Смесь смачивается и тщательно перемешивается до получения однородного цвета.
  2. На утепляемую поверхность монтируется влагоизолирующий материал, который предохранит попадание сквозь щели в нижнее помещение вязкообразной мокрой массы.
  3. Полученный раствор опилок с глиной равномерно распределяется по поверхности, уплотняется. Толщина слоя не должна быть менее 10–15 см, в противном случае, плита не будет обладать необходимой прочностью.

С цементом

Вместо глины можно использовать в качестве связующего цемент невысоких марок, например, шлакоцемент. Для раскисления раствора можно добавить известь-пушонку. Примерное соотношение состава: 10 частей опилок, 1 часть цемента, 1 часть извести. Смесь затворяется водой. Степень влажности раствора – «полусухое» состояние. Готовность определяется вручную – лепится что-то, напоминающее колобок. При достаточном увлажнении получается устойчивое изделие, самопроизвольно не рассыпающееся на мелкие части.

Виды работ примерно такие же, как с использованием глиняных составов. Но толщину, из-за более высокой теплопроводности, целесообразно увеличить до 15–20 см. Срок полного высыхания утепляющей подушки составит 2–3 недели.

Обратите внимание! Укладка в два слоя, с применением армирующей сетки между ними, позволит создать прочное и теплое основание, на котором можно смело размещать тяжелую мебель. То есть, превратить чердак в жилое помещение наподобие мансарды.

Совет 1 . Способ утепления с применением опилок с цементом можно использовать при работах по теплоизоляции застекленных террас, балконов или лоджий, то есть там, где необходимы прочностные свойства основания.

Совет 2. В качестве образования полового покрытия, одновременно выполняющего роль утеплителя, целесообразно использовать ДСП. Эти плиты применимы по глиняному и цементному составам.

Если рассматривать вышеприведенные способы утепления с экономической точки зрения и сложности работ, то цепочка будет выглядеть так: сухие опилки – глиняный состав – цементное связующее.

Видео

Что касается самого процесса утепления потолка сухим способом, смотрите следующий видеоролик:

От автора: здравствуйте, уважаемый читатель! Если вас заинтересовала тема утепления потолка, то вы, наверняка, уже слышали у всевозможных утеплителях. Да, современный рынок предлагает великое множество стройматериалов, как говорится, на любой вкус и цвет. Но, как правило, современные утеплители стоят немало. А вот утепление потолка опилками – совсем другое дело! Это доступный, экологически чистый материал, который, в сущности, не уступает своим аналогам.

Сегодня как раз и поговорим, можно ли и/или пол при помощи опилок. В любой области ремонтных работ есть свои нюансы, которые необходимо знать для достижения желаемого результата. А если речь идет о нестандартных, специфических стройматериалах, тем более работу нужно выполнять со знанием дела. В общем, ознакомьтесь с содержанием данной статьи – и у вас все получится.

Скажем прямо, работать древесными отходами – не очень-то удобно. Мне приходилось сталкиваться и с «профессиональными» утеплителями и с «аматорскими», вроде опилок. И, на основании опыта, могу сказать, что, к примеру, работать куда приятнее и проще.

Но от опилок я вас ни в коем случае не отговариваю. Это, скорее, предупреждение. А так отходы деревообрабатывающей промышленности имеют много преимуществ. Среди них выделим следующие:

  • цена вопроса. Здесь, я думаю, все понятно. Древесные отходы стоят несравненно дешевле пенополистирола или минеральной ваты. К тому же, при желании, их можно вообще раздобыть бесплатно;
  • экологическая чистота. Действительно, такой утеплитель ни коем образом не навредит вашему здоровью;
  • легкость в работе. Да, материал не самый удобный для использования в строительстве, но работа с ним не требует специальных умений, навыков, образований, дипломов. Это действительно тот случай, когда есть возможность выполнить работу, руководствуясь одной лишь информацией из интернета.

Разновидности

Вы, наверное, удивитесь, но даже у отходов деревообрабатывающей промышленности есть разновидности.

К примеру, древесная стружка, которую мы уже упоминали вскользь. От стандартных опилок она отличается тем, что для ее получения древесина сверлится, либо строгается. Такие отходы крупнее, чем просто опилки, которые по своей структуре больше напоминают пыль. В среднем длина стружки составляет 4 см.

В свою очередь, опилки тоже бывают разными: совсем мелкими – от нескольких миллиметров, до нескольких сантиметров в длину. Размер зависит от того, какого рода обработке было предварительно подвергнуто дерево.

Кроме всего прочего, различие заключается в породе дерева. Как правило, это твердые породы деревьев, такие как ясень, ель или сосна, так как они широко используются в столярном деле.

Утепление потолка опилками – способ, проверенный веками. Опилки, стружку, материалы деревообработки, а также мох, тростник, солому использовали для утепления своих жилищ, защищаясь от холода в зимнее время и спасаясь от жары летом, жители разных стран.

В давние времена, когда не было морозильных камер, люди научились хранить лед, засыпая его толстым слоем опилок . Кто бывал в Заполярной тундре, знает, что под тонким слоем мха находится вечная мерзлота, которая не размораживается даже в жаркие дни лета. А тростниковые крыши жилищ туземцев экваториальных стран, спасают от жары. Соломенные крыши домов наших предков защищали не только от дождя, но и от холода.

В нынешние времена опилки, как утеплитель потолка, несколько подзабыт, но все же используется, в особенности там, где этот материал дешев, доступен и есть предприятия деревообработки, где покупка и доставка материала к месту не составляет труда.

Способ утепления потолка в деревянном доме опилками находит применение для тех, кто желает своими руками использовать природные материалы, чтобы не опасаться за экологичность продукта. Сразу надо сказать, что, несмотря на дешевизну материала, работы по утеплению потолка в доме опилом – сложный технологический процесс , требующий подготовки.

Утепление потолка частного дома опилками всегда выполняют с внешней стороны . В чистом виде сухие опилки применяют редко. Их смешивают с другими материалами, чтобы улучшить не только теплоизоляционные свойства материала, но и защитить от воздействия влаги, грибка, плесени, грызунов и насекомых. В продаже есть антисептические и огнебиозащитные вещества.

Опилки высыпают на расстеленную под навесом полиэтиленовую пленку и обрабатывают антисептиком , затем, после сушки, огнезащитным раствором . Если балки и лаги чердачного перекрытия не обрабатывались в процессе строительства, то их следует тоже обработать.

Между лагами на потолок кладут плотный картон или парозащитную пленку «Изоспан» гладкой стороной к утеплителю. Опилки засыпают слоями с утрамбовкой. Толщину засыпки делают из расчета 150-200 мм при условии, что температура воздуха не будет опускаться ниже -20 градусов, понижение температуры на 1 градус требует дополнительной подсыпки 2-3 см опилок.

Утепление потолка в частном доме опилками и высота слоя для суровых условий доходит до 350-400 мм , поэтому надо существующие лаги наращивать по высоте дополнительными досками. Опилки лучше смешивать с известью в соотношении 1:5.

Такой способ засыпки годится для легких деревянных перекрытий . Если выполнить утепление потолка глиной с опилками, то плотность этой смеси будет выше, а поэтому ее применяют для прочных конструкций потолка, где перекрытие сделано половой шпунтованной доской или толстыми досками внахлест с перекрытием щелей, как это делалось в старину.

Утепление потолка опилками в частном доме своими руками

Пол чердака застилают картоном или пергаментом, можно стелить пароизоляционную пленку . Затем готовят смесь : в большой емкости, подойдет ванная, замачивают глину, перемешивают до консистенции жидкой сметаны. Далее на жестяной лист с загнутыми краями насыпают опилки; смешивают с раствором глины.

Получившаяся масса при сжатии в кулаке не должна выделять воду , можно добавить немного гашеной извести. Готовую массу поднимают на чердак и слоем 100-150 мм выкладывают на бумагу или пленку и слегка трамбуют. В процессе укладки ранее уложенные слои, которые высохли, дополняют свежим слоем. Так заделываются образовавшиеся трещины при усадке.

Определенной пропорции нет, все зависит от степени влажности опилок, принадлежности породе древесины, качеству глины. Рецептуру отрабатывают перед началом работ.

Совет. Сначала распустите в небольшой емкости (в тазике) глину, размешайте до консистенции жидкой сметаны. Затем в другую емкость засыпьте опилки отмеренными порциями, например, 3 ведра. Добавьте отмеренное количество заготовленного глинистого раствора и небольшую часть извести, можно и без нее. Смешайте ингредиенты до однородной массы, чтобы опилки пропитались глиняным раствором и при сжатии не выделяли воду.

Отнесите приготовленную смесь на чердак, выложите на поверхность и проверьте результат после высыхания смеси. Вот, что должно получиться.

1 – смесь опилок с глиной,
3 – бортовая доска, наращенная для поднятия высоты закладываемого слоя,
2 – подложка из пергамента, картона или пароизоляционного материала.

Утепление потолка глиной с опилками

Если слой смеси после высыхания не претерпел значительных деформаций, значит придерживайтесь выведенной в результате эксперимента рецептуре, и приступайте к работе. Дорогу осилит идущий.

Определенные пропорции существуют, когда из опилок, цемента и песка готовят плиты . Здесь пропорции такие 1 ведро цемента + 2 ведра песка + 8 ведер опилок – это проверенная технология. Порядок приготовления в бетономешалке:

  • смешивают цемент и песок;
  • затем добавляют полведра воды перемешивают;
  • потом засыпают опилки.

Во время замеса следят, чтобы перемешиваемая масса была однородной . Если смесь слишком сухая, можно добавить воды, главное не переусердствовать. Смесь готова, когда при сжатии в руках из нее почти не будет выделяться влага.

Можно добавить пластификатор : жидкое стекло 200 граммов, но это для фундаментов или для цоколя. Смесь можно использовать и для утепления потолка. Но такая технология трудоемкая, нужны определенные навыки работы с бетономешалкой, нужны помощники, да и стоимость ненамного дешевле, чем укладка рулонного или плиточного изолятора.

Утепляют чаще дома, которые выполнены из арболитовых панелей на месте производства этих плит, когда материала в избытке и наработан опыт готовки смеси.

На смену опилок, появились похожие материалы: целлюлоза . Химический состав похож на древесные опилки. Поступает целлюлоза в качестве фасованного утеплителя в мешках.

«Грин Палп» – экологическая вата на 80% состоит из целлюлозы, остальное добавки, улучшающие теплоизоляционные качества, защиту от огня и вредного воздействия микроорганизмов, Материал сыпучий, подходит для заполнения труднодоступных пустот чердачного перекрытия.

Полезное видео

На видео посмотрим пример утепления дачного домика опилками:

Можно ли утеплять потолок опилками – выбирать вам. Руководствуйтесь на экономической выгоде: цене и стоимости доставки и если есть значительная экономия средств, то можно заняться утеплением. Опилки – лучший природный утеплитель. Факт доказан многовековым использованием этого природного материала для теплоизоляции чердачных перекрытий.

(PDF) Изоляционные материалы кровли с использованием цемента, дерева (опилки) и полистирола

1

Изоляционные материалы кровли с использованием цемента, дерева (опилки)

и полистирола

Д-р Элеян Исса Джамал Исса1

Департамент гражданского строительства, Инженерный факультет Амманского арабского университета, Амман, Иордания

Эл. Почта: [email protected] / [email protected]

Д-р Шагин Муса Салех Махмуд2

Архитектурный факультет инженерного факультета, Акаба Технологический университет,

Акаба, Иордания

Эл. Почта: mshaheen @ aut.edu.jo

Eng. Сафаа Ибрагим Хаммад3

Кафедра гражданского строительства, Инженерный факультет, Амман Арабский университет, Амман, Иордания

Электронная почта: [email protected]

– Резюме:

Это исследование направлено на использование окружающей среды элементы, а также способы их использования и обращения с ними для достижения

зеленого здания, которое воплощает в себе полное сотрудничество между различными инженерными дисциплинами и фокусирует

на важности исследований и экологического проектирования зданий с точки зрения экономики, эстетики и

климатических условий. аспекты и их дружелюбие к океану, помимо предложения практических архитектурных и инженерных решений

в качестве решений для борьбы с окружающей средой и климатом, начиная с соломы, глины,

и внутренних дворов, они демонстрируют самые известные материалы, доступные в Иордании, которые

можно использовать в экологически чистых зданиях.

Это исследование направлено на производство эффективных материалов для изоляции (тепло, влага и гидроизоляция.

изоляция) с использованием материалов, состоящих из полиэстера, дерева (опилки) и цемента, как показано на рисунке 1.

Эти образцы готовятся с использованием полиэфирной фильеры. метод литья с опилками и цементом, и результаты экспериментов

показали, что образец имеет минимальные значения тепло- и влагообмена.

Результаты экспериментов показали, что добавки (наполнители) полиэстера и опилок добавляют влагу и тепло

изоляции.

Ключевые слова: изоляция, влажность, прогиб, теплопередача, опилки, полистирол, композит из цемента

.

Технические характеристики и возможность более широкого использования композитов из опилок в строительстве – обзор

Журнал исследований строительства и планирования зданий Том 07 No 03 (2019), Идентификатор статьи: 95079,30 страниц
10.4236 / jbcpr.2019.73005

Технические характеристики и возможность более широкого использования композитов из опилок в строительстве – обзор

Абрахам Мванго, Чеве Камболе *

Департамент гражданского строительства и строительства, Университет Коппербелт, Китве, Замбия

Авторские права © 2019 автора (ов) и Scientific Research Publishing Inc.

Эта работа находится под лицензией Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

Поступила: 11.07.2019 г .; Принята в печать: 15 сентября 2019 г .; Опубликовано: 18 сентября 2019 г.

РЕФЕРАТ

Многие страны-производители древесины производят более 2 миллионов кубометров опилок ежегодно. В развивающихся странах опилки часто утилизируют путем открытого захоронения, открытого сжигания или вывоза на свалки.Это создает огромные экологические проблемы, связанные с загрязнением воздуха, выбросами парниковых газов и уничтожением растений и водных организмов. Результаты этой обзорной статьи показывают, что опилки можно использовать для изготовления строительных композитов из опилок с хорошим модулем упругости, водопоглощением и прочностными характеристиками, которые соответствуют международным спецификациям. Эти композиты включают в себя древесно-стружечные плиты, бетонные блоки или кирпичи из опилок и бетон из опилок. В статье делается вывод о том, что частичная замена от 5% до 17% песка на опилки или замена цемента золой опилок в пропорциях от 5 до 15% в бетонных смесях позволяет получить конструкционный бетон с прочностью на сжатие более 20 МПа.Частичная замена от 10% до 30% песка, используемого при производстве блоков и кирпичей, опилками также позволяет производить кирпичи и блоки из опилок с прочностью на сжатие более 3 МПа. Композиты на опилках также привлекательны своей низкой теплопроводностью, высоким звукопоглощением и хорошими звукоизоляционными характеристиками. Эти результаты показывают, что более широкое использование композитных опилок в строительстве снизит потенциальное загрязнение окружающей среды опилками, сэкономит энергию и снизит затраты на утилизацию.

Ключевые слова:

Опилки, композиты из опилок, прочность на сжатие, теплопроводность, звукопоглощение

1. Введение

Опилки – это отходы или побочный продукт целого ряда процессов производства древесины, включая пиление, планирование, фрезерование, сверление, шлифование, производство мебели и столярные изделия. Этот поток отходов включает мелкую прерывистую стружку или просто мелкие частицы древесины [1] [2].

Удаление опилок часто осуществляется путем открытого захоронения, открытого сжигания или захоронения на свалках [3] [4].Опилки, сбрасываемые на свалки, увеличивают нагрузку на свалки, а их сжигание способствует выбросам парниковых газов [5]. Несмотря на загрязнение воздуха и проблемы общественного здравоохранения, связанные с открытым сжиганием, лесопилки обычно практикуют его как самый простой способ избавиться от опилок [6] [7]. При сбросе на берег ручьев и рек опилки переносятся дождевой водой или ветром в поверхностные воды и могут серьезно повлиять на водную флору и фауну. Более того, опилки, без разбора выбрасываемые на землю, убивают жизнь растений и вызывают образование древесной пыли при попадании в атмосферу [8].

Создание ценности из этого потока отходов снизит затраты на утилизацию и создаст рабочие места [5]. Кроме того, использование изделий из древесины, таких как композитные опилки, в строительстве, способствует смягчению последствий изменения климата [9] [10]. Замена стали, бетона и других изделий, производимых с высоким энергопотреблением, композитными опилками может снизить потребление большого количества ископаемого топлива. Учитывая, что продукты на основе древесины накапливают углерод на протяжении всего своего жизненного цикла, использование композитов из опилок, соответственно, приводит к снижению выбросов CO 2 [10] [11] и, следовательно, снижает глобальное потепление.

Мотивация для этой обзорной статьи заключается в том, что опилки, представляющие опасность для окружающей среды, имеют большой потенциал для использования в качестве сырья для производства строительных композитов, соответствующих международным стандартам. Это потенциальное использование еще предстоит полностью изучить, особенно в развивающихся странах, где широко распространены неизбирательные захоронения опилок. В статье кратко освещаются некоторые экологические проблемы, которые создают опилки, и рассматриваются технические характеристики строительных композитов из опилок, а именно, ДСП, бетонных блоков из опилок, кирпичей и легких опилок бетона.Предполагается, что рассмотренная литература послужит катализатором для дальнейших исследований композитов из опилок и для содействия более широкому использованию этих композитов в строительстве. Это внесет дополнительный вклад в развитие экологически чистых строительных материалов и снизит угрозу загрязнения окружающей среды опилками. Данные, представленные и обсуждаемые в этой статье, также полезны для исследователей, изучающих альтернативные строительные материалы, направленные на сохранение невозобновляемых природных ресурсов и энергии.

Производство, совместное использование и удаление опилок вне строительства

1) Количество опилок, произведенных на лесопилках

Лесопилка – один из основных источников опилок. Количество опилок, получаемых при лесопилении, зависит от эффективности лесопилки, которую можно измерить по качеству и количеству восстановленных пиленых досок по сравнению с образовавшимися древесными отходами. Эти древесные отходы представляют собой комбинацию коры, опилок, обрезков, колотого дерева, строгальных стружек и шлифовальной пыли [12].Тип используемого оборудования также влияет на количество образующихся опилок. Камбугу и др. [13] отметили, что отсутствие надлежащего оборудования для распиловки древесины приводит к высокому образованию опилок в процессе распиловки древесины.

В таблице 1 показано количество древесных отходов и опилок, образующихся на лесопилках, а также некоторые годовые объемы производства опилок в отдельных регионах мира. Из Таблицы 1 следует, что во многих странах-производителях древесины ежегодно образуется более 2 млн. М. 3 опилок в результате лесопильных операций.В провинции Коппербелт Замбии, как и во многих развивающихся странах, большие груды опилок, плит, обрезков и коры характерны для рабочих зон 13 зарегистрированных в провинции лесопильных предприятий. Это указывает на огромную экологическую проблему, если этот материал просто оставить как отходы.

2) Обычное использование и удаление опилок вне строительства

Обычное использование опилок не для строительства включает подстилку для домашней птицы и домашнего скота, компостирование почвы и мульчирование [21]. До появления холодильников его использовали для хранения льда в ледниках летом.При смешивании с водой и последующем замораживании он образует медленно тающий и более прочный лед. Иногда он используется для впитывания пролитой жидкости, что позволяет легко собрать или смести пролитую жидкость [1]. Опилки также считаются очень хорошим сырьем для производства древесных гранул и брикетов из биомассы, используемых в качестве твердого топлива [20] [22] [23].

Таблица 1. Приблизительное количество опилок, ежегодно образующихся на лесопилках.

* Данные основаны на данных 9 из 10 исследованных лесопильных предприятий; ** Данные по лесопилкам в 1 из 10 провинций Замбии; -Данные недоступны; Количество рассчитано из объемов с использованием приблизительной плотности опилок 210 кг / м 3 ; † † Средние значения по данным о производстве опилок за четыре года.

Обычное удаление большей части этих отходов включает в себя открытые захоронения, открытое сжигание и иногда захоронение на свалках. На Рисунке 1 показаны беспорядочные сбросы и сжигание опилок, типичные для развивающихся стран.

2. Текущее использование композитных опилок в строительстве

Композиты на опилках применяются в строительстве давно. Например, он использовался для производства бетона на опилках более 40 лет [1]. Помимо использования в бетоне, в литературе указывается, что другие композиты из опилок, используемые в строительной отрасли, включают ДСП, панели пола, перегородки, облицовку, потолок, опалубку, бетонные блоки и кирпичи.

2.1. ДСП и сопутствующие товары

Значительное количество опилок и древесной стружки в Соединенных Штатах Америки используется для производства древесностружечных плит [24]. В период с 2000 по 2017 год мировое производство древесных плит, включая ДСП, фанеру, ориентированно-стружечные плиты (OSB) и древесноволокнистые плиты, увеличилось на 125% [25]. В период с 2012 по 2016 год наибольшая доля (62%) этой продукции была произведена в Азиатско-Тихоокеанском регионе, за которым следовали Европа (21%), Северная Америка (11%), Латинская Америка и Карибский бассейн (5%) и Африка ( 1%) [26].Низкий производственный показатель в Африке и других развивающихся континентах по сравнению с большим объемом производимых опилок (Таблица 1) предполагает наличие большого потенциала

.

а) (б) (c) (г)

Рис. 1. Открытая свалка опилок: (a) сжигание опилок вблизи жилого массива; (б) и (в) сжигание опилок на лесопилке; (d) Сброс опилок на берегу ручья.

для увеличения производства строительных композитов из опилок из этих отходов в развивающихся странах.

В Замбии постоянно растет спрос на ДСП и сопутствующие товары, такие как фанера и пиломатериалы. Прогнозируется рост спроса на эту продукцию на 39% с 501 100 м 3 в 2010 г. до 698 700 м 3 в 2025 г. [27]. Предполагается, что использование опилок при производстве этих древесно-стружечных плит уменьшит загрязнение окружающей среды, которое эти отходы создают в Замбии.

ДСП и соответствующие изделия из древесины, такие как древесноволокнистые плиты низкой плотности (ЛДФ) и ДСП, производятся путем смешивания различных пропорций древесной щепы, стружки лесопилок или опилок с синтетической смолой или любым подходящим связующим [9] [28].Например, Абдулкарим и др. [28] установили, что древесностружечные плиты, изготовленные из древесных опилок и смолы на основе пластика (PBR), синтезированные из отходов пенополистирола в качестве связующего, обладают свойствами, соответствующими требованиям Американского национального института стандартов (ANSI) A208.1. Этот стандарт определяет требуемые размеры, а также физико-механические свойства для различных марок древесностружечных плит. Исследование показало, что древесно-стружечные плиты из древесных опилок и PBR демонстрируют лучшую стойкость к проникновению воды, стабильность размеров, механические свойства и сопротивление деформации по сравнению с древесностружечными плитами на основе карбамида и формальдегида (UF).Таким образом, они были более прочными, жесткими и лучше подходили для применения в большинстве сред, чем УФ-древесно-стружечные плиты.

Исследование Dotun, A.O. и другие. [29] отметили, что древесно-стружечные плиты, изготовленные из комбинации опилок и полиэтилентерефталатных пластиковых отходов, подходят для внутреннего применения. Однако исследование также показало, что эти продукты имеют ограниченное применение в конструкции и несущей способности. Аналогичным образом Akinyemi et al. [30] рекомендовали, чтобы панели, произведенные в виде композитов из кукурузных початков и опилок, с использованием формальдегида мочевины в качестве связующего, подходили для внутреннего использования в зданиях, но не для несущих целей.

Erakhrumen et al. [31] доказали, что для смесей древесных опилок сосны (Pinus caribaea M.) и кокосовой шелухи или кокосового волокна (Cocos nucifera L.) с использованием цемента в качестве связующего, такие параметры, как водостойкость, прочностные свойства и плотность древесностружечных плит были улучшены с высоким содержанием цемента. содержание. Однако эти свойства были снижены при увеличении количества кокосового волокна в смеси.

Композитные опилки, полученные путем склеивания опилок или древесной стружки вместе с пенополистиролом, обладают хорошими характеристиками теплопроводности.Эти продукты считаются подходящими для использования в перегородках и подвесных потолках [32].

2.2. Панели пола

Исследование Chanhoun et al. [33] исследовали комбинацию древесных отходов, отходов полистирола и композитных отходов пластмассы. Исследование показало, что эти композиты могут использоваться не только для внутренних и внешних полов, но также в качестве самоклеящихся сэндвич-панелей или досок в дверных проемах, подвесных потолках и сэндвич-панелях для опалубки.

Инновационная бетонная сэндвич-панель, исследованная в Ираке, была изготовлена ​​с использованием слоя легкого бетона (LWC), зажатого между двумя внешними слоями железобетона.Эти элементы были соединены между собой арматурой фермы как соединители, работающие на сдвиг. Прочность сэндвич-панели с опилками, которая использовалась в качестве заполнителя во внутренней обмотке, была выше прочности сэндвич-панели с полистиролом (стиропором) или порциленитом [34].

Chung et al. [35] продемонстрировали потенциал гашения вибрации слоем песчаных опилок в легких деревянных каркасных системах пола / потолка (LTFS). Исследуемый LTFS состоял из верхнего этажа из смеси опилок и песка, полости, заполненной волокном для шумоподавления, и потолка.Теоретическая модель и экспериментальные измерения показали, что слой песчано-опилок гасит вибрацию в диапазоне частот от 10 до 200 Гц.

2.3. Перегородка и облицовка

Композиты из древесных опилок и цемента могут быть использованы для облицовки и стен. Однако важным соображением для этого применения является необходимость тщательного выбора древесины с подходящими компонентами для совместимости с цементом [36].

2.4. Бетонные блоки или кирпичи и строительный раствор из опилок

Различные исследования были проведены в поисках экологически чистых и менее дорогих строительных блоков, которые содержат опилки в необработанном виде или в виде золы из опилок.Mangi et al. [37] дает хороший обзор 17 исследований, проведенных на бетонных кладочных блоках в период с 2012 по 2016 год в 11 разных странах. В этом обзоре подчеркивается потенциал более широкого использования бетонных блоков из опилок в качестве легких каменных блоков в зданиях.

Gil et al. [38] отметили, что древесные опилки положительно влияют на последующее растрескивание строительного раствора. Это, в свою очередь, улучшает пластичность раствора. Клаудиу [8] изучал использование опилок в штукатурных растворах.Исследование выявило важные характеристики исследованных штукатурных растворов, в том числе их хорошую звуко- и теплоизоляцию, а также невосприимчивость к возгоранию от открытого пламени. Таким образом, эти растворы были рекомендованы для использования во внутренних стенах зданий.

2,5. Бетон из легких опилок

Легкий бетон – это бетон с плотностью от 300 до 1850 кг / м. 3 . Конструкционный легкий бетон имеет плотность от 1120 до 1920 кг / м 3 и имеет минимальную прочность на сжатие 17 МПа [39] [40].Низкая плотность и высокие показатели теплоизоляции древесных отходов, таких как опилки [24], делают их хорошей альтернативой для производства легкого бетона и теплоизоляционных строительных композитов. Ахмед и др. [41] отметили, что смесь крупного заполнителя, песка и цемента с различными дозировками опилок в качестве частичной замены песка позволила получить экологически чистый и термоэффективный нормальный и легкий бетон.

3. Технические характеристики и характеристики композитных древесных опилок, используемых в строительстве

3.1. ДСП

Бадеджо [42] заметил, что цементно-стружечные плиты толщиной 12 мм, изготовленные из опилок четырех тропических лиственных пород древесины (Mitragyna ciliata, Triplochiton scleroxylon, Terminalia superba и Ceiba pentandra), оказали сильное влияние на свойства испытанных плит. Расчетный модуль упругости на разрыв (MOR) составлял от 4,72 до 8,20 МПа, от 5,00 до 8,00 МПа, от 4,35 до 6,05 МПа и от 3,75 до 6,20 МПа соответственно для четырех пород древесины. Модуль упругости (MOE) варьировался от 2750 до 4000 МПа, от 2500 до 3500 МПа, от 2500 до 3400 МПа и от 2100 до 3350 МПа соответственно для четырех пород древесины.После выдержки в холодной воде в течение 72 часов процент набухания по толщине варьировался от 2,80% до 4,5%, от 2,9% до 5,5%, от 2,2% до 3,55% и от 4,50% до 5,70% для четырех видов древесины. Соответствующие приблизительные плотности этих пород древесины составляют от 450 до 560, 320 и 400, 450 и 580 и 230 и 260 кг / м 3 [43] [44]. MOE-свойства экспериментальных плит зависят от плотности используемой древесины. Виды Mitragyna ciliata и Terminalia superba имеют более высокую плотность и дают более высокие значения MOE, чем два других вида.Также следует отметить, что результаты MOE этого исследования удовлетворяют требованиям ANSI 208.1 [45] для древесностружечных плит высокого и среднего класса. Однако результаты MOR не соответствовали требованиям ANSI 208.1. Исследуемые древесно-стружечные плиты показали приемлемое набухание, учитывая, что BS EN 312: 2010 [46] и BS EN 317: 1993 [47] предусматривают, что древесностружечные плиты должны иметь максимальное значение набухания (TS) по толщине (TS) 8% при 2-часовом погружении в воду. , или максимальное TS 15%, если используется процедура погружения в воду на 24 часа.

Древесные опилки Okhuen и переработанный полиэтилен (RLDPE) были смешаны и затем подвергнуты горячему прессованию для производства композитных плит из древесных опилок и переработанного полиэтилена компанией Atuanya и Obele [48]. Исследованная средняя прочность на растяжение оптимизированной композитной плиты составила 13,991 МПа, значение, которое соответствовало спецификациям для общего применения.

Абу-Зарифа и др. [49] исследовали древесностружечные плиты, которые были изготовлены из опилок и сельскохозяйственных отходов (стебли банана, пшеничные отруби и апельсиновые корки).Каждый сельскохозяйственный отход был смешан с опилками в двух пропорциях: 25% и 75%, в то время как количество полипропиленового пластика оставалось постоянным на уровне 40%. Смеси прессовали под нагрузкой 24 тонны при температуре 170 ° C в течение 2,5 часов. Результаты испытаний показали максимальное значение модуля упругости (MOE) 2160,78 МПа для смеси с 75% -ным составом пшеницы, максимальное значение модуля упругости (MOR) 11,07 МПа для смеси со 100% -ным составом опилок и максимальное значение: значение напряжения 7,8 МПа для смеси с содержанием банана 25%.Диапазон значений водопоглощения составлял от 8,19% до 19,3%. Эти результаты были лучше, чем у древесностружечных плит коммерческого типа (древесно-волокнистые плиты средней плотности, волокнистые и прессованные древесные плиты). Смесь ДСП с 75% банановой композиции показала наименьшую водопоглощающую способность и способность к набуханию. Тот, у которого 75% апельсинового состава, показал самый высокий процент водопоглощения и набухания.

3.2. Опилки в бетонных блоках или кирпичах и растворе

Куполати и др. [50] исследовали использование опилок как частичную замену песка для дробления при производстве кирпича как способ повышения уровня озеленения окружающей среды.Опилки использовались в качестве частичной замены песка для дробилки в количестве 1%, 3% и 5% по объему. Исследованные значения прочности на сжатие опилочно-песчаных кирпичей, произведенных на месте, были ниже минимальных значений 4,0 МПа, установленных для массивных блоков каменной кладки стен [51]. Средняя прочность на сжатие кирпичей (290 мм × 150 мм 90 мм) на стройплощадке через 28 дней составила 0,67 МПа, 0,23 МПа и 0,21 МПа для соответствующих процентов замены опилок. Однако кубики кирпичей размером 100 мм × 100 мм × 100 мм, произведенные в лаборатории, показали среднюю прочность на сжатие 6.10 МПа, 5,73 МПа и 3,7 МПа для вышеуказанных соответствующих процентов замены опилок. Это было связано с улучшением практики контроля качества в лаборатории. В этом исследовании подчеркивается важность контроля качества при массовом производстве кирпичей из опилок. Исследование также показало возможность использования опилок в качестве частичного заменителя дробильного песка при производстве кирпича.

Чтобы исследовать потенциальное использование опилок в блоках, Ravindrarajah et al. [52] оценивали блоки, изготовленные с использованием цемента, извести, летучей золы, хлорида кальция, опилок сосны Radiata, песка и воды.Смесь бетонных блоков из опилок с содержанием опилок 12% по объему имела плотность 1540 кг / м 3 и 28-дневную прочность на сжатие 14 МПа. Использование 2% хлорида кальция привело к достижению оптимальной прочности в любом возрасте, но также привело к значительному увеличению усадки. Исследование показало, что опилки являются хорошим наполнителем для производства легких бетонных блоков.

Замена песка опилками в смеси из песчано-цементных блоков, пропорции замены опилок 10%, 20%, 30% и 40%, с водоцементным соотношением 0.5 был исследован Dadzie et al. [53]. Прочность на сжатие исследуемых композитных блоков из опилок превышала минимальное требование BS 6073 в 2,8 МПа для замены опилок не более 10%. Далее было отмечено, что содержание заменяемых опилок не должно превышать 10%, если блоки из опилок должны соответствовать стандартным спецификациям.

Boob [54] установил, что блоки из песчаника, полученные путем частичной замены песка опилками, дают оптимальные и желаемые результаты при соотношении смеси 1: 6 (цемент: песок + опилки) (85% песок + 15% опилки).Прочность на сжатие, полученная для блоков размером 100 мм × 100 мм × 100 мм для этой пропорции смеси, составляла 4,5 МПа. Это хороший результат для блоков, изготовленных с заменой опилок не более 10%, если оценивать их по отношению к минимальному требованию BS 6073 в 2,8 МПа [55].

Ettu et al. [56] исследовали использование обычного портландцемента (OPC), золы из опилок (SDA) и золы из листвы pawpaw (PPLA) для возможного производства песчаных блоков (где песок был основным компонентом) и грунтбетонных блоков, в которых латерит является основным компонентом. основная составляющая.Были оценены бинарные цементирующие смеси OPC-SDA и OPC-PPLA и тройные вяжущие смеси OPC-SDA-PPLA для производства блоков. Исследование показало, что произведенные блоки из этих смешанных цементных материалов обладают достаточной прочностью для их использования, особенно в строительных работах, где потребность в высокой начальной прочности не является критическим фактором. Значения прочности за 150 дней для трехкомпонентного цемента с добавкой OPC-SDA-PPLA для пескобетона и грунтбетонных блоков составили, соответственно, 6,00 МПа и 5 МПа.20 МПа для замены 5%, 5,90 МПа и 5,10 МПа для замены 10%, 5,75 МПа и 5,00 МПа для замены 15% OPC и 5,70 МПа и 4,90 МПа для замены 20% OPC. Эти результаты были немного лучше, чем соответствующие контрольные значения 5,20 МПа и 4,80 МПа.

В исследованиях Тургута и Альгина [57] для получения кирпичей WSW-LPW использовались отходы известнякового порошка (LPW) от работ в карьерах и отходы древесных опилок (WSW), полученные в процессе распиловки необработанной древесины. Эти композитные кирпичи с различными комбинациями WSW-LPW показали прочность на сжатие, прочность на изгиб, удельный вес, скорость ультразвуковых импульсов (UPV) и значения водопоглощения, которые соответствовали международным стандартам, а именно ASTM C67-03a, BS 6073 и BS 1881.Замена 30% WSW в кирпичной композитной смеси позволила получить кирпичи с прочностью на сжатие 7,2 МПа и прочностью на изгиб 3,1 МПа. Эти результаты соответствуют требованиям BS6073 для строительных материалов, используемых в конструкциях. Этот композит из опилок был оценен как потенциальный элемент для строительства стен, заменитель деревянной доски, а также как экономичная альтернатива бетонным блокам, потолочным панелям и панелям звукоизоляции.

Moreira et al. [58] изучали характеристики строительных блоков, изготовленных путем частичной замены мелких заполнителей опилками древесных пород Dinizia Excelsa Ducke.Блоки были изготовлены путем замены мелких заполнителей опилками в количестве 5% по весу. Были использованы два процесса обработки опилок, один из которых включает промывку опилок в щелочном растворе (известь), а другой – погружение опилок в сульфат алюминия. Результаты прочности на сжатие на 28 день составили 1,39 и 3,98 МПа для двух методов обработки соответственно. Результаты водопоглощения составили 13,13% и 10,40% соответственно. Результаты показали хорошие характеристики блоков, изготовленных из опилок, обработанных сульфатом алюминия, по сравнению с блоками, изготовленными из опилок, обработанных щелочным раствором.Результаты прочности на сжатие в течение 28 дней, составляющие 3,98 МПа для блоков с опилками, обработанными сульфатом алюминия, удовлетворяли бразильскому стандарту NBR7173, который определяет минимальную среднюю прочность на сжатие 2,5 МПа для строительных блоков. Исследование показало возможность производства кирпичных блоков с заменой 5% мелких заполнителей на опилки Dinizia Excelsa Ducke, обработанные сульфатом алюминия.

Adebakin et al. [59] исследовали использование опилок в качестве частичной замены песка при производстве пустотелых блоков из песчаника.Исследование было направлено на снижение стоимости строительных материалов и снижение статических нагрузок на особо высотные здания и здания, построенные на грунтах с низкой несущей способностью. Исследование показало, что замена песка на 10% опилок привела к получению блоков со значениями прочности на сжатие, которые почти соответствовали требуемой нигерийской стандартной спецификации 3,5 – 10 МПа для блоков из песчаника. Это 10% заменителя опилок также позволило получить блоки с уменьшением веса на 10% и снижением себестоимости продукции на 3%.

Легкие кирпичи, изготовленные из смеси опилок и цемента с соотношением 3: 2 и 2: 1, исследовали Zziwa et al. [60]. Кирпичи размером 100 × 100 × 100 мм испытывали в виде высушенных на воздухе образцов и в виде замоченных образцов после замачивания в воде при комнатной температуре в течение 24 часов. Наивысший результат по прочности на сжатие 2,21 МПа был получен для сухих образцов с соотношением опилок к цементу 3: 2. Соответствующий результат прочности на сжатие для замоченных образцов составил в среднем 1,38 МПа. Низкая прочность на сжатие в сухом состоянии и еще более низкая прочность на сжатие в мокром состоянии указывали на то, что эти кирпичи не соответствовали требованиям для использования в несущих стенах и стенах, подверженных воздействию влажных сред.Однако их можно было использовать для внутренней обшивки стен там, где были минимальные условия смачивания и небольшая нагрузка или ее отсутствие.

Сводка результатов прочности на сжатие выбранных кирпичей и блоков из опилок представлена ​​в Таблице 2. Эти результаты указывают на хорошие характеристики композитных блоков кирпич / блок из опилок, что дает уверенность в их более широком использовании в строительстве.

3.3. Опилки в легком бетоне

3.3.1. Частичная замена песка опилками в бетонной смеси

Осей и Джексон [61] изучали использование опилок, гранитного щебня и быстротвердеющего цемента для производства бетонных опилок.Используя бетонную смесь 1: 2: 4, опилки использовали для замены 25%, 50%, 75% и 100% песка по объему. Прочность за 28 дней для соответствующих пропорций замены опилок составляла 12,13 МПа, 9,15 МПа, 4,66 МПа и 3,37 МПа. Исследование показало, что опилки потенциально могут быть использованы в качестве заполнителя при производстве неструктурного легкого бетона для использования в ситуациях, когда прочность на сжатие не является основным требованием. Дальнейший анализ прочности на сжатие показал, что замена опилок менее 14% может дать бетон с 28-дневной прочностью на сжатие 20 МПа.Это минимальная прочность бетона для использования в конструкции. Ранее Бдейр [62] заметил, что замена 10% песка опилками показала увеличение прочности на сжатие с 23,24 до 27,31 МПа в период от 7 до 28 дней, что указывает на то, что частичная замена песка опилками в бетоне может достигать того же порядка прочности, что и обычные бетон при более длительных периодах отверждения.

Suliman et al. [63] использовали опилки, песок, щебень и цемент для производства опилок бетона. Замена песка опилками в размере 5%,

Таблица 2.Прочность на сжатие блоков опилок или кирпича на 28 суток.

Исследовано 10% и 15% от общего объема песка. Полученные значения прочности на сжатие через 28 дней составили 50,06 МПа, 41,48 МПа и 34,7 МПа соответственно. Оптимальная конструкция для производства бетонных опилок была установлена ​​при 10% замещении опилок. Исследование также показало, что бетонные опилки не содержат каких-либо вредных для здоровья веществ.

Исследование Oyedepo et al. [64] показали, что значения прочности на сжатие, полученные при содержании опилок, равном или превышающем 25%, не соответствуют минимальным требованиям Нигерии в 17 МПа для легкого бетона.Соотношение бетонной смеси 1: 2: 4 было приготовлено с использованием воды / цемента 0,65, с 0%, 25%, 50%, 75% и 100% опилками в качестве частичной замены мелкого песка. Значения прочности на сжатие для процентов замены опилок 25%, 75% и 100% составили 14,15 МПа, 12,96 МПа и 11,93 МПа соответственно. Следовательно, это исследование показало, что использование опилок в количестве более 25% отрицательно сказывается на прочностных и плотностных свойствах бетона. Еще одно предположение заключалось в том, что использование от 0% до 25% опилок в качестве частичной замены в бетоне не повлияет отрицательно на прочность бетона.

Натан [65] показал, что опилки являются потенциальным материалом для приготовления легкого бетона. Используя цемент, мелкий заполнитель, крупный заполнитель, воду и опилки, была приготовлена ​​стандартная контрольная смесь с пропорциями смеси 1: 1,5: 3. Замена мелкого заполнителя опилками производилась на 0%, 5%, 10%, 15% и 20%. Средние значения прочности на сжатие, зарегистрированные через 28 дней, составили 29,33 МПа, 27,7 МПа, 26,37 МПа, 24,15 МПа и 22,67 МПа соответственно. Соответствующие значения прочности на разрыв были равны 2.08 МПа, 1,82 МПа, 1,69 МПа, 1,49 МПа и 1,41 МПа. Используя аналогичный дизайн смеси, исследование Tilak et al. [2] показал более низкую прочность на сжатие 24,13 МПа, 15,55 МПа, 11,11 МПа и 8,13 МПа, когда мелкий заполнитель был заменен опилками в пропорциях 10%, 20%, 50% и 100% соответственно. Эти два исследования указывают на возможное использование опилок в конструкционном бетоне, когда доля опилок, заменяющих песок, не превышает 10%.

Читра и Хемаприя [66] использовали пропорцию смеси 1: 1.60: 2.78, чтобы подтвердить возможность использования опилок в качестве альтернативы песку с оптимальной прочностью, полученной при 15% замене песка опилками. Значения прочности на сжатие, полученные через 28 дней, составили 25,1 МПа, 24,2 МПа, 23,75 МПа и 17,54 МПа, когда мелкий заполнитель был заменен опилками при 0%, 5%, 10%, 15% соответственно.

Sawant et al. [67] исследовали бетон на опилках, изготовленный из смеси в пропорции 1: 1,62: 2,83, которая включала в себя вяжущий метакаолин в качестве добавки, предназначенной для обеспечения хорошего сцепления между опилками и другими ингредиентами бетона.В ходе исследования производилась частичная замена песка опилками в размерах 0%, 5%, 10%, 15%, 20% и 25%. Полученные значения прочности на сжатие составили 24,4 МПа, 21,11 МПа, 12,45 МПа, 10,07 МПа, 7,25 МПа и 5,12 МПа соответственно, что указывает на хорошую прочность при содержании опилок менее 10%.

Исследование Awal et al. [68] исследовали образцы бетона из опилок, изготовленные с соотношением цемента к опилкам 1: 1, 1: 2 и 1: 3 по объему. Соответствующие результаты по прочности на сжатие в возрасте 28 дней для вышеупомянутого соотношения цемента и опилок составили 18.65 МПа, 17,20 МПа и 12,80 МПа. Прочность опилок бетона увеличивалась с увеличением возраста выдержки. Однако прочность и зарегистрированный модуль упругости уменьшались с увеличением количества опилок в смеси.

Опилки бетона из смесей 1: 1: 2 и 1: 1,5: 3 с опилками, заменяющими крупнозернистый заполнитель, исследовали Огундипе и Джимох [3]. Результаты по прочности на сжатие за 28 дней составили 18,33 и 8,78 МПа соответственно, а их прочность на изгиб за 28 дней – 1.71 и 1,33 МПа соответственно. Водопоглощение смесей за 28 дней составило 5,69%, 8,97%, 8,29%, 7,83% и 11,11%, соответственно, за 28 дней линейная усадка составила 0,67%, 0,50%, 1,83%, 1,83% и 1,95%.

Соджоби [69] заметил, что отходы опилок и латерит в качестве альтернативного мелкозернистого заполнителя и вяжущего материала, соответственно, могут быть использованы для производства экологически чистых легких блоков для бетонных дорожных покрытий (ICPU). Следовательно, Sojobi et al. [70] из тех же материалов изготовили сверхлегкие зеленые блоки для дорожной одежды.При оптимальном содержании опилок 10% и после 90 дней отверждения в воде блоки для мощения достигли прочности на сжатие 16,6 МПа и продемонстрировали сопротивление скольжению 64,5 значения маятникового испытания (PVT). Результаты по прочности превысили минимальные требования от 3,45 до 15 МПа для пешеходов и ненесущих бетонных конструкций.

Возможность использования арматуры в опилках бетона была изучена Олутоге [71]. Это исследование показало, что замена менее 25% песка опилками в железобетоне дала результаты, которые удовлетворяли характерным требованиям прочности для конструкционного использования бетона, как указано в BS 8110, 1997.

На рис. 2 показан обзор результатов прочности на сжатие опилок бетона за 28 дней в связи с частичной заменой песка опилками в различных бетонных смесях. Данные на Рисунке 2 показывают, что бетонные смеси с содержанием опилок от 5% до 15% в качестве замены песка, как правило, могут давать бетон со значениями прочности на сжатие, превышающими 15 МПа, что подходит для легких конструкций, как рекомендовано Невиллом [72].

Рисунок 2 также показывает, что смеси с содержанием опилок от 5% до 10% в качестве замены песка могут производить бетон со значениями прочности на сжатие выше 20 МПа.Таким образом, эти смеси могут быть использованы в конструкциях в соответствии с рекомендациями ASTM C330 / C330M-09 [73]. Кроме того, следует отметить, что прочность на сжатие значительно снижается с увеличением содержания опилок выше 15% содержания песка.

Диаграмма разброса, показывающая влияние замены песка опилками на прочность на сжатие опилок бетона, представлена ​​на рисунке 3. Средние результаты прочности на сжатие дают экспоненциальную зависимость с хорошим значением корреляции, т.е.е. 2 = 0,8017. Это отношение может быть выражено как

f c = 25,944 e – 0,015 λ (1)

Рисунок 2. Прочность на сжатие опилок бетона по отношению к компоненту, заменяющему опилки.

Рис. 3. График зависимости замены песка опилками от прочности на сжатие опилок бетона.

где:

f c прочность на сжатие в течение 28 дней, МПа.

λ – процент замещения песка опилками.

Из уравнения (1) следует, что оптимальное содержание замены песка опилками, необходимое для производства конструкционного бетона с прочностью на сжатие 20 МПа, составляет 17%. Содержание опилок выше этой пропорции приводит к получению бетона из опилок с прочностью на сжатие ниже 20 МПа.

На рис. 4 показано снижение прочности на изгиб с увеличением содержания опилок. Это особенно очевидно из исследований Sawant et al. [67] и [74].

3.3.2. Опилки бетона с опилками как один из основных компонентов

Помимо частичной замены песка опилками, были проведены и другие исследования, в которых опилки являются одним из основных компонентов бетонной смеси.Сравнения результатов прочности на сжатие, разрывное растяжение и изгиб опилок бетона из выбранной литературы показаны в таблице 3. Табличные результаты показывают снижение прочности на сжатие, изгиб и разделение прочности при увеличении количества опилок в бетонной смеси. Из таблицы 3 также следует, что смеси 1: 1: 2 и 1: 1: 1 дают легкий бетон с хорошими показателями прочности на сжатие.

3.3.3. Частичная замена цемента золой опилок (SDA) в бетонной смеси

Удойо и Дашибил [78] и Мартонг [79] исследовали бетон из золы опилок (SDA), заменив обычный портландцемент (OPC) на SDA.Исследования показали, что при замене 10% SDA можно было достичь расчетной прочности 20 МПа за 28 дней, что сопоставимо с прочностью, достигаемой обычным бетоном при более длительных периодах отверждения. Мартонг [79], однако, отметил, что включение SDA в качестве частичной замены цемента имеет тенденцию к снижению долговечности бетона при воздействии сульфатной среды. Позже Обилад [80]

Рис. 4. Испытание прочности на изгиб опилок бетона в зависимости от содержания опилок.

Таблица 3. Прочность на сжатие, изгиб и разрыв при растяжении, полученная при использовании различных композитных смесей из опилок.

* Соотношение смеси цемента и опилок; -Данные недоступны.

показал, что SDA привел к достижению 28-дневной прочности на сжатие от 21,02 до 19,05 МПа при замене золы опилок от 5% до 15% соответственно. Таким образом, содержание SDA от 5% до 15% считалось оптимальной заменой SDA для цемента, поскольку содержание SDA более 15% значительно снижало прочность бетона на сжатие.Это исследование рекомендовало оценку долговечности бетона, изготовленного из SDA, в качестве частичной замены цемента.

Dhull [81] частично заменил массу цемента на 5%, 10%, 15% и 20% в соотношении бетонной смеси 1: 1: 2. Прочность в течение 28 дней с содержанием замены 5% и 10% привела к результатам прочности на сжатие 32,44 и 30,24 МПа соответственно. Замена цемента с более высоким содержанием SDA, превышающим 10%, позволила получить бетон с прочностью на сжатие ниже прочности контрольной смеси.

Используя расчетное соотношение компонентов Simpexfive от Scheffe, равное 0,5: 0,95: 0,05: 2,25: 4, то есть вода: цемент: опилки, зола: песок: граниты, исследование Onwuka et al. [82] произвел бетон SDA с оптимальным результатом прочности на сжатие 20,44 МПа через 28 дней. Исследование пришло к выводу, что бетон из опилок может быть подходящим образом использован в качестве строительного материала в строительной индустрии.

Fapohunda et al. [83] показали, что древесные отходы либо в форме ПДД, либо в виде древесного заполнителя, либо в виде опилок; могут быть включены в соответствующую конструкцию бетонной смеси, из которой можно получить конструкционный бетон, удовлетворяющий требованиям здания.Однако содержание SDA не должно превышать 20%. Бетон с добавлением SDA, как известно, демонстрирует хорошие свойства долговечности в отношении большей части процессов, приводящих к ухудшению качества бетона в течение его срока службы. Однако его долговечность ухудшается, когда он подвергается воздействию углекислого газа и сульфатов. Mangi et al. [84] также отметили необходимость исследования долговечности высокопрочного бетона, разработанного с использованием SDA, и его характеристик в агрессивных щелочных и кислых средах.

Исследование Raheem et al.[85] далее отмечает, что бетон SDA становится менее работоспособным по мере увеличения содержания SDA. Это указывает на то, что SDA требует больше воды по сравнению с обычным портландцементом. Исследование показало, что 5% SDA было оптимальным содержанием замещения, которое привело к увеличению прочности бетона SDA, сравнимому с контрольной смесью, в которой не было содержания SDA.

Значения прочности на сжатие бетона SDA на Рисунке 5 демонстрируют тенденцию, аналогичную показанной на Рисунке 2, с точки зрения уменьшения прочности с увеличением SDA.Рисунок 5 также показывает, что бетон с содержанием SDA от 5% до 15% в качестве замены цемента можно использовать для производства бетона со значениями прочности на сжатие более 20 МПа. Этот бетон можно использовать для строительных конструкций.

3.4. Влияние композитов из опилок на тепловые свойства строительных конструкций

Теплоизоляционные материалы и системы используются для уменьшения передачи теплового потока. Теплопроводность и коэффициент теплопередачи указывают на термический

Рисунок 5.Прочность на сжатие бетона SDA.

изоляционные характеристики таких материалов. Конструкционные материалы с теплопроводностью менее 0,07 Вт / мК считаются теплоизоляторами [86].

У древесины более высокая теплопроводность по сравнению с другими материалами, используемыми в строительстве. Они незначительно различаются в зависимости от плотности, содержания влаги и разновидностей, более низкие плотности имеют более низкую проводимость. Мейер [24] утверждает, что одним из основных преимуществ заполнителей древесных отходов, таких как опилки и стружка, является небольшой вес и высокая теплоизоляционная способность материала.

Бетонные опилки, изготовленные из цемента, опилок и песка, смешанных в соотношении 1: 1: 1, 1: 2: 1 и 1: 3: 1 соответственно, показали, что соотношение смеси 1: 3: 1 показало более низкую теплопроводность по сравнению с два других микса. Это снижение теплопередачи через смесь 1: 3: 1 было связано с повышенным содержанием опилок в этой смеси по сравнению с двумя другими [76] [87].

Салих и Кзар [88] использовали комбинацию предварительно обработанного тростника и опилок в качестве частичной замены натурального песка в соотношении 1: 2.5 (цемент: песок) смесь. Тростник и опилки были предварительно обработаны путем замачивания их в кипящей воде, в которую была добавлена ​​известь в количестве 20% от веса тростника или опилок. Обработка замачиванием была проведена для уменьшения вредных растворимых углеводов, дубильных веществ, восков и изюма. Содержимое замены представляло собой равные комбинации опилок и тростника в пропорциях 10%, 20%, 30% и 40%. Например, замена 10% включала 5% опилок и 5% тростника. Водоцементное соотношение для всех смесей сохранялось равным 0,4. Значения плотности сушки в печи за 28 дней находились в диапазоне от 2060 до 1693 кг / м. 3 – высокие значения, относящиеся к плотности контрольной смеси.Более низкие значения плотности были получены для 40% -ного содержания песка (т.е. 20% опилок и 20% тростника). Теплопроводность значительно снизилась с 0,745 до 0,222 Вт / мК для контрольной смеси и смеси, замещающей 40% песка, соответственно.

Исследование Sindanne et al. [89], включающие земляные блоки, стабилизированные цементом, опилками и известью, показали увеличение теплопроводности с увеличением количества цемента и извести в качестве стабилизаторов. Однако стабилизация опилками снизила теплопроводность блоков.Таким образом, было обнаружено, что блоки, стабилизированные опилками, демонстрируют повышенное термическое сопротивление по сравнению с блоками, стабилизированными цементом или известью. Результаты этого исследования представлены в Таблице 4.

Огундипе и Джимо [75] заменили крупный заполнитель опилками в четырех смесях, а именно 1: 1: 2, 1: 1,5: 3, 1: 2: 4, 1: 3: 6 и 1: 4: 8. Соответствующие результаты проводимости, измеренные после 28-дневного периода отверждения, составили 0,229, 0,232, 0,229, 0,223 и 0,176 Вт / мК. Результаты указывают на постепенное снижение теплопроводности с увеличением содержания опилок.Эта тенденция была также замечена в исследованиях, проведенных Абдул Амиром [90], Салихом и Кзаром [88] и Ченгом и др. [91], представленный на рисунке 6.

Рисунок 6 также показывает, что бетон из опилок имеет более низкую теплопроводность по сравнению с обычным бетоном (в данном случае содержание опилок 0%). Снижение теплопроводности с увеличением опилок, облегченный

Таблица 4. Теплопроводность стабилизированных земляных блоков (Вт / мК) – после Sindanne et al.[89].

Рисунок 6. Коэффициент теплопроводности опилок бетона в зависимости от количества опилок.

, согласуется с выводами Asadi et al. [92]. Легкие заполнители не только снижают плотность, но и теплопроводность бетона. Обычный бетон с плотностью от 2100 до 2400 кг / м 3 имеет теплопроводность от 1,40 до 1,75 Вт / мК [93] [94]. Таким образом, добавление опилок в бетонную смесь значительно снижает теплопроводность получаемого легкого бетона.

Значения теплопроводности, показанные на рисунке 6, также удовлетворяют требованиям стандарта ASTM C332-09 [95], который предусматривает, что максимальная средняя теплопроводность для бетона, изготовленного из легких заполнителей, должна составлять 0,43 Вт / мК для сухого бетона в печи с плотностью 1440 кг / м 3 на 28 сут.

3.5. Влияние композитов из опилок на акустические свойства строительных единиц

3.5.1. Звукопоглощение

Шумовое загрязнение считается одной из четырех основных экологических опасностей, включая загрязнение воздуха, воды и твердых отходов.Поэтому звукопоглощающие материалы играют важную роль в снижении воздействия шумового загрязнения на здоровье человека, например, потери слуха и стресса [96]. Низкочастотный шум, особенно в диапазоне частот от 10 Гц до 100 Гц, создает особый шум окружающей среды, который может вызывать повышенное беспокойство у людей, чувствительных к его воздействию [97]. Звукопоглощающие материалы уменьшают акустическую энергию звуковой волны, когда волна проходит через нее. Одним из способов оценки характеристик звукопоглощающих материалов является измерение коэффициента звукопоглощения, который определяется как мера акустической энергии, поглощаемой материалом при падении энергетической волны [98] [99].

Коэффициент звукопоглощения 0,00 означает, что звук не поглощается, тогда как коэффициент звукопоглощения, близкий к 1,00 для диапазона звуковых частот от 125 до 4000 Гц, означает хорошее звукопоглощение [98] [100].

Древесина – наиболее часто используемый материал для звукопоглощения в зрительных залах. При использовании в различных формах в сочетании с дополнительными звукопоглощающими материалами он может обеспечить оптимальные звукопоглощающие свойства. В связи с этим было обнаружено, что древесина в виде опилок, включенных в бетон или строительный раствор, и другие связанные строительные элементы эффективно поглощают звук.

Kang et al. [101] исследовали композитные плиты из рисовой шелухи и опилок на предмет звукопоглощения в строительстве. Заданные плотности плит составляли 400, 500, 600 и 700 кг / м 3 . Процентное соотношение по массе смесей рисовой шелухи / опилок / фенола и смолы составляло 10/80/10, 20/70/10, 30/60/10 и 40/50/10 соответственно. Характеристики звукопоглощения этих плит сравнивались с характеристиками коммерческих гипсокартонных и древесноволокнистых плит. Коэффициенты звукопоглощения композитной плиты были около 0.20 при 500 Гц, 0,40 при 1000 Гц и 0,40 – 0,55 при более 1000 Гц. Коэффициент звукопоглощения композитной плиты оказался в два раза выше, чем у гипсокартона толщиной 11 мм, особенно на частоте 1000 Гц. Композитные плиты также показали более высокие коэффициенты звукопоглощения, чем коммерческие гипсовые плиты, в диапазоне частот от 500 до 4000 Гц. Общие результаты показали, что композитные плиты из рисовой шелухи и опилок можно использовать в качестве заменяющего материала для целей звукопоглощения в неструктурных конструкциях, таких как потолки, обшивка стен и внутренние поверхности стен.

Tiuc et al. [100] исследовали звукопоглощение двух продуктов, сделанных из двух отходов, а именно переработанной резины и опилок. Один продукт состоит из переработанных резиновых частиц и 15% полиуретанового связующего. Другой составлен из опилок и 30% полиуретана. Оба продукта были толщиной 15 мм. Для диапазона частот от 100 до 1000 Гц оба продукта показали одинаковые характеристики коэффициента звукопоглощения. Однако для более высокого диапазона частот от 1000 до 3150 Гц образец с частицами каучука имел лучшие звукопоглощающие свойства.

Материалы, изготовленные из опилок и переработанных резиновых гранул, были протестированы на акустические характеристики и сопоставлены с существующими акустическими продуктами на рынке, а именно стекловатой и гибким пенополиуретаном. Коэффициент звукопоглощения был экспериментально оценен в диапазоне частот от 100 до 3200 Гц. Результаты показали, что композитные материалы из опилок и резиновых гранул обладают лучшими акустическими свойствами, чем существующие продукты, особенно на частотах ниже 1600 Гц.Коэффициент звукопоглощения, измеренный для материала, изготовленного из опилок и 30% полиуретанового связующего, имел минимальное значение 0,65 в диапазоне частот от 300 до 3150 Гц. Максимальный коэффициент звукопоглощения 0,979 был зарегистрирован на частоте 2000 Гц [99].

Tiuc et al. [102] далее сравнили звукопоглощение изделий, изготовленных из 100% гибкого пенополиуретана (100-FPF), и изделий, изготовленных из 50% еловых опилок и 50% гибкого пенополиуретана (50-FPF). Продукт 100-FPF продемонстрировал эффективные характеристики звукопоглощения в диапазоне частот от 100 до 1700 Гц.Этот продукт зарегистрировал максимальное значение коэффициента звукопоглощения 0,86 на частоте 1700 Гц. Продукт 50-FPF продемонстрировал эффективные характеристики звукопоглощения в диапазоне частот от 100 до 700 Гц, при этом максимальное значение коэффициента звукопоглощения составляло 0,89 на частоте 700 Гц. Это исследование также показало, что композиционные пористые материалы демонстрируют сложные характеристики звукопоглощения.

В таблице 5 представлены характеристики звукопоглощения различных материалов.Из этой таблицы ясно видно, что композитные опилки имеют лучшую звукопоглощающую способность по сравнению с такими материалами, как обычная древесина, обычный бетон и кирпич.

Таблица 5. Звукопоглощающие свойства некоторых обычных строительных материалов и материалов, содержащих опилки.

3.5.2. Звукоизоляция

Звукопоглощающие изделия поглощают эхо внутри комнаты, тем самым предотвращая распространение звука по комнате. С другой стороны, звукоизоляционные материалы блокируют или останавливают распространение звуковых волн в соседние помещения.

Деревянные перегородки для офисов могут быть спроектированы таким образом, чтобы получить любую требуемую степень звукоизоляции, начиная с минимума. Грамотный дизайн и внимание к деталям могут привести к очень высокой звукоизоляции при минимальной общей толщине [106].

Chung et al. [107] установили, что легкие деревянные полы / потолки (LTFS) могут иметь лучшую изоляцию от ударного шума по сравнению с системами на основе бетонных плит. Примеры таких систем включают элементы виброизоляции / демпфирования, такие как резиновые зажимы для потолочных реек, стекловолокно и слой смеси песка и опилок.Было обнаружено, что включение слоя песчано-опилок обеспечивает эффективное гашение вибрации и, следовательно, звукоизоляцию всей композитной конструкции в широком диапазоне частот. Позже Chung et al. [35] использовали математическую модель для прогнозирования вибрации легких систем пола / потолка с деревянным каркасом (LTFS), вызванной механическим возбуждением. В этом исследовании были обобщены ранее полученные данные о хороших звукоизолирующих свойствах слоя песчано-опилок в LTFS. Теоретическая модель и экспериментальные измерения показали, что слой песчано-опилок эффективно гасит вибрацию в диапазоне частот от 10 до 200 Гц.

Emms et al. [108] исследовали несколько проблем, связанных с легкими полами, одной из которых является недостаточная ударопрочность в области низких частот от 16 до 250 Гц. Использование смеси песка и опилок в качестве заполнения в полостях этих легких полов обеспечивает хорошие результаты ударной изоляции, что объясняется сочетанием добавленной массы, большей демпфирующей способности и жесткости пола.

Chathurangani et al. [109] исследовали комбинацию опилок и волокна кокосовой койры для использования в качестве шумопоглощающих материалов для поверхности стен.Исследование подтвердило возможность использования этих материалов для эффективного снижения шума. Из этого исследования коэффициент снижения шума, отношение между уровнями снижения шума к интенсивности падающего звука, значения, полученные для опилок и плиток из кокосового волокна, варьировались от 0,1 до 0,5. Позже исследование, проведенное в Индонезии, показало, что панели, изготовленные из аналогичных материалов, обладают хорошими акустическими характеристиками и могут использоваться для облицовки стен в шумных городских домах [110].

4. Будущие тенденции

Опилки – это перерабатываемые отходы и сырье, которые легко доступны и легко доступны во многих странах-производителях древесины.Его можно собирать и транспортировать с минимальными затратами и энергией по сравнению с затратами и энергией, необходимыми для эксплуатации природных ресурсов. Повышение ценности этих отходов за счет их включения в производство строительных композитов будет направлено на поиск экологически чистых и энергоэффективных материалов в строительстве, внесет вклад в экологически чистую окружающую среду и создаст рабочие места.

Таким образом, в ближайшем будущем, вероятно, увеличатся исследования и разработки строительных композитов из опилок.Возможные направления будущих исследований и разработок включают производство универсальных строительных композитных материалов из опилок, которые являются более прочными, долговечными, легкими, энергоэффективными, экономичными и безопасными для инфраструктуры гражданского строительства, чем это делается в настоящее время. Новые экологически чистые и энергоэффективные строительные композиты, которые, как ожидается, будут привлекать исследовательский и строительный интерес, включают в себя добавки, изготовленные из цементно-опилок, битумно-опилок и полимер-опилок.Разработка этих новых композитов из опилок внесет огромный вклад в науку об альтернативных строительных материалах и сильно повлияет на пересмотр спецификаций и стандартов строительных материалов.

Другие потенциальные возможности использования композитных опилок в строительстве в будущем включают их использование в качестве строительной опалубки и в качестве легкой кровельной черепицы. Эти композиты также могут заменить традиционные системы кондиционирования воздуха в условиях городской жары и теплового дискомфорта с дополнительными преимуществами энергосбережения и смягчения последствий изменения климата.

5. Выводы

Литература показывает, что во многих странах-производителях древесины ежегодно производится более 2 млн. М. 3 опилок. В развивающихся странах этот материал часто утилизируется без разбора путем открытого захоронения и открытого сжигания, что создает огромную экологическую проблему. В этой статье были рассмотрены различные исследования по использованию опилок в строительстве, направленные на смягчение этой экологической проблемы, связанной с опилками. Рассмотренные исследования включают использование и возможное использование опилок и золы из опилок в строительных композитах из опилок, таких как ДСП, кирпичи, блоки и легкий бетон.

Древесно-стружечные плиты, содержащие опилки, могут иметь значения модуля упругости более 2100 МПа, разбухание по толщине не более 15% и приемлемые характеристики водопоглощения, соответствующие международным требованиям. Опилки и зола из опилок могут быть включены в состав сырья для производства кирпичей и блоков, которые удовлетворяют строительным требованиям для кирпичной кладки стеновых блоков и тротуарной плитки. Легкий бетон как для строительных, так и для неструктурных работ может производиться из опилок или золы из опилок, являющихся частью или одним из основных ингредиентов бетона.Строительные композиты из опилок также привлекательны своей низкой теплопроводностью, высоким звукопоглощением и хорошими звукоизоляционными характеристиками.

Однако из литературы отмечается, что повышенная доля опилок в строительных композитах из опилок отрицательно влияет на механические и физические характеристики производимых композитов. Замена части обычного песка в бетонной смеси с долей опилок от 5% до 15% может привести к получению хорошего легкого конструкционного бетона со значениями прочности на сжатие более 20 МПа.Анализ собранных данных дает зависимость между прочностью на сжатие опилок бетона ( f c ) и замену песка содержанием опилок (λ) как f c = 25,944 e – 0,015 λ . Это соотношение дает оптимальное значение λ 17% для производства конструкционного бетона с f c 20 МПа.

Замена цемента золой из опилок (SDA) в пропорции от 5% до 15% также дает бетон с прочностью на сжатие более 20 МПа. Более высокие пропорции опилок и SDA, чем эти, значительно снижают прочность опилок бетона.Замена от 10% до 30% песка, используемого при производстве блоков и кирпичей, опилками также может привести к получению кирпичей и блоков из опилок с характеристиками сжатия и водопоглощения, которые соответствуют международным спецификациям.

Более широкое использование опилок в строительстве будет в значительной степени способствовать устойчивости строительства, связанной с разработкой и использованием экологически чистых строительных материалов. Кроме того, использование композитных опилок в строительстве будет способствовать сохранению невозобновляемых строительных ресурсов, сокращению потребления энергии, а также выбросов CO 2 от эксплуатации природных строительных материалов.Все это в конечном итоге внесет большой вклад в смягчение последствий изменения климата. Таким образом, композиты из опилок имеют не только рыночную, но и экологическую ценность. Таким образом, развивающиеся страны должны рассматривать опилки не как отходы, а как ценный побочный продукт, который может быть широко использован в строительной отрасли.

Благодарности

Авторы выражают благодарность за поддержку Университета Коппербелт, Китве, Замбия.

Конфликт интересов

Главный автор и соавтор (перечисленные как авторы) соответствуют критериям авторства и подтверждают, что они принимали участие в работе в достаточной степени, чтобы нести общественную ответственность за содержание и участие в концепции, дизайне, анализе и написании рукописи.Кроме того, каждый автор удостоверяет, что этот или аналогичный материал не был отправлен в другой журнал для публикации.

Цитируйте эту статью

Мванго А. и Камболе К. (2019) Технические характеристики и возможность более широкого использования композитов из опилок в строительстве – обзор. Журнал исследований строительства и планирования, 7, 59-88. https://doi.org/10.4236/jbcpr.2019.73005

Список литературы

  1. 1. Кумар, Д., Сингх, С., Кумар, Н. и Гупта, А. (2014) Недорогой строительный материал для бетона в виде опилок. Глобальный журнал исследований в области инженерии, 14, 33-36.

  2. 2. Тилак, Л.Н., Сантош Кумар, М.Б., Манвендра, С. и Ниранджан (2018) Использование древесной пыли в качестве мелкозернистого заполнителя в бетонной смеси. Международный научно-исследовательский журнал техники и технологий (IRJET), 5, 1249-1253.

  3. 3. Огундипе О. и Джимох Ю. (2012) Соответствие бетонных опилок для жестких покрытий на основе прочности.Перспективные исследования материалов, 367, 13-18. https://doi.org/10.4028/www.scientific.net/AMR.62-64.11

  4. 4. Adu, S., Adu, G., Frimpong-Mensah, K., Antwi-Boasiako, C., Effah, B. and Adjei, S. (2014) Максимальное использование древесных остатков и снижение производительности до Борьба с изменением климата. Международный журнал наук о растениеводстве и лесоводстве, 1, 1-12.

  5. 5. Кларк, Дж. М. (2018) Создание рабочих мест в сельском хозяйстве, лесном хозяйстве и рыболовстве в Южной Африке: анализ тенденций, возможностей и ограничений занятости в лесном хозяйстве и деревообрабатывающей промышленности.Рабочий документ 52, Институт бедности, земельных и аграрных исследований (PLAAS), Университет Западного Кейпа, Беллвилл.

  6. 6. Okedere, O.B., Fakinle, B.S., Sonibare, J.A., Elehinafe, F.B. и Адесина О.А. (2017) Загрязнение твердыми частицами от открытого сжигания опилок на юго-западе Нигерии. Cogent Environmental Science, 3, ID статьи: 1367112. https://doi.org/10.1080/23311843.2017.1367112

  7. 7. Schmidt, G.B.S. (2014) Китайский лес: пример из лесного сектора Западной Замбии.8-я Международная конференция по качеству, Крагуевац, 23 мая 2014 г., стр. 37-49.

  8. 8. Клаудиу А. (2014) Использование опилок в составе штукатурных растворов. ProEnvironment Promediu, 7, 30-34.

  9. 9. Мамза П.А., Эзех Э.С., Гимба Э. и Артур Д.Э. (2014) Сравнительное исследование древесностружечных плит фенолформальдегида и карбамида формальдегида из древесных отходов для устойчивого развития окружающей среды. Международный журнал научных и технологических исследований, 3, 53-61.

  10. 10.Хурмекоски, Э. (2017) Как деревянное строительство может снизить экологическую деградацию? Европейский лесной институт, Йоэнсуу.

  11. 11. Оливер, C.D., Nassar, N.T., Lippke, B.R. и Маккартер, Дж. Б. (2014) Углерод, ископаемое топливо и уменьшение биоразнообразия с помощью древесины и лесов. Журнал устойчивого лесного хозяйства, 33, 248-275. https://doi.org/10.1080/10549811.2013.839386

  12. 12. Эхуемело Д. и Атондо Т. (2015) Оценка восстановления лесоматериалов и образования отходов на отдельных лесопильных предприятиях в трех муниципальных районах штата Бенуэ, Нигерия.Прикладное тропическое сельское хозяйство, 20, 62-68.

  13. 13. Камбугу, Р.К., Банан, А.Ю., Ззива, А., Агея, Дж. и Кабоггоза, Дж. Р. (2005) Относительная эффективность лесопильных заводов, работающих на плантациях хвойных пород Уганды. Угандийский журнал сельскохозяйственных наук, 11, 14-19.

  14. 14. Ахатор П., Обанор А. и Угеге А. (2017) Древесные отходы Нигерии: потенциальный ресурс для экономического развития. Журнал прикладных наук и экологического менеджмента, 21, 246-251.https://doi.org/10.4314/jasem.v21i2.4

  15. 15. Olufemi, B., Akindeni, J.O. и Оланиран, С. (2012) Эффективность восстановления древесины на выбранных лесопилках в Акуре, Нигерия. Drvna Industrija, 63, 15-18. https://doi.org/10.5552/drind.2012.1111

  16. 16. Нкубе, Э. и Фири, Б. (2015) Концентрации тяжелых металлов в древесных опилках и дыме эвкалипта и сосны, провинция Коппербелт, Замбия. Мадерас. Ciencia y Tecnología, 17, 585-596. https://doi.org/10.4067 / S0718-221X2015005000052

  17. 17. Департамент по вопросам окружающей среды (DEA), Отчет о состоянии отходов в Южной Африке (2018) Отчет о состоянии окружающей среды, во втором проекте отчета. DEA, Претория, 1-105.

  18. 18. Guzman, A.D.M. и Манно, M.G.T. (2015) Дизайн кирпича со звукопоглощающими свойствами на основе пластиковых отходов и опилок. IEEE Access, 3, 1260-1271. https://doi.org/10.1109/ACCESS.2015.2461536

  19. 19.Гарай, Р. (2012) Лабораторные испытания влагостойких древесно-стружечных плит P3, изготовленных из остатков древесины. BioResources, 7, 3093-3103.

  20. 20. Европейская организация лесопильной промышленности (EOS) (2018) Годовой отчет европейской лесопильной промышленности за 2017/2018 гг. EOS, Брюссель.

  21. 21. Роминии, О., Адарамола, Б., Икумапайи, О., Огинни, О. и Акинола, С. (2017) Возможное использование опилок в энергетике, обрабатывающей промышленности и сельском хозяйстве; От расточительства к богатству.Всемирный журнал инженерии и технологий, 5, 526-539. https://doi.org/10.4236/wjet.2017.53045

  22. 22. Петри Б. (2014) Южная Африка: аргументы в пользу биомассы? Международный институт окружающей среды и развития, Лондон.

  23. 23. Деак Т., Фешете-Тутунару Л. и Гаспар Ф. (2016) Воздействие на окружающую среду брикетов из древесных опилок Экспериментальный подход. Энергетические процедуры, 85, 178-183. https://doi.org/10.1016/j.egypro.2015.12.324

  24. 24.Мейер, К. (2002) Бетон и устойчивое развитие. Специальные публикации ACI, 206, 501-512.

  25. 25. Продовольственная и сельскохозяйственная организация (ФАО) (2019) Статистика лесных товаров. http://www.fao.org/forestry/statistics/80938/en

  26. 26. Продовольственная и сельскохозяйственная организация Объединенных Наций (ФАО) (2017) Глобальные лесные товары: факты и цифры, 2016 г. Продовольственная и сельскохозяйственная организация Объединенных Наций, Рома.

  27. 27. Нг’андве, П., Чунгу, Д., Ратназингам, Дж., Рамананантоандро, Т., Донфак, П. и Мвитва, Дж. (2017) Развитие лесной промышленности в Замбии: возможность государственно-частного партнерства для малых и средних предприятий. Международный обзор лесного хозяйства, 19, 467-477. https://doi.org/10.1505/1465548822272374

  28. 28. Абдулкарим, С., Раджи, С. и Адении, А. (2017) Разработка древесностружечных плит из отходов пенополистирола и опилок. Нигерийский журнал технологического развития, 14, 18-22. https://doi.org/10.4314 / njtd.v14i1.3

  29. 29. Дотун А.О., Адедиран А.А. and Oluwatimilehin, A.C. (2018) Оценка физических и механических свойств древесностружечных плит, полученных из древесной пыли и пластиковых отходов. Международный журнал инженерных исследований в Африке, 40, 1-8. https://doi.org/10.4028/www.scientific.net/JERA.40.1

  30. 30. Акинеми, А.Б., Афолаян, Дж., И Олуватоби, Э.О. (2016) Некоторые свойства композитных плит из кукурузного початка и древесных опилок. Строительные и строительные материалы, 127, 436-441.https://doi.org/10.1016/j.conbuildmat.2016.10.040

  31. 31. Эрахрумен, А., Ареган, С., Огунлей, М., Ларинде, С., Одеяле, О. (2008) Отдельные физико-механические свойства цементно-стружечных плит, изготовленных из сосны (Pinus caribaea M.) Смесь кокосовых опилок (Cocos nucifera L.). Научные исследования и эссе, 3, 197-203.

  32. 32. Агуа, Э., Аллогнон-Хуэсу, Э., Аджови, Э. и Тогбеджи, Б. (2013) Теплопроводность композитов из отходов древесины и пенополистирола.Строительные и строительные материалы, 41, 557-562. https://doi.org/10.1016/j.conbuildmat.2012.12.016

  33. 33. Чанхун, М., Падону, С., Аджови, Э.С., Олодо, Э. и Доко, В. (2018) Исследование использования древесных отходов, пластиков и полистиролов для различных применений в строительной индустрии. Строительные и строительные материалы, 167, 936-941. https://doi.org/10.1016/j.conbuildmat.2018.02.080

  34. 34. Dawood, M.H.A., Abtan, Y.G. и Варёш В.А. (2013) Структурное поведение композитных многослойных панелей. Журнал инженерии и устойчивого развития, 17, 220-232.

  35. 35. Чанг, Х., Эммс, Г. и Фокс, К. (2014) Снижение вибрации в легких напольных / потолочных системах с демпфирующим слоем из песчано-опилок. Acta Acustica United with Acustica, 100, 628-639. https://doi.org/10.3813/AAA.918742

  36. 36. Antwi-Boasiako, C., Ofosuhene, L. и Boadu, K.B. (2018) Пригодность опилок трех тропических пород древесины для древесно-цементных композитов.Журнал устойчивого лесного хозяйства, 37, 414-428. https://doi.org/10.1080/10549811.2018.1427112

  37. 37. Mangi, S.A., Jamaluddin, N.B., Siddiqui, Z., Memon, S.A. и Ibrahim, M.H.B.W. (2019) Использование опилок в бетонных блоках: обзор. Научно-исследовательский журнал инженерии и технологий Мехранского университета, 38, 487.

  38. 38. Гил, Х., Ортега, А. и Перес, Дж. (2017) Механическое поведение строительного раствора, армированного отходами опилок. Разработка процедур, 200, 325-332.https://doi.org/10.1016/j.proeng.2017.07.046

  39. 39. Акерс, Д.Дж., Грубер, Р.Д., Рамме, Б.В., Бойл, М.Дж., Григар, Дж.Г., Роу, С.К., Бремнер, Т.В., Клюцковски, Е.С., Шитц, С.Р. и Бург, Р. (2003) Руководство для конструкционного легкого заполнителя, в ACI 213R-03. Американский институт бетона (ACI), Мичиган.

  40. 40. Mohammed, J.H. и Хамад, А.Дж. (2014) Обзор материалов, свойств и применения легкого бетона. Технический обзор инженерного факультета Сулийского университета, 37, 10-15.

  41. 41. Ahmed, W., Khushnood, R.A., Memon, S.A., Ahmad, S., Baloch, W.L. и Усман, М. (2018) Эффективное использование опилок для производства экологически чистых и теплосберегающих бетонов нормального веса и легких бетонов с заданными характеристиками разрушения. Журнал чистого производства, 184, 1016-1027. https://doi.org/10.1016/j.jclepro.2018.03.009

  42. 42. Badejo, S.O.O. (1987) Исследование влияния содержания цементного вяжущего на свойства цементно-стружечных плит из четырех тропических пород древесины.Малазийский лесник (Малайзия).

  43. 43. Олуфеми Б. и Малами А. (2011) Плотность и характеристики прочности на изгиб выращенного в северо-западной части Нигерии эвкалипта камалдуансис в отношении использования в качестве древесины. Исследовательский журнал лесного хозяйства, 5, 107-114. https://doi.org/10.3923/rjf.2011.107.114

  44. 44. Рейес, Г., Браун, С., Чепмен, Дж. И Луго, А.Е. (1992) Плотность древесины тропических пород деревьев. Общий технический отчет SO-88. Департамент сельского хозяйства США, Лесная служба, Южная опытная лесная станция, Новый Орлеан, 1-15.

  45. 45. ANSI (Американский национальный институт стандартов) (2009) Американский национальный стандарт на ДСП. ANSI / A208.1. Ассоциация композитных панелей, Гейтерсбург.

  46. 46. BS EN 312 (2010) ДСП. Характеристики. Европейский комитет по стандартизации, Брюссель.

  47. 47. BS EN 317 (1993) ДСП и древесноволокнистые плиты. Определение набухания по толщине после погружения в воду. Британский институт стандартов, Лондон.

  48. 48. Atuanya, C.U. и Обеле, К. (2016) Оптимизация технологических параметров композитов из опилок / вторичного полиэтилена. Journal of Minerals and Materials Characterization and Engineering, 4, 270. https://doi.org/10.4236/jmmce.2016.44024

  49. 49. Абу-Зарифа, А., Абу-Шаммала, М. и Аль-Шейх, А. (2018) Устойчивое производство ДСП из опилок и сельскохозяйственных отходов, смешанных с переработанными пластиками. Американский журнал экологической инженерии, 8, 174–180.

  50. 50. Куполати, В.К., Грасси, С. и Фраттари, А. (2012) Экологическое озеленение за счет использования опилок для производства кирпича. OIDA International Journal of Sustainable Development, 4, 63-78.

  51. 51. SANS 10400 (2011) Применение национальных строительных норм. Часть K: Стены. Отдел стандартов SABS, Претория.

  52. 52. Равиндрараджа, Р.С., Кэрролл, К. и Апплярд, Н. (2001) Разработка бетонных опилок для изготовления блоков.Материалы конференции по строительным технологиям, Кота-Кинабалу, 12-14 октября 2001 г.

  53. 53. Dadzie, D.K., Dokyi, G.O., Niakoh, N. (2018) Сравнительное исследование свойств песчаных блоков, изготовленных с использованием опилок в качестве частичной замены песка. Международный журнал научных и инженерных исследований, 9, 1357-1362.

  54. 54. Болван, Т.Н. (2014) Характеристики опилок в недорогих блоках из песчаника. Американский журнал инженерных исследований, 3, 197-206.

  55. 55. BS 6073 (1981) Часть 1: Сборные железобетонные блоки, Часть 1. Спецификация для сборных бетонных блоков. Британский институт стандартов, Лондон.

  56. 56. Ettu, L.O., Arimanwa, J.I., Njoku, F.C., Amanze, A.P.C. и Эзиефула, У.Г. (2013) Прочность бетонных блоков из цементного песка и бетона, содержащих золу из опилок и золу из папилломы. Международный журнал технических изобретений, 2, 35-40.

  57. 57. Тургут, П.и Альгин, Х. (2007) Известняковая пыль и древесные опилки как кирпич. Строительство и окружающая среда, 42, 3399-3403. https://doi.org/10.1016/j.buildenv.2006.08.012

  58. 58. Moreira, A.B.S., Macêdo, A.N. и Соуза, П.С.Л. (2012) Состав для прочности бетонных блоков с опилками в соответствии с обработкой остатков. Acta Scientiarum. Технологии, 34, 269-276. https://doi.org/10.4025/actascitechnol.v34i3.14372

  59. 59. Адебакин И.Х., Адейеми А.А., Аду Дж.Т., Аджайи, Ф.А., Лавал, А.А. и Огунринола, О. (2012) Использование опилок в качестве добавки при производстве недорогих и легких пустотелых блоков из песчаника. Американский журнал научных и промышленных исследований, 3, 458-463. https://doi.org/10.5251/ajsir.2012.3.6.458.463

  60. 60. Зива А., Кизито С., Банана А., Кабоггоза Дж., Камбугу Р. и Ссеремба О. (2006) Производство композитных кирпичей из опилок с использованием портландцемента в качестве связующего. Угандийский журнал сельскохозяйственных наук, 12, 38-44.

  61. 61. Osei, D.Y. и Джексон, Э. (2016) Прочность бетона на сжатие с использованием опилок в качестве заполнителя. Международный журнал научных и инженерных исследований, 7, 1349-1353.

  62. 62. Bdeir, L.M.H. (2012) Исследование некоторых механических свойств строительного раствора с опилками как частичная замена песка. Анбарский журнал технических наук, 5, 22-30.

  63. 63. Сулиман, Н.Х., Разак, А.А.А., Мансор, Х., Алисибрамулиси, А.и Амин Н.М. (2019) Бетон с использованием опилок в качестве частичной замены песка: прочен ли он и не угрожает здоровью? Сеть конференций MATEC, 258, идентификатор статьи: 01015.

  64. 64. Oyedepo, OJ, Oluwajana, S.D. и Аканде, С.П. (2014) Исследование свойств бетона с использованием опилок в качестве частичной замены песка. Гражданские и экологические исследования, 6, 35-42.

  65. 65. Натан, М.В. (2018) Влияние опилок как мелкого заполнителя в бетонной смеси. Международный инженерно-технический журнал, 4, 1-12.

  66. 66. Читра, Р. и Хемаприя (2018) Экспериментальное исследование прочности бетона путем частичной замены мелкозернистого заполнителя на опилочную пыль. Международный журнал чистой и прикладной математики, 119, 9473-9479.

  67. 67. Савант, А., Шарма, А., Рахате, Р., Майекар, Н. и Гаддж, доктор медицины (2018) Частичная замена песка опилками в бетоне. Международный научно-исследовательский журнал техники и технологий, 5, 3098-3101.

  68. 68.Аваль А.А., Марьяна А., Хоссейн М. (2016) Некоторые аспекты физико-механических свойств опилок бетона. Международный журнал GEOMATE, 10, 1918-1923.

  69. 69. Sojobi, A.O. (2016) Оценка эффективности экологически чистых легких блокировочных бетонных блоков для мощения, включающих отходы опилок и латерит. Cogent Engineering, 3, идентификатор статьи: 1133480. https://doi.org/10.1080/23311916.2016.1255168

  70. 70. Соджоби А.О., Аладегбойе О.Дж. И Аволуси Т.Ф. (2018) Зеленые блокирующие брусчатки. Строительные и строительные материалы, 173, 600-614. https://doi.org/10.1016/j.conbuildmat.2018.04.061

  71. 71. Олутоге, Ф.А. (2010) Исследования опилок и скорлупы пальмовых ядер как совокупного замещения. ARPN Journal of Engineering and Applied Sciences, 5, 7-13.

  72. 72. Невилл А.М. (2011) Свойства бетона. 5-е издание, Pearson Education Limited, Эссекс.

  73. 73.ASTM C330 / C330M-09 (2009) Стандартные технические условия для легких заполнителей для конструкционного бетона. ASTM International, Западный Коншохокен.

  74. 74. Сасах, Дж. И Канкам, К. (2017) Исследование кирпичного раствора с использованием опилок в качестве частичной замены песка. Lambert Academic Publishing, Маврикий, 1-66.

  75. 75. Огундипе, О. и Джимох, Ю. (2009) Соответствие бетонных опилок для жестких покрытий на основе долговечности. Перспективные исследования материалов, 62-64, 11-16.https://doi.org/10.4028/www.scientific.net/AMR.62-64.11

  76. 76. Хусейн, Г.Ф., Мемон, Р.П., Кубба, З., Сэм, АРМ, Асаад, М.А., Мирза, Дж. И Мемон, Ю. (2019) Механические, термические и долговечные характеристики отходов опилок в качестве замены грубых заполнителей в обычном бетоне. Jurnal Teknologi, 81, 151-161. https://doi.org/10.11113/jt.v81.12774

  77. 77. Окороафор С.Ю., Ибеаругбулам О.М., Онуквуга Е.Р., Аняогу Л. и Ада Э.И. (2017) Структурные характеристики композита опилки-песок-цемент.Международный журнал достижений в области исследований и технологий, 6, 173-180.

  78. 78. Удоео, Ф.Ф. и Дашибил П. (2002) Опилки золы как бетонный материал. Журнал материалов в гражданском строительстве, 14, 173-176. https://doi.org/10.1061/(ASCE)0899-1561(2002)14:2(173)

  79. 79. Мартонг, К. (2012) Зола из опилок (SDA) как частичная замена цемента. Международный журнал инженерных исследований и приложений, 2, 1980–1985.

  80. 80.Обилад, И. (2014) Использование золы из опилок в качестве частичной замены цемента в бетоне. Международный журнал инженерии и научных изобретений, 2319, 36-40.

  81. 81. Дхулл, Х. (2017) Влияние на свойства бетона при использовании золы от опилок в качестве частичной замены цемента. Международный журнал инновационных исследований в области науки, техники и технологий, 6, 18603-18610.

  82. 82. Онвука Д., Аняогу Л., Чидзиоке С. и Окойе П. (2013) Прогнозирование и оптимизация прочности на сжатие золо-цементного бетона на основе древесных опилок с использованием симплексной конструкции Шеффе.Международный журнал научных и исследовательских публикаций, 3, 1-9.

  83. 83. Фапохунда, К., Акинбиле, Б. и Ойеладе, А. (2018) Обзор свойств, структурных характеристик и возможностей применения бетона, содержащего древесные отходы, в качестве частичной замены одного из составляющих его материалов. Журнал YBL по искусственной среде, 6, 63-85. https://doi.org/10.2478/jbe-2018-0005

  84. 84. Манги, С.А., Джамалуддин, Н., Ван Ибрагим, М., Норида, М.и Соху, С. (2017) Использование золы из опилок в качестве заменителя цемента при производстве бетона: обзор. Международный научно-исследовательский журнал технических наук и технологий, 1, 11-15.

  85. 85. Рахим А., Оласунканми Б. и Фолорунсо К. (2012) Пыльная зола как частичная замена цементу в бетоне. Организация, технологии и менеджмент в строительстве: Международный журнал, 4, 474-480. https://doi.org/10.5592/otmcj.2012.2.3

  86. 86.Асдрубали, Ф., Д’Алессандро, Ф. и Скьявони, С. (2015) Обзор нетрадиционных устойчивых строительных изоляционных материалов. Устойчивые материалы и технологии, 4, 1-17. https://doi.org/10.1016/j.susmat.2015.05.002

  87. 87. Мемон, Р.П., Сэм, А.Р.М., Авал, А.А. и Ачекзай, Л. (2017) Механические и термические свойства опилок бетона. Jurnal Teknologi (наука и техника), 79, 23-27. https://doi.org/10.11113/jt.v79.9341

  88. 88. Салих, С.А., Кзарь А. (2015) Изучение полезности использования камыша и опилок в качестве отходов для производства цементных строительных блоков. Инженерный журнал, 21, 36-54.

  89. 89. Sindanne, SA, Ntamack, GE, Sanga, RPL, Moubeke, CA, Sallaboui, ESK, Bouabid, H., Mansouri, K. и D’ouazzane, SC (2014) Теплофизические характеристики земных блоков, стабилизированных цементом , Опилки и известь. Журнал строительных материалов и конструкций, 1, 58-64.

  90. 90.Абдул-Амир, О. (2018) Оценка тепловых свойств легкого бетона, полученного с использованием местных промышленных отходов. Сеть конференций MATEC, 162, идентификатор статьи: 02027. https://doi.org/10.1051/matecconf/201816202027

  91. 91. Cheng, Y., You, W., Zhang, C., Li, H. and Hu, J. (2013) Использование отходов опилок в бетоне. Инженерная, 5, 943. https://doi.org/10.4236/rus.2013.512115

  92. 92. Asadi, I., Shafigh, P., Hassan, Z.F.B.A.и Махьюддин, Н. (2018) Теплопроводность бетона – обзор. Журнал Строительной техники, 20, 81-93. https://doi.org/10.1016/j.jobe.2018.07.002

  93. 93. Tarmac, L. (2015) Бетон с низкой теплопроводностью, в руководстве по решениям. Лафарж Тармак Лимитед, Солихалл.

  94. 94. Баден-Пауэлл, К. (2008) Карманный справочник архитектора. 3-е издание, Architectural Press, Elsevier, Oxford. https://doi.org/10.4324/97800804

  95. 95.ASTM C332-09 (2009) Стандартные технические условия для легких заполнителей для изоляционного бетона. ASTM International, Западный Коншохокен.

  96. 96. Куи, Х. и Энхуи, Ю. (2018) Влияние толщины, плотности и глубины полости на звукопоглощающие свойства шерстяных плит. Autex Research Journal, 18, 203-208. https://doi.org/10.1515/aut-2017-0020

  97. 97. Левентхолл Х. (2004) Низкочастотный шум и раздражение. Шум и здоровье, 6, 59.

  98. 98.Seddeq, H.S. (2009) Факторы, влияющие на акустические характеристики звукопоглощающих материалов. Австралийский журнал фундаментальных и прикладных наук, 3, 4610-4617.

  99. 99. Тиук, А.-Э., Вермешан, Х., Габор, Т. и Василе, О. (2016) Улучшенные звукопоглощающие свойства пенополиуретана, смешанного с текстильными отходами. Энергетические процедуры, 85, 559-565. https://doi.org/10.1016/j.egypro.2015.12.245

  100. 100. Tiuc, A.E., Vasile, O. and Gabor, T. (2014) Определение антивибрационных и акустических свойств некоторых материалов, изготовленных из переработанных резиновых частиц и опилок.Румынский журнал акустики и вибрации, 11, 47-52.

  101. 101. Канг, К.-В., О, С.-В., Ли, Т.-Б., Кан, В., Мацумура, Дж. (2012) Способность звукопоглощения и механические свойства композитного риса Доска корпуса и опилок. Journal of Wood Science, 58, 273-278. https://doi.org/10.1007/s10086-011-1243-5

  102. 102. Тиук, А.Е., Немеш, О., Вермешан, Х. и Тома, А.С. (2019) Новые звукопоглощающие композитные материалы на основе опилок и пенополиуретана.Композиты Часть B: Инженерия, 165, 120-130. https://doi.org/10.1016/j.compositesb.2018.11.103

  103. 103. Дэнс, С. и Шилд, Б. (2000) Коэффициенты поглощения обычных строительных материалов для использования в компьютерном моделировании замкнутых пространств. Строительная Акустика, 7, 217-224. https://doi.org/10.1260/1351010001501615

  104. 104. Vorländer, M. (2007) Аурализация: основы акустики, моделирования, моделирования, алгоритмов и акустической виртуальной реальности.Springer Science & Business Media, Берлин.

  105. 105. Тиук, А.-Э., Дан, В., Вермешан, Х., Габор, Т. и Проороку, М. (2016) Восстановление опилок и гранул вторичного каучука в качестве звукопоглощающих материалов. Журнал экологической инженерии и менеджмента, 15, 1093-1101. https://doi.org/10.30638/eemj.2016.122

  106. 106. Чадли, Р. и Грино, Р. (2013) Справочник по строительству зданий. 9-е издание, Рутледж, Абингдон-он-Темз. https://doi.org/10.4324/9780080970622

  107. 107. Чанг, Х., Фокс, К., Додд, Г. и Эммс, Г. (2010) Легкие напольные / потолочные системы с улучшенной изоляцией от ударного шума. Строительная акустика, 17, 129-141. https://doi.org/10.1260/1351-010X.17.2.129

  108. 108. Эммс, Г., Чанг, Х., Макганнигл, К. и Додд, Г. (2006) Улучшение ударной изоляции полов из легкой древесины. in Proceedings of Acoustics 2006, Крайстчерч, 20-22 ноября 2006 г., стр. 147-153.

  109. 109.Чатурангани, О., Перера, В., Кумари, Х., Субаши, Г., Де Силва, Г. (2013) Использование опилок и кокосового кокосового волокна в качестве шумопоглощающих материалов для поверхности стен. Симпозиум по обмену исследованиями в области гражданского строительства, Матара, 16-19.

  110. 110. Сетйовати, Э., Хардиман, Г. и Атмаджа, С.Т. (2015) Сравнение экологически чистых материалов для акустических вафельных панелей из опилок и кокосового волокна. Прикладная механика и материалы, 747, 221-225. https://doi.org/10.4028/www.scientific.net/AMM.747.221

Требуется

совета по изоляции чердаков | Очаг.com Forum Home

1, 2. Трудно сказать по изображению кухни, но если это розовое вещество на полу – это именно то, что вы описываете, и оно состоит из кусков размером с два ватных шарика, то, скорее всего, это стекловолокно. Вы, вероятно, можете просто оставить опилки и FG в других областях, подальше от кухни, и нет проблем с выдуванием целлюлозы поверх рыхлого слоя FG. Хотя FG будет немного сжиматься за счет веса добавленной над ним целлюлозы, добавленная толщина целлюлозы более чем компенсирует это; общая установленная толщина – вот что имеет значение.Кроме того, в случае FG со свободным обдувом ИК-исследования показали, что могут возникать тепловые петли, воздушные потоки, возникающие внутри слоя FG, вызванные опусканием более тяжелого холодного воздуха над изоляцией и вытеснением более теплого воздуха над гипсокартоном. Слой целлюлозы, добавленный к слою FG, по существу устраняет этот эффект.

3. Я не знаю, что пытался сделать слой опилок, кроме как обеспечить какую-то дешевую или бесплатную изоляцию, если она была доступна в то время, или строитель хотел место для ее утилизации после того, как потолочная гипсокартон была установлена.Опилки впитывают влагу в прохладную погоду, так же как и целлюлоза, но при повышении температуры чердака они высыхают, если на чердаке есть соответствующая вентиляция. Я был бы склонен пропустить любой слой поли, прежде чем переделывать кухонную гипсокартон. Слой пароизоляционной грунтовочной краски или даже несколько слоев латексной краски должны быть достаточно стойкими к парообразованию, чтобы избежать проблем с влажностью из-за молекулярной диффузии. Гораздо большее значение имеет утечка воздуха снизу в чердак, как на кухне, так и в других местах дома.Поднимитесь туда, прежде чем добавлять целлюлозу в то, что там есть, отодвиньте изоляцию в сторону и заклейте пеной все отверстия, где есть проходы проводки через обрамление или потолочные светильники. Я вижу несколько встраиваемых светильников, свисающих с потолка кухни. Поместите их в мусорный контейнер и используйте светодиодное освещение, устанавливаемое на поверхность, с герметичными коробками с электропроводкой; есть коробки, предназначенные для легкой герметизации воздуха. Светильники, даже с номиналом AT / IC (герметичность, контакт с изоляцией), приводят к утечкам воздуха и являются тепловыми отверстиями в чердаке.Это ужасная идея для любого потолка наверху.

4, 7. Что касается вентиляции чердака, то лучшая система – это сплошная вентиляция конька и потолка без вентиляции на фронтонах. У вас есть вентиляционное отверстие конька, но вы должны иметь вентиляционные отверстия на потолке в каждом отсеке с изоляционными перегородками, чтобы не допускать попадания изоляции на настил крыши. Вот хороший источник информации: http://www.greenbuildingadvisor.com/blogs/dept/musings/how-do-everything. Также есть эта статья о вентиляции: http://www.greenbuildingadvisor.com/blogs/dept/musings/all-about-attic-venting.

5. Что касается изоляции и герметизации чердачного люка, прочтите это: http://www.greenbuildingadvisor.com/blogs/dept/musings/all-about-attics.

6. Что касается герметичных электрических коробок на внешних стенах и чердачном полу, вы можете использовать пену, но она должна быть того типа, который используется для этого (апельсиновый материал), и вы не хотите вспенивать внутреннюю часть. коробка; внутри коробки должен быть достаточный объем для количества подключенных к ней проводов. Лучше всего загерметизировать светильники со стороны чердака.

По поводу таяния снега возле дымохода сказать сложнее. Вполне могла быть утечка воздуха в чердачное пространство снизу или из самой погони. В общем, зимой лучше, чтобы на крыше не просачивалось тепло на чердак, поскольку это приводит к образованию ледяных завалов и образованию сосулек по краям. Но если вы не видели этого в той части крыши или где-либо еще, возможно, это не вызывает особого беспокойства. Что вы видите зимой в этом отношении?

Наконец, если ваш подвал – это кондиционированное пространство, то изоляция между этажами ничего не даст вам, кроме как для снижения уровня шума.

Почему с крыши падают опилки?

Сколько раз в мае вы смотрели в окно кухни и вдруг видели, как опилки падают, как снег? Вы выходите на улицу и, скорее всего, увидите аккуратную стопку. Что это? Ответ заключается в том, как выглядят опилки.

Муравьи-плотники создают опилки

Муравьи-плотники в доме

Когда муравьи-плотники создают опилки или муку, выкапывают древесину, чтобы построить гнездо. Проблема в том, что в зависимости от того, откуда падают опилки, может быть трудно увидеть вредителя в действии.Если вы внимательно посмотрите на кучу, вы найдете обрывки мертвых насекомых. Это отличительная черта всех муравьев плотника. Куча, помимо выкапываемой древесины, – это еще и мусор из гнезда. Затем вы захотите узнать, где находится гнездо. Правда о муравьях-плотниках заключается в том, что если они строят гнездо и выкапывают дрова, то, скорее всего, это влага. Если это так, обратите внимание на оконные рамы, забитые участки желобов и обшивку под черепицей на крыше, которая, возможно, знала лучшие времена.

Пчелы-плотники и опилки падают с крыши

Ни одно обсуждение опилок, падающих с крыши, не было бы полным, если бы не поговорили о пчелах-плотниках. На самом деле, главный виновник такого рода ситуаций обычно связан с пчелами-плотниками. Весной пчелы-плотники выкапывают пустоты в лесу, где они могут сажать яйца.

Создаваемые ими опилки могут выглядеть так же, как муравьи-плотники, но при осмотре опилки будут чистыми.

Пчела-плотник крупным планом

без мертвых частей насекомых.Признаками активности пчел-плотников, помимо их присутствия, будут идеально круглые отверстия, которые они просверливают, а также пятна вокруг области, которую они выкапывают.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *