Теплопроводность теплоизоляционных материалов – Теплоизоляционные материалы — характеристики, свойства, применение | Строительный справочник | материалы — конструкции

Содержание

Теплоизоляционные материалы — характеристики, свойства, применение | Строительный справочник | материалы — конструкции

В решении проблем энергосбережения, а также для повышения комфортности помещений немаловажную роль играет утепление ограждающих конструкций зданий: наружных стен, перекрытий, покрытия и т.д.

Применительно к существующим зданиям, проще снизить их энергопотребление за счёт утепления покрытия (кровли) при ремонте. Новые нормы значительно повысили требования к величине термического сопротивления покрытий и перекрытий, в соответствии с которыми новое строительство, модернизация и капитальный ремонт зданий не могут осуществляться без применения эффективных теплоизоляционных материалов.

Применение тепловой изоляции при устройстве мастичных и рулонных кровель для плоских покрытий снаружи здания в какой-то мере позволяет снизить затраты на отопление помещений за счёт снижения теплового потока вследствие увеличения термического сопротивления одного из ограждающих конструкций — покрытия. Кроме того, тепловая изоляция для плоских железобетонных покрытий:

• защищает покрытие от воздействий переменных температур наружного воздуха;
• выравнивает температурные колебания основного массива покрытия, благодаря чему исключается появление трещин, вследствие неравномерных температурных колебаний;
• сдвигает точку росы во внешний теплоизоляционный слой, что исключает отсыревание бетонного или железобетонного массива покрытия;
• формируется более благоприятный микроклимат помещения за счёт повышения температуры внутренней поверхности покрытия (потолка) и уменьшения перепада температур внутреннего воздуха и поверхности потолка, в том числе и чердачных помещений.

Применение утепления для скатных крыш позволяет превратить чердачное помещение в жилое, что увеличивает полезную площадь жилья. А утепление кровли из металлического профилированного листа предотвращает появление конденсата на его поверхности в холодное время года, что очень важно, например, для складских помещений.

Следует отметить, что физико-технические свойства используемых теплоизоляционных материалов оказывают определяющее влияние на теплотехническую эффективность и эксплуатационную надёжность конструкций.

При выборе теплоизоляционных материалов следует учитывать, что на долговечность и стабильность теплофизических и физико-механических свойств теплоизоляционных материалов, входящих в конструкцию ограждения, оказывают существенное влияние многие эксплуатационные факторы. Это, в первую очередь, знакопеременный (зима-лето) температурно-влажностный режим «работы» конструкции и возможность капиллярного и диффузионного увлажнения теплоизоляционного материала, а также воздействие ветровых, снеговых нагрузок, механические нагрузки от хождения людей, перемещения транспорта и механизмов по поверхности кровли производственных зданий.

Поскольку теплоизоляционные материалы, применяемые в строительстве, «работают» в достаточно жёстких условиях, к ним предъявляются повышенные требования.

Прежде всего, обратите внимание на коэффициент теплопроводности, Вт/(м*К), материала. Он должен быть таков, чтобы материал в условиях эксплуатации мог обеспечить требуемое сопротивление теплопередачи в конструкции, при минимально возможной толщине теплоизоляционного слоя. Следовательно, предпочтение надо отдавать высокоэффективным материалам.

Кроме того, теплоизоляционные материалы должны обладать морозостойкостью (не менее 20—25 циклов), чтобы сохранять свои свойства без существенного снижения прочностных и теплоизоляционных характеристик до капитального ремонта здания, а так же быть водостойкими, биостойкими, не выделять в процессе эксплуатации токсичных и неприятно пахнущих веществ.

Плотность материала, применяемого для утепления, должна быть не более 250 кг/м3 , иначе существенно возрастают нагрузки на конструкции, что нужно учитывать при выборе материалов для ремонта ветхих строений.

 

Характеристики теплоизоляционных материалов

Теплоизоляционные материалы обладают рядом теплотехнических свойств, знание которых необходимо для правильного выбора материала конструкции и проведения теплотехнических расчётов. Точность последних в значительной степени зависит от правильного выбора значений теплотехнических показателей. Какие же это показатели?

 

Плотность теплоизоляционных материалов

1. Средняя плотность — величина, равная отношению массы вещества ко всему занимаемому им объёму. Средняя плотность измеряется в кг/м3.

Следует отметить, что средняя плотность теплоизоляционных материалов достаточна низка по сравнению с большинством строительных материалов, так как значительный объём занимают поры. Плотность применяемых в настоящее время в строительстве теплоизоляционных материалов лежит в пределах от 17 до 400 кг/м3, в зависимости от их назначения.

Известно, что чем меньше средняя плотность сухого материала, тем лучше его теплоизоляционные свойства при температурных условиях, в которых находятся ограждающие конструкции зданий.

Чем меньше средняя плотность материала, тем больше его пористость. От характера пористости зависят основные свойства материалов, определяющие их пригодность для применения в строительных конструкциях: теплопроводность, сорбционная влажность, водопоглощение, морозостойкость, прочность. Наилучшими теплоизоляционными свойствами обладают материалы с равномерно распределёнными мелкими замкнутыми порами.

 

Теплопроводность теплоизоляционных материалов

2. Теплопроводность — передача тепла внутри материала вследствие взаимодействия его структурных единиц (молекул, атомов, ионов и т.д.) и при соприкосновении твёрдых тел.

Количество теплоты, которое передаётся за единицу времени через единицу площади изотермической поверхности при температурном градиенте, равном единице, называется теплопроводностью (коэффициентом теплопроводности). Теплопроводность измеряют в Вт/(м*К). Методики и условия испытаний теплопроводности материалов в различных странах могут значительно отличаться, поэтому при сравнении теплопроводности различных материалов необходимо указывать, при каких условиях, в частности температуре, проводились измерения.

СОСТАВЛЯЮЩИЕ  ТЕПЛОПОТЕРЬ (для пустого здания без внутренних перегородок)

На величину теплопроводности пористых материалов, каковыми являются теплоизоляционные материалы, оказывают влияние плотность материала, вид, размеры и расположение пор, химический состав и молекулярная структура твёрдых составных частей, коэффициент излучения поверхностей, ограничивающих поры, вид и давление газа, заполняющего поры. Однако преобладающее влияние на величину теплопроводности имеют его температура и влажность.

Теплопроводность материалов возрастает с повышением температуры, однако, гораздо большее влияние в условиях эксплуатации оказывает влажность.

Влажность теплоизоляционных материалов

3. Влажность — содержание влаги в материале. С повышением влажности теплоизоляционных (и строительных) материалов резко повышается их теплопроводность.

Очень важной характеристикой теплоизоляционного материала, от которой зависит теплопроводность, является и сорбционная влажность, представляющая собой равновесную гигроскопическую влажность материала, при различной температуре и относительной влажности воздуха.

 

Водопоглощение теплоизоляционных материалов

4. Водопоглощение — способность материала впитывать и удерживать в порах влагу при непосредственном соприкосновении с водой. Водопоглощение теплоизоляционных материалов характеризуется количеством воды, которое поглощает сухой материал при выдерживании в воде, отнесённым к массе сухого материала.

Следует обратить внимание, что водопоглощение теплоизоляционных материалов отечественного производства и инофирм определяется по разным методикам.

При выборе материала для конструкции рекомендуется обращать внимание на показатели, приведенные в ТУ, ГОСТ или рекламных проспектах (для материалов инофирм), и сравнивать их с требуемыми по условиям эксплуатации А и Б (приложения 3 СНиП II-3-79* «Строительная теплотехника»). Как правило, теплопроводность теплоизоляционных материалов в условиях А и Б процентов на 15—25 выше, чем указано в стандартах для сухих материалов при температуре 25оС.

Значительно снизить водопоглощение минераловатных и стекловолокнистых теплоизоляционных материалов позволяет их гидрофобизация, например, путём введения кремнийорганических добавок.

Продукция иностранных производителей, поставляемая на наш рынок, является гидрофобизированной, а отечественная, за небольшим исключением, является негидрофобизированной.

 

Морозостойкость теплоизоляционных материалов

5. Морозостойкость — способность материала в насыщенном состоянии выдерживать многократное попеременное замораживание и оттаивание без признаков разрушения. От этого показателя существенно зависит долговечность всей конструкции, однако, данные по морозостойкости не приводятся в ГОСТ или ТУ.

 

Механические свойства теплоизоляционных материалов

6. К механическим свойствам теплоизоляционных материалов относят прочность (на сжатие, изгиб, растяжение, сопротивление трещинообразованию).

Прочность — способность материалов сопротивляться разрушению под действием внешних сил, вызывающих деформации и внутренние напряжения в материале. Прочность теплоизоляционных материалов зависит от структуры, прочности его твёрдой составляющей (остова) и пористости. Жёсткий материал с мелкими порами более прочен, чем материал с крупными неравномерными порами.

В соответствии со СНиП II-26-99 «Кровли» (проект, действующий СНиП II-26-76) прочность на сжатие для теплоизоляционных материалов, применяемых в качестве основания под рулонные и мастичные кровли, является нормируемым показателем.
Прочность теплоизоляционных материалов, которые могут применяться для утепления скатных крыш, не нормируется, поскольку теплоизоляция укладывается в обрешётку и не несёт нагрузки от кровли.

 

Химическая стойкость теплоизоляционных материалов

7. На долговечность конструкции покрытия влияют также химическая стойкость теплоизоляционного материала (это, как правило, следует учитывать при выборе материалов для утепления покрытий производственных зданий) и его биологическая стойкость.

 

Горючесть теплоизоляционных материалов

8. Теплоизоляционный материал для применения в покрытиях выбирается с учетом его горючести, способности к дымообразованию и возможности выделения токсичных газов при горении. Выбор теплоизоляционного материала в зависимости от типа кровельного покрытия определяется с учётом требований СНиП на кровли, пожарную безопасность и др.

Утепление скатных крыш и перекрытий

Для утепления скатных крыш и перекрытий могут применяться материалы с плотностью 35—125 кг/м3. Номенклатура отечественных изделий ограничивается плитами мягкими марок 50 и 75, полужёсткими 125 (ГОСТ 9573-96, ТУ 5762-010-04001485-96), матами минераловатными прошивными марки 100 (ГОСТ 21880-94). Изделия негорючие. Однако рекомендуется применять гидрофобизированные изделия из минеральной ваты из горных пород или, в крайнем случае, из горных пород с добавлением доменных шлаков.

Долговечность конструкций с применением негидрофобизированных изделий из шлаковой ваты зависит от конструктивных решений, условий и качества выполнения работ, условий эксплуатации, и не может быть гарантирована.

Необходимо также остановиться и на таком материале, как экструдированный пенополистирол. Это материал с практически нулевым водопоглощением, он прекрасно подходит для теплоизоляции скатных крыш. Обратите внимание, что, несмотря на высокую цену самих изделий из экструдированного пенополистирола, конструкция кровли с их применением в целом получается ненамного дороже, чем, если бы использовались традиционные теплоизоляционные материалы. Так как в этом случае отпадает необходимость в устройстве дорогостоящей теплоизоляции и упрощается система вентиляции кровли.

Однако при применении экструдированного пенополистирола в конструкциях скатных крыш необходимо учитывать тот факт, что несущие конструкции скатных кровель в большинстве своём деревянные. Это, в сочетании с горючестью пенополистирола, предъявляет повышенные требования к противопожарным мероприятиям, включающим антипиреновую пропитку деревянных конструкций, устройство огнезащитных слоёв и т.д. 

build.novosibdom.ru

136. Факторы, влияющие на теплопроводность теплоизоляционных материалов.

Теплопроводность материала — это
стационарные процессы внутри него и
способность передавать тепло сквозь
свою толщу. Теплопроводностью в чистом
виде обладают лишь твердые тела. Теплота
передается от одного материала к другому
только при непосредственном их контакте.
Согласно нормативным требованиям,
теплоизоляционными считаются материалы
теплопроводность которых не более 0,175
8т/(м»*С) при температуре 25вС и плотность
не более 600 кг/м3.

Количественно теплопроводность
характеризуется коэффициентом
теплопроводности X Вт/(м»°С), который
выражает количество тепла, проходящего
через образец материала толщиной 1 м и
площадью 1 м2 при разности температур
на противоположных поверхностях ГС за
1 час. Теплопроводность строительных
материалов напрямую зависит от их
плотности, пористости, структуры и формы
пор, температуры, влажности, фазового
состава влаги и других факторов.

Увеличение количества мелких и замкнутых
пор всегда существенно снижает
теплопроводность. В крупных порах, а
особенно в сообщающихся между собой,
возникают конвективные потоки воздуха,
снижающие теплоизоляционный эффект
пористости. Заметную роль играют не
только общая пористость, но и форма,
размер и ориентация пор, поскольку
направление потока тепла и излучения
внутри пор оказывают большое влияние
на общую теплопроводность материала.

Существенное значение для теплопроводности
имеет химическая природа веществ,
входящих в состав материала. Причем,
чем тяжелее атомы или атомные группы,
образующие кристаллы материала, тем
слабее они между собой связаны и тем
меньше теплопроводность материала.

137. Основные свойства теплоизоляционных материалов. Марки по средней плотности.

Свойства теплоизоляционных материалов
применительно к строительству
характеризуются следующими основными
параметрами.

Важнейшей технической характеристикой
ТИМ являетсятеплопроводность
способность материала передавать
теплоту сквозь свою толщу, так как именно
от нее напрямую зависит термическое
сопротивление ограждающей конструкции.
Количественно определяется коэффициентом
теплопроводности λ, выражающим количество
тепла, проходящее через образец материала
толщиной 1 м и площадью 1 м2при
разности температур на противолежащих
поверхностях 1°С за 1 ч. Коэффициент
теплопроводности в справочной и
нормативной документации имеет
размерность Вт/(м·°С).

На величину теплопроводности
теплоизоляционных материалов оказывают
влияние плотность материала, вид, размеры
и расположение пор (пустот) и т.д. Сильное
влияние на теплопроводность оказывает
также температура материала и, особенно,
его влажность.

Методики измерения теплопроводности
в различных странах значительно
отличаются друг от друга, поэтому при
сравнении теплопроводностей различных
материалов необходимо указывать, при
каких условиях проводились измерения.

Плотность— отношение массы сухого
материала к его объему, определенному
при заданной нагрузке (кг/м3).

Прочность на сжатие— это величина
нагрузки (КПа), вызывающей изменение
толщины изделия на 10%.

Сжимаемость— способность материала
изменять толщину под действием заданного
давления. Сжимаемость характеризуется
относительной деформацией материала
под действием нагрузки 2 КПа.

Водопоглощение— способность
материала впитывать и удерживать в
порах (пустотах) влагу при непосредственном
контакте с водой. Водопоглощение
теплоизоляционных материалов
характеризуется количеством воды,
которое впитывает сухой материал при
выдерживании в воде, отнесенным к массе
или объему сухого материала.

Для снижения водопоглощения ведущие
производители теплоизоляционных
материалов вводят в них гидрофобизирующие
добавки.

Сорбционная влажность— равновесная
гигроскопическая влажность материала
при определенных условиях в течение
заданного времени. С повышением влажности
теплоизоляционных материалов повышается
их теплопроводность.

Морозостойкость— способность
материала в насыщенном влагой состоянии
выдерживать многократное попеременное
замораживание и оттаивание без признаков
разрушения. От этого показателя
существенно зависит долговечность всей
конструкции, однако, данные по
морозостойкости не приводятся в ГОСТ
или ТУ.

Паропроницаемость— способность
материала обеспечивать диффузионный
перенос водяного пара.

Диффузия пара характеризуется
сопротивлением паропроницаемости
(кг/м2·ч· Па). Паропроницаемость
ТИМ во многом определяет влагоперенос
через ограждающую конструкцию в целом.
В свою очередь последний является одним
из наиболее существенных факторов,
влияющих на термическое сопротивление
ограждающей конструкции.

Во избежание накопления влаги в
многослойной ограждающей конструкции
и связанного с этим падения термического
сопротивления паропроницаемость слоёв
должна расти в направлении от тёплой
стороны ограждения к холодной.

Воздухопроницаемость. Теплоизолирующие
свойства тем выше, чем ниже
воздухопроницаемостьТИМ.
Мягкие изоляционные материалы настолько
хорошо пропускают воздух, что движение
воздуха приходится предотвращать путем
применения специальной ветрозащиты.
Жесткие изделия, в свою очередь, обладают
хорошей воздухонепроницаемостью и не
нуждаются в каких-либо специальных
мерах. Они сами могут применяться в
качестве ветрозащиты.

При устройстве теплоизоляции наружных
стен и других вертикальных конструкций,
подвергающихся напору ветра, следует
помнить, что при скорости ветра 1 м/с и
выше целесообразно оценить необходимость
ветрозащиты.

Огнестойкость— способность материала
выдерживать воздействие высоких
температур без воспламенения, нарушения
структуры, прочности и других его
свойств.

По группе горючести теплоизоляционные
материалы подразделяют на горючие и
негорючие. Это является одним из важнейших
критериев выбора теплоизоляционного
материала.

В отличие от многих других строительных
материалов, марка теплоизоляционного
материала отражает величину не прочности,
а средней плотности, которая выражается
в кг/м3 (р0). Согласно этому показателю
ТИМ имеют следующие марки:

 особо низкой плотности (ОНП) 15, 25, 35,
50, 75,

 низкой плотности (НП) 100, 125, 150, 175,

 средней плотности (СП) 200, 250, 300, 350,

 плотные (ПЛ) 400, 450, 500.

 Марка теплоизоляционного материала
обозначает верхний предел его средней
плотности. Например, изделия марки 100
могут иметь р0=75—100 кг/м3.

studfiles.net

Теплопроводность теплоизоляции и ППУ

Что такое теплопроводность теплоизоляционных материалов и какую роль эта характеристика играет при выборе теплоизоляции?

Теплопроводность теплоизоляционных материалов – главная характеристика утеплителя

На рынке строительных материалов выбор утеплителя впечатляет своим разнообразием не только обывателей, но и профессионалов. Всю продукцию визуально можно разделить на два основных типа: рулоны и плиты. Однако простота монтажа – не главный критерий при выборе продукции. Основным параметром является теплопроводность теплоизоляционных материалов, демонстрирующая их способность пропускать тепло. Чем ниже этот показатель, тем лучше термическое сопротивление конструкции. Численным выражением теплопроводности теплоизоляционных материалов является коэффициент, определяющий количество тепла, способное пройти за один час образец утеплителя площадью 1 кв.м. и толщиной в 1 м. Условием проведения эксперимента для его определения является разность температур между поверхностями теплоизоляции в 1ºС. В технической и справочной документации этот коэффициент получил буквенное обозначение λ и имеет размерность в Вт/(м•°С). Чем ниже коэффициент λ, тем меньше утеплителя понадобиться по толщине для достижения определенных теплотехнических характеристик, рассчитанных проектировщиками для данного климатического района.

На фото наглядно видно, что толщина панелей для внешних стен с наполнителем из полиуретана составляет 10 – 15 см. Благодаря низкой теплопроводности материала этого достаточно для комфортного проживания.

Сравнение теплопроводности теплоизоляционных материалов

Определить, как утеплитель станет надежным барьером на пути тепла, которое стремиться покинуть помещение, можно с помощью анализа коэффициентов теплопроводности. Для большей наглядности производить сравнение можно на фоне теплотехнических характеристик основных общестроительных материалов. Соотношение между толщиной материала, обеспечивающей нормативные показатели теплозащиты, к коэффициенту теплопроводности называется сопротивлением теплопередачи и обозначается R. Для каждого региона он имеет свою величину, так для Москвы R=3,16. Используя этот коэффициент, можно рассчитать оптимальную толщину строительного материала и утеплителя, необходимую для соответствия нормам по теплозащиты.

Материал Теплопроводность
λБ Вт/мºС
Толщина, см
Железобетон 2.04 644
Кирпич керамический 0.81 255
Кирпич керамический пустотный 0.52 164
Ячеистый бетон плотность 1000 кг/куб.м 0.3 94
Сосна, Ель 0.18 56
Газобетон плотностью 400 кг/куб.м 0.10 38
Пенополистирол плотностью 40 кг/куб.м. 0.05 15.8
Пенополиэтилен плотностью 30 кг/куб.м. 0.5 15.8
Утеплитель из базальтового волокна плотностью 45 кг/куб.м. 0.045 14.2
Минераловатный утеплитель из стекловолокна 0.041 12.9
Пенополипропилен 0.04 12.6
Пенополиуретан плотностью 60 кг/куб.м 0.032 10.1
Экструдированный пенополистирол 0.029 9.1
Пенополиуретан плотностью 25 кг/куб.м. 0.018 5.7

Из таблицы наглядно видно, что плита из пенополиуретана толщиной всего 6 см, плотностью 25 кг/куб.м может заменить собой полтора метра стены из керамического пустотелого кирпича.

На схеме наглядно изображено различие между толщиной строительных и теплоизоляционных материалов, широко используемых при возведении жилых и промышленных зданий. Что выбрать – 25 мм пенополиуретана или 650 мм кирпичной кладки – вопрос риторический.

Преимущество теплоизоляционных материалов с низкой теплопроводностью

Использование теплоизоляционных материалов с низкой теплопроводностью имеет массу преимуществ. Одно из основных – требуется небольшой объем материала. Если для утепления большинства объектов достаточно плит из пенополиуретана толщиной 40-60 мм, то в случае с пенополистиролом или минераловатным утеплителем потребуется материал, толщиной в 1,5-2,5 раза больше. Это чревато необходимостью использовать более мощные системы направляющих для навесных фасадных материалов, более длинные гибкие связи и кронштейны в процессе облицовки кирпичом. Все это увеличивает стоимость работ. Кроме того, пенополистирол менее долговечный материал, в течение 7-10 лет происходит его деградация и усыхание, что негативно сказывается на теплопроводности.

На фото видно, как происходит облицовка плитами толщиной в 10 см. С учетом зазора лицевая отделка будет отдалена от несущей конструкции на 13-17 см, что потребует длинных гибких связей. В случае с пенополиуретаном было бы достаточно плит 40 — 60 мм, что снизило бы расходы на анкерные системы.

Заменив материал с высоким коэффициентом теплопроводности на теплоизоляцию с низкой теплопроводностью можно при одинаковой толщине добиться более высоких теплотехнических характеристик для внешних конструкций. Как результат – снижение затрат на отопление. Положительно скажется использование утеплителя с небольшим λ и на транспортных расходах, так как для доставки на объект потребуется меньшее количество рейсов грузовых автомобилей.

tmt-ppu.ru

Техническая информация — свойства теплоизоляционных материалов

Теплоизоляционные материалы, как правило, имеют характерные свойства, благодаря которым они способны прослужить долгое время даже при жесткой эксплуатации. А качественная изоляция позволяет использовать чиллер с меньшим коэффициентом теплового обмена, что снижает нагрузку на компрессор.

Рассмотрим эти свойства более подробно

1. Базовой характеристикой, которая должна быть присуща теплоизоляционному материалу, является низкая теплопроводность. А это, как говорилось выше, позволяет использовать чиллер с меньшим коэффициентом теплового обмена, что снижает нагрузку на компрессор.

Коэффициент теплопроводности (теплопроводность) определяют как количество теплоты, передаваемое за единицу времени через единицу площади изотермической поверхности при температурном градиенте равном единице.

Коэффициент теплопроводности λ получают в Вт/(м*К). Способы и методы проведения испытаний тепловой проводимости материалов в различных странах существенно разнятся, поэтому в обязательном порядке следует предоставлять данные об условиях испытаний, при которых проводились измерения, например, о температуре, это позволит провести более тщательное сравнение теплопроводности различных материалов.

Величина теплопроводности пористых материалов (теплоизоляционные материалы) зависит от вида, размера и расположения пор, плотности материала, молекулярной структуры и химического состава твердых частей основы, вида и давления газа, заполняющего поры, коэффициента излучения поверхности, ограничивающей поры. Но самыми важными показателями материала являются его температура и влажность, они оказывают самое большое влияние на коэффициент теплопроводности.

Из этих двух показателей наибольшее влияние при эксплуатационных условиях оказывает влажность, хотя с увеличением температуры теплопроводность материалов тоже значительно растет.

Коэффициент теплопроводности базовых конструкций должен лежать в пределах 0,03-0,05 Вт/(м*К)

2. Другое свойство это средняя плотность – ее величина вычисляется отношением массы вещества к занимаемому им объему. Она определяется как соотношений кг/м3.

У теплоизоляционных материалов средняя плотность гораздо ниже плотности большинства строительных материалов, это обусловлено большой пористостью теплоизоляционных материалов. В настоящее время в строительстве применяются теплоизоляционные материалы, плотность которых составляет от 17 до 400 кг/м3, в зависимости от их назначения.

Теплоизоляционные свойства тем лучше, чем меньше средняя плотность сухого материала при температурном режиме, свойственном ограждающим конструкциям зданий.

Уменьшение средней плотности материала приводит к увеличению его пористости. От равномерности распределения пор внутри материала зависят его базовые свойства, которые и определяют пригодность материала для использования в строительных конструкциях: морозостойкость, сорбционная влажность, прочность, водопоглощение, теплопроводность. У материалов с равномерно расположенными небольшими замкнутыми порами наблюдаются самые лучшие теплоизоляционные свойства.

3. Еще одним свойством является влажность – накопление жидкости в материале. Теплопроводность теплоизоляционных и строительных материалов значительно растет с увеличением влажности.

Некоторое количество влаги всегда наблюдается в материалах с капиллярно-пористой структурой, находящихся в естественной воздушной среде. Происхождение этой влаги определяется тем, что присутствующие в воздухе с определенной влажностью молекулы водяного пара, попадая под влияние молекулярных сил более сухого материала, конденсируются на поверхности в виде тонкой водяной пленки.

После того как сорбированная влага достигла состояния равновесия на поверхности материала с давлением водяного пара в воздухе, постепенно происходит впитывание влаги во внутреннюю структуру материала.

Когда материал находится в воздушной среде с постоянными температурой и относительной влажностью, то в нем преобладает равновесное состояние (неизменное количество влаги), эта влага называется сорбционной.

4. Немаловажным свойством является водопоглощение – это возможность впитывать и удерживать в порах влагу при прямом контакте с водой материала. Водопоглощение теплоизоляционных материалов определяется количеством воды, поглощаемым материалом с нормальной влажностью при проведении им определенного времени в воде, относительно удельной массы сухого материала.

Чем больше поглощает материал влагу, тем больше теплопроводность материала. Это происходит потому, что вода занимает внутри материала какую-то часть объема пор и ячеек, замещая собой воздух.

Такое существенное увеличение теплопроводности теплоизоляционного материала вызывается тем, что теплопроводность воды λ=0,58 Вт/(м*К ) приблизительно в 25 раз выше теплопроводности «стоячего» воздуха.

Когда температура окружающей среды падает ниже нуля градусов Цельсия вода в порах материала замерзает, а это служит еще большим увеличением теплопроводности материала, потому что теплопроводность льда λ=2,2 Вт/(м*К ) практически стократно превышает теплопроводность «стоячего» воздуха.

Гидрофобизация позволяет значительно уменьшить водопоглощение стекловолокнистых и минераловатных теплоизоляционных материалов, как правило, путем введения кремнийорганических добавок.

Если материал практически не увлажняется при взаимодействии с водой, то это говорит о том, что он обладает свойством гидрофобности.

К сожалению, отечественные производители теплоизоляционных материалов поставляют на наш рынок в основном негидрофобизированную продукцию, в отличие от зарубежных, продукция которых, как правило, гидрофобизированная.

5. Другое свойство теплоизоляционных материалов это морозостойкость – способность выдерживать в насыщенном состоянии многоразовое изменение температур от стадии замораживания до стадии оттаивания попеременно без видимых признаков нарушения структуры.

Морозоустойчивость не нормируется ни ТУ, ни ГОСТ, но, тем не менее, этот показатель очень сильно влияет на долговечность возводимой конструкции.

6. Прочность является механическим свойством теплоизоляционных материалов, ее рассчитывают на сопротивление трещинообразованию, растяжение, изгиб, сжатие.

Прочность определяется как способность материалов оказывать сопротивление разрушительным действиям внешних сил, которые вызывают внутренние напряжения в материале и деформацию. Это свойство теплоизоляционных материалов имеет зависимость от структуры, прочности остова (твердой составляющей) и пористости материала. Если материал обладает структурой с крупными неравномерными порами, то он менее прочен, чем материал с мелкими порами.

7. Долговечность конструкции зависит и от химической стойкости покрытия теплоизоляционного материала (данный фактор следует особенно тщательно учитывать при выборе материалов для утепления покрытий производственных сооружений). К тому же необходимо учесть и биологическую стойкость.

8. Также немаловажными свойствами теплоизоляционных материалов, используемых для покрытия, являются способность к дымообразованию, возможность выделения токсичных газов при горении, горючесть. Выбор теплоизоляционного материала зависит от предъявляемых требований СНиП на кровли, пожарную безопасность и др.


Вы также можете ознакомиться с другими страницами раздела:

www.infrost.ru

Коэффициент теплопроводности теплоизоляционных материалов — Справочник химика 21



Рис. 224. Коэффициент теплопроводности теплоизоляционных материалов при средней температуре —85 °С в зависимости от давления








    Величины расчетных коэффициентов теплопроводности теплоизоляционных материалов [c.78]

    Измерение коэффициента теплопроводности теплоизоляционных материалов при низких температурах основано на определении массы испарившейся криогенной жидкости (например, жидкого кислорода или азота) в результате подвода тепла к образцу теплоизоляции. Этот способ используется для определения коэффициента теплопроводности. как при атмосферном давлении, так и в условиях вакуума [81—84]. [c.55]

    Коэффициент Ь для различных теплоизоляционных материалов имеет величину порядка (2,0ч-4,0) 10 1/град, т. е. при изменении температуры на 100°С коэффициент теплопроводности теплоизоляционных материалов изменяется от 20 до 40% [c.85]

    Коэффициент теплопроводности теплоизоляционных материалов возрастает с увеличением давления в большинстве случаев быстрее [19, 20, 123], чем это следует из уравнения (13). Авторы работы [123] пытаются объяснить это влиянием конвекции. Действительная причина заключается в сложной структуре изоляционных материалов, не дающей возможности описать перенос тепла в них газом при использовании лишь одного характеристического размера — среднего диаметра пор. Коэффициент теплопроводности зернистых теплоизоляционных материалов, зерна которых имеют пористую структуру, может быть вычислен по уравнению (30) с использованием уравнений (33) — (35). Более простую формулу, применимую к любым теплоизоляционным материалам, можно получить на основе следующих соображений. [c.91]

    Из табл. 10-6 следует, что в интервале температур от 30 до 75° С коэффициент теплопроводности теплоизоляционных материалов изменяется незначительно. При [c.440]

    Влиянием конвекции и лучеиспускания в процессе передачи теплоты через теплоизоляционный материал объясняется возрастание коэффициента теплопроводности к с повышением температуры. На это указывают и данные табл. 3.1, по которым можно судить и о том, что в крупных порах теплопроводность воздуха растет при повышении температуры значительно быстрее. Повышение температуры вызывает и рост радиационного теплообмена, поскольку излучение пропорционально четвертой степени абсолютной температуры. Однако, как следует из опытных данных, коэффициент теплопроводности теплоизоляционных материалов находится примерно в линейной зависимости от температуры, т. е. [c.64]

    Коэффициент теплопроводности теплоизоляционных материалов сильно зависит от их объемной массы, а также давления и температуры. На рис. 224 приведены кривые значений коэффи- [c.522]

    Коэффициент теплопроводности теплоизоляционных материалов сильно зависит от их объемной массы, а также давления и температуры. На рис. 10.1 приведены кривые, характеризующие коэффициенты теплопроводности некоторых изоляционных материалов . [c.511]

    Величина коэффициентов теплопроводности газов на порядок меньше теплопроводности жидкостей. Поэтому газы обладают самой низкой теплопроводностью из всех веществ. Низкий коэффициент теплопроводности теплоизоляционных материалов (диатомито вые земли, шлаковая вата, торф, пробка) обусловливается их пористостью. Поэтому тепловой поток в таких материалах является в основном процессом теплопередачи через воздух, заключенный в порах. Твердое вещество таких материалов не позволяет воздуху приходить в состояние движения от разности температур, а тем самым и предотвращает передачу дополнительного количества тепла конвективными токами. Закон Фурье для процессов теплопередачи весьма напоминат закон Ома для электрического тока. В этом можно легко убедиться, если уравнение (1-6) написать в следующей форме  [c.27]

    Представленные в этом разделе данные о теплопроводности некоторых материалов, обычно используемых в низкотемпературной аппаратуре, взяты главным образом из обзорной статьи Пауэлла и Блэнпайда. В разделе помещены также некоторые более поздние данные. Коэффициенты теплопроводности теплоизоляционных материалов можно найти в гл. 5, посвященной изоляции. [c.381]


chem21.info

Отправить ответ

avatar
  Подписаться  
Уведомление о