Рекуператор теплообменник – Виды рекуператоров. Теплообменник пластинчатый, пластинчатый рекуператор и другие виды теплообменников, условия их работы и особенности.

Содержание

Рекуператор своими руками — теплообменник, рекуперация

Рекуператор – функциональное, практичное устройство, предназначенное для энергосбережения и экономии средств на отопление помещений. В результате рекуперации происходит передача тепла вытяжного воздуха, более теплого, холодным приточным массам. В теплообменнике наружному воздуху передается существенная часть накопленного в процессе эксплуатации помещений тепла, при этом тепловая энергия не теряется, выходя наружу, а работает на экономию энергии. Потоки входящего, чистого, и выходящего, использованного, воздуха, в устройстве не перемешиваются, благодаря наличию теплопроводящих пластин, разделяющих два потока.

Принцип рекуперации

Смонтировать рекуператор своими руками можно в виде самой простой и доступной конструкции пластинчатого типа. Такая модель самая распространенная и востребованная среди потребителей нашей страны. Более сложные устройства используются в промышленных целях или на крупных объектах.

Пластинчатый рекуператор можно сделать самому, даже не обладая обширными знаниями и познаниями в механике и инженерии. Любой автолюбитель, который умеет держать в руках отвертку, может собрать устройство самостоятельно.

Достоинства рекуператоров:

  • Рекуператор
    Даже самые простые и доступные пластинчатые рекуператоры работают с КПД до 65%.

  • Устройство редко ломается, так как теплообменник в этом типе агрегата устроен просто и надежно, не обладает трущимися и подвижными деталями.
  • Рекуператор легок и в уходе и техническом обслуживании.
  • В пластинчатом типе рекуператоров нет каких-либо расходующих электроэнергию частей, что значительно снижает затраты на содержание этого оборудования.

Следует отметить, чтов зимнее время года теплообменник пластинчатого рекуператора может обмерзать при низких температурах.

Технология изготовления

Внутреннее устройство рекуператора

Сначала необходимо приобрести 4 кв. м оцинковки для кровли. Примечание: пластики могут быть не только из оцинкованного металла. Допускается использование любого не толстого листового материала. Например, можно использовать текстолит. На эффективность работы рекуператора теплопроводность материала для пластин практически не влияет. Листы режутся на отдельные пластины размером 200х300 мм.

Внимание! Пластины необходимо резать идеально ровно. Если для их изготовления используется оцинкованный металл, то ножницы по металлу лучше не применять, так как потом будет сложно выпрямить каждую заготовку. Резать оцинковку рекомендуется электрическим лобзиком.

Для дистанционной рамки, устанавливаемой между пластинками, можно применить полоски из технической пробки. Толщина материала 2-3 мм. Между пластинками оставляются промежутки не менее 4 мм, иначе может в процессе эксплуатации возникнуть значительное сопротивление воздушным потокам.

Работа рекуператора

Для сбора конструкции следует использовать герметик нейтрального типа, так как обычный состав может со временем вызвать коррозию устройства. После полного высыхания герметика его укладывают в корпус, сделать который можно из прочной жестяной коробки, подходящей по размеру. Для рекуператора короб можно изготовить из шлифованного МДФ толщиной в 18 мм и деревянного бруса. Все стенки изнутри рекомендуется проложить утеплителем, минеральной ватой или стекловолокном толщиной в 50 мм.

В коробке необходимо сделать отверстия и вставить в них предварительно приобретенные пластиковые фланцы, параметры которых совпадают с сечением труб воздуховода. Наполненные щели нужно залить силиконом.

Готовая площадь пластин в рекуператоре должна приблизительно составлять 3 кв.м, тогда эффективность работы агрегата будет составлять около 60%. Другими словами, на выходе из устройства температура приточного воздуха будет выше, чем исходящего.

Дополнительные рекомендации

Устройство рекуператора
В связи с тем, что пластинчатые рекуператоры в зимнее время имеют обыкновение обмерзать, необходимо провести дополнительные работы. Обычно теплообменник пластинчатых рекуператоров обмерзает при температуре воздуха менее 10 градусов. Для проведения периодического размораживания устройства в теплой части рекуператора нужно поставить датчик, фиксирующий перепад давления. Когда агрегат будет обмерзать, показатель перепада давления увеличится, и приточный воздух будет прогоняться сквозь байпас, а калорифер согреется вытяжным воздухом. У установленного датчика гистерезис должен составлять 30Па.

В месте, где находится выход гибкого воздуховода, нужно сделать из двух слоев влагостойкого гипсокартона короб и проложить в нем минеральную вату или стекловолокно. С помощью этого приема решается проблема шумоизоляции работающей системы. Необходимо отметить, что при качественно выполненном рекуператоре, правильной герметизации и изоляции короба в помещении можно сэкономить до 30% энергии.

stroysvoimirukami.ru

обзор устройства и области применения

Одним из основных аспектов создания энергоэффективной системы обогрева и вентиляции зданий и сооружений, является решение проблемы подогрева поступающего воздуха и сведение к минимуму потерь тепла при удалении воздуха отработанного. Для обеспечения процесса передачи тепла от удаляемого воздуха приточному предназначены специальные агрегаты, называемый рекуператорами. Рассмотрим основные виды, принципы действия и условия применения такого рода устройств.

Рекуператоры подразделяются на два больших класса, в зависимости от конструктивного строения и принципа действия – пластинчатые и роторные. Каждый из них обладает как своими преимуществами, так и недостатками. В зависимости от характеристик помещения и условий использования, может применяться роторный или пластинчатый рекуператор. Остановимся более подробно на устройстве и принципе действия последнего.

Энергоэффективная система, берегущая тепло

Пластинчатый рекуператор представляет собой кассету, называемую блоком или теплообменником, оснащенную множеством тонких листов, которые могут быть выполнены из различных материалов: оцинкованной стали, алюминиевой фольги, пластика или специальной бумаги. Листы могут быть как гладкими, так и гофрированными.

Помимо материала, из которого выполнены элементы теплообменника, рекуператоры отличаются и по направлению воздушных потоков. В наиболее распространенном перекрестноточном типе рекуператоров потоки приточного и исходящего воздуха идут перпендикулярно друг другу, а в противоточном – в противоположных направлениях. Это связано с тем, что для эффективного обмена теплом потоки, в идеале, не должны соприкасаться друг с другом и перемешиваться.

Используя такой принцип работы, пластинчатый рекуператор обеспечивает бесперебойный подогрев входящего воздуха в холодное время года и сводит к практическому минимуму тот распространенный эффект вентиляционно-обогревательных систем, который принято называть «обогревом улицы». Что и является главной особенностью так называемых энергоэффективных систем.

Рекуператоры, в отличие от обычных систем вентилирования воздуха, способны не только достаточно успешно выполнять функции теплообмена, но и бороться с неприятными запахами, а отдельные виды позволяют справляться с повышенной влажностью помещения. Если вы не готовы приобретать пластинчатый рекуператор, вы можете попробовать изготовить его самостоятельно по данной инструкции.

Основные компоненты рекуперационной системы

В состав рекуперационной системы входит, помимо основного блока с пластинами и вентилятор. Кроме того, рекуператоры оснащаются:

  • Системой отвода конденсата, неизбежно образующегося на пластинах, дабы избежать попадания воды в воздушный канал или образования в нем наледи. Такой конденсатосборник обязательно оборудуется водяным затвором, блокирующим работу вентилятора в случае появления избыточного количества влаги.
  • В качестве устройства, регулирующего интенсивность воздушных потоков, используется специальный перепускной клапан. Важной конструктивной особенностью такого клапана и пластинчатого рекуператора является полное отсутствие подвижных деталей.

Как уже говорилось выше, теплообменники пластинчатого рекуператора могут быть выполнены из различных материалов. Каждый из них обладает своими свойствами, достоинствами и недостатками.

Попробуем сравнить их между собой:

  1. Алюминиевые пластины или теплообменники из оцинкованной стали. Такие системы пользуются достаточно высокой популярностью из-за своей относительно невысокой стоимости. Однако, такой пластинчатый рекуператор обладает сравнительно невысоким КПД, поскольку регулярно нуждается в использовании режима оттаивания.
  2. Пластиковые теплообменники обладают более высоким коэффициентом полезного действия и эффективность, но и стоят значительно дороже.
  3. Пластины из специальной бумаги также отличаются высокой эффективностью, но такие теплообменники нельзя применять в помещениях с высоким уровнем влажности (бассейны, автомойки, некоторые промышленные помещения), поскольку конденсат довольно легко преодолевает стенки кассеты.
  4. Используются также и рекуператоры с двойной бумажной кассетой. Их КПД существенно выше, за счет дополнительного прогрева воздуха, но, все же, они также боятся большого уровня влажности воздуха.

Преимущества и недостатки

Как уже упоминалось выше, пластинчатый рекуператор воздуха обладает рядом несомненных преимуществ перед обычными вентиляционными системами.

Основными из них являются следующие:

  • Высокая энергоэффективность, выражающаяся в минимальном уровне потери тепла.
  • Возможность обогрева входящего воздуха в холодное или сырое время года.
  • Минимальное энергопотребление при высоком коэффициенте полезного действия (от 40 до 80%).
  • Отсутствие подвижных деталей существенно облегчает обслуживание системы и продлевает ее рабочий ресурс и долговечность. Остается лишь следить за тем, чтобы система не засорилась.
  • Компактность всей системы, позволяющая монтировать ее практически в любых условиях.
  • Легкость модернизации. В зависимости от задач, мощность и эффективность такого агрегата можно легко увеличить или уменьшить добавив или изъяв пластины.

Правда, любой пластинчатый рекуператор имеет и один достаточно большой недостаток: необходимость дефростации (очистки от образовавшейся на кассете наледи) в холодное время года. Использование недостаточно качественного теплоносителя приводит к быстрому и обильному засорению системы. И если в обычных случаях чистка не представляет собой какой-либо проблемы, то при сильном засоре порой приходится потратить немало денежных средств и времени.

Сферы применения. Пластинчатый или роторный?

Несмотря на то что помимо пластинчатых или роторных рекуператоров, используются и другие конструктивные типы, два вышеназванные являются наиболее распространенными и популярными. Чтобы определиться с выбором типа устройства, необходимо учитывать не только стоимость системы, но и ее технические характеристики, а также условия, в которых она будет применяться.

Пластинчатые рекуператоры, имеющие невысокую цену, обладающие простотой в монтаже и обслуживании, имеют, по сравнению с роторными аналогами, ощутимо меньшую мощность и более низкий КПД. Что делает их малоэффективными для создания систем теплообмена на больших площадях. Кроме того, им противопоказаны помещения с высокой влажностью.

Поэтому пластинчатые рекуператоры используются для оборудования тепловентиляционных систем в загородных домах и на объектах индивидуального жилищного строительства, в офисных или административных помещениях, на небольших промышленных и складских площадях.

В случаях, когда система теплообмена должна охватывать достаточно обширные пространства – большие цеха, крупные жилые или административные здания и сооружения, другие просторные помещения, а также помещения, характеризующиеся повышенной влажностью или избыточно сухим воздухом, целесообразнее использовать рекуператоры роторного типа. Они более мощные, у них заметно выше уровень КПД, неприхотливы к условиям эксплуатации. Такой рекуператор, помимо выполнения функций вентиляции и теплообмена может использоваться и как осушитель. Но, взамен, они имеют гораздо более сложную конструкцию, высокую стоимость и нуждаются в регулярном техническом осмотре и обслуживании.

Области применения рекуператоров различных видов и типов отнюдь не ограничиваются созданием энергоэффективных вентиляционных систем в жилых и производственных зданиях и сооружениях. Агрегаты и системы подобного рода нашли достаточно широкое применение в промышленности и используются в различных производственных и технологических процессах, применяемых в самых разнообразных отраслях.

ventilationpro.ru

Теплообменник — это… Что такое Теплообменник?

Простейший теплообменник типа «труба в трубе»

Теплообме́нник, теплообме́нный аппарат — устройство, в котором осуществляется передача теплоты от горячего теплоносителя к холодному (нагреваемому). Теплоносителями могут быть газы, пары, жидкости. В зависимости от назначения теплообменные аппараты используют как нагреватели и как охладители. Применяется в технологических процессах нефтеперерабатывающей, нефтехимической, химической, газовой и других отраслях промышленности, в энергетике и коммунальном хозяйстве.

Основные понятия, касающиеся теплопередающих устройств

Теплообменник – устройство для передачи тепла от одного теплоносителя к другому. Теплообменный аппарат – автономное теплопередающее устройство, состоящее из теплопередающего элемента (элементов) и полостей для движения теплоносителей. Имеет устройства для входа и выхода теплоносителей. Число, состав и схема соединения элементов в аппарате могут быть любыми. Система теплообменников – совокупность теплообменников, расположенных в ряд, параллельно либо в любой другой последовательности. Теплообменники в системе отличаются составом теплоносителей.

Редактирование: К удалению. Этот раздел содержит второстепенные понятия и ничего нового к остальным разделам не добавляет.

Основные типы

Теплообменники по способу передачи теплоты подразделяют на поверхностные, где отсутствует непосредственный контакт теплоносителей, а передача тепла происходит через твёрдую стенку, и смесительные, где теплоносители контактируют непосредственно. Поверхностные теплообменники в свою очередь подразделяются на рекуперативные и регенеративные, в зависимости от одновременного или поочерёдного контакта теплоносителей с разделяющей их стенкой[1].

Поверхностные теплообменники

Рекуперативные теплообменники

Рекуперат́ивный теплообме́нник — теплообменник, в котором горячий и холодный теплоносители движутся в разных каналах, в стенке между которыми происходит теплообмен. При неизменных условиях параметры теплоносителей на входе и в любом из сечений каналов, остаются неизменными, независимыми от времени, т.е процесс теплопередачи имеет стационарный характер. Поэтому рекуперативные теплообменники называют также стационарными.

В зависимости от направления движения теплоносителей рекуперативные теплообменники могут быть прямоточными при параллельном движении в одном направлении, противоточными при параллельном встречном движении, а также перекрестноточными при взаимно перпендикулярном движении двух взаимодействующих сред.

Часто под рекуперативным теплообменником ошибочно понимается рекуперативный противоточный теплообменник. (В нём вместо уравнивания температурных потенциалов происходит их обмен, потери могут составлять до 30 %).

Теплообменник для газовой промышленности

Наиболее распространённые в промышленности рекуперативные теплообменники[2]:

  • Кожухотрубные теплообменники,
  • Элементные (секционные) теплообменники,
  • Двухтрубные теплообменники типа «труба в трубе»[3],
  • Витые теплообменники,
  • Погружные теплообменники,
  • Оросительные теплообменники,
  • Ребристые теплообменники,
  • Спиральные теплообменники,
  • Пластинчатые теплообменники,
  • Пластинчато-ребристые теплообменники,
  • Графитовые теплообменники.
  • фторопласт-Тефлоновые теплообменники.
Регенеративные теплообменники

В регенеративных поверхностных теплообменниках теплоносители (горячий и холодный) контактируют с твердой стенкой поочерёдно. Теплота накапливается в стенке при контакте с горячим теплоносителем и отдаётся при контакте с холодным.[1]

Смесительные теплообменники

Смеси́тельный теплообме́нник (или конта́ктный теплообме́нник) — теплообменник, предназначенный для осуществления тепло- и массообменных процессов путем прямого смешивания сред (в отличие от поверхностных теплообменников). Наиболее распространены пароводяные струйные аппараты ПСА — теплообменники струйного типа, использующие в своей основе струйный инжектор[4]. Смесительные теплообменники конструктивно устроены проще, нежели поверхностные, более полно используют тепло. Однако, пригодны они лишь в случаях, когда по технологическим условиям произ­водства допустимо смешение рабочих сред.

Большое применение контактные теплообменники находят в установках утилизации тепла дымовых газов, отработанного пара и т.п[5].

Конструкции теплообменников

Конструкционно теплообменники подразделяют на:

  • объемные одна из сред имеет значительный объем в теплообменнике, одна среда сосредоточена в баке большого объема, вторая протекает через змеевик;
  • скоростные (кожухотрубные) среды движутся с достаточно большой скоростью для увеличения коэффициента теплоотдачи, много мелких трубочек находятся в одной большой (кожух), среды движутся одна в межтрубном пространстве, другая внутри трубочек, обычно в трубочках находится более «грязная» среда, так как их легче чистить;
  • пластинчатый теплообменник состоит из набора пластин, среды движутся между пластинами, прост в изготовлении (штампованные пластины складываются с прокладками между ними), легко модифицируется (добавляются или убираются пластины), хорошая эффективность (большая площадь контакта через пластины).
  • пластинчато-ребристый теплообменник в отличие от пластинчатого теплообменника состоит из системы разделительных пластин, между которыми находятся ребристые поверхности — насадки, присоединенные к пластинам методом пайки в вакууме.

С боков каналы ограничиваются брусками, поддерживающими пластины и образующие закрытые каналы. Таким образом, в основу пластинчато-ребристого теплообменника положена жесткая и прочная цельнопаянная теплообменная матрица, построенная по сотовому принципу и работоспособная (даже в исполнении из алюминиевых сплавов) до давления 100 атм. и выше. В пластинчато-ребристых теплообменниках существует большое количество насадок, что позволяет подбирать геометрию каналов со стороны каждого из потоков, реализовывая оптимальную конструкцию. Основные достоинства данного типа теплообменников — компактность (до 4000 м2/м3) и легкость. Последнее обеспечивается за счет применения при изготовлении теплообменной матрицы пакета из тонколистовых деталей из легких алюминиевых сплавов.

  • Оребренные пластинчатые теплообменники, ОПТ состоит из тонкостенных оребренных панелей, изготовленных методом высокочастотной сварки, соединенные поочередно с поворотом на 90 градусов. За счет конструкции, а также многообразия используемых материалов достигаются высокие температуры греющих сред, небольшие сопротивления, высокие показатели отношения телепередающей площади к массе теплообменника, длительный срок службы, низкая стоимость и др. Часто используются для утилизации тепла отходящих газов.
  • спиральный теплообменник представляет собой два спиральных канала, навитых из рулонного материала вокруг центральной разде­лительной перегородки — керна, среды движутся по каналам. Одно из назначений спиральных тепло­обменников — нагревание и охлаждение высоковязких жидкостей.

При выборе между пластинчатыми и кожухотрубными теплообменниками предпочтительными являются пластинчатые, коэффициент теплопередачи которых более чем в три раза больше, чем у традиционных кожухотрубных.[2] Кроме того, коэффициент полезного действия пластинчатых теплообменников составляет 90-95 %, а занимаемая площадь в 3-4 раза меньше, чем для кожухотрубных.[6].

В то же время пластинчатые теплообменники, оснащённые средствами автоматики, регулирования и надёжной арматурой, позволяют снизить количество теплоносителя, идущего на нагрев воды. А значит, и диаметры трубопроводов и запорно-регулирующей арматуры, снизить нагрузки на сетевые насосы и, соответственно, уменьшить потребление электроэнергии и др.

Но на данный момент стали появляться современные кожухотрубные теплообменники, оснащенные трубками, профилированными таким образом, чтобы рост гидравлического сопротивления ненамного превышал рост теплоотдачи вследствие применения турбулизаторов потока. Это достигается накаткой на внешней поверхности трубы кольцевых или винтообразных канавок, вследствие образования которых на внутренней поверхности трубы образуются плавно очерченные выступы небольшой высоты, интенсифицирующие теплоотдачу в трубах. Данная технология, в дополнение к таким важным показателям как высокая надежность (также при гидравлическом ударе) и меньшая стоимость, дает отечественному кожухотрубному оборудованию дополнительные преимущества по сравнению с иностранными пластинчатыми аналогами. Но это преимущество исчезает при первой промывке такого теплообменника, т.к. очистка внутренних поверхностей трубок с винтообразными канавками практически невозможна и ведет к быстрому выходу такого теплообменника из строя.

Серьёзной проблемой является коррозия теплообменников. Для защиты от коррозии применяется газотермическое напыление трубных досок, труб пароперегревателей. Это относится не только к кожухотрубным теплообменникам, изготовленным из углеродистой стали. Пластины пластинчатых теплообменников в подавляющем большинстве изготавливаются из коррозионно-стойкой жаропрочной стали, но несмотря на этот факт также подвержены питтинговой коррозии при использовании неингибированных сред.

См. также

Примечания

  1. 1 2 Атомная энергетика. Словарь терминов
  2. 1 2 Теплообменники
  3. Технология Перекачиваемого Льда. Архивировано из первоисточника 14 февраля 2012. Проверено Апрель 3, 2011.
  4. Смесительный теплообменник.//Промышленная теплоэнергетика и теплотехника. Справочник. (Теплоэнергетика и теплотехника; Кн.4). Под общей ред. Клименко А. В. и Зорина В. М. М.: Издательство МЭИ, 2004. — 632 с.
  5. Н.Ф.Свиридов, Р.Н.Свиридов, И.Н.Ивуков, Б.Л.Терк Установка утилизации тепла дымовых газов // «Энергосбережение» №4/2002.
  6. Энергобезопасность в документах и фактах №2, 2006

Литература

  • В. Н. Луканина. Теплотехника. — М., «Высшая школа», 2002 г.

Ссылки

dic.academic.ru

Рекуператор своими руками — пластинчатый, коаксиальный, из труб и поликарбоната

Рекуператор – неотъемлемая часть современной системы вентиляции. Его используют для осуществления теплообмена между приточным и исходящим воздушными потоками, что позволяет существенно поднять КПД отопительной системы.

Современный дом представляет собой герметичную конструкцию, огражденную от внешней среды эффективными теплоизолирующими материалами и конструкциями. В результате этого, внутрь дома необходимо обеспечить поступление свежего воздуха и удаление углекислого газа. Но если не использовать рекуперацию энергии – все усилия по утеплению дома будут бессмысленными.

Виды рекуператоров

В зависимости от конструктивного решения различают такие виды рекуператоров:

  • Роторный. Представляет собой конструкцию из двух воздуховодов, в поперечном сечении которых размещён воздухопроницаемый диск-теплообменник. Вращаемый двигателем, он служит для нагрева приточного и охлаждения исходящего потоков;
  • Пластинчатый. В качестве теплообменника используется набор пластин, между которыми циркулирует воздух. Сами пластины собираются таким образом, чтобы теплообмен осуществлялся по всей их площади;
  • Коаксиальный. Представляет собой систему из трубопроводов смонтированных, таким образом, чтобы обеспечить теплообмен между проходящими по ним воздушными потоками. Используется так называемая система «труба в трубе», когда магистрали коаксиально соединяются между собой;
  • Кожухотрубный. Является вариацией коаксиальной конструкции. Отличие заключается в том, что приточный воздушный поток движется по трубопроводам в двух различных направлениях в верхней и нижней части кожуха;

В соответствии со взаимной ориентацией воздушных потоков выделяют следующие виды рекуператоров:

  • Перекрёстноточные. В них воздушные потоки движутся навстречу друг другу и пересекаются под углом в 90°. Такая геометрия потоков свойственна пластинчатым рекуператорам;
  • Противоточные. Воздушные потоки движутся в противоположных направлениях параллельно друг другу. Так работают роторные рекуператоры;
  • Прямоточные. Приточный и вытяжной потоки движутся параллельно в одном направлении. Такая схема циркуляции характерна коаксиальным (трубчатым) рекуператорам.

Коаксиальный рекуператор

Изготовление пластинчатого рекуператора

Потребуются следующие материалы и инструменты:

  • Материал для пластин: алюминиевый, медный или жестяной лист;
  • Утеплитель: пенопласт или минеральная вата;
  • Герметик, клей;
  • Ножницы по металлу;
  • Вентиляторы: 2 шт;
  • Листвой материал для корпуса: фанера, ДСП, ДВП, пластик;
  • Фланцевые патрубки;
  • Ножовка по дереву;
  • Материал для формирования каналов: планка квадратного сечения 1х1см, выполненная из дерева, защищенного антисептиком, или пластика.

Далее руководствуются следующей последовательностью шагов:

  1. Из листового материала для теплообменника вырезаются квадраты, размером 60х60 см. Величина пластин может варьироваться в зависимости от того, какой по габаритам будет будущий рекуператор. Количество заготовок выбирается в диапазоне от 20 до 50 и более шт. Углы каждой пластины подрезают: по каждой из сторон откладывается 2 см, ставятся отметки; по линии между ними производится рез;
  2. На каждой из пластин можно дополнительно закрепить ребра для придания турбулентности воздушным потокам. Так можно значительно увеличить эффективность теплообмена;
  3. Из планки вырезаются бруски, по величине усеченных углов. Их устанавливают на клей, предварительно нанесенный на пластину. Далее, на две стороны по диагонали также приклеиваются бруски, но уже величиной в сторону квадратной заготовки, до примыкания к угловым ограничителям;
  4. Сверху на получившуюся конструкцию приклеивают следующую металлическую пластину. Так получается один элемент канала. Последующий ряд, делается точно так же, только пластину поворачивают на 90° относительно предыдущей. Таким образом, формируется два перекрёстных канала. Далее теплообменник собирается послойно;
  5. Следующий этап — изготовление корпуса рекуператора. Для этого берут приготовленный листовой материал. Из него вырезаются стороны будущего корпуса, в который должен поместиться теплообменник, установленный диагонально;
  6. Напротив воздушных каналов вырезаются отверстия округлой формы, напротив которых устанавливаются фланцы для подключения воздуховодов. С внутренней стороны корпуса с примыканием к патрубкам монтируются приточный и вытяжной вентиляторы;
  7. Далее вырезаются боковые стенки, которые крепятся к корпусу устройства с помощью шурупов или мебельных стяжек;
  8. В корпусе следует предусмотреть отверстия для слива конденсата. В процессе работы, когда теплый воздух проходит через холодные каналы, на них конденсируется влага. Чтобы устройство работало нормально необходимо установить в нижней части корпуса специальный сливной патрубок, который впоследствии присоединяется к системе канализации;
  9. Корпус рекуператора желательно покрыть слоем теплоизоляции, особенно, если устройство будет функционировать в неотапливаемом помещении. Для этого снаружи на корпус наклеивается листовой утеплитель: минеральная вата или пенопласт. Если этого не сделать, конденсат внутри корпуса может замерзнуть, что приведет к закупорке воздушных каналов: устройства выйдет из строя.

Рекуператор из поликарбоната

Поликарбонат – материал, обедающий низкой теплопроводностью и, казалось бы, совсем не подходит для изготовления теплообменника. Но это не так. Если для рекуператора использовать металлические пластины, есть риск того, что появляющийся в процессе работы конденсат будет замерзать, в силу быстрого охлаждения воздушных масс вытяжного канала.

Использование пластин из поликарбоната в таком случае позволяет:

  • Снизить разность температур, возникающих после прохождения через одну секцию теплообменника, что уменьшает количество образовавшегося конденсата;
  • Избежать охлаждения пластин теплообменника ниже температуры замерзания воды;
  • Поликарбонат обладает устойчивостью к коррозии, что позволяет продлить службу устройства.

В случае недостаточной эффективности, можно последовательно соединить несколько секций, чтобы получить высокий КПД установки. Для этого несколько теплообменников устанавливают в корпус один за другим, повернув их на 90° относительно друг друга. Таким образом, воздушные потоки будут двигаться от секции к секции по диагональной траектории.

Изготовление трубчатого рекуператора

Трубчатый рекуператор относительно прост в изготовлении, а сама система получается более компактной, нежели пластинчатый аналог. Готовое устройство отличается компактностью и легко может быть смонтировано внутри стены.

Для самостоятельного изготовления понадобятся следующие материалы и инструменты:

  • Трубы водопроводные, пластиковые, диаметром 110мм: 2м;
  • Тройники для подключения воздуховодов: 2шт;
  • Дрель;
  • Разметочный инструмент, керн, молоток, циркуль;
  • Вентиляторы: 2шт;
  • Трубка из алюминия или меди, диаметром 1см: 20 метров;
  • Фланцы металлические 100мм: 2шт;
  • Заглушки для водопроводных труб: 2шт.

Главным элементом трубчатого рекуператора является теплообменник, его собирают следующим образом:

  1. Во фланцах, представляющих собой металлические диски, высверливаются отверстия, диаметром в 1 см. Расстояние между отверстиями должно быть 5мм. Разметку удобно делать в виде ряда концентрических окружностей, на которых отмечаются центры будущих отверстий;
  2. Далее, металлическая труба малого диаметра нарезается на куски, длиной в одну секцию водопроводной трубы, или меньше, в зависимости от размеров будущего рекуператора. Чем больше протяженность теплообменника, тем выше его КПД;
  3. Каждый кусок трубы подсоединятся к фланцам. Таким образом, получается приточный воздуховод. Места соединений герметизируются сваркой или клеем.

Далее приступают к окончательной сборке устройства, корпусом которого выступает водопроводная труба, диаметром 110мм:

  • На секцию корпусной трубы с двух сторон устанавливаются тройники. Внутрь вставляется трубчатый теплообменник, он должен выступать за обрез тройников с двух сторон;
  • Каждый тройник удлиняется отрезками, так, чтобы фланец примыкал к каждому продолжению. Стык между фланцем и трубой герметизируется. С одной стороны напротив фланца устанавливается приточный вентилятор;
  • К паре отводов тройников, присоединяется контур вытяжки. Напротив одного из отводов, внутри трубы, монтируется второй вентилятор;
  • В процессе работы, холодный воздух проходит по трубам теплообменника, которые обдуваются теплым исходящим потоком. На трубках внутри корпуса образуется конденсат; Для его удаления следует предусмотреть в корпусе устройства специальный патрубок, который подсоединяется к системе канализации.

Борьба с замерзанием конденсата

В зимний период разница в температуре на улице и в помещении может приводить к обледенению теплообменника. Одним из решения данной проблемы является использование земляного контура для предварительного подогрева приточного воздуха.

Для этого на глубине 2 м размещается труба, выполненная из меди, нержавейки или композитных материалов. Она заполняется водой и выступает в роли генератора тепла. Температура на глубине постоянна и составляет 10-12°С и не зависит от времени года.

К земляному контуру подключается радиатор, который устанавливается внутри приточного канала. При прохождении через него, воздух предварительно подогревается, после чего направляется на рекуператор. Это исключает образование наледи на пластинах теплообменника.

Конденсат на рекуператоре

Блиц-советы

  • Установка байпаса. Если нет возможности организовать земляной контур, в целях борьбы с замерзанием конденсата в корпус рекуператора устанавливают специальный клапан, который отсекает поступление холодного воздуха в систему. Клапан срабатывает, если температура теплообменника понижается ниже допустимого предела. В таком случае через систему проходит только теплый исходящий воздушный поток, который подогревает теплообменник;
  • Регулирование скорости вращения вентиляторов. Чтобы дополнительно контролировать систему вентиляции, ее нередко дополняют микропроцессорным блоком, который позволяет регулировать скорость вращения приточного и вытяжного вентиляторов. Это позволяет не только эффективно бороться с обледенением теплообменника, но и регулировать объем прокачиваемого через систему воздуха;
  • Земляной контур предварительного подогрева можно использовать в летнее время для охлаждения приточного воздуха. Для этого необходимо лишь организовать движение потоков в обход рекуператора.

orcmaster.com

ТЕПЛООБМЕННИК — это… Что такое ТЕПЛООБМЕННИК?

где q — тепловая мощность теплообменника, Вт; A — площадь поверхности теплообмена, м2; Dt — средний температурный напор, т.е. средняя разность температур теплоносителя и нагреваемой среды, К; R — полное термическое сопротивление, учитывающее все указанные выше его слагаемые, м2ЧК/Вт; U — полный коэффициент теплопередачи (величина, обратная R), Вт/(м2ЧК). Поскольку величина U отнесена к площади A, при ее определении необходимо указывать соответствующую площадь поверхности теплообмена (например, в случае ребристых теплообменников — площадь только неоребренной поверхности труб или полную площадь поверхности теплообмена с учетом ребер). При заданных температурах греющего и нагреваемого потоков на входе и выходе теплообменника средний температурный напор Dt максимален в противоточных теплообменниках, т.е. таких, в которых два потока направлены навстречу друг другу. В прямоточных же теплообменниках, в которых потоки направлены в одну сторону, величина Dt минимальна. Возможна еще и перекрестная схема тока (рис. 2). Во многих теплообменниках обычных типов встречаются все три основные схемы тока, как, например, на рис. 1, где перекрестная схема тока сочетается с прямоточной и противоточной. В случае достаточно чистых поверхностей теплообмена полное термическое сопротивление R зависит в основном от скоростей течения у поверхности теплообмена, а также от плотности, вязкости, коэффициента теплопроводности и удельной теплоемкости теплоносителя и нагреваемой среды. В некоторых случаях термическое сопротивление пленки одной из рабочих сред намного меньше, чем термическое сопротивление другой. Поскольку же эти термические сопротивления «включены» последовательно, полное термическое сопротивление определяется большей компонентой. Так обстоит дело, например, в секции экономайзера парового котла, где полное термическое сопротивление определяется сопротивлением пленки газа, поскольку сопротивление на стороне воды сравнительно невелико. Это обстоятельство позволяет существенно уменьшить объем экономайзера, если применить оребрение труб на стороне того теплоносителя, термическим сопротивлением которого определяется полная интенсивность теплопередачи. Ребристые экономайзеры применяются во многих силовых установках судов торгового и военно-морского флота.
Применение. На паротурбинных электростанциях важнейшими теплообменными устройствами являются паровой котел и конденсатор. Имеются и другие теплообменники, назначение которых — повысить тепловой КПД электростанции или улучшить ее эксплуатационные характеристики: термические деаэраторы, экономайзеры, воздухоподогреватели и подогреватели питательной воды. Точно так же основными компонентами всякой холодильной системы с замкнутым циклом являются испаритель и конденсатор. Теплообменники широко применяются в перерабатывающей и химической промышленности, например в установках для нефтепереработки. Они играют важную роль также на атомных электростанциях.
Тепловые трубы. Тепловая труба — это устройство для переноса тепловой энергии из нагретой области («источника») в холодную область («сток») с КПД, намного большим, чем при использовании любых высокотеплопроводных металлов. Если подводить тепло к одной секции такой герметичной трубы, содержащей жидкость, то часть жидкости будет испаряться, поглощая большие количества тепла. Пары, переходя в другую секцию, будут конденсироваться и отдавать тепло. Вернув сконденсировавшуюся жидкость обратно, мы получим замкнутый цикл. Перенос жидкости из зоны конденсации в зону испарения в тепловой трубе осуществляется за счет капиллярных сил в фитиле, закрепленном на внутренних стенках трубы. Фитиль в тепловой трубе действует так же, как и в старых керосиновых лампах, в которых керосин поступает из резервуара к пламени по фитилю. См. также ЖИДКОСТЕЙ ТЕОРИЯ. Тепловая труба была предложена как средство отвода тепла в космических летательных аппаратах: тепло, выделяемое электронными приборами, отводится к наружным стенкам КЛА и там за счет излучения рассеивается в космосе. В пилотируемых космических кораблях тепло солнечного излучения должно равномерно распределяться по всему КК, чтобы обеспечивалась необходимая комфортность (чего можно добиться также за счет медленного вращения космического корабля). В связи с этим тепловая труба, способная осуществлять теплоперенос в условиях невесомости, сразу же нашла практическое применение при исследовании космического пространства.
См. также
КОСМОСА ИССЛЕДОВАНИЕ И ИСПОЛЬЗОВАНИЕ;
КОСМИЧЕСКАЯ СТАНЦИЯ. Благодаря той простоте, с которой тепловые трубы работают в условиях нормальной силы тяжести, на их основе были созданы энергосберегающие теплообменники. «Сбросное» тепло отходящих газов печи или топки можно улавливать посредством теплообменника с решеткой из тепловых труб, один конец которой омывается отходящими газами, а другой — потоком холодного свежего воздуха. Свежий воздух нагревается за счет тепла отходящих газов, передаваемого посредством рабочего тела тепловой трубы. Для увеличения площади поверхности теплообмена трубы можно оребрить. Компактная система такого рода способна сберегать 60-70% энергии, которая иначе просто терялась бы, рассеиваясь в атмосфере. Нагретый воздух можно использовать для отопления или подавать в топку (например, парового котла) в качестве предварительно подогретого воздуха для горения топлива. На практике обычно применяются либо горизонтальные тепловые трубы, либо наклонные с нижней нагреваемой секцией. Сила тяжести способствует возврату жидкости в испарительную секцию, а фитиль равномерно распределяет ее по всей поверхности. Но разработаны и т.н. антигравитационные тепловые трубы, в которых нагреваемая секция расположена выше охлаждаемой. Тепловая труба может работать в широком диапазоне температур, если в качестве рабочих жидкостей использовать воду, обычные хладагенты и жидкие углеводороды. Превосходными рабочими жидкостями оказываются жидкие металлы при высоких температурах. Например, одно экспериментальное устройство с расплавленным серебром в вольфрамовом резервуаре проработало сотни часов при температуре выше 2200 К. В настоящее время миллионы тепловых труб работают в энергосберегающих теплообменниках и в промышленных технологических установках. Тысячи тепловых аккумуляторов такого типа отводят тепло из тундрового грунта под Аляскинским нефтепроводом. За счет охлаждения, происходящего в зимние месяцы, слой грунта под нефтепроводом поддерживается замерзшим на протяжении всего лета. Тепловые трубы все шире применяются и в повседневной жизни.
ЛИТЕРАТУРА
Тепловые трубы. М., 1972 Крейт Ф., Блэк У. Основы теплопередачи. М., 1983 Аккумулирование тепловой энергии. М., 1987 Промышленная теплоэнергетика, кн. 4. М., 1991

Энциклопедия Кольера. — Открытое общество.
2000.

dic.academic.ru

Рекуперативный противоточный теплообменник — Википедия

Материал из Википедии — свободной энциклопедии

Схема, поясняющая работу противоточного теплообменника. Холодное тело подаётся слева при температуре Т1. Горячее — справа при температуре Т8. Температуры Т2…Т6 везде попарно меньше температур Т13…Т9, т.е. Т213312 и т.п.

Рекуперати́вный противото́чный теплообме́нник (или противопото́чный) — теплообменник, в котором горячий и холодный теплоносители движутся навстречу друг другу по каналам, расположенным параллельно. При взаимодействии теплоносителей происходит теплообмен, в ходе которого охлаждающая среда нагревается до температуры нагревающей среды, а последняя охлаждается до температуры охлаждающей среды.

Пример: в рекуперативном противоточном теплообменнике вступили в тепловое взаимодействие две жидкости: вода с температурой +20°С и масло с температурой +91°С. В результате работы теплообменника у воды будет температура +90°С , а у масла +21°С.

Возникновение градиента температуры в каждой трубе и между трубами

Рекуперативный противоточный теплообменник состоит из двух полостей, контактирующих между собой своими стенками. Конструкция в целом может быть теп

ru.wikipedia.org

Теплообменник для вентиляции: воздушный, водяной, пластинчатый

СодержаниеСвернуть

Теплообменник

Теплообменник на дымоход для чиллера по принципу своего действия делится на 3 вида: смесительные, рекуперативные и регенеративные.

Каждый из таких типов водяного теплообменника обладает некоторыми особенностями, а поэтому хотелось бы рассмотреть данные варианты более детально.

Виды теплообменников



data-ad-client=»ca-pub-9337857885889635″
data-ad-slot=»9967522739″
data-ad-format=»auto»>

Рекуперативные теплообменники. Именно такие устройства считаются наиболее распространенными.  Здесь теплоносителям свойственно омывать стенку прибора со всех сторон и при этом обмениваться необходимым количеством теплоты. Процесс обмена теплом осуществляется на постоянной основе и обладает типичным стационарным характером.

Воздушный теплообменник, в основе которого лежит рекуператор подразделяется в зависимости от того, в каком направлении двигаются непосредственно теплоносители. В случае, когда наблюдается параллельное движение в одном и том же векторе, их принято считать прямоточными, и наоборот, в случае с противоположным движением, такое устройство называют противоточным рекуперативным теплообменником.

Существуют также теплообменники, где наблюдается перекрестный ток и перпендикулярная схема движения.  Надо отметить, что это еще не все варианты теплообменника с рекуператором, так как имеются еще и устройства, с более сложной и нестандартной схемой движения.

Согласно особенностям конструкции рекуперативные теплообменники бывают с пластинчатыми и кожухотрубными типами поверхности. Также присутствуют данные приборы, в которых поверхность является вращающейся. Для них свойственно обладать высоким коэффициентом теплопередачи, что для водяного имеющего рекуператор крайне важно.

Регенеративные теплообменники. Суть работы такого типа устройства заключается в том, что одна и та же поверхность поддается обмыванию сначала горячими, а потом и холодными вариантами теплоносителя. Во время контакта с горячим теплоносителем, для стенки свойственно производить аккумуляцию тепла, после чего передавать ее уже холодному виду теплоносителя.

Такой воздушный прибор для чиллера внутри содержит специальную насадку… Как правило, такой элемент изготавливается из металла или кирпича, но иногда применяются и другие материалы.

Смесительные. В таком случае теплообменника 150 для чиллера характерным является явление перемешивания различных видов теплоносителей, так как во время функционирования прибора они вступают в непосредственный контакт между собой. В общем, процесс передачи тепла проходит в режиме стационара и сопровождается постоянным испарением ненужной жидкости.

Лучше всего смесительные варианты теплообменников 150 применять в тех случаях, когда можно быстро и легко разделить разные виды теплоносителей после того, как весь процесс передачи теплообмена завершиться. Например, среди подобных пар можно выделить воду и воздух.
к меню ↑

Где используются

В нынешнее время теплообменник на дымоход для чиллера применяется для любой системы, которая занимается охлаждением или нагревом жидкой среды. В общем, теплообменники марки 150 и другие достаточно широко используются в промышленности, сельском хозяйстве, производственных предприятиях, где надо создать определенные условия для работы чиллера в частности и системы, в общем. Словом водяной теплообменник, имеющий рекуператор используется:

  • на различных морских судах с целью опреснять типичную соленую воду;
  • для системы отопления, водоснабжения;
  • в процессе пастеризации хмельных напитков, а также молочных продуктов, соков и других продуктов питания, где есть такая необходимость во время производства;
  • с целью осуществлять разного рода технологические процессы;
  • для того чтобы охлаждать или наоборот нагревать разные продукты, изготовленные на основе нефти.

Многие предприятия предпочитают использовать водяной пластинчатый теплообменник 150, так как он является наиболее компактным, а соответственно наиболее удобным для монтажа.  Кроме того, преимуществами такого теплообменника для всей системы является и то, что он работает с минимальными потерями давления и тепла и обладает высоким ККД.
к меню ↑

Советы по выбору



data-ad-layout=»in-article»
data-ad-format=»fluid»
data-ad-client=»ca-pub-9337857885889635″
data-ad-slot=»9725334793″>

Теплообменник для вентиляции

Для правильной работы системы необходимо подобрать такую модель теплообменника 150, чтобы она оказалась наиболее эффективной. Среди основных показателей такого устройства можно выделить – массу, габариты, степень тепловой производительности, отличия конструкции, условия теплообмена, физические и химические характеристики, рекуператор и его свойства, эстетическая привлекательность и другие.

Конструктивные показатели.

Выбирая водяной теплообменник для чиллера надо учитывать следующие нюансы:

  • Если наблюдается обмен двух газов и двух жидкостей, то лучше всего применить элементную модель теплообменника 150 для системы. Когда из-за габаритной конструкции нет возможности использовать такой вариант устройства, то можно выбрать кожухотрубчатый теплообменник.
  • В случае, когда жидкость подогревается паром, желательно прибегнуть к использованию кожухотрубчатые приборы, в которых сначала пара доставляется в трубу, а потом уже и в пространство между трубами.
  • Для предприятий, работающих в агрессивной среде – наиболее удачными вариантами считаются оросительные, рубашечные или погружные водяные аппараты для чиллера.
  • В ситуации, когда условия теплообмена кардинально отличаются по разные стороны прибора, надо использовать плавниковые или ребристые трубчатые теплообменники для системы.

Показатели качества. Здесь необходимо обращать внимание на технический уровень. Различают относительный, абсолютный и перспективный. Наиболее эффективным для системы является теплообменник, имеющий рекуператор, где использован перспективный уровень. Но, для несложных систем вполне подойдут и первые два варианта теплообменников для чиллера.

Долговечность и надежность. Главными количественными показателями долговечности считаются период службы и технические характеристики. Если говорить о надежности, то такой показатель характеризуется свойством аппарата работать в нормальном режиме, не ломаясь, а в случае какой-то неполадки возможностью его отремонтировать в кратчайшие сроки.

Показатели эргономики и эстетики. Сегодня создаются такие водяные теплообменники, которые не только идеально работают, но и своим внешним видом не портят интерьер в том или ином помещении. Как правило, привлекательный внешний вид теплообменника 150 полностью соответствует экономичной и выгодной конструкции.

Наиболее важным аспектом в данном показателе является оттенок устройства. Таким образом, можно повлиять не только на эстетическую составляющую, но и на утомляемость сотрудника, а соответственно и на его трудоспособность.

Коэффициент полезного действия. Для любой системы важно чтобы рекуператор для чиллера работал с максимальной производительностью. Такой показатель рассчитывается достаточно легко – нужно количество теплоты, которое передается холодному типу носителя тепла от горячей части разделить на то количество теплоты, которое является максимально возможным для конкретного агрегата.
к меню ↑

Советы по чистке

Для того чтобы теплообменник 150  работал как можно дольше и при этом не ломался за ним нужно ухаживать. Теплообменник своими руками почистить совсем не сложно, а главное – это четко соблюдать инструкцию. В первую очередь необходимо отключить полностью электрическое питание, чтобы в рекуператор и трубу не поступали никакие вещества.

Затем надо аккуратно снять крышку, защищающую элементы прибора, расположенные в его внутренней части. Теперь откручивается камера сгорания, и рекуператор на некоторое время теряет свою защиту. Если на протяжении долгого периода времени человек не чистил теплообменник 150, то ан его внутренних стенках будет большое количество  пыли, которую нужно удались, например, с помощью пылесоса.

Теплообменник для вентиляции

Теперь можно приступать к чистке горелки с форсунками, расположенной снизу камеры. Для этого такую деталь теплообменника для чиллера нужно протереть влажной тряпкой.  Здесь нужно действовать предельно аккуратно, так как если перестараться, то можно повредить некоторые детали и рекуператор не сможет уже полноценно функционировать.

Главной целью, которая преследуется на данном этапе, является добиться того, чтобы форсунки теплообменника 150 идеально пропускали потоки газа.

Промывать теплообменник для системы газового котла нужно как с внешней, так и с внутренней стороны. С такой целью  используется обычная вода с применением химических средств, которые способны удалять накипь и ржавчину и теплообменник 150 на определенный период времени должен находиться в сосуде с этой водой.

Потом применяя сильный напор воды, остатки ненужных вещиц удаляются с теплообменника. В конечном итоге, система будет работать гораздо эффективнее
к меню ↑

Теплообменник своими руками — видео

seositi.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о