Жидкая мембрана – Жидкая мембрана — Жидкая мембрана

Содержание

XuMuK.ru – МЕМБРАНЫ ЖИДКИЕ – Химическая энциклопедия


МЕМБРАНЫ ЖИДКИЕ, полупроницаемые жидкие пленки или слои, обеспечивающие селективный перенос в-в в процессе массообмена между жидкими и (или) газообразными фазами. Различают свободные, импрегнированные и эмульсионные мембраны жидкие. Свободные мембраны жидкие-устойчивые в гравитац. поле слои жидкости, отличающиеся по плотности от разделяемых ими фаз, напр. слой орг. жидкости, расположенный под водными р-рами в обоих коленах U-образной трубки. Импрегнированные мембраны жидкие представляют собой пропитанные жидкостью пористые пленки (полипропиленовые, полисуль-фоновые, политетрафторэтиленовые и др.) или волокна (полипропиленовые, полисульфоновые). Эмульсионные мембраны жидкие-стабилизированные ПАВ жидкие слои, отделяющие капельную фазу от сплошной в эмульсиях типа вода-масло-вода или масло-вода-масло. Толщина свободных мембран жидких, как правило, св. 1 мм, импрегнированных 10-500 мкм, эмульсионных 0,1-1,0 мкм. Мембраны жидкие могут быть однокомпонентными и многокомпонентными. Первые являются для проникающего через мембраны жидкие в-ва лишь более или менее селективным р-рителем, осуществляют пассивный перенос. Многокомпонентные мембраны жидкие обычно содержат хим. соединения-переносчики, растворенные в мембранной жидкости и способные избирательно связывать и переносить через мембрану диффундирующее в-во (индуцированный либо активный транспорт). Перенос в-в через мембраны жидкие может протекать в режиме диализа и электродиализа (движущая сила процесса-градиент хим. или электрохим. потенциала по толщине мембраны, см. Мембранные процессы разделения).

Мембраны жидкие применяют при экстракции и абсорбции, а также при проведении нек-рых хим. р-ций. При экстракции неорг. в-в в качестве мембран жидких используют, как правило, содержащую экстрагeнт-переносчик орг. жидкость, к-рая разделяет исходный и реэкстрагирующий водные р-ры. Таким путем удается, напр., селективно извлекать ионы к.-л. металла из исходного водного р-ра и в одну стадию получать в ре-экстрагирующем водном р-ре более высокую концентрацию этого металла. Подобный процесс в системах с водными мембранами, заключенными между двумя масляными фазами, дает возможность разделять смеси орг. соед., напр. углеводородов. Мембранную экстракцию применяют в пром-сти для извлечения из сточных вод и технол. р-ров примесей металлов, ароматич. аминов, фенола и др. в-в.

Мембранная абсорбция в трехфазной системе газ-жидкость-газ или газ-жидкость-жидкость перспективный метод разделения газовых смесей, напр. бутан-изобутан, этилен-этан, углекислый газ-водород, водород – метан и др.

Исследуется возможность использования мембран жидких в хим. синтезе, напр. при превращении этилена в винилацетат, пропилена в ацетон, ацетальдегида в уксусную к-ту, при получении ацетальдегида для обеспечения эффективного отделения продуктов р-ции от катализаторов и исходных реагентов.

Мембраны жидкие представляют значит. интерес для медицины, напр. для удаления токсинов из крови.


===
Исп. литература для статьи «МЕМБРАНЫ ЖИДКИЕ»: Ивахно С. Ю., Афанасьев А. В., Ягодин Г. А., Мембранная экстракция неорганических веществ, М., 1985 (Итоги науки и техники. Сер. Неорганическая химия, т. 13). Г.А.Ягодин.С.Ю.Ивахно.

Страница «МЕМБРАНЫ ЖИДКИЕ» подготовлена по материалам химической энциклопедии.

www.xumuk.ru

Жидкая мембрана для выделения спиртов или эфиров из водных растворов и способ выделения спиртов или эфиров

Изобретение относится к мембранным процессам выделения органических соединений из растворов. Предложена жидкая мембрана, размещаемая на поверхности раздела фаз и представляющая собой слой гидрофобной жидкости в виде масла толщиной 3-30 мм. Предложен способ выделения спиртов или эфиров из водных растворов путем их диффузионного испарения через заявленную жидкую мембрану с использованием газа или вакуума. Изобретение позволяет упростить и удешевить выделение упомянутых водорастворимых соединений из растворов. 2 н. и 3 з.п. ф-лы.

 

Изобретение относится к мембранным процессам выделения органических соединений из водных растворов и может быть использовано в пищевой, микробиологической, целлюлозно-бумажной и других отраслях промышленности для извлечения, разделения и очистки жидких и газовых смесей, ферментационных сред, выделения ценных компонентов из сточных вод и газовых выбросов.

Известны различные способы выделения водорастворимых органических соединений из водных растворов, такие как дистилляция, экстракция, мембранные методы. Благодаря своей высокой эффективности и низкому энергопотреблению, одним из приоритетных методов разделения жидких смесей является процесс первапорации.

Первапорация – это процесс испарения через мембрану, отличительной особенностью которого является переход веществ, проникающих через мембрану, из жидкого состояния в парообразное. Движущей силой процесса мембранного испарения является разность химических потенциалов по обе стороны мембраны. Для поддержания перепада химического потенциала на достаточно высоком уровне необходимо предотвращать конденсацию пермеата на поверхности мембраны со стороны пара, что достигается непрерывным отводом пара, обдувом инертным газом или вакуумированием.

Первапорация нашла применение для концентрирования молока, кофейного экстракта, латекса, разделения углеводородов в процессах нефтепереработки для выделения фракций с разными октановыми числами, дегидратации этанола.

Известно применение процесса первапорации для очистки сточных вод, содержащих бутанол в авиационной промышленности, (Козодаева Е.В. Экспериментальное исследование первапорационного выделения бутанола из водных растворов и моделирование процесса первапорации. Московский государственный инженерно-физический институт (технический университет) и другие, 1998). Для проведения процесса первапорации использовали сплошную мембрану из политриметилсилилпропина (ПТМСП) толщиной 25 мкм, концентрация бутанола в разделяемой смеси составляла от 0,5 до 6 мас.%.

Используемые в настоящее время мембраны изготавливают из органических (в том числе полимерных) и неорганических (металлических, керамических, стеклянных и пр.) материалов. Мембраны могут быть твердые и жидкие.

Особенно эффективны установки испарения через мембрану для проведения обезвоживания смеси растворителей, содержащих одновременно высококипящие и низкокипящие по отношению к воде компоненты. В этом случае ректификация практически невозможна из-за образования нескольких индивидуальных азеотропов с водой.

Выпускаемые фирмами Bakish Materials Corporation (США), GFT (ФРГ), Mitsui (Япония) сепараторы, основанные на испарении через мембрану, могут извлекать определенный компонент из разнообразных органических смесей и используются в установках испарения через мембрану, производящих 6000 л/сут этанола на целлюлозно-бумажном комбинате в ФРГ.

Под жидкими мембранами в литературе понимают мембраны с жидкостью, иммобилизованной внутри пор микропористой подложки. Если мембрана смачивается жидкостью, то последняя может удерживаться в порах за счет капиллярных сил. Давление, необходимое для вытеснения жидкости из пор, называется капиллярным давлением и изменяется обратно пропорционально диаметру пор, поэтому при достаточно малых порах жидкость удерживается на подложке при разнице давлений под и над мембраной в несколько атмосфер.

Используются жидкие мембраны двух типов. К первому типу относятся пассивные жидкие мембраны, в которых обычные жидкости, имеющие большую проницаемость по целевому компоненту, наносятся на мембранную подложку. Второй тип жидких мембран – мембраны с активным транспортом целевого компонента. В этом случае в качестве жидкости используются специфические переносчики целевого компонента, растворенные в соответствующем растворителе. Брок Т. Мембранная фильтрация: Пер. с англ. – М.: Мир, 1987.

Известна жидкая мембрана, иммобилизованная внутри пор микропористого носителя, в частности, полипропилена, полиамида, полиимида (WO 0156933, 09.08.2001) для выделения целевых соединений, в частности пенициллина и органических кислот (фенилаланин, молочная кислота, уксусная кислота). Раствор, содержащий целевое соединение, проходит с одной стороны мембраны, с другой стороны мембраны для выделения соединений применяют дисперсную систему, которую формируют при смешивании водного раствора для реэкстракции с органической жидкостью.

Известные мембраны и способы с их использованием обладают следующими недостатками:

необходимость восстановления исходных свойств мембраны, поскольку поры или пустоты мембран могут засоряться;

сложности при подборе материалов для создания мембран, поскольку мембраны должны обладать не только высокими показателями селективности, производительности и механической прочности, но и выдерживать прямой контакт с органическими соединениями при повышенной температуре.

Таким образом, существует необходимость в недорогих и простых в применении мембран для выделения водорастворимых органических соединений, спиртов и эфиров из водных растворов, и способов выделения с их использованием.

Для решения настоящей задачи предложена жидкая мембрана для выделения спиртов и эфиров из водных растворов путем их диффузионного испарения через мембрану с использованием газа или вакуума, размещаемая на поверхности раздела фаз и представляющая собой слой гидрофобной жидкости.

В качестве гидрофобной жидкости могут быть использованы синтетическое или растительное масла.

Предложен также способ выделения спиртов или эфиров из водного раствора путем их диффузионного испарения через мембрану с использованием газа или вакуума, при этом мембрана представляет собой слой гидрофобной жидкости на поверхности водного раствора.

В качестве гидрофобной жидкости могут быть использованы синтетическое или растительное масло или высшие спирты.

При этом слой гидрофобной жидкости на поверхности водного раствора предпочтительно составляет 3-30 мм.

Использование в подобных процессах описанной жидкой мембраны основано на том, что молекулы рассматриваемых органических соединений состоят из двух частей, гидрофильной, обуславливающей их растворимость в воде и гидрофобной части (углеводородного радикала). При размещении гидрофобной жидкости с плотностью меньше, чем у воды (например, растительного масла), на поверхности раствора жидкость равномерно распределяется на поверхности водного раствора тонким слоем. Молекулы органических соединений на границе раздела между слоем масла и водной среды ориентируются так, что их гидрофильная часть остается в воде, а гидрофобная переходит в слой масла. Слой гидрофобной жидкости представляет собой практически непреодолимую преграду для молекул воды, поэтому давление паров воды над указанным слоем будет пренебрежимо мало. При создании вакуума над слоем гидрофобной жидкости или с потоком газа соединения в газообразном состоянии направляют в холодильное устройство для их дальнейшей конденсации. В слое гидрофобной жидкости возникает градиент концентраций, вызванный разностью в концентрациях выделяемых соединений в водном растворе и в газовой среде (в вакууме), вследствие чего устанавливается постоянный поток молекул растворителя из водного раствора через слой в вакуумируемый объем над поверхностью.

Пример 1

В емкость со 100 мл водного раствора, содержащего 23% бутанола, наслаивают на поверхность олеиновую кислоту, слоем в 15 мм. Для бутанола, обладающего дифильными свойствами, состояние минимальной энергии достигается путем ориентации молекул на поверхности или вблизи нее таким образом, что гидрофобные группы (углеводородные радикалы) стремятся расположиться в слое олеиновой кислоты, а полярные гидроксильные группы обращены в сторону водной фазы. Давление в емкости понижают до -0,05 атм. При снижении давления спирт переходит в газообразное состояние и под действием вакуума направляется в конденсатор. В результате получают 22 мл конденсата, где содержание бутанола составляет 92%.

Пример 2

В емкость со 100 мл водного раствора, содержащего 17% этилацетата, наслаивают на поверхность соевое масло, слой 10 мм. Давление в емкости понижают до -0,06 атм. Пары этилацетата конденсируют и получают 18 мл конденсата, где содержание этилацетата составляет 89%.

Преимущества предложенного способа и жидкой мембраны заключаются в повышении эффективности выделения водорастворимых органических соединений из водной среды, предложенные решения позволяют снизить материальные и энергетические затраты на разделение водно-органических смесей.

1. Жидкая мембрана для выделения спиртов или эфиров из водных растворов путем их диффузионного испарения через мембрану с использованием газа или вакуума, характеризующаяся тем, что представляет собой слой гидрофобной жидкости, размещенный на поверхности водного раствора.

2. Жидкая мембрана по п.1, отличающаяся тем, что гидрофобная жидкость представляет собой синтетическое или растительное масло.

3. Способ выделения спиртов или эфиров из водных растворов путем их диффузионного испарения через мембрану с использованием газа или вакуума, отличающийся тем, что мембрана представляет собой слой гидрофобной жидкости на поверхности водного раствора.

4. Способ по п.3, отличающийся тем, что гидрофобная жидкость представляет собой синтетическое или растительное масло.

5. Способ по п.3, отличающийся тем, что слой гидрофобной жидкости на поверхности водной среды составляет 3-30 мм.

findpatent.ru

Жидкие ионообменные мембраны – Справочник химика 21

    Жидкие ионообменные мембраны [c.44]

    Топливные элементы с ионообменной мембраной. В таких элементах жидкий электролит заменен твердой ионообменной мембраной. Обычно используются катионообменные мембраны, изготовленные из полимерных материалов, например из сульфированного полистирола или сульфированного смешанного полимера стирола и дивинилбензола и др. Сульфогруппы в таких материалах прочно удерживаются в молекуле, а ионы Н+ способны к обмену, и их подвижность обусловливает. проводимость материала. Ионообменная мембрана обладает относительно большим удельным со- [c.54]


    Основные типы мембран и их очистка. Различают мембраны монолитные (сплошные), пористые, асимметричные (двухслойные), составные (композиционные) и др., а также мембраны жидкие и мембраны ионообменные (о получении мембран и их св-вах см. Мембраны разделительные). [c.24]

    Электролизер, применяемый дая получения магния, алюминия, щелочных и щел.-зем. металлов, представляет собой футерованную огнеупорным материалом ванну, на дне к-рой находится расплавленный металл, служащий катодом, аноды же в виде блоков располагают над слоем жидкого металла. В процессах мембранного получения хлора, в электросинтезе используют электролизеры фильтр-прессного типа, собранные из отд. рам, между к-рыми помещены ионообменные мембраны. [c.432]

    Применяемые в электрохимических измерениях мембраны могут принадлежать к различным типам. Некоторые из них сравнительно инертны, как, например, мембраны из ацетата целлюлозы или полимерных материалов. Ионообменные мембраны имеют заряженные группы, связанные с матрицей. Следовательно, они стремятся вытеснить ионы того же заряда, что и связанный. Так, в катионообменных смолах числа переноса анионов малы. Широко применяются мембраны из стекол, керамики, твердых электролитов и т.п. Интерес представляют жидкие мембраны, которые наиболее перспективны с точки зрения селективности и чувствительности электрохимических датчиков. Наконец, предметом обстоятельных исследований в последнее время стали биологические мембраны. [c.122]

    Иониты могут применяться в виде мембран, волокон, тканей, стержней, трубок и т. д. существуют также жидкие иониты. Особый интерес представляют ионообменные мембраны, которые могут быть отлиты непосредственно во время синтеза полимера (гомогенные мембраны) или изготовлены путем диспергирования порошкообразного ионита в эластическом связующем. Прививая полистирол к полиэтилену методом поверхностной прививки и сульфируя, получают катионообменные мембраны, которые в 4 раза прочнее обычных промышленных мембран. Аналогичным способом, прививая поливинилпиридин к полиэтилену с последующим переводом пиридиновых остатков в четвертичное основание, приготовляют анионитовые мембраны. [c.591]

    Рассмотрим особенности электродного поведения жидких ионообменных мембран. Схематически жидкая мембрана может быть представлена в следующем виде  [c.456]

    За последние несколько лет активность некоторых поверхностноактивных веществ удалось измерить в электрохимических ячейках, содержащих полупроницаемые ионообменные мембраны [429 — 432]. Использование таких ячеек в мицеллярных растворах более удобно, чем обычных электродов с жидкой мембраной, так как в последних, как говорилось выше, наблюдается эффект солюбилизации. В то же время следует помнить, что полупроницаемые мембраны обладают малой селективностью и большим временем отклика. Это их серьезный недостаток, препятствующий проведению практического анализа. [c.149]

    Перспективными являются топливные элементы, в которых электролитом служит ионообменная мембрана [19]. Схема их проста (рис. 180) к мембране с обеих сторон прижаты сетчатые или пористые электроды, покрытые слоем катализатора. Мембрана (катионообменная в Н+-форме) с электродами зажимается между газовыми камерами, в которые подаются водород и кислород. Так как ток при этом переносится гидратированными ионами водорода, то вода образуется на положительном электроде. Она отводится от электродов током кислорода, от которого может быть отделена при проходе через конденсатор. Кроме того, она может быть отведена фитилями, прижатыми к задней стороне кислородного электрода, по которым вода под давлением газа выдавливается в водосборник сквозь войлочную прокладку, предохраняющую от выхода газа. Преимущество ТЭ с жидким топливом в том, что запас топлива можно хранить в жидком виде. В качестве топлива исследовали метанол, формальдегид, гидразин и др. [25]. При окислении гидразина [c.441]

    В статьях настоящего сборника описываются особенности непосредственного определения электрофизических параметров в широком диапазоне частот и температур и дается ряд конструктивных решений преобразователей-ячеек и их расчеты, даются рекомендации по использованию электрофизических методов в технике физико-химического контроля (в том числе промышленного), обсуждаются результаты испытания промышленного прибора для контроля влаги в жидком НР по электропроводности, контроля влаги в нефти и т. д. Одна из статей посвящена перспективам применения пневмо-ники в технике контроля и регулирования химико-технологических процессов. Кроме того, в сборнике опубликованы статьи, посвященные процессам переноса ионов из расплавленных солей через ионообменные мембраны (стекло) в вакууме и использованию этих процессов для получения чистых веществ и изучения электропроводности стекол, обусловленной движением щелочных ионов.  [c.2]

    Авторами совместно с О. Ахмеровым было предложено [Л. 109] использовать в качестве детектора для газовой хроматографии топливный элемент, в котором вместо жидкого электролита применяется кислотная ионообменная мембрана. [c.101]

    Существуют мембраны гомогенные и гетерогенные. Гомогенные мембраны состоят из однофазного индивидуального вещества. В состав гетерогенных мембран входят вещество-ионообменник и инертные вещества, необходимые для придания определенных механических свойств мембране. Ионообменные мембраны готовят как из твердых, так и из жидких материалов. Твердые гомогенные мембраны готовят из стекла (стеклянные электроды), содержащего композицию из щелочных силикатов, из синтетических полимеров, содержащих кислотные или основные функциональные группы, из кристаллов неорганических солей (в форме вырезанной пластинки или спрессованной таблетки) и [c.55]

    Мембраны ИСЭ представляют собой сплошные фазы, полупроницаемые для ионов и молекул растворителя раствора, контактирующего с мембраной. Эти фазы могут быть гомогенными и гетерогенными. Примером последних является полимерная структура, образованная мельчайшими, связанными между собой

chem21.info

жидкая мембрана для выделения спиртов или эфиров из водных растворов и способ выделения спиртов или эфиров – патент РФ 2409414

Изобретение относится к мембранным процессам выделения органических соединений из растворов. Предложена жидкая мембрана, размещаемая на поверхности раздела фаз и представляющая собой слой гидрофобной жидкости в виде масла толщиной 3-30 мм. Предложен способ выделения спиртов или эфиров из водных растворов путем их диффузионного испарения через заявленную жидкую мембрану с использованием газа или вакуума. Изобретение позволяет упростить и удешевить выделение упомянутых водорастворимых соединений из растворов. 2 н. и 3 з.п. ф-лы.

Изобретение относится к мембранным процессам выделения органических соединений из водных растворов и может быть использовано в пищевой, микробиологической, целлюлозно-бумажной и других отраслях промышленности для извлечения, разделения и очистки жидких и газовых смесей, ферментационных сред, выделения ценных компонентов из сточных вод и газовых выбросов.

Известны различные способы выделения водорастворимых органических соединений из водных растворов, такие как дистилляция, экстракция, мембранные методы. Благодаря своей высокой эффективности и низкому энергопотреблению, одним из приоритетных методов разделения жидких смесей является процесс первапорации.

Первапорация – это процесс испарения через мембрану, отличительной особенностью которого является переход веществ, проникающих через мембрану, из жидкого состояния в парообразное. Движущей силой процесса мембранного испарения является разность химических потенциалов по обе стороны мембраны. Для поддержания перепада химического потенциала на достаточно высоком уровне необходимо предотвращать конденсацию пермеата на поверхности мембраны со стороны пара, что достигается непрерывным отводом пара, обдувом инертным газом или вакуумированием.

Первапорация нашла применение для концентрирования молока, кофейного экстракта, латекса, разделения углеводородов в процессах нефтепереработки для выделения фракций с разными октановыми числами, дегидратации этанола.

Известно применение процесса первапорации для очистки сточных вод, содержащих бутанол в авиационной промышленности, (Козодаева Е.В. Экспериментальное исследование первапорационного выделения бутанола из водных растворов и моделирование процесса первапорации. Московский государственный инженерно-физический институт (технический университет) и другие, 1998). Для проведения процесса первапорации использовали сплошную мембрану из политриметилсилилпропина (ПТМСП) толщиной 25 мкм, концентрация бутанола в разделяемой смеси составляла от 0,5 до 6 мас.%.

Используемые в настоящее время мембраны изготавливают из органических (в том числе полимерных) и неорганических (металлических, керамических, стеклянных и пр.) материалов. Мембраны могут быть твердые и жидкие.

Особенно эффективны установки испарения через мембрану для проведения обезвоживания смеси растворителей, содержащих одновременно высококипящие и низкокипящие по отношению к воде компоненты. В этом случае ректификация практически невозможна из-за образования нескольких индивидуальных азеотропов с водой.

Выпускаемые фирмами Bakish Materials Corporation (США), GFT (ФРГ), Mitsui (Япония) сепараторы, основанные на испарении через мембрану, могут извлекать определенный компонент из разнообразных органических смесей и используются в установках испарения через мембрану, производящих 6000 л/сут этанола на целлюлозно-бумажном комбинате в ФРГ.

Под жидкими мембранами в литературе понимают мембраны с жидкостью, иммобилизованной внутри пор микропористой подложки. Если мембрана смачивается жидкостью, то последняя может удерживаться в порах за счет капиллярных сил. Давление, необходимое для вытеснения жидкости из пор, называется капиллярным давлением и изменяется обратно пропорционально диаметру пор, поэтому при достаточно малых порах жидкость удерживается на подложке при разнице давлений под и над мембраной в несколько атмосфер.

Используются жидкие мембраны двух типов. К первому типу относятся пассивные жидкие мембраны, в которых обычные жидкости, имеющие большую проницаемость по целевому компоненту, наносятся на мембранную подложку. Второй тип жидких мембран – мембраны с активным транспортом целевого компонента. В этом случае в качестве жидкости используются специфические переносчики целевого компонента, растворенные в соответствующем растворителе. Брок Т. Мембранная фильтрация: Пер. с англ. – М.: Мир, 1987.

Известна жидкая мембрана, иммобилизованная внутри пор микропористого носителя, в частности, полипропилена, полиамида, полиимида (WO 0156933, 09.08.2001) для выделения целевых соединений, в частности пенициллина и органических кислот (фенилаланин, молочная кислота, уксусная кислота). Раствор, содержащий целевое соединение, проходит с одной стороны мембраны, с другой стороны мембраны для выделения соединений применяют дисперсную систему, которую формируют при смешивании водного раствора для реэкстракции с органической жидкостью.

Известные мембраны и способы с их использованием обладают следующими недостатками:

необходимость восстановления исходных свойств мембраны, поскольку поры или пустоты мембран могут засоряться;

сложности при подборе материалов для создания мембран, поскольку мембраны должны обладать не только высокими показателями селективности, производительности и механической прочности, но и выдерживать прямой контакт с органическими соединениями при повышенной температуре.

Таким образом, существует необходимость в недорогих и простых в применении мембран для выделения водорастворимых органических соединений, спиртов и эфиров из водных растворов, и способов выделения с их использованием.

Для решения настоящей задачи предложена жидкая мембрана для выделения спиртов и эфиров из водных растворов путем их диффузионного испарения через мембрану с использованием газа или вакуума, размещаемая на поверхности раздела фаз и представляющая собой слой гидрофобной жидкости.

В качестве гидрофобной жидкости могут быть использованы синтетическое или растительное масла.

Предложен также способ выделения спиртов или эфиров из водного раствора путем их диффузионного испарения через мембрану с использованием газа или вакуума, при этом мембрана представляет собой слой гидрофобной жидкости на поверхности водного раствора.

В качестве гидрофобной жидкости могут быть использованы синтетическое или растительное масло или высшие спирты.

При этом слой гидрофобной жидкости на поверхности водного раствора предпочтительно составляет 3-30 мм.

Использование в подобных процессах описанной жидкой мембраны основано на том, что молекулы рассматриваемых органических соединений состоят из двух частей, гидрофильной, обуславливающей их растворимость в воде и гидрофобной части (углеводородного радикала). При размещении гидрофобной жидкости с плотностью меньше, чем у воды (например, растительного масла), на поверхности раствора жидкость равномерно распределяется на поверхности водного раствора тонким слоем. Молекулы органических соединений на границе раздела между слоем масла и водной среды ориентируются так, что их гидрофильная часть остается в воде, а гидрофобная переходит в слой масла. Слой гидрофобной жидкости представляет собой практически непреодолимую преграду для молекул воды, поэтому давление паров воды над указанным слоем будет пренебрежимо мало. При создании вакуума над слоем гидрофобной жидкости или с потоком газа соединения в газообразном состоянии направляют в холодильное устройство для их дальнейшей конденсации. В слое гидрофобной жидкости возникает градиент концентраций, вызванный разностью в концентрациях выделяемых соединений в водном растворе и в газовой среде (в вакууме), вследствие чего устанавливается постоянный поток молекул растворителя из водного раствора через слой в вакуумируемый объем над поверхностью.

Пример 1

В емкость со 100 мл водного раствора, содержащего 23% бутанола, наслаивают на поверхность олеиновую кислоту, слоем в 15 мм. Для бутанола, обладающего дифильными свойствами, состояние минимальной энергии достигается путем ориентации молекул на поверхности или вблизи нее таким образом, что гидрофобные группы (углеводородные радикалы) стремятся расположиться в слое олеиновой кислоты, а полярные гидроксильные группы обращены в сторону водной фазы. Давление в емкости понижают до -0,05 атм. При снижении давления спирт переходит в газообразное состояние и под действием вакуума направляется в конденсатор. В результате получают 22 мл конденсата, где содержание бутанола составляет 92%.

Пример 2

В емкость со 100 мл водного раствора, содержащего 17% этилацетата, наслаивают на поверхность соевое масло, слой 10 мм. Давление в емкости понижают до -0,06 атм. Пары этилацетата конденсируют и получают 18 мл конденсата, где содержание этилацетата составляет 89%.

Преимущества предложенного способа и жидкой мембраны заключаются в повышении эффективности выделения водорастворимых органических соединений из водной среды, предложенные решения позволяют снизить материальные и энергетические затраты на разделение водно-органических смесей.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Жидкая мембрана для выделения спиртов или эфиров из водных растворов путем их диффузионного испарения через мембрану с использованием газа или вакуума, характеризующаяся тем, что представляет собой слой гидрофобной жидкости, размещенный на поверхности водного раствора.

2. Жидкая мембрана по п.1, отличающаяся тем, что гидрофобная жидкость представляет собой синтетическое или растительное масло.

3. Способ выделения спиртов или эфиров из водных растворов путем их диффузионного испарения через мембрану с использованием газа или вакуума, отличающийся тем, что мембрана представляет собой слой гидрофобной жидкости на поверхности водного раствора.

4. Способ по п.3, отличающийся тем, что гидрофобная жидкость представляет собой синтетическое или растительное масло.

5. Способ по п.3, отличающийся тем, что слой гидрофобной жидкости на поверхности водной среды составляет 3-30 мм.

www.freepatent.ru

МЕМБРАНЫ ЖИДКИЕ – это… Что такое МЕМБРАНЫ ЖИДКИЕ?

полупроницаемые жидкие пленки или слои, обеспечивающие селективный перенос в-в в процессе массообмена между жидкими и (или) газообразными фазами. Различают свободные, импрегнированные и эмульсионные М. ж. Свободные М. ж.-устойчивые в гравитац. поле слои жидкости, отличающиеся по плотности от разделяемых ими фаз, напр. слой орг. жидкости, расположенный под водными р-рами в обоих коленах U-образной трубки. Импрегнированные М. ж. представляют собой пропитанные жидкостью пористые пленки (полипропиленовые, полисуль-фоновые, политетрафторэтиленовые и др.) или волокна (полипропиленовые, полисульфоновые). Эмульсионные М. ж.-стабилизированные ПАВ жидкие слои, отделяющие капельную фазу от сплошной в эмульсиях типа вода-масло-вода или масло-вода-масло. Толщина свободных М. ж., как правило, св. 1 мм, импрегнированных 10-500 мкм, эмульсионных 0,1-1,0 мкм. М. ж. могут быть однокомпонентными и многокомпонентными. Первые являются для проникающего через М. ж. в-ва лишь более или менее селективным р-рителем, осуществляют пассивный перенос. Многокомпонентные М. ж. обычно содержат хим. соединения-переносчики, растворенные в мембранной жидкости и способные избирательно связывать и переносить через мембрану диффундирующее в-во (индуцированный либо активный транспорт). Перенос в-в через М. ж. может протекать в режиме диализа и электродиализа (движущая сила процесса-градиент хим. или электрохим. потенциала по толщине мембраны, см. Мембранные процессы разделения).

М. ж. применяют при экстракции и абсорбции, а также при проведении нек-рых хим. р-ций. При экстракции неорг. в-в в качестве М. ж. используют, как правило, содержащую экстрагeнт-переносчик орг. жидкость, к-рая разделяет исходный и реэкстрагирующий водные р-ры. Таким путем удается, напр., селективно извлекать ионы к.-л. металла из исходного водного р-ра и в одну стадию получать в ре-экстрагирующем водном р-ре более высокую концентрацию этого металла. Подобный процесс в системах с водными мембранами, заключенными между двумя масляными фазами, дает возможность разделять смеси орг. соед., напр. углеводородов. Мембранную экстракцию применяют в пром-сти для извлечения из сточных вод и технол. р-ров примесей металлов, ароматич. аминов, фенола и др. в-в.

Мембранная абсорбция в трехфазной системе газ-жидкость-газ или газ-жидкость-жидкость перспективный метод разделения газовых смесей, напр. бутан-изобутан, этилен-этан, углекислый газ-водород, водород – метан и др.

Исследуется возможность использования М. ж. в хим. синтезе, напр. при превращении этилена в винилацетат, пропилена в ацетон, ацетальдегида в уксусную к-ту, при получении ацетальдегида для обеспечения эффективного отделения продуктов р-ции от катализаторов и исходных реагентов.

М. ж. представляют значит. интерес для медицины, напр. для удаления токсинов из крови.

Лит.: Ивахно С. Ю., Афанасьев А. В., Ягодин Г. А., Мембранная экстракция неорганических веществ, М., 1985 (Итоги науки и техники. Сер. Неорганическая химия, т. 13). Г. А. Ягодин. С. Ю. Ивахно.

Химическая энциклопедия. — М.: Советская энциклопедия. Под ред. И. Л. Кнунянца. 1988.

dic.academic.ru

➥Полимерная мембрана Белзона | Жидкая мембрана для гидроизоляции – цена, свойства | Инновацинная полимерная мембрана

Жидкая мембрана

Жидкая мембрана Belzona 3000 предназначена для гидроизоляции и эффективной защиты теплоизоляции в резервуарах и трубопроводах, гидроизоляции шва емкостей, защиты кровли и ее отдельных элементов от промышленных загрязнителей, ультрафиолетового и инфракрасного излучений.

Полимерные мембраны для гидроизоляции – это:

1. Прочная эластичная водонепроницаемая система

Систему, устойчивую, к тому же, ко всем возможным атмосферным воздействиям. Полимерные жидкие мембраны позволяют быстро решить внезапно возникшие проблемы, устранить течи, произвести ремонт в сложных погодных условиях.

2. Надежная огнеупорная система для защиты оборудования

Эта жидкая мембрана позволяет избежать повреждения оборудования и его последующего выхода из строя.

3. Долгосрочное решение для перекрытий и кровли

Жидкие полимерные мембраны для гидроизоляции Belzona 3000 образуют «дышащее» покрытие для кровли, которое непроницаемо для воды, но преодолимо для воздуха.

В серию Belzona 3000 входят такие подгруппы:

  • Belzona 3111 – микропористая  эластичная гидроизоляционная мембрана Belzona для разных типов поверхностей.
  • Belzona 3121 – материал для аварийного ремонта течей, застывающий под водой.
  • Belzona 3211 – полимерная гидроизоляционная мембрана, применяющаяся на теплоизоляции.

Где применима полимерная гидроизоляционная мембрана?

  • Гидроизоляция оборудования: трубопроводы, насосы, технологические резервуары;
  • Гидроизоляция в строительстве: например, защита кровли.

Применение полимерной мембраны Belzona серии 3000 позволяет обеспечить долговечную защиту теплоизоляции на паропроводах и технологических резервуарах в вашем производстве или надежную гидроизоляцию кровли вашего здания.

Область применения эластичной гидроизоляционной мембраны широкая и зависит от конкретной задачи. Мы помогаем в подборе решения для каждого индивидуального случая.

Разумные цены на полимерные мембраны

Купить полимерную мембрану Belzona на территории Украины можно через ЧП «Компания Сперанца» – официального дистрибьютора. Клиентам предложены выгодные условия и рекомендованные производителем цены на всю продукцию.

У нас представлены полимерные мембраны для гидроизоляции, которые можно классифицировать по таким типам:

  • ПВХ – мембраны, сделанные из поливинилхлорида;
  • ТПО – материалом изготовления служит смесь каучука и полипропилена;
  • ЭПДМ – полимерные мембраны из синтетического каучука. Цена полимерной мембраны, в первую очередь, зависит от её типа.

При этом каждая полимерная мембрана (цена указана в прайс-листе) обладает тремя важнейшими достоинствами:

  1. прочностью;
  2. способностью противостоять агрессивным средам;
  3. долговечностью.

Получить подробную консультацию по возможностям сотрудничества, применению полимерных продуктов, вопросам их приобретения удобно, связавшись с нами по телефону +38(067)664-97-89 или через онлайн-форму.

Подробнее

speranza-ua.com

жидкая мембрана – это… Что такое жидкая мембрана?


жидкая мембрана

 

жидкая мембрана
жидкостная мембрана

[А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

Тематики

  • энергетика в целом

Синонимы

  • жидкостная мембрана

EN

  • fluid membrane
  • liquid membrane

Справочник технического переводчика. – Интент. 2009-2013.

  • жидкая линза
  • жидкая неоднородная система

Смотреть что такое “жидкая мембрана” в других словарях:

  • жидкая мембрана — skystoji membrana statusas T sritis chemija apibrėžtis Puslaidė skysta plėvelė ar sluoksnis, per kurį vyksta atrankiniai masės mainai tarp skystų ir (arba) dujinių fazių. atitikmenys: angl. liquid membrane rus. жидкая мембрана; жидкостная… …   Chemijos terminų aiškinamasis žodynas

  • мембрана жидкая — Полупроницаемая мембрана, представляющая собой слой жидкости, несмешивающийся с разделяемым раствором, и существующая в виде эмульсии или иммобилизованной на пористом носителе плёнке. [РХТУ им. Д.И. Менделеева, кафедра мембранной технологии]… …   Справочник технического переводчика

  • Жидкая резина — Для улучшения этой статьи желательно?: Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное. Жидкая резина (анг …   Википедия

  • Жидкая среда — Механика сплошных сред Сплошная среда Классическая механика Закон сохранения массы · Закон сохранения импульса …   Википедия

  • жидкостная мембрана — skystoji membrana statusas T sritis chemija apibrėžtis Puslaidė skysta plėvelė ar sluoksnis, per kurį vyksta atrankiniai masės mainai tarp skystų ir (arba) dujinių fazių. atitikmenys: angl. liquid membrane rus. жидкая мембрана; жидкостная… …   Chemijos terminų aiškinamasis žodynas

  • liquid membrane — skystoji membrana statusas T sritis chemija apibrėžtis Puslaidė skysta plėvelė ar sluoksnis, per kurį vyksta atrankiniai masės mainai tarp skystų ir (arba) dujinių fazių. atitikmenys: angl. liquid membrane rus. жидкая мембрана; жидкостная… …   Chemijos terminų aiškinamasis žodynas

  • skystoji membrana — statusas T sritis chemija apibrėžtis Puslaidė skysta plėvelė ar sluoksnis, per kurį vyksta atrankiniai masės mainai tarp skystų ir (arba) dujinių fazių. atitikmenys: angl. liquid membrane rus. жидкая мембрана; жидкостная мембрана …   Chemijos terminų aiškinamasis žodynas

  • Жидкость —     Механика сплошных сред …   Википедия

  • Жидкое состояние — Механика сплошных сред Сплошная среда Классическая механика Закон сохранения массы · Закон сохранения импульса …   Википедия

  • Жидкости — Механика сплошных сред Сплошная среда Классическая механика Закон сохранения массы · Закон сохранения импульса …   Википедия

technical_translator_dictionary.academic.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *