Паропроницаемость газобетона – ,

Содержание

Паропроницаемость материалов таблица

Чтобы создать благоприятный микроклимат в помещении, необходимо учитывать свойства строительных материалов. Сегодня мы разберем одно свойство – паропроницаемость материалов.

Паропроницаемостью называется способность материала пропускать пары, содержащиеся в воздухе. Пары воды проникают в материал за счет давления.

Помогут разобраться в вопросе таблицы, которые охватывают практически все материалы, использующиеся для строительства. Изучив данный материал, вы будете знать, как построить теплое и надежное жилище.

 

 

Оборудование

Если речь идет о проф. строительстве, то в нем используется специально оборудование для определения паропроницаемости. Таким образом и появилась таблица, которая находится в этой статье.

Сегодня используется следующее оборудование:

  • Весы с минимальной погрешностью – модель аналитического типа.
  • Сосуды или чаши для проведения опытов.
  • Инструменты с высоким уровнем точности для определения толщины слоев строительных материалов.

Разбираемся со свойством

Бытует мнение, что «дышащие стены» полезны для дома и его обитателей. Но все строители задумывают об этом понятии. «Дышащим» называется тот материал, который помимо воздуха пропускает и пар – это и есть водопроницаемость строительных материалов. Высоким показателем паропроницаемости обладают пенобетон, керамзит дерево. Стены из кирпича или бетона тоже обладают этим свойством, но показатель гораздо меньше, чем у керамзита или древесных материалов.

На этом графике показано сопротивление проницаемости. Кирпичная стена практически не пропускает и не впускает влагу.

 

Во время принятия горячего душа или готовки выделяется пар. Из-за этого в доме создается повышенная влажность – исправить положение может вытяжка. Узнать, что пары никуда не уходят можно по конденсату на трубах, а иногда и на окнах. Некоторые строители считают, что если дом построен из кирпича или бетона, то в доме «тяжело» дышится.

На деле же ситуация обстоит лучше – в современном жилище около 95% пара уходит через форточку и вытяжку. И если стены сделаны из «дышащих» строительных материалов, то 5% пара уходят через них. Так что жители домов из бетона или кирпича не особо страдают от этого параметра. Также стены, независимо от материала, не будут пропускать влагу из-за виниловых обоев. Есть у «дышащих» стен и существенный недостаток – в ветреную погоду из жилища уходит тепло.

 

 

Таблица поможет вам сравнить материалы и узнать их показатель паропроницаемости:

Чем выше показатель паронипроницаемости, тем больше стена может вместить в себя влаги, а это значит, что у материала низкая морозостойкость. Если вы собираетесь построить стены из пенобетона или газоблока, то вам стоит знать, что производители часто хитрят в описании, где указана паропроницаемость. Свойство указано для сухого материала – в таком состоянии он действительно имеет высокую теплопроводность, но если газоблок намокнет, то показатель увеличится в 5 раз. Но нас интересует другой параметр: жидкость имеет свойство расширяться при замерзании, как результат – стены разрушаются.

Паропроницаемость в многослойной конструкции

Последовательность слоев и тип утеплителя – вот что в первую очередь влияет на паропроницаемость. На схеме ниже вы можете увидеть, что если материал-утеплитель расположен с фасадной стороны, то показатель давление на насыщенность влаги ниже.

Рисунок подробно демонстрирует действие давления и проникновение пара в материал.

 

 

Если утеплитель будет находиться с внутренней стороны дома, то между несущей конструкцией и этим строительным будет появляться конденсат. Он отрицательно влияет на весь микроклимат в доме, при этом разрушение строительных материалов происходит заметно быстрее.

Разбираемся с коэффициентом

Таблица становится понятна, если разобраться с коэффициентом.

 

 

Коэффициент в этом показатели определяет количество паров, измеряемых в граммах, которые проходят через материалы толщиной 1 метр и слоем в 1м² в течение одного часа. Способность пропускать или задерживать влагу характеризирует сопротивление паропроницаемости, которое в таблице обозначается симвломом «µ».

Простыми словами, коэффициент – это сопротивление строительных материалов, сравнимое с папопроницаемостью воздуха. Разберем простой пример, минеральная вата имеет следующий коэффициент паропроницаемости: µ=1. Это означает, что материал пропускает влагу не хуже воздуха. А если взять газобетон, то у него µ будет равняться 10, то есть его паропроводимость в десять раз хуже, чем у воздуха.

Особенности

С одной стороны паропроницаемость хорошо влияет на микроклимат, а с другой – разрушает материалы, из которых построен дома. К примеру, «вата» отлично пропускает влагу, но в итоге из-за избытка пара на окнах и трубах с холодной водой может образоваться конденсат, о чем говорит и таблица. Из-за этого теряет свои качества утеплитель. Профессионалы рекомендуют устанавливать слой пароизоляции с внешней стороны дома. После этого утеплитель не будет пропускать пар.

Сопротивления паропроницанию

 

Если материал имеет низкий показатель паропроницаемости, то это только плюс, ведь хозяевам не приходится тратиться на изоляционные слои. А избавиться от пара, образовывающегося от готовки и горячей воды, помогут вытяжка и форточка – этого хватит, чтобы поддерживать нормальный микроклимат в доме. В случае, когда дом строится из дерева, не получается обойтись без дополнительной изоляции, при этом для древесных материалов необходим специальный лак.

Таблица, график и схема помогут вам понять принцип действия этого свойства, после чего вы уже сможете определиться с выбором подходящего материала. Также не стоит забывать и про климатические условия за окном, ведь если вы живете в зоне с повышенной влажностью, то про материалы с высоким показателем паропроницаемости стоит вообще забыть.

jsnip.ru

Паропроницаемость бетона: изюминки свойств газобетона,

Довольно часто в строительных статьях видится выражение – паропроницаемость цементных стен. Свидетельствует она свойство материала пропускать водяные пары, по-народному – «дышать». Данный параметр имеет громадное значение, поскольку в жилом помещении неизменно образуются продукты жизнедеятельности, каковые нужно неизменно выводить наружу.

Неспециализированные сведения

Если не создать обычную вентиляцию в помещении, в нем будет создаваться сырость, что приведет к появлению грибка и плесени. Их выделения смогут принести вред нашему здоровью.

Иначе – паропроницаемость воздействует на свойство материала накапливать в себе влагу.Это кроме этого нехороший показатель, поскольку чем больше он сможет ее в себе удерживать, тем выше возможность происхождения грибка, гнилостных проявлений, и разрушений при замерзании.

Паропроницаемость обозначают латинской буквой ? и измеряют в мг/(м*ч*Па). Величина показывает количество пара, которое может пройти через стеновой материал на площади 1 м2 и при его толщине 1 м за 1 час, и разнице наружного и внутреннего давления 1 Па.

Высокая свойство проведения водяных паров у:

  • пенобетона;
  • газобетона;
  • перлитобетона;
  • керамзитобетона.

Замыкает таблицу – тяжелый бетон.

Совет: в случае если вам нужно в фундаменте сделать технологический канал, вам окажет помощь алмазное бурение отверстий в бетоне.

Газобетон

  1. Применение материала в качестве ограждающей конструкции позволяет избежать скопления ненужной жидкости в стен и сохранить ее теплосберегающие свойства, что предотвратит вероятное разрушение.
  2. Любой газобетонный и пенобетонный блок имеет в своем составе ? 60% воздуха, благодаря чему паропроницаемость газобетона признана на хорошем ровне, стенки в этом случае смогут «дышать».
  3. Водяные парысвободно просачиваются через материал, но не конденсируются в нем.

Паропроницаемость газобетона, равно как и пенобетона, существенно превосходит тяжелый бетон – у первого 0,18-0,23, у второго – (0,11-0,26), у третьего – 0,03 мг/м*ч*Па.

Очень хочется выделить, что структура материала снабжает ему действенное удаление жидкости в вохдух, так что кроме того при замерзании материала он не разрушается – она вытесняется наружу через открытые поры. Исходя из этого, подготавливая отделку газобетонных стен, направляться учитывать данную изюминку и подбирать соответствующие штукатурки, шпаклевки и краски.

Инструкция строго регламентирует, дабы их параметры паропроницаемости были не ниже газобетонных блоков, использующихся для постройки.

Совет: помните, что параметры паропроницаемости зависят от плотности газобетона и смогут различаться наполовину.

К примеру, если вы используете цементные блоки с плотностью D400 – у них коэффициент равен 0,23 мг/м ч Па, а у D500 он уже ниже – 0,20 мг/м ч Па. В первом случае цифры показывают, что стенки будут иметь более высокую «дышащую» свойство. Так что при подборе отделочных материалов для стенку из газобетона D400, следите, дабы у них коэффициент паропроницаемости был такой же либо выше.

В другом случае это приведет к ухудшению отвода жидкости из стенку, что скажется на понижении уровня комфорта проживания в доме. Кроме этого направляться учесть, что в случае если вами была применена для наружной отделки паропроницаемая краска для газобетона, а для внутренней – непаропроницаемые материалы, пар не составит большого труда скапливаться в помещения, делая его мокрым.

Керамзитобетон

Паропроницаемость керамзитобетонных блоков зависит от количества наполнителя в его составе, в частности керамзита – вспененной обожженной глины. В Европе такие изделия именуют эко- либо биоблоками.

Преимущества· паропроницаемость – 0,09-0,3;· теплый;· прочный;

· низкая цена производства;

· снижает наружный шум;

· морозоустойчивый;

· имеет продолжительный срок эксплуатации;

· устойчив к влаге;

· маленького веса;

· безусадочный материал;

· не позволяет образовываться трещинам;

· не горит;

· в него возможно вбивать гвозди и сверлить;

· устойчив к плесени и грибкам.

Недостатки· хрупкий;· стенки требуют дополнительной изоляции, что воздействует на паропроницаемость;· требуется дополнительная отделка;

· обработка производится особыми инструментами.

Совет: в случае если у вас не получается разрезать керамзитоблок простым кругом и болгаркой, применяйте алмазный. К примеру, резка железобетона алмазными кругами позволяет быстро решить поставленную задачу.

Полистиролбетон

Материал есть еще одним представителем ячеистых бетонов. Паропроницаемость полистиролбетона в большинстве случаев приравнивается к дереву. Изготовить его возможно своими руками.

Сейчас больше внимания начинает уделяться не только тепловым свойствам стеновых конструкций, а и комфортности проживания в сооружении. По тепловой инертности и паропроницаемости полистиролбетон напоминает деревянные материалы, а добиться сопротивления передачи тепла возможно посредством трансформации его толщины.Исходя из этого в большинстве случаев используют заливной монолитный полистиролбетон, который дешевле готовых плит.

Вывод

Из статьи вы выяснили, что имеется таковой параметр у строительных материалов, как паропроницаемость. Он позволяет выводить влагу за пределы стен строения, улучшая их прочность и характеристики. Паропроницаемость пенобетона и газобетона, и тяжелого бетона отличается своими показателями, что нужно учитывать при выборе отделочных материалов. Видео в данной статье окажет помощь отыскать вам дополнительную данные по данной тематике.

blog-oremonte.ru

Паропроницаемость стен и материалов

Существует легенда о «дышащей стене», и сказания о «здоровом дыхании шлакоблока, которое создает неповторимую атмосферу в доме». На самом деле паропроницаемость стены не большая, количество пара проходящего через нее незначительно, и гораздо меньше, чем количество пара переносимое воздухом, при его обмене в помещении.

Паропроницаемость — один из важнейших параметров, используемых при расчете утепления. Можно сказать, что паропроницаемость материалов определяет всю конструкцию утепления.

Что такое паропроницаемость

Движение пара через стену происходит при разности парциального давления по сторонам стены (различная влажность). При этом разности атмосферного давления может и не быть.

Паропроницаемость — способность материла пропускать через себя пар. По отечественной классификации определяется коэффициентом паропроницаемости m, мг/(м*час*Па).

Сопротивляемость слоя материала будет зависеть от его толщины.
Определяется путем деления толщины на коэффициент паропроницаемости. Измеряется в (м кв.*час*Па)/мг.

Например, коэффициент паропроницаемости кирпичной кладки принят как 0,11 мг/(м*час*Па). При толщине кирпичной стены равной 0,36 м, ее сопротивление движению пара составит 0,36/0,11=3,3 (м кв.*час*Па)/мг.

Какая паропроницаемость у строительных материалов

Ниже приведены значения коэффициента паропроницаемости для нескольких строительных материалов (согласно нормативного документа), которые наиболее широко используются, мг/(м*час*Па).
Битум 0,008
Тяжелый бетон 0,03
Автоклавный газобетон 0,12
Керамзитобетон 0,075 — 0,09
Шлакобетон 0,075 — 0,14
Обожженная глина (кирпич) 0,11 — 0,15 (в виде кладки на цементном растворе)
Известковый раствор 0,12
Гипсокартон, гипс 0,075
Цементно-песчаная штукатурка 0,09
Известняк (в зависимости от плотности) 0,06 — 0,11
Металлы 0
ДСП 0,12 0,24
Линолеум 0,002
Пенопласт 0,05-0,23
Полиурентан твердый, полиуретановая пена
0,05
Минеральная вата 0,3-0,6
Пеностекло 0,02 -0,03
Вермикулит 0,23 — 0,3
Керамзит 0,21-0,26
Дерево поперек волокон 0,06
Дерево вдоль волокон 0,32

Кирпичная кладка из силикатного кирпича на цементном растворе 0,11

Данные по паропроницанию слоев обязательно нужно учитывать при проектировании любого утепления.

Как конструировать утепление — по пароизоляционным качествам

Основное правило утепления — паропрозрачность слоев должна увеличиваться по направлению наружу. Тогда в холодное время года, с большей вероятностью, не произойдет накопление воды в слоях, когда конденсация будет происходить в точке росы.

Базовый принцип помогает определиться в любых случаях. Даже когда все «перевернуто вверх ногами» – утепляют изнутри, несмотря на настойчивые рекомендации делать утепление только снаружи.

Чтобы не произошло катастрофы с намоканием стен, достаточно вспомнить о том, что внутренний слой должен наиболее упорно сопротивляться пару, и исходя из этого для внутреннего утепления применить экструдированный пенополистирол толстым слоем — материал с очень низкой паропроницаемостью.

Или же не забыть для очень «дышащего» газобетона снаружи применить еще более «воздушную» минеральную вату.

Разделение слоев пароизолятором

Другой вариант применения принципа паропрозрачности материалов в многослойной конструкции — разделение наиболее значимых слоев пароизолятором. Или применение значимого слоя, который является абсолютным пароизолятором.

Например, — утепление кирпичной стены пеностеклом. Казалось бы, это противоречит вышеуказанному принципу, ведь возможно накопление влаги в кирпиче?

Но этого не происходит, из-за того, что полностью прерывается направленное движение пара (при минусовых температурах из помещения наружу). Ведь пеностекло полный пароизолятор или близко к этому.

Поэтому, в данном случае кирпич войдет в равновесное состояние с внутренней атмосферой дома, и будет служить аккумулятором влажности при резких ее скачках внутри помещения, делая внутренний климат приятнее.

Принципом разделении слоев пользуются и применяя минеральную вату — утеплитель особо опасный по влагонакоплению. Например, в трехслойной конструкции, когда минеральная вата находится внутри стены без вентиляции, рекомендуется под вату положить паробарьер, и оставить ее, таким образом, в наружной атмосфере.

Международная классификация пароизоляционных качеств материалов

Международная классификация материалов по пароизоляционным свойствам отличается от отечественной.

Согласно международному стандарту ISO/FDIS 10456:2007(E) материалы характеризуются коэффициентом сопротивляемости движению пара. Этот коэффициент указывает во сколько раз больше материал сопротивляется движению пара по сравнению с воздухом. Т.е. у воздуха коэффициент сопротивляемости движению пара равен 1, а у экструдированного пенополистирола уже 150, т.е. пенополистирол в 150 раз пропускает пар хуже чем воздух.

Также в международных стандартах принято определять паропроницаемость для сухих и увлажненных материалов. Границей между понятиями «сухой» и «увлажненный» выбрана внутренняя влажность материала в 70%.
Ниже приведены значения коэффициента сопротивляемости движению пара для различных материалов согласно международным стандартам.

Коэффициент сопротивляемости движению пара

Сначала приведены данные для сухого материала, а через запятую для увлажненного (более 70% влажности).
Воздух 1, 1
Битум 50 000, 50 000
Пластики, резина, силикон — >5 000, >5 000
Тяжелый бетон 130, 80
Бетон средней плотности 100, 60
Полистирол бетон 120, 60
Автоклавный газобетон 10, 6
Легкий бетон 15, 10
Искусственный камень 150, 120
Керамзитобетон 6-8, 4
Шлакобетон 30, 20
Обожженная глина (кирпич) 16, 10
Известковый раствор 20, 10
Гипсокартон, гипс 10, 4
Гипсовая штукатурка 10, 6
Цементно-песчаная штукатурка 10, 6
Глина, песок, гравий 50, 50
Песчаник 40, 30
Известняк (в зависимости от плотности) 30-250, 20-200
Керамическая плитка ?, ?
Металлы ?, ?
OSB-2 (DIN 52612) 50, 30
OSB-3 (DIN 52612) 107, 64
OSB-4 (DIN 52612) 300, 135
ДСП 50, 10-20
Линолеум 1000, 800
Подложка под ламинат пластик 10 000, 10 000
Подложка под ламинат пробка 20, 10
Пенопласт 60, 60
ЭППС 150, 150
Полиурентан твердый, полиуретановая пена 50, 50
Минеральная вата 1, 1
Пеностекло ?, ?
Перлитовые панели 5, 5
Перлит 2, 2
Вермикулит 3, 2
Эковата 2, 2
Керамзит 2, 2
Дерево поперек волокон 50-200, 20-50

Нужно заметить, что данные по сопротивляемости движению пара у нас и «там» весьма различаются. Например, пеностекло у нас нормируется, а международный стандарт говорит, что оно является абсолютным пароизолятором.

Откуда возникла легенда о дышащей стене

Очень много компаний выпускает минеральную вату. Это самый паропроницаемый утеплитель. По международным стандартам ее коэффициент сопротивления паропроницаемости (не путать с отечественным коэффициентом паропроницаемости) равен 1,0. Т.е. фактически минеральная вата не отличается в этом отношении от воздуха.

Действительно, это «дышащий» утеплитель. Что бы продать минеральной ваты как можно больше, нужна красивая сказка. Например, о том, что если утеплить кирпичную стену снаружи минеральной ватой, то она ничего не потеряет в плане паропроницания. И это абсолютная правда!

Коварная ложь скрывается в том, что через кирпичные стены толщиной в 36 сантиметров, при разности влажностей в 20% (на улице 50%, в доме — 70%) за сутки из дома выйдет примерно около литра воды. В то время как с обменом воздуха, должно выйти примерно в 10 раз больше, что бы влажность в доме не наращивалась.

А если стена снаружи или изнутри будет изолирована, например слоем краски, виниловыми обоями, плотной цементной штукатуркой, (что в общем-то «самое обычное дело»), то паропроницаемость стены уменьшиться в разы, а при полной изоляции — в десятки и сотни раз.

Поэтому всегда кирпичной стене и домочадцам будет абсолютно одинаково, — накрыт ли дом минеральной ватой с «бушующим дыханием», или же «уныло-сопящим» пенопластом.

Принимая решения по утеплению домов и квартир, стоит исходить из основного принципа — наружный слой должен быть более паропроницаем, желательно в разы.

Если же это выдерживать почему-либо не возможно, то можно разделить слои сплошной пароизоляцией, (применить полностью паронепроницаемый слой) и прекратить движение пара в конструкции, что приведет к состоянию динамического равновесия слоев со средой в которой они будут находиться.

teplodom1.ru

Паропроницаемость строительных материалов

В отечественных нормах сопротивление паропроницаемости (сопротивление паропроницанию Rп, м2• ч • Па/мг) нормируется в главе 6 “Сопротивление паропроницанию ограждающих конструкций” СНиП II-3-79 (1998) “Строительная теплотехника”.

Международные стандарты паропроницаемости строительных материалов приводятся в стандартах ISO TC 163/SC 2 и ISO/FDIS 10456:2007(E) – 2007 год.

Показатели коэффициента сопротивления паропроницанию определяются на основании международного стандарта ISO 12572 “Теплотехнические свойства строительных материалов и изделий – Определение паропроницаемости”. Показатели паропроницаемости для международных норм ISO определялись лабораторным способом на выдержанных во времени (не только что выпущенных) образцах строительных материалов. Паропроницаемость определялась для строительных материалов в сухом и влажном состоянии.
В отечественном СНиП приводятся лишь расчетные данные паропроницаемости при массовом отношении влаги в материале w, %, равном нулю.
Поэтому для выбора строительных материалов по паропроницаемости при дачном строительстве лучше ориентироваться на международные стандарты ISO, котрые определяют паропроницаемость “сухих” строительных материалов при влажности менее 70% и “влажных” строительных материалов при влажности более 70%. Помните, что при оставлении “пирогов” паропроницаемых стен, паропроницаемость материалов изнутри-кнаружи не должна уменьшаться, иначе постепенно произойдет “замокание” внутренних слоев строительных материалов и значительно увеличится их теплопроводность.

Паропроницаемость материалов изнутри кнаружи отапливаемого дома должна уменьшаться: СП 23-101-2004 Проектирование тепловой защиты зданий, п.8.8: Для обеспечения лучших эксплуатационных характеристик в многослойных конструкциях зданий с теплой стороны следует располагать слои большей теплопроводности и с большим сопротивлением паропроницанию, чем наружные слои. По данным Т.Роджерс (Роджерс Т.С. Проектирование тепловой защиты зданий. / Пер. с англ. – м.: си, 1966) Отдельные слои в многослойных ограждениях следует располагать в такой последовательности, чтобы паропроницаемость каждого слоя нарастала от внутренней поверхности к наружной. При таком расположении слоев водяной пар, попавший в ограждение через внутреннюю поверхность с возрастающей легкостью, будет проходить через все спои ограждения и удаляться из ограждения с наружной поверхности. Ограждающая конструкция будет нормально функционировать, если при соблюдении сформулированного принципа, паропроницаемость наружного слоя, как минимум, в 5 раз будет превышать паропроницаемость внутреннего слоя.

Механизм паропроницаемости строительных материалов:

При низкой относительной влажности влага из атмосферы транспортируется через поры строительных материалов в виде отдельных молекул водяного пара. При повышении относительной влажности поры строительных материалов начинают заполняться жидкостью и начинают работать механизмы смачивания и капиллярного подсоса. При повышении влажности строительного материала его паропроницаемость увеличивается (снижается коэффициент сопротивления паропроницаемости).

Пример пренебрежения паропроницаемостью строительных материалов в многослойных стенах: укрытие деревянных стен паронепроницаемым рубероидом привело к биологическому разрушению дерева в условиях постоянного увлажнения. При укрытии ячеистых бетонов паронепроницаемыми материалами (кирпичная кладка, ЭППС) происходит переувлажнение стен и их постепенное разрушение при периодическом промерзании.

Показатели паропроницаемости “сухих” строительных материалов по ISO/FDIS 10456:2007(E) применимы для внутренних конструкций отапливаемых зданий. Показатели паропроницаемости “влажных” строительных материалов применимы для всех наружных конструкций и внутрених конструкций неотапливаемых зданий или дачных домов с переменным (временным) режимом отопления.

dom.dacha-dom.ru

особенности свойств газобетона, керамзитобетона, полистиролбетона

Часто в строительных статьях встречается выражение — паропроницаемость бетонных стен. Означает она способность материала пропускать водяные пары, по-народному – «дышать». Данный параметр имеет большое значение, так как в жилом помещении постоянно образуются продукты жизнедеятельности, которые необходимо постоянно выводить наружу.

На фото – конденсация влаги на строительных материалах

Общие сведения

Если не создать нормальную вентиляцию в помещении, в нем будет создаваться сырость, что приведет к появлению грибка и плесени. Их выделения могут принести вред нашему здоровью.

Перемещение водяных паров

С другой стороны — паропроницаемость влияет на способность материала накапливать в себе влагу.Это также плохой показатель, так как чем больше он сможет ее в себе удерживать, тем выше вероятность возникновения грибка, гнилостных проявлений, а также разрушений при замерзании.

Неправильный отвод влаги из помещения

Паропроницаемость обозначают латинской буквой μ и измеряют в мг/(м*ч*Па). Величина показывает количество водяного пара, которое может пройти через стеновой материал на площади 1 м2 и при его толщине 1 м за 1 час, а также разнице наружного и внутреннего давления 1 Па.

Высокая способность проведения водяных паров у:

  • пенобетона;
  • газобетона;
  • перлитобетона;
  • керамзитобетона.

Замыкает таблицу — тяжелый бетон.

Совет: если вам необходимо в фундаменте сделать технологический канал, вам поможет алмазное бурение отверстий в бетоне.

Газобетон

  • Использование материала в качестве ограждающей конструкции дает возможность избежать скопления ненужной влаги внутри стен и сохранить ее теплосберегающие свойства, что предотвратит возможное разрушение.
  • Любой газобетонный и пенобетонный блок имеет в своем составе ≈ 60% воздуха, благодаря чему паропроницаемость газобетона признана на хорошем ровне, стены в данном случае могут «дышать».
  • Водяные парысвободно просачиваются через материал, но не конденсируются в нем.
  • Паропроницаемость газобетона, так же, как и пенобетона, значительно превосходит тяжелый бетон – у первого 0,18-0,23, у второго — (0,11-0,26), у третьего – 0,03 мг/м*ч*Па.

    Правильно подобранная отделка

    Особо хочется подчеркнуть, что структура материала обеспечивает ему эффективное удаление влаги в окружающую среду, так что даже при замерзании материала он не разрушается – она вытесняется наружу через открытые поры. Поэтому, подготавливая отделку газобетонных стен, следует учитывать данную особенность и подбирать соответствующие штукатурки, шпаклевки и краски.

    Инструкция строго регламентирует, чтобы их параметры паропроницаемости были не ниже газобетонных блоков, применяющихся для строительства.

    Фактурная фасадная паропроницаемая краска для газобетона

    Совет: не забывайте, что параметры паропроницаемости зависят от плотности газобетона и могут отличаться наполовину.

    К примеру, если вы используете бетонные блоки с плотностью D400 – у них коэффициент равен 0,23 мг/м ч Па, а у D500 он уже ниже — 0,20 мг/м ч Па. В первом случае цифры говорят о том, что стены будут иметь более высокую «дышащую» способность. Так что при подборе отделочных материалов для стен из газобетона D400, следите, чтобы у них коэффициент паропроницаемости был такой же или выше.

    В противном случае это приведет к ухудшению отвода влаги из стен, что скажется на снижении уровня комфорта проживания в доме. Также следует учесть, что если вами была применена для наружной отделки паропроницаемая краска для газобетона, а для внутренней – непаропроницаемые материалы, пар будет просто скапливаться внутри помещения, делая его влажным.

    Керамзитобетон

    Паропроницаемость керамзитобетонных блоков зависит от количества наполнителя в его составе, а именно керамзита – вспененной обожженной глины. В Европе такие изделия называют эко- или биоблоками.

    Преимущества· паропроницаемость – 0,09-0,3;· теплый;· прочный;

    · низкая цена производства;

    · снижает наружный шум;

    · морозоустойчивый;

    · имеет долгий срок эксплуатации;

    · устойчив к влаге;

    · небольшого веса;

    · безусадочный материал;

    · не дает образовываться трещинам;

    · не горит;

    · в него можно вбивать гвозди и сверлить;

    · устойчив к плесени и грибкам.

    Недостатки· хрупкий;· стены требуют дополнительной изоляции, что влияет на паропроницаемость;· требуется дополнительная отделка;

    · обработка производится специальными инструментами.

    Совет: если у вас не получается разрезать керамзитоблок обычным кругом и болгаркой, используйте алмазный.
    Например, резка железобетона алмазными кругами дает возможность быстро решить поставленную задачу.

    Структура керамзитобетона

    Полистиролбетон

    Материал является еще одним представителем ячеистых бетонов. Паропроницаемость полистиролбетона обычно приравнивается к дереву. Изготовить его можно своими руками.

    Как выглядит структура полистиролбетона

    Сегодня больше внимания начинает уделяться не только тепловым свойствам стеновых конструкций, а и комфортности проживания в сооружении. По тепловой инертности и паропроницаемости полистиролбетон напоминает деревянные материалы, а добиться сопротивления теплопередачи можно с помощью изменения его толщины.Поэтому обычно применяют заливной монолитный полистиролбетон, который дешевле готовых плит.

    Вывод

    Из статьи вы узнали, что есть такой параметр у стройматериалов, как паропроницаемость. Он дает возможность выводить влагу за пределы стен строения, улучшая их прочность и характеристики. Паропроницаемость пенобетона и газобетона, а также тяжелого бетона отличается своими показателями, что необходимо учитывать при выборе отделочных материалов. Видео в этой статье поможет найти вам дополнительную информацию по этой тематике.

    rusbetonplus.ru

    Заблуждения о газобетоне

    Заблуждения о газобетоне

    Хотя процесс производства газобетона и строительства на его основе прозрачен, все равно существуют разногласия, касающиеся в основном свойств газобетона как стройматериала. Многим производителям выгодно представлять этот сравнительно новый стройматериал в негативном цвете, и гнуть в сторону классических (и дорогих) стройматериалов, а многие производители газобетона, в свою очередь, не всегда объективно превозносят его достоинства, забывая рассказать о недостатках.

    Миф №1. Газобетон активно впитывает влагу и боится воды.

    Действительно, вода может неглубоко проникать внутрь материала. Однако именно пористая структура газобетона позволяет ему достаточно быстро отдавать влагу в окружающую среду. Именно поэтому за один-два года эксплуатации здания, в ограждающих конструкциях достигается эксплуатационная (равновесная) влажность. То есть газобетон незначительно подвержен усадке. Газобетон состоит из водонерастворимого минерала, соответственно, вода не может разрушить его кристаллическую решётку. Более того, когда воздух в помещении становится излишне сухим, стены из газобетона обеспечивают его увлажнение. И наоборот – в случае появления излишней влажности в помещении, вода не оседает в виде конденсата на стенах, а выводится наружу через стену. Таким образом, стены из газобетона обеспечивают наиболее комфортные условия для проживания, а на стенах не возникает плесень или грибок.

    Миф №2. Чтобы возвести дом из газобетона нужен капитальный железобетонный фундамент.

    Это утверждение совершенно верно. Однако не стоит думать, что для газобетонного дома требуется какой-то особенный фундамент. Прежде всего, выбор материала стен совершенно не влияет на требования, предъявляемые к фундаменту дома. Не важно, из какого материала планируется построить дом. Требования к фундаменту будут одинаковыми. Основное и главное требование – фундамент должен быть надежным и обеспечивать дому целостность конструкции и постоянство формы.

    Миф №3. Газобетон нельзя штукатурить.
    Действительно, одно из важнейших свойств газобетона – его паропроницаемость – делает его наиболее комфортным материалом для жилых помещений. Чтобы сохранить паропроницаемость стен из газобетона при строительстве дома необходимо соблюдать всего лишь одно правило: при выборе материалов для отделки фасада дома из газобетона, каждый последующий слой должен иметь больший коэффициент паропроницаемости чем предыдущий.

    Миф №4. Газобетон очень хрупкий.
    Это утверждение не корректно. Газобетон много лет используется в районах повышенной сейсмической активности. Опыт применения доказал, что здания из газобетона намного лучше противостоят землетрясениям, чем здания из кирпича. Малый вес газобетона в сочетании с его высокой прочностью, снижает нагрузки на здание. А тонкошовная кладка на клей делает стены из газобетона практически монолитными и позволяет существенно уменьшить последствия даже самых сильных землетрясений. Кроме того, устойчивость кладки к трещинам можно обеспечить простыми конструктивными мероприятиями: железобетонным поясом в уровне перекрытия: распределяет вертикальные нагрузки и работает на растяжение армированием – предотвращает образование трещин.

    Миф №5. Газобетон вреден.
    Известно, что известь и алюминий действительно присутствует в составе газобетонной массы на этапе производства наряду с другими составляющими: цементом, водой, гипсом, песком и золой. В готовом газобетоне извести и алюминия уже нет. Автоклавный газобетон – это синтезированный камень, который не содержит даже кварцевого песка. Из компонентов газобетонной массы в автоклаве под воздействием высокого давления и температуры образуется новый минерал – тоберморит. Известь, также как и алюминий, полностью вступают в реакцию. В результате в готовом газобетоне металлический алюминий отсутствует, и происходит это как раз в результате химического процесса газообразования. Известь, также как и алюминий, полностью вступают в реакцию. Следовательно, мнение о том, что изделия из газобетона содержат известь, является неверным, а, значит, неверны и утверждения о том, что за счёт извести происходит насыщение (впитывание) газобетоном влаги. Отсутствие извести также свидетельствует о том, что газобетон – экологически чистый продукт.

    Миф №6. Газобетон не устойчив к морозам.

    Распространено заблуждение, что в морозную погоду газобетон может потерять свою прочность: если внутри пор есть вода, то она замерзает, что приводит к микротрещинам и разрыву структуры, а значит, разрушению материала. Относительно газобетона, эти опасения не оправдываются, поскольку: микротрещин в материале не образуется разрыва структуры пор, вследствие замерзания воды, не происходит. Образование микротрещин в газобетоне возможно либо на этапе резки и перемещения массива при производстве, либо в процессе усадки готового материала. Разрушения структуры газобетона при замерзании также не происходит. Благодаря наличию большого числа резервных пор, вода равномерно распределяется в них, оставляя пространство для расширяющегося при замерзании льда, и материал полностью сохраняет свои свойства. Практическое доказательство: В Риге дома со стенами из газобетона, не защищенного отделкой, стоят уже в течение 70 лет без трещин, отслоений и шелушения кладки.

    Миф №7. Из газобетона нельзя строить высотные здания.
    Обратимся к официальному документу – «СТО 501-52-01-2007. Проектирование и возведение ограждающих конструкций из ячеистых бетонов». Стандарт рекомендует определять допустимую высоту стен из блоков с расчетом несущей способности наружных и внутренних стен с учетом их совместной работы. Несущие стены рекомендуется возводить высотой до 5-ти этажей включительно, но не более 20 м, самонесущие стены зданий – высотой до 9-ти этажей включительно, но не более 30 м. Этажность зданий, в которых применяются блоки для заполнения каркасов или устройства самонесущих стен с поэтажным опиранием, не ограничивается.

    Миф №8. Использование специального клея дороже, чем цементного раствора.

    Люди, утверждающие, что кладка на песчано-цементный раствор дешевле, просто не проверяли математические выкладки и расчеты. Еще в конце прошлого века строительные клеи и мастики принимались в расчет как более экономичный материал для снижения расхода вяжущего вещества при кладке стен. Развенчаем этот миф, и начнем с обратного – клей стоит в два раза дороже, чем такой же объем песчано-цементного раствора. Также некоторые могут утверждать, что клеевая кладка дороже, не проверив при этом геометрические размеры газобетонных блоков и их соответствие ГОСТам. Проведем сравнительный анализ различных кладочных материалов. Кладка на тонкослойный клей уже много лет применяется для снижения расхода вяжущего, поскольку толщина шва при использовании клея всего 1-3 мм, а толщина шва при использовании раствора – 10 мм. Кроме того, клей для газобетона – одна из самых дешевых сухих строительных смесей. Таким образом, цена клея для газобетона примерно в 1,5 раза выше кладочного раствора, однако расход клея в 5-6 раз меньше, чем раствора. Снижение трудозатрат при работе с клеем, по сравнению с раствором, очевидно: выполнить шов толщиной 1-3 мм из клея намного проще, чем выполнить ровный шов из раствора толщиной 10 мм.

    Миф №9. Стены из газобетона необходимо дополнительно утеплять.
    «Теплая» стена – это, прежде всего, стена, обеспечивающая тепловой комфорт внутри помещения. Тепловой комфорт, а также требования СНиПа обеспечивает газобетонная стена толщиной 450-500 мм (в зависимости от марки плотности), в то время как из кирпича придется построить стену толщиной 2,3 метра. Понятно, что возводить однослойные конструкции из кирпича нецелесообразно, поэтому большинство кирпичных домов сейчас строятся с использованием утеплителей, на практике далеко недолговечных.
    Дом из газобетона дополнительного утепления не требует, что обеспечивает однослойную конструкцию стен. Газобетонные стены внутри помещения всегда теплые на ощупь.

    Миф №10. На стены из газобетона нельзя навешивать тяжелые объекты.
    В газобетон можно, как в дерево, забивать скобы, гвозди, нагели, вворачивать винты и шурупы. Крепёжная способность гвоздей и шурупов зависит как от плотности и прочности газобетона, так и от материала самих крепёжных элементов. Для крепления на газобетон тяжёлых предметов (например, мебели или сантехники) предварительная установка закладных элементов не требуется. Все навесные конструкции (полки, шкафы, радиаторы отопления) легко монтируются на специальные дюбели для газобетона, способные выдерживать значительные нагрузки. Для навешивания лёгких предметов интерьера (картины, фотографии и т.д.) применяются обычные гвозди, которые рекомендуется забивать под углом 45° (сверху вниз).

    Миф №11. Газобетон нужно обязательно защищать от атмосферных воздействий.

    Атмосферные воздействия, которые могут оказать влияние на газобетон – это: вода, солнце, мороз. Намокание от дождя газобетону не вредит: «сухая» кладка прочнее «мокрой» всего на 10%. И это только в том случае, если промочить кладку насквозь, чего российские дожди сделать не способны.
    Самое главное для сохранности кладки – аккуратно обустроить подоконные сливы, козырьки над декоративными выступами и поясками, следить за сохранностью кровли и систем водоотвода, защитить кладку в зоне цоколя.
    Если вам необходима информация о том, как построить дом из газобетона или как вообще пользоваться газобетоном при проведении строительных работ, то в интернете вы всегда можете найти множество источников, предоставляющих самое подробное описание всех процессов изготовления и строительства из газобетонных блоков. Но многие из вас наверняка сталкивались и с некой несостыкованностью этих данных – одни источники дают одни цифры, а из других вы черпаете совершенно иную информацию. Каждый автор отталкивается от того объема информации, которым он владеет на данный момент, поэтому о какой бы то ни было объективности говорить не приходится, кроме справочных материалов и технической документации.

    Миф №12. Чем выше здание, тем большей плотности следует использовать газобетонные блоки.
    Здесь сторонников непроверенной информации также ждет разочарование – плотность материала при кладке стен влияет только на теплопроводящие свойства стен и их тепловую инерционность. Такова математика. Дело в том, что прочность и плотность – понятия совершено разные, и не зависящие друг от друга. Прочностные качества газобетонных блоков зависят от правильной подготовки материала, от качества сырья, от соблюдения режима производства, поэтому прочность стен будущего дома следует определять совершенно по другим параметрам, но никак не по плотности газобетонных блоков. Многие думают, что, чем больше плотность ячеистых бетонов, тем больше прочность материала. Это также очередное заблуждение. Основано оно на том, что в прошлом веке велись разносторонние исследования в попытках создать универсальный материал, в котором прочность бетонов будет зависеть напрямую от плотности строительного материала. Постепенно эти исследования прекратились как несостоятельные, но миф о том, что плотность и прочность неразрывно связаны между собой, остался, и живет по сегодняшний день. В глобальном смысле эта зависимость существует.

    Миф №13. Известь в составе газобетона разрушает металлическое армирование.
    Это заблуждение дважды неверно, так как в составе газобетона извести совсем нет, а если бы она и была, то она не является катализатором для коррозии металла. Здесь необходимо внести некоторую ясность – известь действительно используется в производстве газобетона, так как она входит в состав цемента. Но готовый газобетонный блок – это совершенно новый строительный материал, который после всех технологических операций не может содержать извести по определению, так как после обработки в автоклаве все исходные составляющие (алюминиевая пудра, цемент, кварцевый песок и известь) превращаются в силикаты кальция.

     


    russian-mifs.ru

    Паропроницаемость материалов – таблица

    Понятие «дышащих стен» считается положительной характеристикой материалов, из которых они выполнены. Но мало кто задумывается о причинах, допускающих это дыхание. Материалы, способные пропускать как воздух, так и пар, являются паропроницающими.

    Наглядный пример строительных материалов, обладающих высокой проницаемостью пара:

    • древесина;
    • керамзитовые плиты;
    • пенобетон.

    Бетонные или кирпичные стены менее проницаемы для пара, чем деревянные или керамзитовые.

    Источники пара внутри помещения

    Дыхание человека, приготовление пищи, водяной пар из ванной комнаты и многие другие источники пара при отсутствии вытяжного устройства создают высокий уровень влажности внутри помещения. Часто можно наблюдать образование испарины на оконных стеклах в зимнее время, или на холодных водопроводных трубах. Это примеры образования водяного пара внутри дома.

    Что такое паропроницаемость

    Правила проектирования и строительства дают следующее определение термина: паропроницаемость материалов – это способность пропускать насквозь капельки влаги, содержащиеся в воздухе, вследствие различных величин парциальных давлений пара с противоположных сторон при одинаковых значениях давления воздуха. Еще ее определяют, как плотность парового потока, проходящего сквозь определенную толщину материала.

    Таблица, имеющая коэффициент паропроницаемости, составленная для строительных материалов, носит условный характер, т. к. заданные расчетные величины влажности и атмосферных условий не всегда соответствуют реальным условиям. Точка росы может быть рассчитана, на основании приблизительных данных.

    Конструкция стен с учетом паропроницаемости

    Даже если стены возведены из материала, имеющего высокую паропроницаемость, это не может являться гарантией, что он не превратится в воду в толще стены. Чтобы этого не произошло, нужно защитить материал от разности парциального давления паров изнутри и снаружи. Защита от образования парового конденсата производится при помощи плит ОСБ, утепляющих материалов типа пеноплекса и паронепроницаемых пленок или мембран, недопускающих проникновения пара в утеплитель.

    Стены утепляют с тем расчетом, чтобы ближе к наружному краю располагался слой утеплителя, неспособный образовать конденсацию влаги, отодвигающий точку росы (образование воды). Параллельно с защитными слоями в кровельном пироге необходимо обеспечить правильный вентиляционный зазор.

    Разрушительные действия пара

    Если стеновой пирог имеет слабую способность поглощения пара, ему не грозит разрушение вследствие расширения влаги от мороза. Главное условие – не допустить накапливания влаги в толще стены, а обеспечить свободное ее прохождение и выветривание. Не менее важно устроить принудительную вытяжку лишней влаги и пара из помещения, подключить мощную вентиляционную систему. Соблюдая перечисленные условия, можно уберечь стены от растрескивания, и увеличить срок службы всего дома. Постоянное прохождение влаги сквозь строительные материалы ускоряет их разрушение.

    Использование проводящих качеств

    Учитывая особенности эксплуатации зданий, применяется следующий принцип утепления: снаружи располагаются наиболее паропроводящие утепляющие материалы. Благодаря такому расположению слоев уменьшается вероятность накапливания воды при снижении температуры на улице. Чтобы стены не намокали изнутри, внутренний слой утепляют материалом, имеющим низкую паропроницаемость, например, толстый слой экструдированного пенополистирола.

    С успехом применяется противоположный метод использования паропроводящих эффектов строительных материалов. Он состоит в том, что кирпичную стену покрывают пароизолирующим слоем пеностекла, который прерывает движущийся поток пара из дома на улицу в период низких температур. Кирпич начинает аккумулировать влажность комнат, создавая приятный климат внутри помещения благодаря надежному паровому барьеру.

    Соблюдение основного принципа при возведении стен

    Стены должны отличаться минимальной способностью проводить пар и тепло, но одновременно быть теплоемкими и теплоустойчивыми. При использовании материала одного вида требуемых эффектов достичь невозможно. Внешняя стеновая часть обязана задерживать холодные массы и не допускать их воздействия на внутренние теплоемкие материалы, которые сохраняют комфортный тепловой режим внутри помещения.

    Для внутреннего слоя идеально подходит армированный бетон, его теплоемкость, плотность и прочность имеют максимальные показатели. Бетон успешно сглаживает разность ночных и дневных температурных перепадов.

    При проведении строительных работ составляют стеновые пироги с учетом основного принципа: паропроницаемость каждого слоя должна повышаться в направлении от внутренних слоев к наружным.

    Правила расположения пароизолирующих слоев

    Чтобы обеспечить лучшие эксплуатационные характеристики многослойных конструкций сооружений, применяется правило: со стороны, имеющей более высокую температуру, располагают материалы с увеличенной устойчивостью к проникновению пара с повышенной теплопроводностью. Слои, расположенные снаружи, должны иметь высокую паропроводимость. Для нормального функционирования ограждающей конструкции необходимо, чтобы коэффициент наружного слоя в пять раз превышал показатель слоя, расположенного внутри.

    При выполнении этого правила водяным парам, попавшим в теплый слой стены, не составит труда с ускорением выйти наружу через более пористые материалы.

    При несоблюдении этого условия внутренние слои строительных материалов замокают и становятся более теплопроводными.

    Знакомство с таблицей паропроницаемости материалов

    При проектировании дома, учитываются характеристики строительного сырья. В Своде правил содержится таблица с информацией о том, какой коэффициент паропроницаемости имеют строительные материалы при условиях нормального атмосферного давления и среднего значения температуры воздуха.

    Материал

    Коэффициент паропроницаемости
    мг/(м·ч·Па)

    экструдированный пенополистирол

    0,013

    пенополиуретан

    0,05

    минеральная вата

    0,3 – 0,55

    фанера

    0,02

    железобетон, бетон

    0,03

    сосна или ель

    0,06

    керамзит

    0,21

    пенобетон, газобетон

    0,26

    кирпич

    0,11

    гранит, мрамор

    0,008

    гипсокартон

    0,075

    дсп, осп, двп

    0,12

    песок

    0,17

    пеностекло

    0,02

    рубероид

    0,001

    полиэтилен

    0,00002

    линолеум

    0,002

    Таблица опровергает ошибочные представления о дышащих стенах. Количество пара, выходящего через стены, ничтожно мало. Основной пар выносится с потоками воздуха при проветривании или с помощью вентиляции.

    Важное значение таблицы паропроницаемости материалов

    Коэффициент паропроницаемости является важным параметром, который используется для расчета толщины слоя утеплительных материалов. От правильности полученных результатов зависит качество утепления всей конструкции.

    Что еще почитать по теме?

    Автор статьи:

    Сергей Новожилов – эксперт по кровельным материалам с 9-летним опытом практической работы в области инженерных решений в строительстве.

    Понравилась статья? Поделись с друзьями в социальных сетях:

    Facebook

    Twitter

    Вконтакте

    Одноклассники

    Google+

    proroofer.ru

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *