Теплообменник рекуператор – Пластинчатый рекуператор воздуха: установка, расчет, своими руками

Содержание

пластинчатый, трубчатый, роторный с фото и видео

Рекуперацией являются обменные процессы тепла, уходящего из помещения, с поступающими во внутрь воздушными массами. Работа прибора намного эффективнее открытых окон и отверстий. Если сделать рекуператор своими руками, улучшится в помещении воздухообмен, снизиться перепад температуры в комнате, техника частично компенсирует отсутствие отопительной системы.

Виды агрегатов

По конструктивным особенностям:

  • ребристый;
  • трубчатый;
  • пластинчатый;
  • оребренно пластинчатый;
  • рециркуляционный водяной;
  • крышный.

По способу монтажа рекуператор воздуха своими руками бывает:

Коллекторный

Вытяжка и приток идут в общие каналы, коллектор фиксируется в специально отведенном месте. Является основным узлом приточно-вытяжного вентиляционного механизма.

Преимущества:

  • монтируется в любом удобном периметре гаража или иного крупного помещения;
  • возможна частичная замена деталей;
  • при установке дополнительные отверстия и проемы не нужны.

Канальный

«Тело» прибора монтируется в канале стены. Техника от производителя может оснащаться функцией «догрева».

Достоинства:

  • автоматический режим работы, умеренное потребление электричества;
  • простота установки;
  • легко подобрать необходимую мощность прибора с учетом работы в одной комнате.

Высокий уровень шума. Ремонтные манипуляции осуществляются только специалистами в мастерской. В каждом рекуператоре заводской сборки предусмотрена замена фильтров.

Пластинчатый рекуператор своими руками

Пластинчатый рекуператор

Наиболее дешевое вентиляционное приспособление в гараж.

Для короба понадобятся четыре метра оцинковки и брус. Приобретенный металлический материал режем на ровные пластинки. В стенки сваренной конструкции и в свободные полости закладывается минвата. Выход гибкого воздуховода также помещается в двухслойный короб с минватой для уменьшения шума при работе системы.

Между пластинами помещаются «дистанционные рамки». На тонкой полоске технической пробки нанесен полиуретановый клей. Для оптимального сопротивления потоку воздуха между пластинами оставляются небольшие промежутки.

Предусмотрите в коробе отверстия для готовых пластиковых фланцев, сечение которых должно совпадать с размера ми труб воздуховода. Так, пластинчатый теплообменник в гараже со всех сторон должен получиться герметичным. Для достижения цели примените силикон. Следите, чтобы температура втягиваемого воздуха была выше вытягиваемого.

Рекомендации специалистов

  1. Оснастите выполненное изделие датчиком слежения перепадов давления. Встроенный механизм станет регулярно размораживать теплообменник зимой: холодные приточные воздушные массы направятся через байпас, если будет зафиксирован перепад давления.
  2. Многослойный влагостойкий короб крепится в области выхода гибких воздуховодов. Теплоизолятор выкладывается изнутри. Простая доукомплектация поможет сэкономить электричество для обогрева гаража и усилит шумоизоляционные свойства техники.

Не располагайте пластины слишком близко друг к другу. В зимнее время появится заледенелый конденсат.

Листы делаются идеально ровными, при работе с оцинковкой работа осуществляется специальными ножницами либо электролобзиком. Правильно собранный рекуператор своими руками не смешивает чистый воздух, который поступает с улицы, с отработанной воздушной средой. Теплопроводящие пластины разделяют два потока.

Кислотный герметик обязательно спровоцирует коррозийные процессы агрегата, поэтому целесообразно применять для заделывания стыков и швов обычный акрипласт.

Используйте только нейтральный состав, обычный кислотный силант может привести к коррозии агрегата.

Достоинства пластинчатого теплообменника

  • КПД достигает 65%;
  • прибор делается без трущихся и подвижных деталей, поэтому механизм не нуждается в частом техническом обслуживании или ремонте;
  • минимальные расходы при эксплуатации.


Трубчатый воздухообменный механизм

Трубчатый рекуператор

Данный рекуператор своими руками отличается созданием воздухообменных процессов максимально приближенным к естественным.

Для создания прибора нужен короб и две алюминиевые или медные трубы, которые переплетаются между собой в индивидуальном порядке. На качество работы влияют длина труб и плотность их прилегания друг к другу. Агрегат работает за счет трубчатых конструкций, помещенных в каналы. Теплообменные процессы осуществляются при помощи пучков сварных тонкостенных трубок, по которым циркулирует воздух.

По трубам меньшего сечения проходит воздух комнатной температуры, металл получает тепло. Механизм «труба в трубе» для гаража станет замечательной альтернативой заводским изделиям.

Чтобы добиться повышения КПД, придется увеличивать длину трубы (скажется на весе конструкции).



Рекуператор своими руками роторного типа

Принцип работы

Роторный рекуператор

Сделать самостоятельно конструкцию легко, руководствуясь готовыми чертежами и проектами. Сначала вентилятор работает на вытяжку, температура отводящего воздуха нагревает лопасти крыльчатки. Затем прибор переходит в реверсный режим и втягивает воздух. Начинается обратный процесс теплоотдачи входящим потокам. Для снижения потери тепла стенки канала воздухооттока выполняют из металла. Самодельный роторный механизм имеет до 75% КПД. Крыльчатка изготавливается из очень тонких и легких листов меди. Пластины попеременно нагреваются и остывают.

Достоинства

  • Один из самых высоких КПД среди техники аналогичного назначения.
  • Не пересушивает воздух (контролирует уровень влажности).
  • Минимальный конденсат при работе в холодное время года.

Сложная конструкция, имеющая электромотор, приводной ремень, ротор и систему воздуховодов, требует частого технического обслуживания. Учитывайте, что рекуператор своими руками данного типа работает довольно шумно. Не путайте рекуперацию с воздушным отоплением.

Качественный рекуператор своими руками с составлением чертежных эскизов

Трубчатый рекуператор — схема

  1. Размер будущего теплообменника в гараже.
  2. Стандартный механизм, как правило, имеет 20- или 30-сантиметровую длину стенок.

  3. Количество пластинок.
  4. Решение принимает собственник индивидуально, рекомендуется не менее 70 штук. Толщина прокладки между пластинами составляет 3-4 мм.

  5. Диаметр отверстий.
  6. Чем больше поперечное сечение труб, тем мощнее окажется техника.

  7. Размеры корпуса.
  8. Перед тем, как точно определиться с параметрами короба, учитывайте, что циркуляция воздуха на входе и выходе должна быть беспрепятственной. Заранее определите место для крепежных деталей и уголков.

Основные правила при выборе оптимального места для рекуператора своими руками

  • беспрепятственный подход к системе для контроля работы агрегата, замены фильтров или другого частичного ремонта;
  • учитывается, что в месте монтажа будут шумы;
  • следует рассчитать, будет ли удобно в периметре запланированной установки развести воздуховодную сеть. Кстати, чем короче воздуховоды, тем дешевле блок и меньше его производительность.

Полезная информация

Для экономии подпотолочного пространства можете установить крышный рекуператор. Конструкция находится на крыше, поэтому не создает дискомфорта хозяевам. КПД устройства достигает 65%. Низкие денежные и эксплуатационные затраты перекроют сложные монтажные процессы с применением системы креплений.

Простые способы улучшения работы прибора:

  1. Алюминиевые, пластиковые или волоконные фильтры, встроенные в каналы рекуператора, очищают поступающий воздух от пыли. Данные фрагменты быстро засоряются, поэтому регулярно меняйте элементы.
  2. Чтобы приточный вентилятор не замерзал, время от времени отключайте технику. Замерзшие пластины за счет выходящего теплого воздуха оттают.



stroybudni.ru

Рекуператор для дома своими руками и теплообменник к нему

Рекуператор для дома своими руками

Разделы статьи:

Экономия электроэнергии и других ресурсов, позволяет в несколько раз сократить оплату за ЖКХ. Про способы экономии электроэнергии можно прочитать в разделе «Полезные советы» сайта remstroisovet.ru.

В данной же статье будет рассказано про то, как сделать рекуператор для дома из труб, а также про изготовление пластинчатого теплообменника к нему.

Рекуператор для дома своими руками

Рекуператор для дома может иметь как сложную конструкцию, так и самую простую, которая доступна для изготовления своими руками многим умельцам. Если брать заводскую конструкцию рекуператора, то основным её элементом выступает теплообменник, который может быть трубчатого или пластинчатого типа.

Однако при самостоятельном изготовлении рекуператора воздуха, можно полностью отказаться от заводского теплообменника. Это существенно сократит расходы на изготовления рекуператора и на его установку.


Итак, в качестве основных частей рекуператора будут выступать воздуховоды, собранные из труб и пластинчатый теплообменник. Достоинством пластинчатых теплообменников для рекуператора воздуха, является их высокая надёжность. К тому же, КПД такого теплообменника не менее чем 65%.

Также, что не менее важно, пластинчатый теплообменник абсолютно не потребляет электроэнергии, поскольку для его работы она попросту не нужна.

Пластинчатый теплообменник своими руками

Итак, чтобы сделать пластинчатый теплообменник для рекуператора, понадобится 4 м² листовой стали. Для этих целей допускается использовать и жесть или, например текстолит. Главное это то, чтобы материал был бы не слишком толстым.

Приобретённый металл нарезается на пластины 20х30см. Очень важно чтобы пластины для будущего теплообменника, имели бы идеально ровные геометрические формы. Для нарезки пластин рекуператора, лучше использовать электрический лобзик.


Во время сборки рекуператора, между пластинами следует вкладывать дистанционные рамки, которые легко изготовить из технической пробки или её аналогов. При этом толщина дистанционных рамок должна варьироваться в пределах от 2 до 3 мм.

После сборки пластин, их помещают в короб рекуператора, материалом, для изготовления которого служит шлифованный МДФ толщиной не менее 12 мм. Обязательно изнутри, короб теплообменника оббивается тонкой жестью и утепляется посредством теплоизоляционного материала.

При изготовлении короба, следует заранее предусмотреть отверстия, к которым в дальнейшем будут подсоединяться воздуховоды.

Поделиться ссылкой на статью

remstroisovet.ru

Пластинчатый теплообменник для отопления - схема устройства. Жми!

Само понятие «теплообменник» говорит о том, что устройство осуществляет теплообмен, передавая тепловую энергию от теплоносителя.

В соответствии с областью применения пластинчатый теплообменник может иметь размер от нескольких десятков сантиметров, до нескольких метров.

Какие бывают

Пластинчатые теплообменники отличаются методом сборки:

  • разборные;
  • паяные;
  • сварные и полусварные.

Пластины выполняют главную функцию, возложенную на теплообменник. Они имеют контакт со средами, где должна изменяться температура.

Пластины внутри теплообменника имеют не плоскую, а рельефную форму. В зависимости от формы рельефа увеличивается площадь теплообмена.

Стандартные пластины имеют симметричный рельеф:

  1. Рифление под углом в 30о называют жестким. Оно обеспечивает высокий коэффициент теплообмена, но при этом теряется давление.
  2. Рифление в 120о обеспечивает меньшие потери давления, но при этом и теплообмен происходит медленнее.
  3. Пластины со средним каналом имеют рифление под углом в 60
    о
    .
  4. Существуют пластины, имеющие комбинированный рельеф, с так называемым узором елочкой, дающий разные конфигурации каналов.

В один теплообменник вставляются пластины с несколькими типами рифления каналов, что обеспечивает более высокую эффективность всего агрегата.

Подробнее о классификации и предназначении теплообменников можно узнать отсюда: https://teplo.guru/elementy/ustroistva/teploobmenniki-dlya-otopleniya.html

Внутренняя организация

Внутреннее устройство (нажмите для увеличения)

Основу разборного теплообменника составляет рама, состоящая из неподвижной и прижимной плит, задней стойки и двух направляющих планок. Верхняя направляющая соединяет заднюю стойку с неподвижной плитой.

Внутри рамной конструкции установлен пакет пластин, количество которых может варьироваться. Разборные теплообменные агрегаты позволяют устанавливать в них различное количество пластин, поэтому их рамы выпускаются разных размеров. На схеме показано, как устроен пластинчатый теплообменник, и как происходит движение теплоносителей.

В разборных пластинчатых теплообменниках пакет с пластинами располагается между неподвижной и прижимной плитами, и прижат к неподвижной плите при помощи резьбовых шпилек. Пластины отделены друг от друга пластичными, обеспечивающими герметизацию, резиновыми или полимерными уплотнителями. Уплотнительные прокладки в разных моделях теплообменников либо приклеиваются в специальных пазах, либо крепятся к пластине клипсовыми зажимами.

В паяных пластинчатых теплообменниках пластины соединяются между собой твердым припоем, благодаря чему отпадает необходимость в прижимных плитах и прокладках-уплотнителях. Припой скрепляет пластины между собой и обеспечивает герметизацию, благодаря чему повышается сопротивляемость высокому давлению, создаваемому между пластинами, и обеспечивается оптимальное КПД теплообмена. В сравнении с аналогичными разборными устройствами, паяные пластинчатые теплообменники имеют меньший вес и габариты.

В сварных пластинчатых теплообменниках между пластинами имеется большое количество точек сварки, обеспечивающих повышенную герметизацию. Такие теплообменники применяются для теплоносителей, которые химически агрессивны, или работают под давлением от 100 барелей и выше. В теплообменниках, взаимодействующих с разными по химическому составу средами, могут применяться пластины из различающихся металлов и марок сталей.

В полусварном пластинчатом теплообменнике пластины сварены попарно, а между парами пластин проложены резиновые или полимерные прокладки. Такое устройство пластин обеспечивает эффективность теплообменников, применяемых для охлаждения химически агрессивных теплоносителей.

Пластины штампуются из нержавеющих сталей, сходных с российской маркой 08Х18Н10Т. Затем полируются. Толщина стального листа в пластине зависит от рабочего давления в теплообменнике и может составлять 0,4-1 мм.

Принцип работы

К корпусу теплообменника подведены трубы (или трубки) – в зависимости от объема теплоносителя и размеров теплообменника.

Принцип работы теплообменника основывается на движении теплоносителя по каналам, образованным рельефной конструкцией пластин. При этом они не смешиваются друг с другом.

Таким образом, соприкасаясь с металлом пластины, одна среда отдает тепловую энергию, а другая, напротив, ее забирает. Благодаря этому перемещению теплоносителей происходит нагревание одного и охлаждение другого носителя тепловой энергии.

Где применяются

Пластинчатые теплообменники применяются не только как нагревательные устройства, но и для охлаждения. В качестве нагревающих приспособлений пластинчатые теплообменники применяются:

Охлаждающее свойство теплообменников применяется в самых различных областях экономики:

  • в энергетике;
  • пищевой отрасли;
  • в машино- и автомобилестроении;
  • в сталелитейной индустрии и т.д.

Теплообменники нашли широкое применение и в бытовых приборах, которыми мы пользуемся повседневно.

Испарители

Испаритель — устройство, действие которого основано на принципе теплообменника.

В нем осуществляется переход жидкости в газообразное или парообразное состояние вследствие повышения температуры. Пластинчатая конструкция испарителя, как показывает практика, более эффективна и компактна, чем кожухотрубная.

Основная сфера применения пластинчатых испарителей – холодильные установки и машины, в которых осуществляется охлаждение:

  • технологических жидкостей;
  • воздуха и газообразных смесей;
  • пара с целью конденсации воды.

Важно знать: для того чтобы кондиционер работал стабильно на протяжении многих лет, необходимо следить за чистотой испарителя. В противном случае на нем образуется «шуба» из пыли и грязи, и он перестает выполнять свою охлаждающую функцию. А это может привести к перегреву механизмов кондиционера и его выходу из строя.

Другими словами, испарители применяются в промышленных и бытовых холодильниках, кондиционерах и сплит-системах.

Рекуператор воздуха

Рекуператор воздуха устроен по принципу теплообменника. В нем встречаются два воздушных потока — приточный и вытяжной.

Они обмениваются тепловой энергией, в результате в помещение поступает прогретый и подсушенный воздух, а уходит воздух несколько охлажденный. В летнее время все происходит наоборот.

Слово рекуператор образовалось от латинского «recuperatio», и в переводе означает «возвращать». Рекуператоры воздуха бывают трубчатые, ребристые, пластинчатые.

Таким образом, рекуператор нужен там, где наблюдается большой контраст между температурами на улице и в помещении. Он позволяет снизить затраты на обогрев воздуха зимой во время отопительного сезона и на кондиционирование — летом.

Самостоятельно изготовить рекуператор воздуха поможет данная статья: https://teplo.guru/eko/rekuperator-vozduha-svoimi-rukami.html

Горячее водоснабжение

В котлах отопления и горячего водоснабжения теплообменник работает по принципу подогревателя.

Пластинчатый теплообменник значительно компактнее других видов теплообменников, и поэтому в бытовых двухконтурных котлах все чаще устанавливается именно эта конструкция.

Это небольшое устройство, не более 20 см высотой, занимает в котле немного места, но:

  • обеспечивает более высокий КПД;
  • создает меньшие потери тепла;
  • позволяет иметь возможность для промывания и реконструкции.

Следует помнить: вода, которую мы применяем в котлах ГВС и отопления жесткая, то есть содержит повышенную концентрацию извести и других соединений, откладывающихся на стенках в виде накипи.

Поэтому необходимо при монтаже оборудования устанавливать фильтры, которые уменьшат образование накипи в проточном и отопительном теплообменниках.

Особенностям банных теплообменников посвящена следующая статья: https://teplo.guru/pechi/bannye/teploobmennik-dlya-bannoi-pechi.html

Как устроен и работает пластинчатый теплообменник, смотрите в следующем видео:

Оцените статью: Поделитесь с друзьями!

teplo.guru

Пластинчатый теплообменник: принцип работы

Тепло в наши дома поступает из котельной либо от центрального теплопункта, в котором холодная вода нагревается от теплообменника, выполняющего важную роль в системах отопления и горячего водоснабжения. В индивидуальных домах теплообменник пластинчатый и вовсе считается центральным элементом системы, потому как нагревание теплоносителя выполняется именно в нем. Такие приборы могут различаться конструкцией и видом, но принцип действия — во многом общий для всех типов.

Пластинчатые теплообменники

Конструкция пластинчатого теплообменника

Назначение теплообменников всех видов — преобразовывать непрогретую жидкостную среду в нагретую (и наоборот).

Пластинчатые теплообменники обладают разборной конструкцией, состоящей из таких частей:

  • недвижимой плиты;
  • подвижной плиты;
  • комплекта пластин;
  • деталей крепежа, объединяющих две плиты в единую раму;
  • нижнего и верхнего направляющего элемента круглой формы.
Конструкция пластинчатого теплообменника

Размеры рам различных моделей могут существенно отличаться. Они зависят от мощности и тепловой отдачи подогревателя — с большим числом пластин увеличивается продуктивность прибора и, соответственно, возрастают его габариты и масса.

Пластины теплообменника

Конструкция пластинчатого теплообменника зависит от модификации устройства и может содержать различное количество пластин с закрепленными на них прокладками, герметизирующими каналы с протекающим по ним теплоносителем. Для достижения требуемой по условию герметичности плотности прилегания пар соседних прокладок одной к другой достаточно скрепления этих двух пластин с неподвижной плитой.

Нагрузки, действующие на аппарат, прилагаются главным образом на прокладки и пластины. Крепежные детали и рама, по сути, представляют собой корпуса прибора.

Рельефная окантовка пластин при сжатии гарантирует надежное крепление и дает конструкции теплообменника требуемую жесткость и прочность.

Конструкция пластин теплообменника

Прокладки закрепляются на пластинах посредством клипсового замка. Следует отметить, что прокладки при их зажатии самоцентрируются по направляющей. Утечка теплоносителя предотвращается окантовкой обшлага, создающей дополнительный барьер.

Для теплообменников производятся два типа пластин:

  • с термически мягким рифлением;
  • с термически жестким рифлением.

В деталях с мягким рифлением каналы устроены под углом 30°. Такой вид пластин отличается повышенной теплопроводимостью, но меньшей устойчивостью к давлению теплоносителя.

В частях с термически жестким рифлением при устройстве канавок соблюден угол в 60°. Этим пластинам не свойственна высокая теплопроводность, их преимущество — способность переносить высокое давление в системе.

Достижение оптимального режима теплоотдачи возможно при комбинировании пластин в теплообменнике. При этом необходимо учесть, что для эффективной работы прибора нужно, чтобы он функционировал в режиме турбулентности — теплоноситель должен перемещаться по каналам без каких-либо помех. К слову, кожухотрубный теплообменник, в котором реализована конструктивная схема «труба в трубе» — с ламинарным режимом течения жидкости.

Какая от этого выгода? При идентичных теплотехнических параметрах пластинчатый прибор обладает меньшими в несколько раз размерами.

Прокладки

К устройствам с пластинами предъявляются очень жесткие требования относительно герметичности, в связи с чем в последнее время прокладки стали выпускать из полимеров. Этиленпропилен, например, способен без проблем работать в условиях высоких температур — и воды, и пара. Но очень быстро разрушается в среде с содержанием масел и жиров.

Прикрепление прокладок к пластинам выполняется преимущественно клипсовым соединением, реже — посредством клея.

Принцип действия

Принцип работы теплообменника нельзя назвать слишком простым. Пластины развернуты одна к другой под 180°. Как правило, в одном пакете устанавливается по две пары пластин, создающих два коллекторных контура: ввода и отведения теплоносителя. При этом следует учесть, что пара расположенных с края элементов в тепловом процессе не задействуются.

На сегодняшний день производится несколько вариантов исполнения теплообменных приборов, устройство и принцип работы которых различны:

  • одноходовые;
  • многоходовые;
  • двухконтурные.
Принцип работы прибора

Как работает одноходовой аппарат? Циркуляция жидкости в нем осуществляется перманентно по всей площади в едином направлении. Кроме того, выполняется и противоток теплоносителей.

Аппараты многоходовые используются только при не слишком большой разнице между температурой подающейся жидкости и температурой обратки. Ток жидкостей при этом будет осуществляться в различных направлениях.

Двухконтурные теплообменники состоят из двух независимых контуров. При условии постоянной корректировки подачи тепла применение такого оборудования наиболее целесообразно.

Сфера применения

Существует несколько видов теплообменников, каждый из которых имеет свой принцип работы и специфику конструкции:

  • разборный;
  • паяный;
  • сварной;
  • полусварной.

Прибор разборной конструкции часто используется в теплосетях, подведенных к жилым домам и сооружениям различного назначения, в бассейнах, климатических установках и холодильниках, системах ГВС, теплопунктах.

Вид сварного пластинчатого агрегата

Теплообменники паяного вида нашли свое применение в:

  • сетях вентиляции и системах кондиционирования;
  • холодильных установках;
  • турбинных приборах и компрессорах;
  • промышленных агрегатах различного назначения.

Приборы сварные и полусварные используются в:

  • химической и фармацевтической отраслях;
  • сетях вентиляции и климат-системах;
  • пищевой промышленности;
  • тепловых насосах;
  • в системах ГВС и отопления;
  • агрегатах для охлаждения оборудования различного назначения;
  • системах рекуперации.
Самым распространенным типом теплообменников, применяющихся в индивидуальных домовладениях, считается паяный, обеспечивающий нагрев или охлаждение воды.

Технические характеристики

Прокладки и пластины, как основные элементы теплообменных устройств, изготавливаются из различных по своим свойствам и характеристикам материалов. При выборе в пользу той или иной модели решающую роль играет назначение теплообменника и область его использования.

Если остановиться сугубо на системах ГВС и теплоснабжения, то в этой области больше распространены пластины, изготовленные из нержавеющей стали, а пластичные прокладки — из особой резины EPDM либо NBR. Установка пластин из нержавейки позволяет работать с теплоносителем, прогретым до 110°С, в другом же случае устройство пластинчатого теплообменника позволяет нагревать жидкость до 170°С.

Фрагмент пластины теплообменника

При использовании теплообменников в промышленном производстве и задействовании их в технологических процессах с воздействием щелочей, кислот, масел и иных агрессивных веществ, применяются пластины из никеля, титана и других сплавов. В таких случаях устанавливаются фторкаучуковые или асбестовые прокладки.

Подбор теплообменника производится согласно расчетам, выполняемым при помощи специализированных программ. При расчетах учитываются:

  • первоначальная температура теплоносителя;
  • относительный расход прогреваемой жидкости;
  • требуемая температура нагревания;
  • расход теплоносителя.

В роли нагревающей среды, протекающей через пластинчатый испаритель, может использоваться подогретая до температуры 95 или 115°С вода, а также пар температурой до 180°С. Вид теплоносителя подбирается в зависимости от вида применяемого котла и оборудования. Размеры и количество пластин подбираются с таким расчетом, чтобы в результате получить воду с температурой, соответствующей установленным стандартам — не более 70°С.

Стоит отметить, что основной технической характеристикой, являющейся также и главным преимуществом, считаются небольшие размеры устройства и способность обеспечить достаточно большой расход.

Вариативность возможных расходов и площадей обмена у пластинчатых приборов достаточно высока. Самые компактные из них, например, от бренда Alfa Laval, обладают площадью поверхности до 1 м2, обеспечивая протекание объема жидкости до 0,2 м3/час. Самые же крупные теплообменники имеют площадь порядка 2000 м2 и расход, превышающий 3600 м3/час.

Обвязка теплообменника

Теплообменные установки преимущественно монтируются в отдельных котельных, обслуживающих многоквартирные дома, индивидуальные постройки, предприятиях промышленности, теплопунктах центральных теплосетей.

Относительно небольшие размеры и масса устройств позволяют выполнить монтаж достаточно быстро, хотя некоторые обладающие большой мощностью модели требуют постановки на фундамент.

При установке прибора необходимо соблюсти основной принцип: заливание фундаментных болтов, посредством которых теплообменник надежно фиксируется, осуществляется во всех случаях. Схема обвязки непременно предусматривает подведение теплоносителя к расположенному сверху патрубку, а к размещенному снизу штуцеру выполняется подключение обратной магистрали. Подача нагретой воды подсоединяется наоборот — к нижнему патрубку, а выход ее — к верхнему.

Пример внедрения теплообменников

В подающем теплоноситель контуре необходима установка циркуляционного насоса. Кроме основного обязательно ставится и равный ему по мощности резервный насос.

Если в ГВС предусмотрена магистраль обратного движения жидкости, то схема и принцип работы пластинчатого теплообменника несколько изменяется. Нагревшаяся вода, подающаяся по замкнутому контуру, смешивается с холодной из водопровода, и лишь затем получившаяся смесь приходит в теплообменник. Корректировка температуры на выходе осуществляется посредством электронного блока, управляющего клапаном подающей теплоноситель магистрали.

При двухступенчатой схеме используется тепловая энергия обратной магистрали, что позволяет наиболее рационально использовать имеющееся тепло и снять с котла лишнюю нагрузку.

В каждой из рассмотренных систем на входе в теплообменник обязательно должны быть установлены фильтры, благодаря которым удается избежать загрязнения системы и продлить срок ее службы.

Итоги по теме

При всех прочих преимуществах современные пластинчатые теплообменники не смогли опередить устаревшие кожухотрубчатые по единственному, но очень важному критерию. При обеспечении значительного расхода, пластинчатые приборы немного не догревают воду. Такой недостаток легко устраняется созданием небольшого запаса при подборе количества пластин и расчете их площади.

Видео по теме:

profiteplo.com

пример. Расчет площади, мощности теплообменника

Расчет теплообменника в настоящее время занимает не более пяти минут. Любая организация, производящая и продающая такое оборудование, как правило, предоставляет всем желающим свою собственную программу подбора. Ее можно бесплатно скачать с сайта компании, либо их технический специалист приедет к вам в офис и бесплатно её установит. Однако насколько корректен результат таких расчетов, можно ли ему доверять и не лукавит ли производитель, сражаясь в тендере со своими конкурентами? Проверка электронного калькулятора требует наличия знаний или как минимум понимания методики расчета современных теплообменников. Попробуем разобраться в деталях.

Что такое теплообменник

Прежде чем выполнять расчет теплообменника, давайте вспомним, а что же это за устройство такое? Тепломассообменный аппарат (он же теплообменник, он же теплообменный аппарат, или ТОА) - это устройство для передачи теплоты от одного теплоносителя другому. В процессе изменения температур теплоносителей меняются также их плотности и, соответственно, массовые показатели веществ. Именно поэтому такие процессы называют тепломассообменными.

Виды теплообмена

Теперь поговорим о видах теплообмена - их всего три. Радиационный - передача теплоты за счет излучения. Как пример, можно вспомнить принятие солнечных ванн на пляже в теплый летний день. И такие теплообменники даже можно встретить на рынке (ламповые нагреватели воздуха). Однако чаще всего для обогрева жилых помещений, комнат в квартире мы покупаем масляные или электрические радиаторы. Это пример другого типа теплообмена - конвекционного. Конвекция бывает естественной, вынужденной (вытяжка, а в коробе стоит рекуператор) или с механическим побуждением (с вентилятором, например). Последний тип намного эффективнее.

Однако самый эффективный способ передачи теплоты - это теплопроводность, или, как её ещё называют, кондукция (от англ. conduction - "проводимость"). Любой инженер, собирающийся провести тепловой расчет теплообменника, прежде всего задумывается о том, чтобы выбрать эффективное оборудование в минимальных габаритах. И достичь этого удаётся именно за счет теплопроводности. Примером тому служат самые эффективные на сегодняшний день ТОА - пластинчатые теплообменники. Пластинчатый ТОА, согласно определению, - это теплообменный аппарат, передающий теплоту от одного теплоносителя другому через разделяющую их стенку. Максимально возможная площадь контакта между двумя средами в совокупности с верно подобранными материалами, профилем пластин и их толщиной позволяет минимизировать размеры выбираемого оборудования при сохранении исходных технических характеристик, необходимых в технологическом процессе.

Типы теплообменников

Прежде чем проводить расчет теплообменника, определяются с его типом. Все ТОА можно разделить на две большие группы: рекуперативные и регенеративные теплообменники. Основное отличие между ними заключается в следующем: в рекуперативных ТОА теплообмен происходит через разделяющую два теплоносителя стенку, а в регенеративных две среды имеют непосредственный контакт между собой, часто смешиваясь и требуя последующего разделения в специальных сепараторах. Регенеративные теплообменники подразделяются на смесительные и на теплообменники с насадкой (стационарной, падающей или промежуточной). Грубо говоря, ведро с горячей водой, выставленное на мороз, или стакан с горячим чаем, поставленный остужаться в холодильник (никогда так не делайте!) - это и есть пример такого смесительного ТОА. А наливая чай в блюдце и остужая его таким образом, мы получаем пример регенеративного теплообменника с насадкой (блюдце в этом примере играет роль насадки), которая сначала контактирует с окружающим воздухом и принимает его температуру, а потом отбирает часть теплоты от налитого в него горячего чая, стремясь привести обе среды в режим теплового равновесия. Однако, как мы уже выяснили ранее, эффективнее использовать теплопроводность для передачи теплоты от одной среды к другой, поэтому более полезные в плане теплопередачи (и широко используемые) ТОА на сегодняшний день – конечно же, рекуперативные.

Тепловой и конструктивный расчет

Любой расчет рекуперативного теплообменника можно провести на основе результатов теплового, гидравлического и прочностного вычислений. Они являются основополагающими, обязательны при проектировании нового оборудования и ложатся в основу методики расчета последующих моделей линейки однотипных аппаратов. Главной задачей теплового расчета ТОА является определение необходимой площади теплообменной поверхности для устойчивой работы теплообменника и поддержания необходимых параметров сред на выходе. Довольно часто при таких расчетах инженеры задаются произвольными значениями массогабаритных характеристик будущего оборудования (материал, диаметр труб, размеры пластин, геометрия пучка, тип и материал оребрения и др.), поэтому после теплового обычно проводят конструктивный расчет теплообменника. Ведь если на первой стадии инженер посчитал необходимую площадь поверхности при заданном диаметре трубы, например, 60 мм, и длина теплообменника при этом получилась порядка шестидесяти метров, то логичнее предположить переход к многоходовому теплообменнику, либо к кожухотрубному типу, либо увеличить диаметр трубок.

Гидравлический расчет

Гидравлические или гидромеханические, а также аэродинамические расчеты проводят с целью определить и оптимизировать гидравлические (аэродинамические) потери давления в теплообменнике, а также подсчитать энергетические затраты на их преодоление. Расчет любого тракта, канала или трубы для прохода теплоносителя ставит перед человеком первостепенную задачу - интенсифицировать процесс теплообмена на данном участке. То есть одна среда должна передать, а другая получить как можно больше тепла на минимальном промежутке его течения. Для этого часто применяют дополнительную поверхность теплообмена, в виде развитого оребрения поверхности (для отрыва пограничного ламинарного подслоя и усиления турбулизации потока). Оптимальное балансовое соотношение гидравлических потерь, площади теплообменной поверхности, массогабаритных характеристик и снимаемой тепловой мощности является результатом совокупности теплового, гидравлического и конструктивного расчета ТОА.

Поверочный расчет

Поверочный расчет теплообменника проводят в случае, когда надо заложить запас по мощности либо по площади теплообменной поверхности. Поверхность резервируют по разным причинам и в разных ситуациях: если так требуется по техзаданию, если производитель решает внести дополнительный запас для того, чтобы быть точно уверенным в том, что такой теплообменник выйдет на режим, и минимизировать ошибки, допущенные при расчетах. В каких-то случаях резервирование требуется для округления результатов конструктивных размеров, в других же (испарители, экономайзеры) в расчет мощности теплообменника специально вводят запас по поверхности, на загрязнение компрессорным маслом, присутствующим в холодильном контуре. Да и низкое качество воды необходимо принимать во внимание. Через некоторое время бесперебойной работы теплообменников, особенно при высоких температурах, накипь оседает на теплообменной поверхности аппарата, снижая коэффициент теплопередачи и неминуемо приводя к паразитному снижению теплосъёма. Поэтому грамотный инженер, проводя расчет теплообменника «вода-вода», уделяет особое внимание дополнительному резервированию поверхности теплообмена. Поверочный расчет также проводят для того, чтобы посмотреть, как выбранное оборудование будет работать на иных, вторичных режимах. Например, в центральных кондиционерах (приточных установках) калориферы первого и второго подогрева, использующиеся в холодный период года, нередко задействуют и летом для охлаждения поступающего воздуха, подавая в трубки воздушного теплообменника холодную воду. Как они будут функционировать и какие будут выдавать параметры, позволяет оценить поверочный расчет.

Исследовательские расчеты

Исследовательские расчеты ТОА проводят на основе полученных результатов теплового и поверочного расчетов. Они необходимы, как правило, для внесения последних поправок в конструкцию проектируемого аппарата. Их также проводят с целью корректировки каких-либо уравнений, закладываемых в реализуемой расчетной модели ТОА, полученной эмпирическим путём (по экспериментальным данным). Выполнение исследовательских расчетов предполагает проведение десятков, а иногда и сотен вычислений по специальному плану, разработанному и внедрённому на производстве согласно математической теории планирования экспериментов. По результатам выявляют влияние различных условий и физических величин на показатели эффективности ТОА.

Другие расчеты

Выполняя расчет площади теплообменника, не стоит забывать и о сопротивлении материалов. Прочностные расчеты ТОА включают проверку проектируемого агрегата на напряжение, на кручение, на прикладывание максимально допустимых рабочих моментов к деталям и узлам будущего теплообменника. При минимальных габаритах изделие должно быть прочным, устойчивым и гарантировать безопасную работу в различных, даже самых напряженных условиях эксплуатации.

Динамический расчет проводится с целью определения различных характеристик теплообменного аппарата на переменных режимах его работы.

Типы конструкции теплообменников

Рекуперативные ТОА по конструкции можно разделить на достаточно большое количество групп. Самые известные и широко применяемые – это пластинчатые теплообменники, воздушные (трубчатые оребрённые), кожухотрубные, теплообменники "труба в трубе", кожухо-пластинчатые и другие. Существуют и более экзотические и узкоспециализированные типы, например, спиральные (теплообменник-улитка) или скребковые, которые работают с вязкими или неньютоновскими жидкостями, а также многие другие типы.

Теплообменники «труба в трубе»

Рассмотрим самый простой расчет теплообменника «труба в трубе». Конструктивно данный тип ТОА максимально упрощен. Во внутреннюю трубу аппарата пускают, как правило, горячий теплоноситель, для минимизации потерь, а в кожух, или в наружную трубу, запускают охлаждающий теплоноситель. Задача инженера в этом случае сводится к определению длины такого теплообменника исходя из рассчитанной площади теплообменной поверхности и заданных диаметров.

Здесь стоит добавить, что в термодинамике вводится понятие идеального теплообменника, то есть аппарата бесконечной длины, где теплоносители работают в противотоке, и между ними полностью срабатывается температурный напор. Конструкция «труба в трубе» ближе всего удовлетворяет этим требованиям. И если запустить теплоносители в противотоке, то это будет так называемый «реальный противоток» (а не перекрёстный, как в пластинчатых ТОА). Температурный напор максимально эффективно срабатывается при такой организации движения. Однако выполняя расчет теплообменника «труба в трубе», следует быть реалистами и не забывать о логистической составляющей, а также об удобстве монтажа. Длина еврофуры - 13,5 метров, да и не все технические помещения приспособлены к заносу и монтажу оборудования такой длины.

Кожухотрубные теплообменники

Поэтому очень часто расчет такого аппарата плавно перетекает в расчет кожухотрубного теплообменника. Это аппарат, в котором пучок труб находится в едином корпусе (кожухе), омываемым различными теплоносителями, в зависимости от назначения оборудования. В конденсаторах, например, хладагент запускают в кожух, а воду – в трубки. При таком способе движения сред удобнее и эффективнее контролировать работу аппарата. В испарителях, наоборот, хладагент кипит в трубках, а они при этом омываются охлаждаемой жидкостью (водой, рассолами, гликолями и др.). Поэтому расчет кожухотрубного теплообменника сводится к минимизации габаритов оборудования. Играя при этом диаметром кожуха, диаметром и количеством внутренних труб и длиной аппарата, инженер выходит на расчетное значение площади теплообменной поверхности.

Воздушные теплообменники

Один из самых распространённых на сегодняшний день теплообменных аппаратов – это трубчатые оребрённые теплообменники. Их ещё называют змеевиками. Где их только не устанавливают, начиная от фанкойлов (от англ. fan + coil, т.е. "вентилятор" + "змеевик") во внутренних блоках сплит-систем и заканчивая гигантскими рекуператорами дымовых газов (отбор теплоты от горячего дымового газа и передача его на нужды отопления) в котельных установках на ТЭЦ. Вот почему расчет змеевикового теплообменника зависит от того применения, куда этот теплообменник пойдёт в эксплуатацию. Промышленные воздухоохладители (ВОПы), устанавливаемые в камерах шоковой заморозки мяса, в морозильных камерах низких температур и на других объектах пищевого холодоснабжения, требуют определённых конструктивных особенностей в своём исполнении. Расстояния между ламелями (оребрением) должно быть максимальным, для увеличения времени непрерывной работы между циклами оттайки. Испарители для ЦОДов (центров обработки данных), наоборот, делают как можно более компактными, зажимая межламельные расстояния до минимума. Такие теплообменники работают в «чистых зонах», окруженные фильтрами тонкой очистки (вплоть до класса HEPA), поэтому такой расчет трубчатого теплообменника проводят с упором на минимизацию габаритов.

Пластинчатые теплообменники

В настоящее время стабильным спросом пользуются пластинчатые теплообменники. По своему конструктивному исполнению они бывают полностью разборными и полусварными, меднопаяными и никельпаяными, сварными и спаянными диффузионным методом (без припоя). Тепловой расчет пластинчатого теплообменника достаточно гибок и не представляет особой сложности для инженера. В процессе подбора можно играть типом пластин, глубиной штамповки каналов, типом оребрения, толщиной стали, разными материалами, а самое главное – многочисленными типоразмерными моделями аппаратов разных габаритов. Такие теплообменники бывают низкими и широкими (для парового нагрева воды) или высокими и узкими (разделительные теплообменники для систем кондиционирования). Их часто используют и под среды с фазовым переходом, то есть в качестве конденсаторов, испарителей, пароохладителей, предконденсаторов и т. д. Выполнить тепловой расчет теплообменника, работающего по двухфазной схеме, немного сложнее, чем теплообменника типа «жидкость-жидкость», однако для опытного инженера эта задача разрешима и не представляет особой сложности. Для облегчения таких расчетов современные проектировщики используют инженерные компьютерные базы, где можно найти много нужной информации, в том числе диаграммы состояния любого хладагента в любой развёртке, например, программу CoolPack.

Пример расчета теплообменника

Основной целью проведения расчета является вычисление необходимой площади теплообменной поверхности. Тепловая (холодильная) мощность обычно задается в техзадании, однако в нашем примере мы рассчитаем и её, для, скажем так, проверки самого техзадания. Иногда бывает и так, что в исходные данные может закрасться ошибка. Одна из задач грамотного инженера - эту ошибку найти и исправить. В качестве примера выполним расчет пластинчатого теплообменника типа «жидкость - жидкость». Пусть это будет разделитель контуров (pressure breaker) в высотном здании. Для того чтобы разгрузить оборудование по давлению, при строительстве небоскрёбов очень часто применяется такой подход. С одной стороны теплообменника имеем воду с температурой входа Твх1 = 14 ᵒС и выхода Твых1 = 9 ᵒС, и с расходом G1 = 14 500 кг/ч, а с другой - тоже воду, но только вот с такими параметрами: Твх2 = 8 ᵒС, Твых2 = 12 ᵒС, G2 = 18 125 кг/ч.

Необходимую мощность (Q0) рассчитаем по формуле теплового баланса (см. рис. выше, формула 7.1), где Ср – удельная теплоёмкость (табличное значение). Для простоты расчетов возьмём приведённое значение теплоёмкости Срв = 4,187 [кДж/кг*ᵒС]. Считаем:

Q1 = 14 500 * (14 - 9) * 4,187 = 303557,5 [кДж/ч] = 84321,53 Вт = 84,3 кВт – по первой стороне и

Q2 = 18 125 * (12 - 8) * 4,187 = 303557,5 [кДж/ч] = 84321,53 Вт = 84,3 кВт – по второй стороне.

Обратите внимание, что, согласно формуле (7.1), Q0 = Q1 = Q2, независимо от того, по какой стороне проведён расчет.

Далее по основному уравнению теплопередачи (7.2) находим необходимую площадь поверхности (7.2.1), где k – коэффициент теплопередачи (принимаем равным 6350 [Вт/м2]), а ΔТср.лог. – среднелогарифмический температурный напор, считаемый по формуле (7.3):

ΔТ ср.лог. = (2 - 1) / ln (2 / 1) = 1 / ln2 = 1 / 0,6931 = 1,4428;

F то = 84321 / 6350 * 1,4428 = 9,2 м2.

В случае когда коэффициент теплопередачи неизвестен, расчет пластинчатого теплообменника немного усложняется. По формуле (7.4) считаем критерий Рейнольдса, где ρ – плотность, [кг/м3], η – динамическая вязкость, [Н*с/м2], v – скорость среды в канале, [м/с], d см – смачиваемый диаметр канала [м].

По таблице ищем необходимое нам значение критерия Прандтля [Pr] и по формуле (7.5) получаем критерий Нуссельта, где n = 0,4 – в условиях нагрева жидкости, и n = 0,3 – в условиях охлаждения жидкости.

Далее по формуле (7.6) вычисляется коэффициент теплоотдачи от каждого теплоносителя к стенке, а по формуле (7.7) считаем коэффициент теплопередачи, который и подставляем в формулу (7.2.1) для вычисления площади теплообменной поверхности.

В указанных формулах λ – коэффициент теплопроводности, ϭ – толщина стенки канала, α1 и α2 – коэффициенты теплоотдачи от каждого из теплоносителей стенке.

fb.ru

принцип работы и схема, виды и устройство, как работает конструкция для отопления

Популярными на сегодняшний день являются теплообменники, которые используются достаточно часто во многих отрасляхТеплообменники – простые по устройству приборы, которые часто включают в схемы всевозможного промышленного оборудования. Очень часто они используются и в бытовых охладительных системах. Как видно даже по названию, предназначены данные приборы для отбора тепла из наличия одной среды и транспортировке его в другую.

Рассмотрим устройство теплообменника

В специализированном оборудовании всегда используются разные виды теплообменников: витые, кожухотрубные, графитовые и спиральные. Однако наиболее экономичным, популярным и эффективным видом считается пластинчатый теплообменник. Обычно его принцип действия основан на непосредственной передаче тепла сквозь металл. Габариты его при этом невелики, а стоимость не особенно высока. Используют их в оборудовании различного назначения.

Пластинчатый теплообменник, состоит из таких основных элементов:

  • Передняя неподвижная плита с патрубками, через которую в теплообменник попадают две рабочие среды;
  • Верхняя и нижняя направляющая штанги, которые необходимы для обеспечения жесткости конструкции;
  • Задняя опора устройства так же отвечает за жесткость;
  • Задняя подвижная плита;
  • Пластины;
  • Уплотнительные прокладки, которые служат разграничителями между пластинами.

Патрубки в таких теплообменниках иногда устанавливаются не лишь на передней панели, но и на задней. В каждом имеющемся случае все зависит от назначения прибора и варианта его включения в общую систему. При сборке теплообменников имеют значение также разного рода материалы, которые играют важную роль для правильной работы устройства.

Пластинчатый теплообменник: принцип работы и схема устройства

Современный пластинчатый прибор – теплообменник функционирует по перекрестной схеме. В нем секции поочередно заполняются то охлаждаемой, то нагреваемой, средой. Теплообмен между при этом происходит через пластины. В процессе работы заполнение секций устройства обеспечивают разной формы прокладки-уплотнители, способные задерживать или пропускать среду. Теплообменники устроены так, что массы в них перемещаются друг другу навстречу, и при этом, нагревающая среда подается сверху, после чего выходит в патрубок внизу, а уже охлаждаемая. По такому принципу функционируют все пластинчатые устройства.

При выборе теплообменника следует обращать внимание на принцип его работы, мощность и материал, из которого изготовлены пластины

Принцип работы пластинчатого прибора, предназначенного для ГВС такой же, как у видов, предназначенных для охлаждения и кондиционирования. Модели для ГВС будут содержать воду, другие устройства такого вида будут проводить обмен маслами, либо же газами.

При выборе для себя пластинчатых теплообменников покупатели обычно обращают внимание на следующие показатели:

  • Мощность;
  • Материал, из которого изготовлены пластины;
  • Расход;
  • Вид уплотнителя;
  • Средняя рабочая температура;
  • Максимальное рабочее давление.

Все эти параметры очень важны, так, как обеспечивают правильную и бесперебойную работу устройства.

Схема теплообменника: как работает подогреватель

Основу разборного теплообменника обеспечивает рама, состоящая из прижимной и неподвижной плит, направляющих планок и задней стойки. Верхняя направляющая скрепляет заднюю стойку с плитой. Внутри рамы установлен комплекс пластин с различным во всех устройствах количеством пластин.

Разборные теплообменники позволяют устанавливать в своей схеме различное количество пластин, и ввиду этого их рамы выпускают разных размеров.

Особенности подогревателя:

  • В разборных теплообменниках пакет с пластинами находится между прижимной и неподвижной плитами, и крепко прижат с помощью резьбовых шпилек к неподвижной плите;
  • Пластины разделены между собой с помощью пластичных, обеспечивающих герметичность, резиновых или полимерных уплотнителей;
  • Уплотнительные прокладки во всех моделях теплообменников или же приклеиваются в предназначенных для этого пазах, или же прикрепляются к пластине зажимами;
  • Если же теплообменник паяный, то пластины между собой соединены прочным припоем, который скрепляет пластины друг с другом и обеспечивает прибору герметизацию.

Благодаря этому повышается сопротивляемость давлению, которое создается между пластинами, и обеспечивает оптимальное КПД теплообмена.

Конструкция пластинчатого теплообменника:

Теплообменная пластина имеет очень высокоэффективную теплопередачу благодаря своей оптимальной конструкции. Принцип «Off-Set» дает возможность создания как ассиметричных, так и симметричных каналов. Теплоносители оптимально распределяет специальный рельеф распределительной области. 
Двойное уплотнение с кантом полностью предотвращает вероятность смешения сред на участках проходных отверстий. Специальный окантовочный рельеф пластинок обеспечивает нужную жесткость пакета пластинок и стабильную фиксацию уплотнения при давлении на них в процессе пользования теплообменниками.

Рифление пластин бывает разным. Как правило, это термически жесткое, с углом 30 градусов, или же термически мягкое, с углом 60 градусов, которое характеризуется пониженным коэффициентом теплопередачи, и меньшей потерей давления.

Рассчитываемая программа устройства подбирает комбинацию пластинок, которая позволит обеспечить нужную теплопередачу, и, одновременно уложиться в заданные показатели давления.

У нас теплообменники изготавливают, согласно ГОСТ 55118-83. Данные устройства могут выдерживать до 1,6 Мпа давление. В рабочей среде у отечественных устройств температура может колебаться в размерах -30 – +180 С°.

Ознакомиться с подробной схемой конструкции пластинчатого теплообменника можно самостоятельно в интернете

Область применения пластинчатого теплообменника:

  • Механическое производство, где необходимо охлаждать смазочные жидкости, трансмиссионные масла и гидравлические смеси;
  • Поршневые и турбинные двигатели;
  • Энергетические станции;
  • Компрессоры;
  • Судоходство, где теплообменники применяют для центрового охлаждения;
  • Машиностроение и металлообработка;
  • Легкая промышленность;

Кроме того, пластинчатые теплообменники применяют во всех сферах деятельности, где пользуются системами отопления и кондиционирования. Теплообменник может быть и воздушный, называется он рекуператор.

Какие бывают теплообменники

Теплообменные пластины всегда имеют идентичную конструкцию, как и материал, из которого они сделаны. Сложные сплавы выбирают для того, чтобы иметь возможность противостоять вредному действию от теплообменной среды. В основном, титановые сплавы используются для пластин теплообменников на судах, где в качестве вредоносной среды идет морская вода.

От вида теплообменной среды и условий работы будет зависеть и материал уплотнителей. Его чаще всего делают из полимера, основанного на каучуке.

Пластинчатые теплообменники могут отличаться методом сборки.

Методы сборки пластинчатых теплообменников бывают:

  • Паяные;
  • Разборные;
  • Полусварные и сварные.

Пластинки в них выполняют основную функцию, которая лежит на теплообменнике. Они так же имеют контакт со средами, в которых должна постоянно изменяться температура. Пластинки внутри самого теплообменника имеют рельефную форму. Площадь теплообменника увеличивается в зависимости от формы самого рельефа. Стандартные пластины должны иметь симметричный рельеф. Если платины рифленые под углом в 30 градусов, то они называют жестким. Такое рифление обеспечивает высокий КПД теплообменника, однако в результате этого теряется давление. Применяемое рифление в 120 градусов обеспечивает потери давления меньшие, однако, при этом, и сам теплообмен происходит слабее. Пластины со средне выполненным каналом имеют рифление равное 60градусам. Кроме этого, существуют пластины, которые имеют комбинированный рельеф, называемый елочкой. Он дает дающий различные конфигурации каналов. Для работы, в один теплообменник иногда вставляют пластины с несколькими видами рифления каналов. Это что обеспечивает повышенную эффективность работы агрегата.

Устройство теплообменника (видео)

Большинство жителей городов пользуются горячей водой и централизованным отоплением, однако никто даже не думает о том, откуда они берутся. А тепло в каждый многоквартирный дом подходит от котельной или же одного центрального теплового оборудования, в котором холодная вода, при прохождении через испаритель-теплообменник превращается в горячую.


Добавить комментарий

teploclass.ru

Теплообменник - это... Что такое Теплообменник?

Простейший теплообменник типа «труба в трубе»

Теплообме́нник, теплообме́нный аппарат — устройство, в котором осуществляется передача теплоты от горячего теплоносителя к холодному (нагреваемому). Теплоносителями могут быть газы, пары, жидкости. В зависимости от назначения теплообменные аппараты используют как нагреватели и как охладители. Применяется в технологических процессах нефтеперерабатывающей, нефтехимической, химической, газовой и других отраслях промышленности, в энергетике и коммунальном хозяйстве.

Основные понятия, касающиеся теплопередающих устройств

Теплообменник – устройство для передачи тепла от одного теплоносителя к другому. Теплообменный аппарат – автономное теплопередающее устройство, состоящее из теплопередающего элемента (элементов) и полостей для движения теплоносителей. Имеет устройства для входа и выхода теплоносителей. Число, состав и схема соединения элементов в аппарате могут быть любыми. Система теплообменников – совокупность теплообменников, расположенных в ряд, параллельно либо в любой другой последовательности. Теплообменники в системе отличаются составом теплоносителей.

Редактирование: К удалению. Этот раздел содержит второстепенные понятия и ничего нового к остальным разделам не добавляет.

Основные типы

Теплообменники по способу передачи теплоты подразделяют на поверхностные, где отсутствует непосредственный контакт теплоносителей, а передача тепла происходит через твёрдую стенку, и смесительные, где теплоносители контактируют непосредственно. Поверхностные теплообменники в свою очередь подразделяются на рекуперативные и регенеративные, в зависимости от одновременного или поочерёдного контакта теплоносителей с разделяющей их стенкой[1].

Поверхностные теплообменники

Рекуперативные теплообменники

Рекуперат́ивный теплообме́нник — теплообменник, в котором горячий и холодный теплоносители движутся в разных каналах, в стенке между которыми происходит теплообмен. При неизменных условиях параметры теплоносителей на входе и в любом из сечений каналов, остаются неизменными, независимыми от времени, т.е процесс теплопередачи имеет стационарный характер. Поэтому рекуперативные теплообменники называют также стационарными.

В зависимости от направления движения теплоносителей рекуперативные теплообменники могут быть прямоточными при параллельном движении в одном направлении, противоточными при параллельном встречном движении, а также перекрестноточными при взаимно перпендикулярном движении двух взаимодействующих сред.

Часто под рекуперативным теплообменником ошибочно понимается рекуперативный противоточный теплообменник. (В нём вместо уравнивания температурных потенциалов происходит их обмен, потери могут составлять до 30 %).

Теплообменник для газовой промышленности

Наиболее распространённые в промышленности рекуперативные теплообменники[2]:

  • Кожухотрубные теплообменники,
  • Элементные (секционные) теплообменники,
  • Двухтрубные теплообменники типа "труба в трубе"[3],
  • Витые теплообменники,
  • Погружные теплообменники,
  • Оросительные теплообменники,
  • Ребристые теплообменники,
  • Спиральные теплообменники,
  • Пластинчатые теплообменники,
  • Пластинчато-ребристые теплообменники,
  • Графитовые теплообменники.
  • фторопласт-Тефлоновые теплообменники.
Регенеративные теплообменники

В регенеративных поверхностных теплообменниках теплоносители (горячий и холодный) контактируют с твердой стенкой поочерёдно. Теплота накапливается в стенке при контакте с горячим теплоносителем и отдаётся при контакте с холодным.[1]

Смесительные теплообменники

Смеси́тельный теплообме́нник (или конта́ктный теплообме́нник) — теплообменник, предназначенный для осуществления тепло- и массообменных процессов путем прямого смешивания сред (в отличие от поверхностных теплообменников). Наиболее распространены пароводяные струйные аппараты ПСА — теплообменники струйного типа, использующие в своей основе струйный инжектор[4]. Смесительные теплообменники конструктивно устроены проще, нежели поверхностные, более полно используют тепло. Однако, пригодны они лишь в случаях, когда по технологическим условиям произ­водства допустимо смешение рабочих сред.

Большое применение контактные теплообменники находят в установках утилизации тепла дымовых газов, отработанного пара и т.п[5].

Конструкции теплообменников

Конструкционно теплообменники подразделяют на:

  • объемные одна из сред имеет значительный объем в теплообменнике, одна среда сосредоточена в баке большого объема, вторая протекает через змеевик;
  • скоростные (кожухотрубные) среды движутся с достаточно большой скоростью для увеличения коэффициента теплоотдачи, много мелких трубочек находятся в одной большой (кожух), среды движутся одна в межтрубном пространстве, другая внутри трубочек, обычно в трубочках находится более «грязная» среда, так как их легче чистить;
  • пластинчатый теплообменник состоит из набора пластин, среды движутся между пластинами, прост в изготовлении (штампованные пластины складываются с прокладками между ними), легко модифицируется (добавляются или убираются пластины), хорошая эффективность (большая площадь контакта через пластины).
  • пластинчато-ребристый теплообменник в отличие от пластинчатого теплообменника состоит из системы разделительных пластин, между которыми находятся ребристые поверхности - насадки, присоединенные к пластинам методом пайки в вакууме.

С боков каналы ограничиваются брусками, поддерживающими пластины и образующие закрытые каналы. Таким образом, в основу пластинчато-ребристого теплообменника положена жесткая и прочная цельнопаянная теплообменная матрица, построенная по сотовому принципу и работоспособная (даже в исполнении из алюминиевых сплавов) до давления 100 атм. и выше. В пластинчато-ребристых теплообменниках существует большое количество насадок, что позволяет подбирать геометрию каналов со стороны каждого из потоков, реализовывая оптимальную конструкцию. Основные достоинства данного типа теплообменников - компактность (до 4000 м2/м3) и легкость. Последнее обеспечивается за счет применения при изготовлении теплообменной матрицы пакета из тонколистовых деталей из легких алюминиевых сплавов.

  • Оребренные пластинчатые теплообменники, ОПТ состоит из тонкостенных оребренных панелей, изготовленных методом высокочастотной сварки, соединенные поочередно с поворотом на 90 градусов. За счет конструкции, а также многообразия используемых материалов достигаются высокие температуры греющих сред, небольшие сопротивления, высокие показатели отношения телепередающей площади к массе теплообменника, длительный срок службы, низкая стоимость и др. Часто используются для утилизации тепла отходящих газов.
  • спиральный теплообменник представляет собой два спиральных канала, навитых из рулонного материала вокруг центральной разде­лительной перегородки — керна, среды движутся по каналам. Одно из назначений спиральных тепло­обменников — нагревание и охлаждение высоковязких жидкостей.

При выборе между пластинчатыми и кожухотрубными теплообменниками предпочтительными являются пластинчатые, коэффициент теплопередачи которых более чем в три раза больше, чем у традиционных кожухотрубных.[2] Кроме того, коэффициент полезного действия пластинчатых теплообменников составляет 90-95 %, а занимаемая площадь в 3-4 раза меньше, чем для кожухотрубных.[6].

В то же время пластинчатые теплообменники, оснащённые средствами автоматики, регулирования и надёжной арматурой, позволяют снизить количество теплоносителя, идущего на нагрев воды. А значит, и диаметры трубопроводов и запорно-регулирующей арматуры, снизить нагрузки на сетевые насосы и, соответственно, уменьшить потребление электроэнергии и др.

Но на данный момент стали появляться современные кожухотрубные теплообменники, оснащенные трубками, профилированными таким образом, чтобы рост гидравлического сопротивления ненамного превышал рост теплоотдачи вследствие применения турбулизаторов потока. Это достигается накаткой на внешней поверхности трубы кольцевых или винтообразных канавок, вследствие образования которых на внутренней поверхности трубы образуются плавно очерченные выступы небольшой высоты, интенсифицирующие теплоотдачу в трубах. Данная технология, в дополнение к таким важным показателям как высокая надежность (также при гидравлическом ударе) и меньшая стоимость, дает отечественному кожухотрубному оборудованию дополнительные преимущества по сравнению с иностранными пластинчатыми аналогами. Но это преимущество исчезает при первой промывке такого теплообменника, т.к. очистка внутренних поверхностей трубок с винтообразными канавками практически невозможна и ведет к быстрому выходу такого теплообменника из строя.

Серьёзной проблемой является коррозия теплообменников. Для защиты от коррозии применяется газотермическое напыление трубных досок, труб пароперегревателей. Это относится не только к кожухотрубным теплообменникам, изготовленным из углеродистой стали. Пластины пластинчатых теплообменников в подавляющем большинстве изготавливаются из коррозионно-стойкой жаропрочной стали, но несмотря на этот факт также подвержены питтинговой коррозии при использовании неингибированных сред.

См. также

Примечания

  1. 1 2 Атомная энергетика. Словарь терминов
  2. 1 2 Теплообменники
  3. Технология Перекачиваемого Льда. Архивировано из первоисточника 14 февраля 2012. Проверено Апрель 3, 2011.
  4. Смесительный теплообменник.//Промышленная теплоэнергетика и теплотехника. Справочник. (Теплоэнергетика и теплотехника; Кн.4). Под общей ред. Клименко А. В. и Зорина В. М. М.: Издательство МЭИ, 2004. — 632 с.
  5. Н.Ф.Свиридов, Р.Н.Свиридов, И.Н.Ивуков, Б.Л.Терк Установка утилизации тепла дымовых газов // «Энергосбережение» №4/2002.
  6. Энергобезопасность в документах и фактах №2, 2006

Литература

  • В. Н. Луканина. Теплотехника. — М., «Высшая школа», 2002 г.

Ссылки

dikc.academic.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о