Производство жидкого стекла – производство разными способами, в том числе из стеклобоя, получится ли сделать его в домашних условиях и что можно из него изготовить?

Способ производства жидкого стекла

 

Использование: в качестве связующего при изготовлении форм и стержней. Сущность изобретения: кварцевый песок измельчают , накладывают на него положительный потенциал величиной 0,3 В, поддерживают его до стадии смешения песка со щелочным раствором и полученную сусТШйзйю выдерживают при пбвышёнйых давлениях и тейпературе.

СОЮЗ СОВЕТСКИХ

СОЦИАЛИСТИЧЕСКИХ

РЕСПУБЛИК (51)5 С 01 В 33/32

ГО1″УДАРСТВЕННЫЙ КОМИТЕТ

ПО, ИЗОБРЕТЕНИЯМ И ОТКРЫТИЯМ

ПРИ ГКНТ СССР дписдния изаБркткния К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ!

I (21 4708474/26 (22) 18.05.89 (46) 30,01,93; Бюл, %4 (71) Научно-производственное объединение по ехнологии механосборочного производств и специального технологйческого обору ования (72) О.С. Пеймер, И.P. Фишман, О,Г, Зарубичкий и Б.Ф. Дмитрук (56) Делимарский 1О.К. Электрохимическая очи тка отливок в ионных расплавах. M.:

Машиностроение, 1976, с 177.

Изобретение относится к литейному производству, а именно к технологии получения жидкого стекла, применяемого в качестве связующего при изготовлении форм и стержней, и может быть использовано в других областях народного хозяйства.

Наиболее близким по технической сущнос и и достигаемому результату к изобре.: тен ю является способ одностадийного

“. получения жидкого стекла, заключающийся в прямом взаимодействии предварительно изм льченного кварцевого песка с натриевым щелочным раствором, полученйым в результате гидролиза шламовых отходов процесса очистки отливок при повышенных температурах и давлении.

Способом предусматривается последовательное выполнение следующих техноло1 гических операций: гидролиз шламовых отхо дов электрохимической очистки отливок, помол кварцевого песка, приготовление суспензии “щелочной раствор — измельченный кварцевый песок” и синтез жидкого стекла при повышенных температуре (215-225 С) и давлении (23-25 кг/см ), „„Sll ÄÄ 1791385 А1

2 (54) СПОСОБ ПРОИЗВОДСТВА ЖИДКОГО

СТЕКЛА (57) Использование: в качестве связующего при изготовлении форм и стержней. Сущность изобретения; кварцевый песок измельчают, накладывают на него положительный потенциал величиной 0,3 В, поддерживают его до стадии смешейия песка со щелочным раствором и полученну о суспейзию выдерживают при повышенных давлениях и температуре.

Недостатком этого способа является невозможность производства жидкого стекла со стабильными свойствами, обусловленная, главным образом, значительным количеством непрореагировавшего песка.

Известно, что свежеобраэованные поверхности, полученные путем механического разрушения частиц, несут на себе нескомпенсированный заряд.

При измельчении кварцевого песка в результате разрушения кристаллической решетки зерна песка йриобретают положительный заряд, Наличие этого заряда препятствует слеживанию измельченного песка и содействует повышению активности взаимодействия компонентов суспензии в процессе синтеза жидкого стекла, Но в связи с тем, что по условиям производства измельченный кварцевый песок сразу после помола не используется, происходит его слеживание и потеря активности.

Целью изобретения является повышение чистоты жидкого стекла и сокращение времени синтеза.

Поставленная цель достигается эа счет того, что в одностадийном способе произ1791385 .

Формула изобретения

Способ производства жидкого стекла, включающий измельчение кварцевого песка, смешение его со щелочным раствором и выдержку полученной суспензии при повышенных давлениях и температуре, о т л ич а ю шийся тем, что, с целью повышения чистоты продукта и сокращения времени проведения процесса, после стадии измельчения на песок накладывают от источника постоянного тока положительный потенциал величиной 0 3 B и поддерживают его до стадии смешения.

Составитель О,Пеймер

Техред M,Моргентал Корректор А.Козориз

Редактор С.Ходакова

Заказ 131 Тираж Подписное

ВНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР

113035, Москва, Ж-35, Раушская наб., 4/5

Производственно-издательский комбинат “Патент”, r, Ужгород, ул,Гагарина, 101 водства жидкого стекла, включающем помол кварцевого песка, подачу его в щелочной раствор и приготовление суспензии при певышенных температуре и давлении, после помола песка замеряют величину напряжен- 5 ности электрического поля, создаваемого частицами активированного песка, а затем накладывают на песок электрическое поле, соответствующее по напряженности замеренному, которое поддерживают до момен- 10 та подачи песка в щелочной раствор.

При меньшей напряженности поля будет иметь место утечка заряда, а увеличение напряженности сверх указанной не даст положительного эффекта в связи с тем, что 15 кварцевый песок является хорошим диэлектриком.

Пример. Сухой кварцевый песок . загружают в мельницу, на выходе из которой устанавливается приемный короб, 20 снабженный выполненными из изолятора грузозахватными приспособлениями, Замеряют разность потенциалов между стенками емкости и землей (+9В). Подключают емкость к источнику постоянного напряже- 25 ния (О,ЗВ) таким образом, что “+” соединяют со стенками емкости; а “-” с землей, В бак: смеситель заливают 1340 кг щелочного раствора (концентрация Na0H = 20%) и засыпают в него при перемешивании 660 кг 30 активированного песка. Полученную суспензию загружают в автоклав и при температуре 225 С и давлении 25 кг/см .в течение

2,5 ч осуществляют синтез жидкого стекла.

Расчетн ы и модул ь жидкого стекла — 2,5, плотность — 1,48. Фактически получены модуль — 2,51, плотность — 1,48.

В описании приводится только один пример, так как накладываемое электрическое поле является функцией толщины перемещаемого слоя активированного кварцевого песка, суммарная поверхность и других переменных факторов, зависящих от конкретных условий производства.

Осуществление предлагаемого способа, производства жидкого стекла позволяет, таким образом, повысить качество жидкого стекла и сократить время синтеза.

  

www.findpatent.ru

Повышение эффективности производства Жидкого стекла

Строительные статьи

Жидкое стекло считается перспективным связую­щим материалом, отличающимся относительно низкой стоимостью и экологической чистотой.

Матер паты, необходимые для производства жидко­го стекла. подразделяются на две группы: материалы на основе кремнистых соединений: щелочи и соли щелоч­ных соединений. К нежелательным примесям в исход­ных материалах относятся окислы шелочно-земельны металлов.

К первой группе материалов относятся кварцевые пески, кварц и кремнезем. В России имеются залежи достаточно чистых кварцевых песков, пригодных для получения жидкого стекла, соответствующего требова­ниям ГОСТ 13078—8). В зависимости от назначения жид­кого стекла можно использовать пески местных карь­еров в природном состоянии или после обогащения.

Процесс обогащения песков при гидронамыве мож­но проводить непосредственно в карьере. При произ­водстве силикатного связующего для гранулированных утеплителей типа Бисипор (торговая марка) допускается применение кварцевых песков с содержанием примесей до 25—30*? При варке примеси полностью не растворя­ются. остаются в виде включений в расплаве и играют роль наполнителей при производстве утеплителя.

В природе встречаются кварцевые горные породы. Кварц — один из самых распространенных минералов. Встречается в кислых вулканических и плутонических породах и метаморфических, в виде обломочных зерен в осадочных образованиях. Небольшое содержание примесей обусловливает возможность использования кварца в качестве исходного сырья. Однако высокая твердость кварца и связанные с этим затраты на его из­мельчение ограничивают его применение для получе­ния жидкого стекла.

Кремнезем относится к аморфным породам и встре­чается в природе в виде трепела, диатомита и инфузори – та. Из-за наличия примесей применение этих пород для производства жидкого стекла, соответствующего ГОСТу ограничено, но хля производства утеплителей возможно.

Кроме природных кремиийсодержащих материалов для производства жидкого стекла могут использоваться отходы и попутные продукты промышленности. В зави­симости от назначения жидкого стекла применение этих продуктов дифференцировано. Например, в хвостохра – нилише одного из ГОКов ежегодно поступает более 20 млн т кварцевого песка (Si02 > 805с) с модулем круп­ности менее 1.0. Из такого кварцевого песка можно про­изводить жидкое стекло для утеплителя. Хвосты комби­ната «Фосфорит», содержащие. Sr: кварца – 96.3; поле­вого шпата – 0.63: кальцита — 0.5; фосфорита — 1.6; руд­ных минералов — 1.1 при модуле крупности чуть более 0. J4. также пригодны для производства жидкого стекла.

Около S05c электроэнергии, вырабатываемой в на­шей стране, приходится на долю тепловых электростан­ций. сжигающих твердое миогозольное топливо. В за­висимости от вида топлива, степени измельчения и способа сжигания угля дисперсность, плотность, фор­ма частиц, а также химический состав шлаков и зол колеблются в больших пределах. В настоящее время ко­личество шлаков и золы составляют сотни миллионов тонн. Шлаки и золы при содержании SiO? более 70% можно использовать для получения связующего мате­риала хля последующей переработки в утеплитель.

Ко второй группе материалов хля производства жидкого стекла относится сода, поташ, сульфат натрия, едкий натр, едкий калий. Сода, едкий натр наиболее широко используются при производстве натриевого жидкого стекла. Их выпуск освоен промышленностью. В природе имеются большие запасы сульфата натрия (мирабилита). Жидкая щелочь также выпускается про­мышленностью и является попутным продуктом при производстве поли хлоридов.

Наибольшее распространение ори производстве жидкого стекла получил дуплекс-процесс. На первой стадии в специальных стекловарочных печах при тем­пературе выше *1200°С получают промежуточный про­дукт — силикат-глыбу. Затем этот материал переводят в жидкое состояние, растворяя в специальных вращаю­щихся автоклавах при повышенной (115—150°С) темпе­ратуре и давлении 5—8 атм.

Технология производства жидкого стекла дуплекс- процессом. несмотря на отлаженность, обладает рядом недостатков: высокой энергоемкостью процесса: нали­чием двух стадий производства: длительностью и трудо­емкостью процесса: значительными эксплуатацией и чи затратами из-за высокой стоимости стекловаренных печей и их ремонта.

По другой схеме жидкое стекло получают растворе­нием кремнинсодержашего материала п растворе щело­чи в гидротермальных условиях. В зависимости от вида кремнийсодержашего материала условия получения жидкого стекла могут быть различными. Так. при при­менении аморфного и аморфизироианного тонкоди­сперсного кремнезема жидкое стекло может быть по­лучено при температурах до Ю0°С и интенсивном перемешивании раствора. Для растворения кварцевого песка наиболее подходящими являются температуры 180—230°С при давлении насыщенного пара.

Технологический процесс производства жидкого стекла состоит из подготовки щелочи и кремнийсодер – жащего материала, дозирования и приготовления сус­пензии. синтеза и отстаивания жидкого стекла.

Реакция растворения кремнезема в шел очи протека­ет по уравнению:

М Si02+ 2ROH + пН20= М SiO, R20(N+1)H20,

Где М = (Si02)/(R20) К – модуль жидкого стекла: К-1.0323 хля натриевого жидкого стекла.

Интенсивность процесса получения жидкого стекла зависит от величин движущей силы, константы скоро­сти и поверхности соприкосновения фаз. Рассмотрим пути увеличения этих величин. Увеличения движущей силы процесса можно достигнуть увеличением концен­трации щелочи: повышением давления: регулировани­ем температуры процесса; отводом продуктов реакции из реакционного объема.

Увеличение константы сокрости процесса достига­ется повышением температуры, применением катали­заторов. усилением перемешивания. Растворение ин­тенсифицируется увеличен lie м межфазной иоверхиос – ти. раиной поверхности кремнезема. Для этого измель­чают кремнийсодержашие материалы.

В ФРГ (патенты №№ 3500649. 3515288) для интен­сификации процесса исходную шихту берут с более чем 100%-ным избытком измельченного кварцевого песка. Процесс ведут при нагреве до 160— 190°С и давлении 8—12 атм в автоклаве. Полученный полупродукт с большой плотностью и вязкостью сбрасывают и другой сосуд с водой. При перемешивании с водой получают жидкое стекло требуемой плотности, а из­быток песка, осевший на стенках второго сосуда, используют в повторном цикле. Но этот способ имеет ряд недостатков. Из-за балласта постоянно цирку­лирующего кварцевого песка увеличивается расход энергии. Снижается скорость растворения из-за вне­сения готового силиката в автоклав вместе с из­быточным песком.

Шихта

Параметры синтеза

Технико-экономические показатели

№ варок

Измель­ченный кварцевый песок, кг

NaOH 50%, кг

КОН 50%, кг

Вода, л

Темпера­тура, °С

Скорость нагрева суспензии. сС/мин

Модуль М

РН

Темпера­тура подо­грева трас­сы слива,

■с

Произво­дитель­ность, т/ч

Расход газа на синтез, м3,т

Расход электро­энергии, кВт ч/т

1

860

873

860

235

10

2

14

3

27

53

2

910

1070

1000

235

Л

2,2

13,2

3

28

55

3

915

844

900

245

15

2,4

12,8

2,9

30

60

4

905

912

880

240

15

2,6

11.8

2,7

35

70

5

840

925

950

235

20

2,8

11.5

2,6

38

75

6

820

680

850

245

15

3,2

9

2.5

36

65

7

790

810

900

235

20

2.4

12.8

3

30

60

8

905

912

880

240

15

2,6

11,8

80

2,7

34

65

9

905

912

880

240

15

2.6

11.8

90

2.75

33

65

10*

500

570

820

210

2,4

12,8

0,5

100

200

* традиционная технология

На ряде заводов бывшего СССР применялся способ получения жидкого стекла из тонкоизмельченного кварцевого песка и щелочного раствора и автоклаве при температуре 210—215ЙС. давлении 20—25 атм. Продол­жительность выдержки при этом давлении составляла 2.5 ч. Кроме того, слив жидкого стекла проводили по необогреваемой трассе, что приводило к налипанию жидкого силиката на стенки сливного оборудования из – за большого перепаза температур. Это в свою очередь ухуд ш аз о в ы грузку жид ко го сте кл а и з а вто кл а ва.

Чтобы снизить энергозатраты и повысить произво­дительность оборудования для получения жидкого стекла, была усовершенствована технология процесса с учетом отмеченных выше путей интенсификации |1 j. В таблице приведены результаты различных способов получения жидкого стекла в автоклаве объемом 1.8 м В варках использовался тонкоизмельченныи кварцевый песок с удельной поверхностью 5000 см-Д.

В предложенной технологии увеличены концентра­ция щелочи, скорость нагрева суспензии, установлена оптимальная продолжительность варки по показателю рН жидкого стекла, выполнен подогрев трассы слива. Это обеспечило повышение производительности в 5-6 раз и снизило энергозатраты по сравнению с традици­онной технологией в 2.7—3.S раза.

Литература

1. Патент РФ N9 2067791 «’Способ получения жидкого стекла» Б И № 28.1996.

Российская конференция по проблемам бетона и железобетона

Организаторы конференции PHT0 строителей Госстрой России, ассоциация ■•Железобетон». При участии Комплекса архитектуры строительства, реконструкции и развития Москвы. Министерства строительства Московской области РОИС. ГП «Мосстройсертификзция». НИИЖБ. РИА МГСУ ВЯИИЖелезобетон

Практические семинары конференции: «Системы управления качеством продукции на предприятиях строй индустрии на основе стандартов серии ISO 9000» – «Применение химических добавок-модификаторов для повышения качества бетона и бетонных смесей» • «Проектирование составов бетона с учетом условий среды эксплуатации» • «Контроль качества бетонных работ на стройплощадке» ■ «Совершенствование технологии натяжения арматуры» • «Энергосбережение на предприятиях сборного железобетона» – «Всесезонное ведение монолитного строительства» В рамках конференции будут проведены:

Тематическая выставка – Конкурс на лучшую разработку последних пет в области бетона и железобетона.

СТРОИТЕЛЬНЫЕ [2]А ТЕРИАЛЫ S/i? OOt

Дополнительную информацию о конференции, выставке и нон курсе можно получить в оргкомитете 109428. Москва. Рязанский проспект. 61 НИИЖБ. ассоциация «Железобетон». АНО «<НИИЖБ-ФОРУМ» Телефон/факс (095) 174-75-11,174-75-14 E-mail Niizhblorum@comail. ru

-zo-PM/rmnwAZ. z/ts/t it x-p? ms7>?in Тычевмз*

Ж. С. БЕЛЯКОВА, инженер. Е. Г. ВЕЛИЧКО, д-р техн. наук. (ВНИИжелезобетон). А. Г. КОМАР, д-р техн. наук, академик РААСН (МИКХиС)

Новые тенденции в ремонте квартир, что несет 2017 год? Современные тенденции ремонта удивляют…

Высококлассные пластиковые офисные перегородки – рациональное решение Офисный ремонт – продолжительное и затратное мероприятие. Для оптимизации времени и средств, потраченных на обустройство рабочей площади, следует выбирать многофункциональные и долговечные конструкции. …

Ни одна стройка не обходится без бетона. Казалось бы он везде одинаковый, но на самом деле существует много различных видов подобной смеси. В чем их отличие и как выбирать бетон …

msd.com.ua

Способ производства жидкого стекла | Банк патентов

Изобретение относится к способам производства жидкого стекла и может быть использовано, в частности, при изготовлении строительных материалов различного назначения.

Известен способ производства жидкого стекла, заключающийся в сплавлении кремнеземсодержащего сырья, в качестве которого используют песок, и кальцинированной соды или сульфата натрия в стеклоплавильных печах при температуре 1350-1400°С и последующего охлаждения стеклянной массы – силикат-глыбы, которую для получения жидкого стекла растворяют в автоклаве под действием острого пара при давлении 4-6 атмосфер и температуре180-250°С. (Строительные материалы, Киев, 1957, Гос. Изд-во технической литературы УССР, стр.209-210).

Высокая энергоемкость производства силикат-глыбы, а также необходимость использования сложного автоклавного оборудования при ее растворении являются существенными недостатками известного способа.

Известен также способ производства жидкого стекла, включающий размол силикат-глыбы, дозирование, смешивание и растворение в воде в смесителе при соотношении компонентов в соответствии с требованиями, предъявляемыми к жидкому стеклу при поддержании температуры воды в пределах 85-100°С, причем смешивание и барботаж выполняется в вибрационном смесителе. (Патент РФ № 2229438, МПК7 С 01 B 33/32, 12.06.2001).

Известный способ основан на использовании в качестве исходного продукта для производства жидкого стекла силикат-глыбы, производство которой сопряжено с большими энерго- и трудозатратами.

Наиболее близким по технической сущности к предлагаемому изобретению является способ получения жидкого стекла, включающий смешение и последующее взаимодействие кремнесодержащего вещества (песка), которое предварительно измельчают до удельной поверхности 200-20000 см2/г, с водным раствором гидроксида щелочного металла при температуре 100-250°С и возникающим при этой температуре давлении водяного пара. (Патент РФ № 2078433, МПК8 С 01 В 33/32, 27.04.97).

К недостаткам известного способа можно отнести повышенную энергоемкость, что обусловлено необходимостью использования автоклавного оборудования, что значительно увеличивает энергозатраты на производство жидкого стекла.

Заявителем не выявлены источники информации, содержащие сведения о технических решениях, идентичных предлагаемому изобретению, что позволяет сделать вывод о его соответствии критерию «новизна».

Задачей, на решение которой направлено создание предлагаемого изобретения является упрощение технологии изготовления жидкого стекла и обеспечение возможности использования в качестве кремнесодержащего вещества отходов стекла (стеклобоя).

Поставленная задача решается тем, что в способе производства жидкого стекла, включающем размол кремнесодержащего вещества, смешение с гидроксидом щелочного металла и их последующее взаимодействие компонентов смеси в присутствии воды при температуре до 100°С, согласно изобретению совместный размол компонентов идет в вибросмесителе, а последующее взаимодействие с с водой выполняют в вибрационном смесителе в течение 0,5-1,5 час.

При совместном размоле кремнесодержащего вещества, например стеклобоя, с твердым гидроксидом щелочного металла, например гидроксидом натрия, за счет протекания твердофазных реакций между последним и тонкодисперсными частицами SiO2 стеклобоя происходит механо-химическая активация аморфного SiO2, при этом образуются n-мерные соединения типа Na2OnSiO2, где n – характеризует силикатный модуль, величина которого может быть равна 1, 2, 3….

В результате происходит переход аморфного оксида кремния в полимерное состояние с образованием первичных элементарных фрагментов полимерных натрий-силикатных соединений. Вследствие этого полученная сухая смесь приобретает повышенную степень растворимости при ее взаимодействии с водой. Экспериментально подтверждено, что для обеспечения необходимой интенсивности процесса взаимодействия компонентов смеси достаточно поддержания температуры рабочей смеси не ниже 85°С.

Совместный размол кремнесодержащего вещества и твердого чешуйчатого гидроксида щелочного металла в совокупности с другими заявляемыми параметрами способа обеспечивает возможность производства жидкого стекла без использования автоклавного оборудования, что значительно упрощает технологию изготовления и снижает трудовые и энергетические затраты.

При выполнении размола кремнесодержащего вещества, предпочтительно стеклобоя, и твердого гидроксида щелочного металла в вибрационной мельнице обеспечивается более эффективное совмещение твердых фаз указанных компонентов и, следовательно, интенсифицируется механо-химическая активация кремнезема стеклобоя. Предлагаемое изобретение позволяет использовать в качестве кремнесодержащего вещества отходы стекла – стеклобой, содержащий ряд химических соединений и веществ, оказывающих положительное влияние на качества конечного продукта – жидкого стекла. Это позволяет широко использовать полученное жидкое стекло при производстве строительных и композиционных материалов различного назначения, а также дополнительно решать проблему утилизации стеклобоя, что имеет важное экономическое и экологическое значение.

Использование при реализации способа вибрационного смесителя предотвращает локализацию растворяемых частиц кремнезема продуктами взаимодействия и, тем самым, способствует увеличению суммарной поверхности взаимодействия компонентов и повышает степень растворимости кремнесодержащего вещества. Для достижения этого вибрационный смеситель снабжается также устройствами для нагрева исходных компонентов и последующего охлаждения конечного продукта. Увеличение длительности тепловой обработки свыше рекомендованных 1,5 часов приведет к неоправданному увеличению энергозатрат, так как не приводит к увеличению выхода конечного продукта, тогда как уменьшение времени вибрационного и теплового воздействия приводит к недостаточно полному растворению аморфного кремнезема.

Указанные доводы, по мнению заявителя, подтверждают соответствие заявленного технического решения критерию «изобретательский уровень».

Возможность реализации предлагаемого способа получения жидкого стекла подтверждается проведенными экспериментами и поясняется примерами.

Пример 1

В качестве кремнесодержащего вещества использовался стеклобой с размером частиц ≤.GIF; 0,1-0,15 мм. В составе отходов стекла содержались следующие оксиды: SiO2 – 71,5%, Al2О3 – 5,5%, Fe2O3 – 3,5%, Na2O+K 2O – 12,7%, CaO – 4,9%, MgO – 1,7%, BaO – 0,2%. Для опыта брали 1 кг указанного стеклобоя и 0,5 кг твердого чешуйчатого гидроксида натрия – NaOH (ГОСТ4328-77). Компоненты подавались в вибрационную лабораторную мельницу, где выполнялся их совместный помол до тонкости помола 0,15 и менее. После помола полученная сухая смесь помещалась в вибрационную мешалку, в которую затем добавляли 1,5 литра водопроводной воды, нагретой до 98°С, после чего в течение 30 минут производили перемешивание.

В результате было получено 2,87 кг жидкого стекла с силикатным модулем M1=2,03 (с учетом щелочей, содержащихся в стеклобое) или 2,83 без учета последних. Осадок из нерастворившихся частиц стеклобоя (степень помола более 0,15 мм) составил 130 г и был направлен на повторную механо-химическую активацию.

Пример 2

В отличие от предыдущего опыта совместный помол стеклобоя и твердого гидроксида натрия не производился. Компоненты смеси – раздельно измельченные до тонкости помола не более 0,15 мм 1 кг стеклобоя и 0,5 кг чешуйчатого гидроксида натрия помещались в вибрационную мешалку, в которую затем добавляли 1,5 литра водопроводной воды, нагретой до 98°С, после чего в течение 30 минут производили перемешивание. После отделения жидкой фазы, то есть сформировавшегося жидкого стекла, осадок в виде нерастворившегося аморфного кремнезема составил 882 г, то есть растворилось всего 118 г молотого стеклобоя. Таким образом растворимость кремнесодержащего вещества – стеклобоя составила всего 11,8% по сравнению с 87% при совместном размоле компонентов (пример 1). Полученный раствор жидкого стекла характеризовался низким значением силикатного модуля M1=(118/500)×100)=0,229 без учета щелочей, содержащихся в стеклобое или M2 =0,185 с учетом последних.

Пример 3

Согласно методике, приведенной в примере 1, брали 500 г стеклобоя и 200 г твердого гидроксида натрия, компоненты подвергали совместному помолу до тонкости помола менее 0,1 мм. После помола полученную сухую смесь поместили в вибрационную мешалку, в которую подали 700 г воды, нагретой до 100°С.

Перемешивание производили в течение 1,5 часа. В результате было получено 1370 г жидкого стекла с силикатным модулем M1=3,63 (без учета щелочей, содержащихся в стеклобое) или М2=2,48 с их учетом. Растворимость кремнесодержащего вещества составила 94%. Нерастворившийся осадок стеклобоя – 30 г, также был направлен на повторную механо-химическую активацию.

Пример 4

При проведении этого опыта так же, как в примере 3, брали 500 г стеклобоя и 200 г твердого гидроксида натрия, но размол компонентов до тонкости 0,1 мм производили раздельно. После помола компоненты смеси поместили в вибрационную мешалку, в которую подали 700 г воды, нагретой до 100°С. Перемешивание производили в течение 1,5 часа. После отделения жидкой фазы осадок нерастворившегося SiO2 стеклобоя составил 437 г. В результате было получено 963 г жидкого стекла с силикатным модулем М1=0,315 без учета щелочей, содержащихся в стеклобое и М2=0,215 с учетом последних, при растворимости стеклобоя 12,6%.

Пример 5

Для выполнения этого опыта брали 600 г стеклобоя и 200 г твердого гидроксида натрия, компоненты подвергали совместному помолу до тонкости помола менее 0,1 мм. После помола полученную сухую смесь поместили в вибрационную мешалку, в которую подали 800 г воды, нагретой до 85°С. Перемешивание производили в течение 50 минут. В результате было получено 1470 г жидкого стекла с силикатным модулем M1 =2,35 без учета щелочей, содержащихся в стеклобое или М2 =1,72 с их учетом. Нерастворившийся осадок SiO2 стеклобоя составил 133 г (растворимость ˜80%) и также был направлен на повторную механо-химическую активацию.

Пример 6

Для выполнения этого опыта так же, как и в примере 5, брали 600 г стеклобоя и 200 г твердого гидроксида натрия. Размол компонентов до тонкости помола менее 0,1 мм производили раздельно. Компоненты смеси поместили в вибрационную мешалку, в которую подали 800 г воды, нагретой до 85°С. Перемешивание производили в течение 50 минут. После отделения жидкой фазы нерастворившийся осадок SiO2 стеклобоя составил 537,5 г, то есть растворимость стеклобоя составила 10,4%. Полученный раствор жидкого стекла в количестве 1062,5 г характеризовался силикатными модулями M 1=0,310 и М2=0,23.

Приведенные примеры подтверждают, что совместный размол твердых компонентов смеси для получения жидкого стекла – стеклобоя и гидроксида натрия – обеспечивают значительное увеличение выхода в раствор аморфного SiO2 при прочих равных условиях.

Для реализации предлагаемого способа получения жидкого стекла были использованы стандартное оборудование и доступные материалы, что позволяет заявителю сделать вывод о соответствии заявляемого изобретения критерию «промышленная применимость».


bankpatentov.ru

Способ получения жидкого стекла

Изобретение относится к технологии получения жидкого стекла, применяемого в производстве осажденного кремнезема. Способ получения жидкого стекла для производства осажденного кремнезема – белой сажи включает смешение кремнеземсодержащего материала и раствора гидроксида натрия, гидротермальную обработку полученной суспензии, отделение непрореагировавшего остатка фильтрованием и его промывку. В качестве кремнеземсодержащего материала используют остаток после выщелачивания серпентинита минеральной кислотой, который содержит частицы крупностью по фракциям с шагом 0,3-0,4 мм, нижний предел первой фракции 0,1 мм, а верхний предел последней – 1,2 мм. Результат изобретения: расширение сырьевой базы производства жидкого стекла высокого качества, используемого для получения осажденного кремнезема и снижение материальных затрат.

 

Изобретение относится к технологии получения жидкого стекла, применяемого в производстве осажденного кремнезема.

Осажденный диоксид кремния (кремнезем) – белая сажа, находит широкое применение в резинотехнической промышленности, здравоохранении, медицине, парфюмерии, пищевой промышленности, в производстве высококачественных лакокрасочных материалов и пластмасс и должен соответствовать следующим требованиям:

– содержание SiO2 не менее 98%;

– содержание Fe2О3 не более 0,05%;

– рН водной суспензии 7.

В настоящее время основным сырьем для получения белой сажи служит жидкое натриевое стекло по ГОСТ 13078-81, представляющее собой густую жидкость желтоватого или сероватого цвета, без механических включений, содержащее 0,2% суммы оксидов железа и алюминия, в том числе 0,05% оксида железа, 0,05% оксида кальция, 0,07% серного ангидрида, силикатный модуль 2,6-3,0.

Жидкое стекло получают двумя способами: растворением силикат-глыбы в воде (Пат. РФ 2207321, 2229438; В.И.Корнеев, В.В.Данилов. Производство и применение растворимого стекла. Л.: Стройиздат, 1991. 177 с.), так называемый дуплекс-процесс, и непосредственным растворением кремнеземсодержащего материала в щелочи (Пат. РФ 2220906, 2238242, 2004431).

Получение жидкого стекла из силикат-глыбы состоит из 2-х стадий. Сначала при температуре 1000-1400°С из кремнеземсодержащего сырья и соды или сульфата натрия получают силикат-глыбу, которую затем растворяют в горячей воде при повышенном давлении в автоклаве, вибрационном смесителе или мельнице.

Недостатками дуплекс-процесса являются:

– сложность аппаратурного оформления;

– большой расход электрической и тепловой энергии;

– низкое качество получаемого стекла, поскольку все примеси из сырья переходят в жидкое стекло;

– значительные капитальные и эксплуатационные затраты из-за высокой стоимости стекловарочных печей и их ремонта.

Для прямого получения жидкого стекла гидротермальным способом кремнеземсодержащее сырье обрабатывают раствором щелочи определенной концентрации. В качестве кремнеземсодержащего материала используют природное сырье как в кристаллическом виде – кварцевый песок (Пат. РФ 2220906, заявка РФ 2002114847 /15), так и в аморфном – диатомит (Пат. РФ 2064431), трепел (Пат. РФ 2063665), опока (А.с. СССР 1611860), перлит (А.с. СССР 1636336) и др.

Недостатками известных способов получения жидкого стекла являются следующие. При использовании кварцевого песка наблюдается низкая скорость его растворения. Для ускорения процесса песок измельчают, процесс варки ведут в автоклавах при повышенной температуре (200-250°С) и давлении в течение 3-5 ч. При этом получается вязкое, плохо отстаивающееся жидкое стекло с высоким содержанием оксидов железа, алюминия и водонерастворимых веществ.

Присутствие значительного количества примесей в природном кремнеземсодержащем сырье является источником загрязнения жидкого стекла, вызывает появления в нем как водонерастворимых веществ, так и растворенных солей, ухудшающих его свойства. Примеси в сырье приводят к значительному перерасходу дефицитной и дорогостоящей щелочи.

Определенная часть примесей после варки жидкого стекла может быть выделена за счет его отстаивания и фильтрования. Однако этот прием не всегда обеспечивает требуемое качество жидкого стекла и во многих случаях неоправдан с технико-экономических позиций. Поэтому использование природных разновидностей аморфного кремнезема (трепела, опоки, диатомита и др.), несмотря на хорошие показатели их растворения в щелочи, является нецелесообразным.

Наиболее близким к заявляемому техническому решению является способ получения высококачественного жидкого стекла (Пат РФ №2238242, МПК7 С01В 33/32) – прототип. Сущность способа заключается в следующем. Сначала готовят суспензию из кремнеземсодержащего аморфного вещества – микрокремнезема и добавки «карамель» – промежуточного продукта сульфатно-целлюлозной переработки древесины в растворе гидроксида натрия при соотношении твердой и жидкой фаз 1:(0,97-1,03). Затем проводят гидротермальную обработку смеси.

Недостатками данного способа являются:

– использование кремнезема в тонкоизмельченном состоянии, что приведет к ухудшению фильтрационных свойств полученной суспензии для отделения твердого остатка;

– наличие сульфат-ионов, которые при варке переходят в жидкое стекло, что приводит к ухудшению его качества.

Технический результат заключается в расширении сырьевой базы производства жидкого стекла высокого качества, используемого для получения осажденного кремнезема, и снижения материальных затрат.

Технический результат достигается следующим образом. В качестве сырья для получения жидкого стекла высокого качества используют аморфный гидратированный кремнезем, попутно получаемый в результате выщелачивания минеральной кислотой подготовленной фракции серпентинита, являющегося сырьем для производства магния, его оксида и различных солей в зависимости от используемой кислоты. Аморфный гидратированный кремнезем смешивают с раствором гидроксида натрия с последующей гидротермальной обработкой и фильтрованием. Получаемое жидкое натриевое стекло находит применение для производства белой сажи (осажденного кремнезема).

Проведенный заявителем анализ уровня техники по патентным и научно-техническим источникам информации позволил установить, что заявитель не обнаружил источник, характеризующийся признаками, тождественными всем признакам аналога, позволил установить совокупность существенных по отношению к усматриваемому заявителем техническому результату отличительных признаков в заявленном способе получения жидкого стекла, изложенных в формуле изобретения. Следовательно, заявленное изобретение соответствует условию «новизна».

Для проверки соответствия заявленного изобретения условию «изобретательский уровень» заявитель провел дополнительный поиск известных решений, чтобы выявить признаки, совпадающие с отличительными от прототипа признаками заявленного способа. Результаты поиска показали, что заявленное изобретение не вытекает явным образом из известного уровня техники, поскольку из уровня техники, определенного заявителем, не выявлено влияние предусматриваемых существенными признаками заявленного изобретения преобразований для достижения технического результата. Следовательно, заявленное изобретение соответствует условию «изобретательский уровень».

Сущность предлагаемого способа заключается в следующей совокупности существенных признаков.

Для получения жидкого стекла в качестве кремнеземсодержащего материала используют остаток, полученный путем выщелачивания серпентинита минеральной кислотой (азотной, серной, соляной), который содержит частицы крупностью по фракциям с шагом 0,3-0,4 мм с нижним пределом первой фракции 0,1 мм и верхний предел последней – 1,2 мм.

На основании проведенных иследований установлено, что при использовании частиц аморфного гидратированного кремнезема определенного размера происходит равномерное их растворение в щелочи при нагревании. При использовании частиц аморфного кремнезема более 1,2 мм уменьшается скорость их растворения в щелочи, а при крупности менее 0,1 мм ухудшаются фильтрационные свойства полученного жидкого стекла.

Диоксид кремния, полученный выщелачиванием серпентинита минеральной кислотой, является аморфным, обладает высокой активностью, что позволяет вести процесс получения жидкого стекла при температуре не ниже 80°С, при нормальном атмосферном давлении в течение 0,5-1 часа.

Получаемое при этих условиях жидкое стекло содержит не более 0,05% оксидов железа, кальция и магния, двуокиси кремния 25-27,5%, окиси натрия 6,9-7,8% и имеет заданный силикатный модуль.

Ниже приведены примеры осуществления данного способа.

Пример 1.

1 кг аморфного диоксида кремния, полученного после выщелачивания серпентинита минеральной кислотой, например, соляной, содержащего 95% SiO2, остальное – примеси (силикаты, оксиды, шпинели), нерастворимые в щелочи, и имеющего размер частиц -0,5+0,1 мм, смешали с 2,2 кг 13%-ного раствора гидроксида натрия. Смесь нагрели до 90°С при атмосферном давлении в течение 0,5 ч. Полученную суспензию отфильтровали. Непрореагировавший осадок промыли водой. Получено 185,6 г влажного осадка, содержащего, мас. %: 45,8 SiO2; 26,9 оксидов металлов; 7,3 связанной воды и 20,0 адсорбционной воды. Этот осадок использовали для приготовления бетона, промводы для получения раствора гидроксида натрия массовой концентрацией 13%.

После фильтрования получено 3014 г бесцветного жидкого стекла плотностью 1,21 г/см3 с силикатным модулем 3,6. Содержание примесей составило мас. %: ∑Fe2O3, Al2O3 – 0,04; ∑CaO, MgO – 0,05; водонерастворимых веществ – 0,08; SiO2 – 26,8; Na2O – 7,7.

Пример 2.

1 кг аморфного диоксида кремния состава, приведенного в примере 1, смешали с 1,82 кг 15% раствора гидроксида натрия, нагрели до 90°С в течение 1 ч. Полученную суспензию отфильтровали. Непрореагировавший осадок промыли на фильтре водой. Получено 180 г влажного осадка, содержащего, мас. %: 44,7 SiO2; 28,3 оксидов металлов, 7 связанной воды и 20 адсорбированном воды. Осадок использовали для получения строительных смесей, а промводы для приготовления раствора гидроксида натрия необходимой концентрации.

После фильтрования получено 2820 г прозрачного жидкого натриевого стекла плотностью 1,26 г/см3 с силикатным модулем 3,7. Содержание примесей составило, мас. %: ∑Fe2О3, Al2O3 – 0,05; ∑CaO, MgO – 0,05; водонерастворимых веществ – 0,1; SiO2 – 27,4; Na2O – 7,6.

Таким образом, предлагаемый способ получения жидкого стекла позволяет расширить сырьевую базу для получения высококачественного стекла с низким содержанием примесей, используемого в производстве осажденного кремнезема – белой сажи и значительно снизить материальные затраты при производстве жидкого стекла из аморфного гидрагированного кремнезема.

Способ получения жидкого стекла для производства осажденного кремнезема – белой сажи, включающий смешение кремнеземсодержащего материала и раствора гидроксида натрия, гидротермальную обработку полученной суспензии, отделение непрореагировавшего остатка фильтрованием и его промывку, отличающийся тем, что в качестве кремнеземсодержащего материала используют остаток после выщелачивания серпентинита минеральной кислотой, который содержит частицы крупностью по фракциям с шагом 0,3-0,4 мм, нижний предел первой фракции 0,1 мм, а верхний предел последней – 1,2 мм.

www.findpatent.ru

Промышленное производство растворимого и жидкого стекла

Растворимое и жидкое стекло

Основным способом промышленного производства жидкого стекла является автоклавное растворение в воде щелочно-силикат – ных твердых стекол (растворимого стекла — силикат-глыбы) со става Na20-rcSi02, КгО-гсБЮг и К2О • pNa20 • Si02 (дуплекс-про­цесс). Такие щелочно-силикатные стекла производятся в качестве товарного продукта в виде силикат-глыбы (ГОСТ 13079—81 «Си­ликат натрия растворимый», ОСТ 21-3—86 «Силикат калия рас­творимый» и «Силикат натриево-калиевый и калиево-натриевый растворимый» — ТУ 21-23-109—78). Промышленное производство жидкого стекла включает производство натриевого жидкого стек­ла и калиевого жидкого стекла. В отдельных случаях производится также натриево-калиевое жидкое стекло.

Автоклавное растворение силикат-глыбы, как правило, осуще­ствляется самими потребителями жидкого стекла на предприя­тиях соответствующего профиля, где действуют специальные участки производства жидкого стекла (на машиностроительный предприятиях, бумажных фабриках, строительных комбината* и т. д.). Таким образом, основной способ производства жидкого стекла включает два самостоятельных передела, реализуемых н^ предприятиях различного профиля: производство силикат-глыбь1 (растворимых силикатов натрия и калия) и производство соб­ственно жидкого стекла (автоклавное растворение силикат-глыбь1

128 ш

Отверждение жидкого стекла соединениями кальция и других двухвалентных металлов

Взаимодействие растворов силикатов с соединениями кальция занимает важное место в практической химии и заслуживает отдельного анализа. Чтобы разобраться в огромном количестве известных из практики фактов, подытожим общехимические све­дения, характеризующие их …

Лакокрасочные материалы и покрытия

В общем виде под силикатными красками следует понима1 суспензию наполнителей, отвердителей (силикатизаторов) и пиг­ментов в водных растворах водорастворимых силикатов, в част­ности жидких стекол. Применение жидкого стекла в качестве пленкообразователя для …

Золи

Наиболее высокомодульными щелочными силикатами являют­ся стабилизированные кремнезоли. Это дисперсные системы с низ­кой вязкостью и клейкостью. Раствор с содержанием Si02 более 10% при размерах частиц до 7 нм прозрачен, выше 50 …

msd.com.ua

Способ изготовления жидкого стекла

Изобретение относится к технологии изготовления жидкого стекла. Кремнеземсодержащее вещество смешивают с раствором гидроксида натрия. Полученную суспензию гидротермально обрабатывают, фильтруют. В качестве кремнеземсодержащего вещества используют мелкодисперсную фракцию аморфного диоксида кремния с размером частиц не более (0,1-5,0)·10-6 м, полученную при регенерации отработанного при производстве растительных масел порошка кизельгура. Изобретение позволяет получить жидкое стекло с широким диапазоном силикатного модуля. 3 пр.

 

Изобретение относится к технологии изготовления жидкого стекла с различным силикатным модулем.

Жидкое стекло является связующим веществом и широко используется в качестве универсального клея для соединения стекла, бумаги, металла и дерева. Именно на его основе изготавливается канцелярский силикатный клей. Жидкое натриевое стекло нашло применение в производстве чистящих и моющих веществ, в мыловаренной, текстильной промышленности – в качестве связующих добавок. В литейном производстве оно используется как флотационный реагент, в черной металлургии в виде связующего материала для изготовления форм, в целлюлозно-бумажной промышленности для пропитки бумажной массы, склеивания, для производства жароупорных, кислотоупорных материалов, катализаторов, цеолитов, силикагеля, белой сажи, производства электросварочных материалов, силикатных лакокрасочных материалов, приготовления инъекционных составов для укрепления грунтов. Им можно пропитывать ткани, бумаги, картон и деревянные изделия для придания им большей плотности и огнестойкости.

Химический состав натриевого растворимого стекла может быть выражен формулой: Na2O·nSiO2+mH2O,

где Na2O – гидроксид натрия, SiO2 – диоксид кремния.

Из нее видно, что оно (растворимое стекло) не имеет постоянного состава, и соотношение между отдельными составными частями может меняться. Отношение: SiO2:Na2O=M, показывающее, сколько кремнекислоты SiO2 приходится на единицу оксида натрия Na2O, называется силикатным модулем стекла (М). Чаще всего производится и встречается стекло с модулем 2.6-2.8. Количество воды может быть самым неопределенным. В зависимости от этого в коллоидной системе растворимого стекла меняется его консистенция – “плотность” или удельный вес. Заводы обычно выпускают растворимое стекло плотностью (1.38-1.50) г/см3, и затем на месте работ оно разбавляется водой до нужной концентрации.

Обычно производство жидкого стекла (водного раствора силиката натрия) осуществляют путем обжига при высокой температуре (порядка 1600°C) смеси, состоящей из кварцевого песка, представляющего собой кристаллический диоксид кремния – SiO2, и соды – Na2CO3. Полученное стекло (силикат-глыбу) после дробления растворяют в воде, либо силикат-глыба помещается в автоклав и воздействием перегретого пара под давлением формируется состав жидкого стекла (1. ИнфоМайн. Обзор рынка силикат-глыбы и жидкого стекла в СНГ. Издание 3-е дополненное и переработанное. Демонстрационная версия. Москва, ноябрь, 2010 г. http://marketing.r-cons.ru/sites/default/files/0320.pdf 2. Силикат-глыба натриевая (силикат натрия растворимый) ГОСТ Р 50418-92).

Недостатком этого способа является весьма высокая энергоемкость производства в связи с необходимостью сплавления смеси при температуре 1600°C, дробления из состояния глыбы или обработки перегретым паром в автоклаве высокого давления.

Известен способ (патент РФ №2220906) получения жидкого стекла путем взаимодействия кремнеземсодержащего вещества с водным раствором гидроксида натрия при температуре 200-250°C. В качестве исходного кремнеземсодержащего вещества используют кварцевый песок фракции 0,1-0,315 мм, содержащий 95,5-98,15 мас.% диоксида кремния.

Недостатком способа является использование высокой температуры и, следовательно, высокие энергозатраты.

Известен способ (а.с. СССР №1801946) получения натриевого жидкого стекла путем приготовления суспензии из фторсодержащего кремнегеля, воды и концентрированного раствора гидроксида натрия, проведения гидротермальной обработки и отделения не прореагировавшего осадка.

Недостатком данного способа является использование кремнезема, содержащего фтор, на нейтрализацию которого дополнительно используется гидроксид натрия.

Наиболее близким к заявляемому техническому решению является способ получения жидкого стекла (патент РФ №2285665) путем гидротермальной обработки кремнеземсодержащего вещества с водным раствором гидроксида натрия. В качестве исходного кремнеземсодержащего вещества используют остаток, полученный после обработки серпентинита (серпентиниты – породы, состоящие в основном из минерала серпентина состава 3MgO·2SiO2·2H2O, затем магнетита, хромита и остатков первичных минералов [Словарь по геологии нефти. Гостоптехиздат, Ленинград, 1958 г., с. 600] соляной кислотой – аморфный диоксид кремния. Полученную суспензию фильтруют для удаления не прореагировавшего остатка, раствор концентрируют для получения жидкого стекла с заданными модулем и плотностью.

Недостатком данного способа является использование исходного материала (серпентинита) сложного химического состава с невысоким процентным содержанием диоксида кремния, необходимостью применения соляной кислоты и не широкое распространение месторождений серпентинита.

Техническим результатом изобретения является получение жидкого стекла с широким диапазоном силикатного модуля, расширение сырьевой базы для получения высокомодульного жидкого стекла за счет использования в качестве сырья отходов производства растительных масел при одновременном решении вопросов улучшения экологии окружающей среды за счет утилизации отходов производства, снижение себестоимости производства жидкого стекла и энергозатрат.

Технический результат достигается тем, что в способе изготовления жидкого стекла, включающем смешение кремнеземсодержащего вещества и раствора гидроксида натрия, последующую гидротермальную обработку полученной суспензии, фильтрование, концентрирование жидкого стекла, согласно изобретению в качестве кремнеземсодержащего вещества используют мелкодисперсную фракцию аморфного диоксида кремния с размером частиц не более (0,1-5,0)·10-6 м, полученную при регенерации отработанного при производстве растительных масел порошка кизельгура, не пригодную для повторного использования в производстве растительных масел, которую растворяют в гидроксиде натрия, имеющем концентрацию 200-250 г/дм3.

В предлагаемом способе используется кремнеземсодержащий аморфный материал кизельгур, имеющий гранулометрический состав: от 5 до 80 мкм (в среднем 35-50 мкм) и 87-92% SiO2, отработанный в процессе производства растительных масел для их очистки от восков. Поэтому использование отработанного при производстве растительного масла кизельгура при изготовлении жидкого стекла для производства строительных материалов существенно повышает безотходность производства растительных масел и снижает экологические проблемы. После обезжиривания порошка остаточное содержание жиров в нем составляет до 10% при влажности до 60%. Удаление такого порошка на промышленные свалки существенно ухудшает экологическую обстановку. Поэтому очень важно проводить глубокую регенерацию отработанного фильтровального порошка путем его прокаливания при температуре 550-650°C с целью полного удаления органических остатков и свободной влаги. В результате регенерированный порошок не содержит окисленных жировых остатков, но после глубокой регенерации в нем появляются мелкодисперсные частицы с размером не более (0,1-5,0)·10-6 м, составляющие до 30% от общего объема порошка. После отсеивания мелкодисперсной измельченной фракции, оставшийся порошок с размером частиц (5,0-80,0)·10-6 м может храниться не ограниченно долго, по адсорбционной активности полностью соответствует исходному и может повторно использоваться в производстве растительных масел для очистки от восков путем намывки фильтров. Мелкодисперсная измельченная фракция с размером не более (0,1-5,0)·10-6 м, появляющаяся после каждой последующей регенерации и являющаяся отходом процесса регенерации кизельгура, – идеальное сырье для изготовления жидкого стекла. За счет большой поверхности мелкодисперсная измельченная фракция кизельгура без дополнительного помола является быстрорастворимой компонентой в водном растворе гидроксида натрия (NaOH) при более низких термобарических условиях.

Этим расширяется область безотходного применения кизельгура при более низких энергетических затратах и сокращается время технологического цикла варки стекла. Получаемое при этом жидкое стекло имеет широкий диапазон плотности и находит применение в различных отраслях промышленности.

Проведенный заявителем анализ уровня техники по патентным и научно-техническим источникам информации позволил установить, что заявитель не обнаружил источник, характеризующийся отличительными признаками в заявленном способе получения жидкого стекла, изложенными в формуле изобретения.

Новизна предлагаемого способа заключается в том, что для получения жидкого стекла в качестве кремнеземсодержащего вещества используют мелкодисперсную фракцию аморфного диоксида кремния с размером частиц не более (0,1-5,0)·10-6 м, полученную при регенерации отработанного при производстве растительных масел порошка кизельгура. За счет большой поверхности мелкодисперсная измельченная фракция кизельгура без дополнительного помола является быстрорастворимой компонентой в водном растворе гидроксида натрия (NaOH), поэтому последующая гидротермальная обработка является низкотемпературной – при температуре 90-95°C и атмосферном давлении в течение 0,25-0,50 ч.

Предложенная совокупность признаков соответствует условию «новизна». Предложенный способ промышленно применим.

Примеры осуществления заявляемого способа.

Пример 1. Аморфный диоксид кремния, полученный путем регенерации отработанного в производстве растительных масел кизельгура, его фракционирования с отделением мелкодисперсных частиц размером не более (0,1-5,0)·10-6 м, не пригодных для повторного использования в производстве растительных масел, взятый в количестве 145,0 г, смешали с 310 см3 раствора гидроксида натрия концентрацией 250 г/дм3. Суспензию подвергли обработке при 95°C в течение 20 минут при перемешивании пульпы. Образовавшуюся пульпу с плотностью 1,30 г/см3 и объемом 380 см3 фильтровали для отделения не растворившегося остатка массой 27,1 г. Раствор, полученный после фильтрования, концентрировали при температуре 100°C. Получено 335 см3 жидкого стекла плотностью 1,41 г/см3, содержащего, мас.%: 28,10 SiO2; 9,68 Na2O; 0,17 водонерастворимых веществ. Силикатный модуль жидкого стекла 2,9.

Пример 2. Аморфный диоксид кремния, полученный путем регенерации отработанного в производстве растительных масел кизельгура, его фракционирования с отделением мелкодисперсных частиц размером не более (0,1-5,0)·10-6 м, не пригодных для повторного использования в производстве растительных масел, взятый в количестве 160,0 г, смешали с 315 см3 раствора гидроксида натрия концентрацией 200 г/дм3. Суспензию подвергли обработке при 95°C в течение 18 минут при перемешивании пульпы. Образовавшуюся пульпу с плотностью 1,31 г/см3 и объемом 405 см3 фильтровали для отделения не растворившегося остатка массой 26,2 г. Раствор, полученный после фильтрования, концентрировали при температуре 100°C. Получено 355 см3 жидкого стекла плотностью 1,40 г/см3, содержащего, мас.%: 28,90 SiO2; 9,62 Na2O; 0,16 водонерастворимых веществ. Силикатный модуль жидкого стекла 3,0.

Пример 3. Аморфный диоксид кремния, полученный путем регенерации отработанного в производстве растительных масел кизельгура, его фракционирования с отделением мелкодисперсных частиц размером не более (0,1-1,0)·10-6 м, не пригодных для повторного использования в производстве растительных масел, взятый в количестве 165,0 г, смешали с 345 см3 раствора гидроксида натрия концентрацией 240 г/дм3. Суспензию подвергли обработке при 95°C в течение 28 минут при ее перемешивании. Образовавшуюся пульпу с плотностью 1,37 г/см3 и объемом 425 см3 фильтровали для отделения не растворившегося остатка массой 29,3 г. Раствор, полученный после фильтрования, концентрировали при температуре 100°C. Получено 367 см3 жидкого стекла плотностью 1,39 г/см3, содержащего, мас.%: 28,17 SiO2; 9,54 Na2O; 0,18 водонерастворимых веществ. Силикатный модуль жидкого стекла 2,95.

Таким образом, предлагаемый способ позволяет получать натриевое жидкое стекло высокого качества с заданными силикатным модулем и плотностью, а также с низким содержанием примесей (Al2O3, Fe2O3, CaO) и водонерастворимых веществ (<0,10 мас.%) и соответствует требованиям ГОСТ 13078-81 «Стекло натриевое жидкое».

Способ изготовления жидкого стекла, включающий смешение кремнеземсодержащего вещества и раствора гидроксида натрия, последующую гидротермальную обработку полученной суспензии, фильтрование, концентрирование жидкого стекла, отличающийся тем, что в качестве кремнеземсодержащего вещества используют мелкодисперсную фракцию аморфного диоксида кремния с размером частиц не более (0,1-5,0)·10-6 м, полученную при регенерации отработанного при производстве растительных масел порошка кизельгура, не пригодного для повторного использования в производстве растительных масел, которые растворяют в гидроксиде натрия, имеющем концентрацию 200-250 г/дм3.

www.findpatent.ru

Способ получения жидкого стекла

Изобретение может быть использовано в производстве строительных материалов. В щелочном растворе готовят суспензию отхода производства ферросилиция – микрокремнезема, представляющего собой углеродо-кремнеземистый материал с размером частиц 0,01-200 мкм, включающий 6-14% углеродистой части, представленной кристаллической составляющей в виде β-SiC и графита, а также кремнеземистую часть, представленную аморфным SiO2. Суспензию нагревают до 63-65°С при атмосферном давлении и постоянном перемешивании со скоростью 1,5-2 об/сек. Площадь перемешивающих лопастей составляет 2/3 площади поперечного сечения суспензии. Изобретение позволяет упростить процесс получения однородного по составу жидкого стекла, снизить энергозатраты.1 табл.

 

Изобретение относится к технологии получения жидкого стекла для производства строительных материалов.

Известен способ получения жидкого стекла, заключающийся в сплавлении щелочесодержащих компонентов (кальцинированная сода, поташ, сульфат натрия) и молотого кварцевого песка в силикат-глыбу при температуре 1300-1400°С и дальнейшего ее растворения в автоклавах при температуре 150-175°С и давлении 0,4-0,8 МПа в течение 4-6 часов [А.с. СССР №272273, Кл. C01B 33/32, 1970].

Недостатками этого способа являются трудоемкость процесса, необходимость сложного технологического оборудования и большого расхода энергии.

Наиболее близким к изобретению, по технической сущности, является способ получения жидкого стекла, включающий приготовление суспензии из кремнеземсодержащего аморфного материала в щелочном растворе гидроксида натрия с последующей гидротермальной обработкой при 100-120°C и давлении 0,2 МПа в течение 10-120 мин. В качестве кремнеземсодержащего аморфного материала в данном способе используется отход производства кристаллического кремния микрокремнезем с размером частиц (10-200)10”6 м, на 76-84 мас.% состоящий из SiO2 и 15-23 масс.% углеродистых примесей. Соотношение твердой и жидкой фаз в суспензии Т:Ж=1:(1,9-5,65) [Патент РФ №2171222, Кл. C01B 33/32, 2001 г.].

Недостатками этого способа являются большие энергозатраты и длительность процесса; получение продукта неоднородного состава; невозможность использования кремнеземистого сырья с более мелким размером частиц; неполная утилизация микрокремнезема.

Задачами, решаемыми предлагаемым изобретением, являются упрощение процесса получения жидкого стекла и улучшение его качества.

Технический результат – получение качественного, однородного по составу жидкого стекла, снижение энергозатрат и длительности процесса его получения, за счет чего снижается стоимость готового продукта.

Указанный технический результат достигается тем, что способ получения жидкого стекла включает приготовление суспензии из углеродо-кремнеземистого материала в щелочном растворе гидроксида натрия с последующим нагревом, а приготовление суспензии осуществляется из отхода производства ферросилиция – микрокремнезема – углеродо-кремнеземистого материала с размерами частиц 0,01-200 мкм, углеродистая часть которого на 6-14% представлена кристаллической составляющей в виде β-SiC и графита, кремнеземистая – аморфным SiO2, нагревают суспензию до температуры 63-65°C при атмосферном давлении и постоянном перемешивании со скоростью 1,5-2 об/с, а площадь перемешивающих лопастей составляет 2/3 площади поперечного сечения суспензии.

В качестве щелочного компонента используют натр едкий технический. В качестве углеродо-кремнеземистого материала используют отход производства ферросилиция – микрокремнезема.

Способ состоит в следующем. Отдозированные в заданных количествах исходные материалы: микрокремнезем и щелочной раствор необходимой концентрации загружают в мешалку с механическим перемешиванием и глухим паропроводом. При постоянном перемешивании с помощью лопастей, имеющих площадь 2/3 от площади поперечного сечения суспензии, со скоростью 1,5-2 об/с содержимое мешалки нагревают до температуры 63-65°C.

После этого подачу тепла отключают, а температура поднимается до 90-95°C. При такой температуре осуществляется синтез жидкого стекла.

Принятые технологические параметры обусловлены, прежде всего, конструктивными особенностями мешалки. Скорость перемешивания, составляющая 1,5-2 об/с и площадь перемешивающих лопастей, равная 2/3 площади поперечного сечения суспензии, обуславливают быстрое и качественное перемешивание. Кроме того, модификация карбида кремния, содержащегося в микрокремнеземе, также оказывает положительное действие.

β-модификация относится к кубической сингонии, что указывает на одинаковую скорость распространения теплоты по всем направлениям кристалла. Скорость распространения теплоты по телу кристалла находится в прямой зависимости от того, вдоль какого линейного элемента симметрии она распространяется. В кристаллах кубической сингонии поверхность распространения теплоты имеет форму сферы. Следовательно, в отношении теплопроводности кристаллы кубической сингонии являются изотропными, т.е. по всем направлениям равносвойственными.

Таким образом, благодаря конструктивным особенностям мешалки и хорошей теплопроводности β-SiC сырьевая смесь быстрее нагревается, т.е. достигает необходимой температуры.

Предлагаемый способ иллюстрируется следующим примером. В качестве углеродо-кремнеземистого компонента используют отход производства ферросилиция – микрокремнезем с размерами частиц 0,01-200 мкм, углеродистая часть которого на 6-14% представлена кристаллической составляющей в виде β-SiC и графита, а кремнеземистая – аморфным SiO2. В заданных соотношениях готовят суспензию из 191 г микрокремнезема, что исходя из химического состава составляет 164 г двуокиси кремния, 380 г едкого натра, что соответствует 164 г Na2O, 1360 г воды. Из едкого натра и воды готовят раствор необходимой концентрации, куда затем всыпается микрокремнезем и все перемешивается. При постоянном перемешивании со скоростью 1,5-2 об/с суспензию нагревают до 63°C. После чего подачу тепла отключают, а температура суспензии за счет экзотермических реакций поднимается до 90°C. Такой режим в мешалке поддерживают до тех пор, пока суспензия не станет прозрачной, а на ее поверхности не появится тонкая пленочка – свидетельство полного растворения двуокиси кремния с образованием жидкого стекла. Полученное жидкое стекло не очищают. Силикатный модуль готового продукта n=1, а плотность ρ=1,28 г/см3.

Аналогичным образом приготовлены еще три состава жидкого стекла.

В таблице приведены параметры получения жидкого стекла по предлагаемому способу, а также основные показатели, характеризующие свойства жидкого стекла.

Таблица
№ п/пПродолжительность нагрева суспензии, минСвойства жидкого стекла
ПрототипПредлагаемый вариантПо прототипуПредлагаемый вариант
Силикатный модуль (n)Плотность (ρ), г/см3Силикатный модуль (n)Плотность (ρ), г/см3
1423011,2711,27
2392721,3521,35
3352231,2731,27
4342241,4041,40

Данные таблицы показывают, что период нагрева сырьевой смеси сократился (по сравнению с прототипом), в среднем на 25-30%, что позволяет существенно уменьшить энергозатраты на весь процесс получения жидкого стекла. Кроме того, предлагаемый способ позволяет использовать сырье с более широким диапазоном размера частиц (от 0,01 до 200 мкм в предлагаемом варианте против 10-200 мкм по прототипу), что существенно расширяет сырьевую базу и способствует более полному использованию многотоннажного промышленного отхода, и позволяет организовать безотходное производство, тем самым способствуя решению экологических проблем.

Способ получения жидкого стекла, включающий приготовление суспензии из углеродо-кремнеземистого материала в щелочном растворе гидроксида натрия с последующим нагревом, отличающийся тем, что приготовление суспензии осуществляют из отхода производства ферросилиция-микрокремнезема-углеродо-кремнеземистого материала с размером частиц 0,01-200 мкм, углеродистая часть которого на 6-14% представлена кристаллической составляющей в виде β-SiC и графита, а кремнеземистая – аморфным SiO2, нагревают суспензию до температуры 63-65°С при атмосферном давлении и постоянном перемешивании со скоростью 1,5-2 об/с, а площадь перемешивающих лопастей составляет 2/3 площади поперечного сечения суспензии.

www.findpatent.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *