Вт м2 с – Сопротивление теплопередаче стеклопакета таблица, гост, формула

Содержание

Сопротивление теплопередаче стеклопакета таблица, гост, формула

Насколько эффективно окна будут выполнять теплозащитную функцию, профессионалы устанавливают при помощи специальных расчетов. Качество теплоизолирующих свойств стеклопакета, в соответствии с ГОСТ 26602.1-99, 24866-99 определяет такой показатель, как сопротивление теплопередаче [R0].

Как проводится измерение показателя (сопротивления теплопередаче коэффициента R0)

Потери тепла иногда количественно определяются с точки зрения теплосопротивления стеклопакета или коэффициента сопротивления теплопередаче R0. Это значение, обратное коэффициенту теплопередачи U. R = 1/U (при переводе Европейских коэффициентов U в Российские R0 не следует забывать, что наружные температуры, используемые для расчетов, сильно отличаются).

В свою очередь, коэффициент теплопередачи U, характеризует способность конструкции передавать тепло. Физический смысл ясен из его размерности. U = 1 Вт/м2С – поток тепла в 1 Ватт, проходящий через кв. метр остекление при разнице температуры (снаружи и внутри) в 1 градус по Цельсию (В Европейских странах коэффициент теплопроводности остекления рассчитывается согласно EN 673). Чем меньше получаемое в результате число, тем лучше теплоизоляционная функция светопрозрачной конструкции.

Надежные компании-производители светопрозрачных конструкций ставят коэффициент сопротивления теплопередаче стеклопакета в зависимость не только от качества самой конструкции, но и от применения особых технологических операций в процессе изготовления продукции, например, нанесения специального магнетронного, солнцезащитного и энергосберегающего покрытия на поверхность стекла, специальных технологий герметизации, заполнения междустекольного пространства инертными газами и т.п.

В результате этот показатель характеризует не только конкретную функцию теплозащиты, но и качество всего производственного процесса, и качество готового продукта. Эту величину рекомендуется держать под контролем и измерять регулярно – и на различных этапах изготовления, и, с особой тщательностью, на готовых образцах продукции.

Как показатель влияет на выбор стеклопакета?

В каждом регионе, а также в крупных городах нашей страны действуют определенные строительные нормы, в которых указаны требуемые показатели R0тр для стеклопакета строительного назначения. В первую очередь, на них должны ориентироваться застройщики. Но практика показывает, что эти правила соблюдаются далеко не всегда. Поэтому для удобства выбора оконных конструкций STiS мы подготовили специальную таблицу с указанием сопротивления стеклопакетов теплопередаче. Ознакомившись с ней, вы можете убедиться, насколько высоко качество нашей продукции по этому показателю, а также определиться с подходящей конструкцией для остекления своего помещения.

Формула стеклопакета 1Приведенное сопротивление теплопередаче, м2×°С/Вт
4М1-12-4М10,30
4М1-Аг12-4М10,32
4M1-16-И40,59
4M1-Ar16-И40,66
4M1-10-4M1-10-4M10,47
4M1-12-4M1-12-4M10,49
4M1-Ar10-4M1-Ar10-4M10,49
4M1-Ar12-4M1-Ar12-4M10,52
4M1-12-4M1-12-И40,68
4M1-16-4M1-16-И40,72
4M1-Ar6-4M1-Ar6-И40,64
4M1-Ar10-4M1-Ar10-И40,71
4M1-Ar12-4M1-Ar12-И40,75
4М1-Аr16-4М1-Аr16-И40,80
4SPGU-14S-4M1-14S-4M1 Теплопакет 2.00,82
4SPGU-16S-4M1 Теплопакет 2.00,57

Приведенное сопротивление теплопередаче для стеклопакетов указано с учетом всех технологических и производственных особенностей наших продуктов – использования мультифункциональных и низкоэмиссионных стекол, заполнения междустекольного пространства аргоном – газом с низкой теплопроводностью, применения в конструкциях фирменной теплой дистанционной рамки, специальных герметизирующих материалов, солнцезащитного, энергосберегающего покрытий и иных прогрессивных элементов и комплектующих.

  1. Расшифровку обозначений формул стеклопакета можно посмотреть здесь.

www.stis.ru

Теплопроводность | rhvac.ru

 

Для определения тепловых потерь стен, крыш, перекрытий, фундаментов на практике в большинстве случаев достаточно использовать вот такое простое равенство

Термическое сопротивление  R (м2*С/Вт) = толщина материала D (м) / коэффициент теплопроводности  U (Вт/м*С).

Чем выше значение R (сопротивление стены теплопередаче), тем лучше теплотехнические свойства конструкции, тем более теплым будет дом. Для каждого региона значение коэффициента сопротивления теплопередачи (R) разные.

Расчетное термическое сопротивление конструкций R для загородного дома, строящегося на территории Санкт-Петербурга программа “Поток 2005” для расчетов теплопотерь зданий принимает равным 2,93 м2*C/Вт. 

Коэффициент теплопроводности U (Вт/м*С) – это оценка теплотехнических характеристик различных видов строительных материалов. Чем меньше U, тем выше теплотехнические свойства материалов и строительных конструкций дома и меньше потери тепла.

Коэффициенты теплопроводности некоторых строительных материалов и требуемая толщина конструкции при их использовании.

 

Материал

Теплопроводность

Толщина при R=2,93

Толщина при R=4,15

Кирпич RAUF 2.1 NF

0,27 Вт/м*С

0,79 м

1,12 м

Газобетон AEROC Hard

0,183 Вт/м*С

0,54 м

0,76 м

Брус

0,15 Вт/м*С

0,44 м

0,62 м

Isover

0,044 Вт/м*С

0,13 м

0,18 м

Rocwool

0,039 Вт/м*С

0,11 м

0,16 м

Пенопласт

0,037 Вт/м*С

0,11 м

0,15 м

Эковата

0,041 Вт/м*С

0,12 м

0,17 м

Керамзит

0,148 Вт/м*С

0,43 м

0,60 м

 

Объективнее и логичнее оценивать конечную конструкцию в целом.

 

Для примера расчет коэффициента теплопроводности стены дома.

 

Материал

Толщина (м)

Теплопроводность (Вт/м*С)

Сопротивление (м2*С/Вт)

Брус

0,15

0,15

1,0

Вата минер.

0,05

0,05

1,0

Зазор воздушн.

0,05

0,03

1,67

Кирпич

0,15

0,63

0,24

Итого:

0,4 м

0,102 Вт/м*С

3,91 м2*С/Вт

 

 

Расчет коэффициента теплопроводности монолитной плиты фундамента.

 

Слои материала

Толщина (м)

U-Value (Вт/м*С)

R (м2*С/Вт)

Ж/б 2500 кг/м3

0,320

1,690

0,189

Пеноплекс

0,100

0,03

3,333

Щебень

0,200

1,40

0,143

Песок

0,200

1,30

0,154

Грунт

1,0

1,05

0,952

Пеноплекс

0,050

0,03

1,667

Итого:

1,870 м

0,29 Вт/м*С

6,438 м2*С/Вт

 

Для сравнения рассчитаем коэффициент теплопроводности стены дома, построенного по технологии несъемной опалубки «VELOX» 

 

Слои материала

Толщина м

Теплопроводность Вт/м*С

Сопротивление м2*С/Вт

Штукатурка

0,020

0,90

0,022

Velox WS

0,035

0,11

0,318

ж/б 2500кг/м3

0,150

1,69

0,089

Пенополистирол ПСБ-С-35

0,100

0,041

2,439

Velox WS

0,035

0,11

0,318

Штукатурка

0,020

0,90

0,022

Итого:

0,360 м

0,112 Вт/м*с

3,209 м2*С/Вт

 

и коэффициент теплопроводности стены каркасного дома.

 

Материал

Толщина (м)

U-value (Вт/м*С)

R (м2*С/Вт)

Штукатурка

0,010

0,930

0,01

Пенопласт

0,050

0,064

0,79

ОСП

0,009

0,290

0,3

ISOVER

0,150

0,050

3,0

ОСП

0,009

0,290

0,3

Гипсокартон

0,012

0,210

0,05

Итого:

0,240 м

0,054 Вт/м*С

4,45 м2*С/Вт

rhvac.ru

ватт на метр на кельвин [Вт/(м·К)] ватт на сантиметр на градус Цельсия [Вт/(см·°C)] • Термодинамика — теплота • Конвертер удельной теплопроводности • Компактный калькулятор

Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисленияКонвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер паропроницаемости и скорости переноса параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с возможностью выбора опорного давленияКонвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева

1 ватт на метр на кельвин [Вт/(м·К)] = 0,01 ватт на сантиметр на градус Цельсия [Вт/(см·°C)]

Общие сведения

Применение теплопроводности

Теплопроводность на кухне

Теплопроводность для тепла

Поддержание температуры тела людей и животных

Другие применения

Теплопроводность некоторых материалов

Общие сведения

Теплопроводность — свойство тел перераспределять тепло от более нагретых частей к менее нагретым. Это свойство не зависит от размера тела, но зависит от температуры. Чем выше теплопроводность вещества, тем лучше через него передается тепло. Например, у шерсти более низкая теплопроводность, чем у металла, поэтому если ребенок потрогает языком зимой свою рукавичку, то с ним ничего не случится. Если же он решит попробовать на вкус металлическую дверную ручку, то влага на его языке заледенеет, и язык примерзнет.

У теплопроводности много применений в технике и повседневной жизни. Именно благодаря ей возможно регулировать температуру тела людей и животных, готовить пищу, и обеспечивать комфорт в доме, даже если на улице непогода.

Применение теплопроводности

Для жарки мяса, например котлет или мясных брикетов для гамбургеров, нужна высокая теплопроводность. Для этого их иногда жарят прямо на металлической решетке с небольшим добавлением масла, чтобы они не пригорели.

Теплопроводность на кухне

Теплопроводность и ее регулировка важны в процессе приготовления пищи. Часто во время тепловой обработки продукта необходимо поддерживать высокую температуру, поэтому на кухне используют металлы, так их теплопроводность и прочность выше, чем у другимх материалов. Из металла делают кастрюли, сковородки, противни, и другую посуду. Когда они соприкасаются с источником тепла, это тепло легко передается еде. Иногда бывает необходимо уменьшить теплопроводность — в этом случае используют кастрюли из материалов с более низкой теплопроводностью, или готовят способами, при которых еде передается меньшее количество тепла. Приготовление блюд на водяной бане — один из примеров уменьшения теплопроводности. Обычно в кастрюлю на огне наливают в воду, в которую ставят вторую кастрюлю с едой. Температура здесь регулируется благодаря более низкой теплопроводности воды и вследствие того, что температура нагревания внутренней кастрюли не превышает температуры кипения воды, то есть 100° C (212° F). Такой способ часто применяют с продуктами, которые легко пригорают или которые нельзя кипятить, например шоколад.

Посуда из меди

Металлы, которые очень хорошо проводят тепло — медь и алюминий. Медь более теплопроводна, но и стоит дороже. Из обоих металлов делают кастрюли, но некоторая еда, особенно кислая, реагирует с этими металлами, и у еды появляется металлический привкус. За такими кастрюлями, особенно за медными, необходим тщательный уход, поэтому на кухне чаще используют более дешевые и удобные в обращении и уходе кастрюли из нержавеющей стали.

Японское блюдо дория, запеченное в духовке в керамической посуде.

Потребности в теплопроводности зависят от способа приготовления пищи и от вкуса и консистенции, которой хочет добиться повар. Например, при варке обычно нужна более низкая теплопроводность, чем при жарке. Теплопроводность регулируют, выбирая разную посуду, а также используя продукты с большим или меньшим содержанием жидкости. Например, количество масла на дне кастрюли или сковородки влияет на теплопроводность, так же, как и общее количество жидкости в продукте.

Рагу из осьминога по-сицилийски, приготовленное в соусе. Для этого блюда теплопроводность посуды должна быть низкой, поэтому в его приготовлении используется много жидкости.

Для посуды, предназначенной для приготовления пищи, не всегда используют материалы с высокой теплопроводностью. В духовом шкафу, например, часто используют керамическую посуду, теплопроводность которой намного ниже, чем у металлической посуды. Их самое главное преимущество — способность держать температуру.

Некоторые повара предпочитают готовить заварной крем на водяной бане, чтобы уменьшить теплопередачу от нагревателя к продуктам.

Хороший пример использования материалов с высокой теплопроводностью на кухне — плита. Например, конфорки электроплиты сделаны из металла, чтобы обеспечить хорошую передачу тепла от раскаленной спирали нагревательного элемента к кастрюле или сковородке.

Люди используют материалы с низкой теплопроводностью между руками и посудой, чтобы не обжечься. Ручки многих кастрюль сделаны из пластмасс, а противни вынимают из духовки прихватками из ткани или пластмассы с низкой теплопроводностью.

Материалы с невысокой теплопроводностью также используют для поддержания температуры еды неизменной. Так, например, чтобы утренний кофе или суп, который берут в путешествие или на обед на работу, оставался горячим, его наливают в термос, чашку или банку с хорошей теплоизоляцией. Чаще всего в них еда остается горячей (или холодной) благодаря тому, что между их стенками находится материал, плохо проводящий тепло. Это может быть пенопласт или воздух, который находится в закрытом пространстве между стенками сосуда. Он не дает теплу перейти в окружающую среду, еде — остыть, а рукам — получить ожог. Пенопласт используют также для стаканчиков и контейнеров для еды навынос. В вакуумном сосуде Дьюара (известном как «термос», по названию торговой марки) между наружной и внутренней стенкой почти нет воздуха — это еще больше уменьшает теплопроводность.

Теплопроводность для тепла

Мы используем материалы с низкой теплопроводностью для поддержания постоянной температуры тела. Примеры таких материалов — шерсть, пух, и синтетическая шерсть. Кожа животных покрыта мехом, а птиц — пухом с низкой теплопроводностью, и мы заимствуем эти материалы у животных или создаем похожие на них синтетические ткани, и делаем из них одежду и обувь, которые защищают нас от холода. Кроме этого мы делаем одеяла, так как спать под ними удобнее, чем в одежде. К тому же, температура тела во время сна падает, и нам нужна дополнительная теплоизоляция. Иногда одеяла бывает недостаточно, так как оно не прикреплено к простыням, и через щели, которые образуются, когда мы переворачиваемся во сне, может выйти тепло и просочиться холодный воздух.

Ледяной подсвечник

Воздух имеет низкую теплопроводность, но проблема с холодным воздухом в том, что обычно он может свободно двигаться в любом направлении. Он вытесняет теплый воздух вокруг нас, и нам становится холодно. Если движение воздуха ограничить, например, заключив его между внешней и внутренней стенками сосуда, то он обеспечивает хорошую термоизоляцию. Животные используют воздух, чтобы улучшить теплоизоляцию своего тела. Например, птицы сидят нахохлившись в холодную погоду, чтобы добавить слой воздуха внутри оперения. Этот воздух почти не движется, поэтому хорошо изолирует от холода. У нас тоже сохранился этот механизм — если нам холодно, то у нас возникает «гусиная кожа». Если бы в процессе эволюции мы не потеряли свою шерсть, то такое «нахохливание» помогало бы нам согреться.

У снега низкая теплопроводность, поэтому он обеспечивает хорошую изоляцию

У снега и льда тоже низкая теплопроводность, поэтому люди, животные и растения используют их для теплоизоляции. В свежем не утрамбованном снеге внутри находится воздух, что еще больше уменьшает его теплопроводность, особенно потому, что теплопроводность воздуха ниже теплопроводности снега. Благодаря этим свойствам, ледяной и снежный покров защищает растения от замерзания. Животные роют ямки и целые пещеры для зимовья в снегу. Путешественники, переходящие через заснеженные районы, иногда роют подобные пещеры, чтобы в них переночевать. С древнейших времен люди строили убежища изо льда, а сейчас создают целые развлекательные центры и гостиницы. В них часто горит огонь, и люди спят в мехах и синтетических спальных мешках. Постояльцы рассказывают, что всю ночь им было очень тепло и уютно, хотя не рекомендуют вставать среди ночи в туалет. Благодаря низкой теплопроводности льда из него иногда делают подсвечники, и в Интернете можно найти множество мастер-классов по их изготовлению.

Поддержание температуры тела людей и животных

Нормальная температура белохвостового оленя — от 311,4K до 313,3K или от 38,2°C до 40,1°C, несмотря на то, что температура воздуха в их среде обитания варьирует от –38 до +34°С. Белохвостый олень, Миссиссога, Онтарио.

Для обеспечения нормальной жизнедеятельности в организме людей и животных необходимо поддерживать определенную температуру в очень узких пределах. У крови и других жидкостей, а также у тканей разная теплопроводность и ее можно регулировать в зависимости от потребностей и окружающей температуры. Так, например, организм может изменить количество крови на участке тела или во всем организме с помощью расширения или сужения сосудов. Наше тело также может сгущать и разжижать кровь. При этом теплопроводность крови, а, следовательно, и части тела, где эта кровь течет, изменяется.

Другие применения

Многие любят отдыхать в саунах или банях, но сидеть там на скамейках из материала с высокой теплопроводностью — было бы невозможно. Требуется много времени, чтобы сравнять температуру таких материалов с температурой тела, поэтому вместо них используют материалы с низкой теплопроводностью, например дерево, верхние слои которого намного быстрее принимают температуру тела. Так как в сауне температура поднимается достаточно высоко, люди часто надевают на голову шапочки из шерсти или войлока, чтобы защитить голову от жары. В турецких банях хамамах температура намного ниже, поэтому там для скамеек используют материал с более высокой теплопроводностью — камень.

Эти макаки очень любят зимой купаться в Японских горячих источниках

Некоторые места для купания, например горячие источники онсэн в Японии — на улице. Тело человека хорошо изолировано жиром, у которого низкая теплопроводность, поэтому люди могут расслабиться и насладиться горячей ванной даже если на улице — мороз. Люди — не единственные существа, оценившие по достоинству эту особенность организма. Макаки тоже очень любят купаться в горячих источниках зимой.

Теплопроводность некоторых материалов

МатериалКоэффициент теплопроводности, Вт/м·К
Пенополиуретановые листы0,04
Пенополистирол0,04
Вата минеральная0,05
Войлок натуральный0,05
Древесина — доски0,15
Древесно-стружечная плита0,20
Гипс строительный0,35
Вода при 20° C0,60
Кирпич керамический0,67
Камень1,40
Бетон1,75
Сталь52
Латунь110
Алюминий230
Медь380
Серебро406
Алмаз1 000

Литература

Автор статьи: Kateryna Yuri

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

www.translatorscafe.com

Коэффициент сопротивления теплопередачи стеклопакетов – таблица и определение

Чтобы зимой и летом у вас в доме всегда был оптимальный климат, вам нужно установить на окнах качественные стеклопакеты. Это позволит сэкономить потребление электрической энергии на:

  • кондиционирование;
  • отопление.

Важно учитывать все критерии выбора подходящих для вас стеклопакетов. Почему при выборе стеклопакетов нужно знать их коэффициент теплопередачи?

Если рассматривать понятие теплопередачи, то она представляет собой передачу теплоты от одной среды к другой. При этом температура в той, которая отдает тепло выше, чем во второй. Весь процесс осуществляется сквозь конструкцию между ними.

Коэффициент теплопередачи стеклопакета выражается количеством тепла ( Вт), проходящем через м2 с разницей температур в двух средах 1 градус: Ro (м2. ̊С/Вт) — это значение действует на территории Российской Федерации. Оно служит для правильной оценки теплозащитных свойств строительных конструкций.

Расчет коэффициента теплопроводности

К или коэффициент теплопроводности выражается количеством тепла в Вт, проходящим через 1 м2 ограждающей конструкции с разницей температур в обеих средах 1 градус по шкале Кельвина. А измеряется он в Вт/м2.

Теплопроводность стеклопакета показывает, насколько эффективными изоляционными свойствами он обладает. Маленькое значение k означает небольшую теплопередачу и, соответственно, незначительную потерю тепла через конструкцию. В то же самое время теплоизоляционные свойства такого стеклопакета являются достаточно высокими.

Однако упрощенный пересчет k в величину Ro (k=1/Ro) не может считаться правильным. Это связано с разницей применяемых методик измерения в РФ и других государствах. Производитель представляет потребителям показатель теплопроводности только в том случае, если продукция прошла обязательную сертификацию.

Самая высокая теплопроводность у металлов, а самая низкая у воздуха. Из этого следует, что у изделия, имеющего много воздушных камер, низкая теплопроводность. Поэтому оно оптимально для пользователей, использующих строительные конструкции.

Таблица сопротивления теплопередаче стеклопакетов

п/пЗаполнение светового проемаR0, м^(2)·°С/Вт
Материал переплета
Дерево или ПВХАлюминий
1Двойное остекление в спаренных переплетах0.4
2Двойное остекление в раздельных переплетах0.44
3Тройное остекление в раздельно-спаренных переплетах0.560.46
4Однокамерный стеклопакет ( два стекла ) :
обычного (с расстоянием между стекол 6 мм)0.31
с И — покрытием (с расстоянием между стекол 6 мм)0.39
обычного (с расстоянием между стекол 16 мм)0.380.34
с И — покрытием (с расстоянием между стекол 16 мм)0.560.47
5 Двухкамерный стеклопакет ( три стекла ):
oбычного (с расстоянием между стекол 8 мм)0.510.43
oбычного (с расстоянием между стекол 12 мм)0.540.45
с И — покрытием одно из трёх стекол0.680.52

*Основные ( популярные ) типы стеклопакетов выделены красным цветом.

Технические характеристики стеклопакетов

Количество камер изделия влияет на теплосопротивление стеклопакета даже, если стекла имеют одинаковую толщину. Чем больше в конструкции предусмотрено камер, тем она будет более теплосберегающей.

Последние современные конструкции отличают более высокие теплотехнические характеристики стеклопакетов. Чтобы добиться максимального значения сопротивления теплопередаче, современные компании-производители оконной индустрии заполнили камеры изделий с помощью специального наполнения инертными газами и нанесли на поверхность стекла низкоэмиссионного покрытие.

Надежные компании-производители светопрозрачных конструкций ставят коэффициент сопротивления теплопередаче стеклопакета в зависимость не только от качества самой конструкции, но и от применения особых технологических операций в процессе изготовления продукции, например, нанесения специального магнетронного, солнцезащитного и энергосберегающего покрытия на поверхность стекла, специальных технологий герметизации, заполнения междустекольного пространства инертными газами и т.п.

Перенос тепла в такой современной конструкции между стеклами происходит благодаря излучению. Эффективность сопротивления теплопередачи при этом увеличивается в 2 раза, если сравнивать данную конструкцию с обычной. Покрытие, обладающее теплоотражающими свойствами, способно намного снизить теплообмен лучей, происходящий между стеклами. Используемый для заполнения камер аргон позволяет уменьшить теплопроводность с конвекцией в прослойке между стеклами.

Дополнительно: Чем отличается энергосберегающий стеклопакет от обычного

В результате газовое наполнение вместе с низкоэмиссионным покрытием увеличивают сопротивление теплопередаче стеклопакетов на 80%, если сравнивать их с обычными стеклопакетами, которые не являются энергосберегающими.

Тенденции, наметившиеся в оконной индустрии

Стеклопакет, занимающий не менее 70% от оконной конструкции, был усовершенствован, чтобы максимально снизить теплопотери через него. Благодаря внедрению в производство новых разработок, на рынке появились селективные стекла, имеющие специальное покрытие:

  • К-стекло, характеризующееся твердым покрытием;
  • i-стекло, характеризующееся мягким покрытием.

На сегодняшний день все больше потребителей предпочитают стеклопакеты с i-стеклами, теплоизоляционные характеристики которых выше, чем у К-стекол в 1,5 раза. Если обратиться к данным статистики, то продажи стеклопакетов с нанесенными теплосберегающими покрытиями увеличилось до 70% от объема всех продаж в США, до 95% в Западной Европе, до 45% в России. А значения коэффициента сопротивления теплопередаче стеклопакетов варьируется от 0.60 до 1.15 м2 *0С\Вт.

glazingmag.ru

Перевод единиц измерения Теплопроводности – таблица.





Адрес этой страницы (вложенность) в справочнике dpva.ru:  главная страница  / / Техническая информация / / Алфавиты, номиналы, единицы / / Перевод единиц измерения величин. Перевод единиц измерения физических величин. Таблицы перевода единиц величин. Перевод химических и технических единиц измерения величин. Величины измерения. Таблицы соответствия величин.  / / Перевод единиц измерения Теплопроводности – таблица.

Перевод единиц измерения величин теплопроводности.

  • Пояснения: Индекс IT – “обычные” теловые единицы. Индекс th – термохимические (более редкие единицы англосаксов). Разница менее 0,1%.
  • Градус Цельсия (C) равен по модулю градусу Кельвина (подробнее про температуру).

Таблица перевода единиц теплопроводности глазами русскоговорящих инженеров.

мВт/(см*K) = мВт/(см*C)
mW /(cm*K) = mW /(cm*C)

(Единица СИ)
Вт/(м*K) = Вт/(м*C)
W /(m*K) = W /(m*C)

Вт/(см*K) = Вт/(см*C)
W /(cm*K) = W /(cm*C)

Дж/(с*см*K) = Дж/(с*см*С)
J/(s*cm*K) = J/(s*cm*С)

ккалth/ (час*м*C)
kcalth/ (h* m* C)
калth/ (с*см*C)
calth/ (s*cm*C)
калIT/ (с*см*C)
calIT/ (s*cm*C)
БТЕth*дюйм/ (час*фут2*F)
BtuIT in/ (h*ft2*F)
БТЕth/ (час*фут*F)
BtuIT/ (h*ft*F)
БТЕIT*дюйм/ (час*фут2*F)
BtuIT in/ (h*ft2*F)
БТЕIT/ (час*фут*F)
BtuIT/ (h*ft*F)
мВт/(см*K) = мВт/(см*C)
mW /(cm*K) = mW /(cm*C) это:
1 0.1 1*10-3 1*10-3 8.60421*10-2 2,39006*10-4 2,38846*10-4 0,693811 5,78176*10-2 0,693347 5,77789*10-2
(Единица СИ)
Вт/(м*K) = Вт/(м*C)
W /(m*K) = W /(m*C) это:
10 1 1*10-2 1*10-2 0.860421 2,39006*10-3 2,38846*10

dpva.ru

ватт на квадратный метр [Вт/м²] джоуль в секунду на кв. метр [Дж/(с·м²)] • Термодинамика — теплота • Конвертер плотности теплового потока • Компактный калькулятор

Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисленияКонвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер паропроницаемости и скорости переноса параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с возможностью выбора опорного давленияКонвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева

1 ватт на квадратный метр [Вт/м²] = 1 джоуль в секунду на кв. метр [Дж/(с·м²)]

Эти тепловые трубки передают тепло с помощью преобразования рабочей жидкости из одного агрегатного состояния в другое. Их удельная теплопроводность очень высока.

Общие сведения

Применение

В климатологии и в сельском хозяйстве

Определение тепловой эффективности

Пожарная безопасность

Обнаружение загрязнения в котлах и трубах

Защитная одежда

Виды датчиков

Общие сведения

Тепловой поток — физическое свойство материи, которое определяет как быстро тепло передается через эту материю. Плотность теплового потока показывает быстроту передачи энергии на определенной площади и за определенное время. Чем быстрее эта энергия передается — тем выше плотность теплового потока, и наоборот. Этот конвертер работает с плотностью теплового потока, но в статье мы рассмотрим сам тепловой поток.

Применение

Зная тепловой поток, можно определить насколько хорошо работают устройства, которые поглощают или отдают тепло, проверить как происходит теплообмен между зданиями и окружающей средой, а также обеспечить пожарную безопасность. Измерение теплового потока также необходимо для решения многих других задач. Тепловой поток обычно измеряют датчиками теплового потока.

В теплицах измеряют тепловой поток, чтобы определить, как на него влияет конструкция теплицы, и те материалы, из которой она сделана

В климатологии и в сельском хозяйстве

В климатологии и в сельском хозяйстве тепловой поток измеряют, чтобы определить насколько солнечное излучение нагревает Землю, и как на это нагревание влияют различные поверхности и материалы, покрывающие почву. Такая информация полезна во время посадки растений, так как помогает определить, как создать оптимальные для них условия. Например, можно проверить тепловой поток с разными видами мульчи, чтобы выбрать мульчу с самой оптимальной теплоотдачей для того или иного растения. Тепловой поток измеряют также и для сельскохозяйственных строений, например теплиц, чтобы понять, какой тип строения больше подходит в каждой ситуации, и как архитектурные особенности здания влияют на теплообмен. Кроме зданий, на теплообмен влияют и кроны растений, поэтому в некоторых случаях тепловой поток измеряют и для крон. Крону можно легко обрезать, или наоборот увеличить, посадив более плотно растения, поэтому полезно знать, как форма кроны влияет на теплообмен.

В городах тоже часто измеряют тепловой поток, для того, чтобы знать, что сделать, чтобы его изменить. В городах на тепловой поток чаще всего влияет жизнедеятельность людей, например работа заводов и движение транспорта. Зная насколько эти факторы влияют на тепловой поток, можно, контролируя их, регулировать тепловой поток.

Содержание в почве влаги, а также движение животных, которые в ней живут, может изменить тепловой поток, поэтому точно его измерить получается не всегда. Например, температура дождя почти всегда отличается от температуры почвы, поэтому после дождя температура почвы изменяется. Эти факторы необходимо учитывать при измерении теплового потока почвы.

Измерения теплового потока помогают определить эффективность работы солнечных батарей

Определение тепловой эффективности

Измерение теплового потока помогает определить эффективность солнечных батарей, изоляции помещений, и в других подобных ситуациях, когда необходимо либо передать тепло, либо, наоборот, предотвратить его потерю. Измерения теплового потока, помогают заметить возможные проблемы, например, разрывы в термоизоляции. Измерения теплового потока помогают также определить, как происходит нормальный теплообмен для нагревателей и кондиционеров. Так, например, в области солнечной энергетики с помощью датчиков измеряют тепловой поток в нормальных условиях, а также регулярно следят за этими показателями, чтобы сразу заметить, если солнечным батареям нужно техническое обслуживание. Измерения теплового потока изоляции помогают экспериментировать с разными материалами и методами строительства, чтобы создать оптимальные условия в помещении. Иногда проверяют, как влияют на тепловой поток не только материалы, но и растения, так как растения часто уменьшают теплопередачу и помогают сэкономить электроэнергию, необходимую для обогрева или охлаждения.

Пожарная безопасность

Некоторые архитекторы и градостроители используют растения, чтобы создать искусственную среду в помещении или на улице, и уменьшить тепловой поток. Это помогает сберечь часть электроэнергии, обычно расходуемой на отопление или охлаждение

Если известен тепловой поток в нормальных условиях, то регулярная его проверка помогает заметить отклонения от норм пожарной безопасности. Во многих датчиках теплового потока, предназначенных для этих целей, установлена система оповещения, чтобы сразу было понятно, если существует угроза безопасности.

Обнаружение загрязнения в котлах и трубах

Зная плотность теплового потока в котлах или трубах в нормальных условиях, можно регулярно сравнить ее с рутинными измерениями теплового потока, чтобы обнаружить загрязнение и накипь на поверхностях. Такое загрязнение образуется, когда органические и неорганические вещества покрывают поверхность и ухудшают теплопередачу. В результате на обогрев требуется больше энергии, чем в обычных условиях. В такой ситуации уменьшение теплового потока по сравнению с нормой обычно означает, что поверхности необходимо проверить и очистить.

Солнечный тепловой поток зависит от расстояния до Солнца. На Земле он равен 426 Btu/час, а в открытом космосе, где работают космонавты — намного выше, около 10&nbsp000 Btu/час. Поэтому термоизоляция скафандра космонавтов защищает их от очень высоких и очень низких температур. На фотографии изображен скафандр для работы в открытом космосе A7-L в экспозиции Космического центр имени Джона Фицджеральда Кеннеди.

Защитная одежда

Для проверки безопасности защитной одежды, например спальных мешков, палаток, и гидрокостюмов, также используют датчики теплового потока. Обычно такая одежда изолирует тело от окружающей среды и уменьшает тепловой поток, поэтому, измеряя тепловой поток, легко определить, в норме ли теплообмен между телом человека и окружающей средой. Само определение теплового потока усложняется тем, что при движении датчик может легко отойти от кожи. Во время измерения необходимо за этим следить. Такие датчики, конечно же, плоские, а не игольчатые, чтобы не повредить кожу.

Различные датчики теплового потока

Виды датчиков

Некоторые датчики универсальны и рассчитаны на использование в ряде ситуаций. Другие — автоматически настраиваются благодаря автокалибровке, и могут калиброваться в процессе работы. Если часть датчика подвержена солнечному излучению, то ее стараются окрашивать в цвет устройства или материала, тепловой поток которого измеряют — иначе датчик будет недостаточно или слишком сильно нагреваться на солнце по сравнению с этим материалом.

Форма датчиков зависит от их применения. Например, тепловой поток стен легче измерить плоским датчиком, особенно если здание уже построено и установка датчика внутрь стены требует слишком больших затрат. Как уже описано выше, тепловой поток кожи в медицине и при разработке средств защиты от слишком высоких и низких температур тоже измеряют плоскими датчиками.

С другой стороны, для измерения теплового потока почвы часто удобнее использовать игольчатые датчики, которые можно вставить в землю. Люди и животные или даже дождь могут легко сдвинуть плоские датчики. Со временем такие датчики могут легко попасть под слой листьев, травы, или почвы. Игольчатый датчик, наоборот, очень трудно сместить, хотя в некоторых случаях, наоборот, удобнее использовать плоский датчик. То есть, выбор формы и вида датчика обычно зависит от среды, в которой он будет использоваться.

Литература

Автор статьи: Kateryna Yuri

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

www.translatorscafe.com

1.5 Теплотехнический расчет ограждающих конструкций

В целях сокращения потерь тепла в зимний период и поступлений тепла в летний период при проектировании здания производится теплотехнический расчет стеновых ограждений и перекрытий.

  1. По приложению 1 СП 23-101-2004 определяем зону влажности. Для г. Ульяновска – нормальная зона влажности.

  2. По таблице 1 определяем влажностный режим помещений – сухой режим.

  3. По приложению 2 определяем условия эксплуатации ограждающих

конструкций в зависимости от влажностного режима помещений и зоны

влажности района строительства – А.

  1. Определяем градусо-сутки отопительного периода

ГСОП = (tвtн)zот.пер.

ГСОП = (20 + 3.1) х 214 = 4943.4°С ·сут, где

tврасчетная температура внутреннего воздуха, °С, принимаемая согласно ГОСТ 12.1.005-88 и нормам проектирования соответствующих зданий и сооружений

tв = 20°С

tнрасчетная зимняя температура наружного воздуха, °С, равная средней температуре наиболее

tн =-3.1°С

zот.персредняя температура, °С, и продолжительность, сут., периода со средней суточной температурой воздуха ниже или равной 8 °С zот.пер=214сут

1.5.1 Стеновое ограждение

Требуемое сопротивление теплопередаче стеновых ограждающих конструкций, отвечающее санитарно-гигиеническим и комфортным условиям, определяют по таблице 16

R0тр =3.13м2·°С/Вт

Стеновое ограждение состоит из следующих слоев

Наименование слоя

Толщина, мм

λ, Вт/(м·°С)

R, м2-°С/Вт

Штукатурка

15

0.7

0.021

Газобетон

200

0.22

0.909

Утеплитель “Роквул”

100

0.047

2.128

Воздушная прослойка

22

Облицовка

10

2.91

0.003

Термическое сопротивление R, м2·°С/Вт, слоя многослойной ограждающей кон­струкции, а также однородной (однослойной) ограждающей конструкции

, где

δ – толщина слоя, м

λ – расчетный коэффициент теплопроводности материала слоя, Вт/(м·°С), принимаемый по прил. 3

Суммарное сопротивление слоев ограждающей конструкции (сопротивление облицовки не учитываем)

Rк=3.059м2·°С/Вт

Сопротивление теплопередаче ограждающей конструкции

αв – коэффициент теплоотдачи внутренней поверхности ограждающих конструк­ций, принимаемый по таблице 4

αв=8.7Вт/м2·°С

αн – коэффициент теплоотдачи (для зимних условий) наружной поверхности ограждающих конструкций, принимаемый по таблице 6

αн=12Вт/м2·°С

Из-за наличия мостиков холода в виде крепления конструкции навесного фасада, принимаем решение увеличить толщину утеплителя, закладываемого в наружные стены до 120мм, что позволяет устранить негативное влияние креплений.

1.5.2 Покрытие гостиницы

Требуемое сопротивление покрытия теплопередаче, отвечающее санитарно-гигиеническим и комфортным условиям, определяют по таблице 1б

R0тр =4.6472м2·°С/Вт

Покрытие состоит из следующих слоев

Наименование слоя

Толщина, мм

λ, Вт/(м·°С)

R, м°С/Вт

СПН

10

58

0

Железобетон

70

1.92

0.036

Пароизоляция “Пароизол”

3

0.17

0.018

Утеплитель “Ursa”

180

0.041

4.39

Цементная стяжка

30

0.76

0.039

Рулонный ковер

3

0.17

0.018

Термическое сопротивление R, м2·°С/Вт, слоя многослойной ограждающей кон­струкции, а также однородной (однослойной) ограждающей конструкции

, где

δ – толщина слоя, м

λ – расчетный коэффициент теплопроводности материала слоя, Вт/(м·°С), принимаемый по прил. 3

Суммарное сопротивление слоев ограждающей конструкции (сопротивление облицовки не учитываем)

Rк=4.501м2·°С/Вт

Сопротивление теплопередаче ограждающей конструкции

αв – коэффициент теплоотдачи внутренней поверхности ограждающих конструк­ций, принимаемый по таблице 4

αв=8.7Вт/м2·°С

αн – коэффициент теплоотдачи (для зимних условий) наружной поверхности ограждающих конструкций, принимаемый по таблице 6

αн=12Вт/м2·°С

studfiles.net

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *