Тепловизор как выбрать – Тепловизор. Как выбрать тепловизор. Обследование, измерение, характеристики и выбор тепловизора.

Содержание

Выбор тепловизора | Энциклопедия строительства и ремонта

Тепловизор — компактный и универсальный прибор для наблюдения за распределением температуры на обследуемой поверхности. С помощью тепловизора можно «заглянуть внутрь» ограждающих строительных конструкций, выявить в них мостики холода и дефекты, обнаружить наличие и источник аномального нагрева или охлаждения, проверить герметичность новых зданий и сооружений, а также оценить работу электросетей, систем отопления и вентиляции. Все это выполняется методом дистанционного неразрушающего контроля. Результаты отображаются на экране прибора или сохраняются во встроенной памяти для дальнейшего использования. Например, для анализа конструкций или предъявления обоснованных претензий к строителям.

ИСТОРИЧЕСКАЯ СПРАВКА

Прежде чем начать рассказ о возможностях тепловизора, а также разобраться в вопросе выбора необходимого прибора, сделаем небольшой экскурс в теорию и историю. Как известно, все тела излучают электромагнитные волны с разной длиной. За тепловое излучение «отвечает» инфракрасная часть спектра, которую обнаружил в 1800 году английский астроном Уильям Гершель. Открытие он совершил, «расщепив» солнечный свет призмой и поместив термометр в область, расположенную за красной полосой видимого спектра. Поэтому излучение получило название инфракрасного, от латинской приставки infra-, означающей «ниже чего-то», «расположенной под чем-то». В данном случае ниже полосы красного спектра. Открытие английского астронома стало фундаментом термографии — получения тепловых изображений. Однако от открытия инфракрасного излучения до практического применения термографии и появления тепловизоров прошло немало времени.

Первые тепловизоры появились, разумеется, у военных. Например, в СССР одним из первых относительно массовых тепловизионных приборов стал разработанный в 30-е годы XX века теплопеленгатор «Солнце-1», предназначенный для обнаружения и сопровождения надводных целей (кораблей) в темное время суток. К сожалению, прибор не получил распространения как из-за сложности изготовления, так и из-за недостатков, к числу которых специалисты отнесли ограниченные поисковые возможности (прибор обнаруживал суда на очень малой дистанции) и отсутствие индикации. Источник теплового излучения выявлялся оператором по повышению шума в наушниках при последовательном осмотре горизонта.

НАШИ ДНИ

Устройство современных тепловизоров отличается от их военных прародителей и больше напоминает цифровые фото- и видеокамеры: в едином корпусе установлены все основные части прибора — объектив, матрица (сенсор), аккумуляторные батареи, цветной экран (дисплей) и разъемы для подключения к компьютеру и зарядному устройству. Объектив «собирает» тепловое излучение и фокусирует его на матрице. Полученные данные о распределении температуры на исследуемой прибором поверхности обрабатываются электроникой и отображаются на экране тепловизора в виде цветной картинки (называемой термограммой), где определенный цвет соответствует определенной температуре. Нагретые объекты отображаются теплыми цветами (красный, желтый), холодные — холодными цветами (синий и фиолетовый).

Обычное стекло плохо пропускает инфракрасное излучение, поэтому для изготовления элементов объективов тепловизоров используют специальные материалы, в частности германий. Оптические детали, изготовленные из данного материала, достаточно дорогие, поэтому объектив вносит значительный вклад в общую стоимость тепловизора. Основными характеристиками объектива являются возможность фокусировки (ручной фокус, автофокус и свободный/фиксированный фокус) и угол зрения. Объектив с ручной фокусировкой и автофокусом можно настроить на любой выбранный объект и гарантированно получить его четкое и контрастное изображение. Работая с тепловизорами без автофокуса, получить четкое изображение можно, лишь устанавливая прибор на определенном расстоянии от обследуемой поверхности. Для тепловизионной съемки больших по размеру конструкций с близкого расстояния (например, в цеху) используют широкоугольные объективы с полем зрения более 40°. Для работы с удаленными объектами используются, наоборот, длиннофокусные объективы (телеобъективы), которые позволяют с больших расстояний «рассмотреть» детали обследуемой поверхности. Однако у таких объективов небольшой угол зрения — как правило, около 10-12°. Объектив тепловизора бывает сменным или несменным. В первом случае имеется возможность устанавливать объективы с разными углами зрения, выбирая необходимый под текущие условия работы. Однако это достаточно дорогостоящее решение, и потому на многих приборах, особенно начального ценового уровня, объективы несменные.

Наиболее технологически сложным (и, как следствие, самым дорогим) элементом тепловизора является матрица. Ее стоимость может составлять 40-60% от общей стоимости прибора. Назначение матрицы — преобразовывать полученное через объектив тепловое излучение в электрический сигнал. В современных тепловизорах используются твердотельные матрицы разных технологических поколений. Самые «продвинутые» невосприимчивы к «засвечиванию» солнечными лучами.

Одной из важнейших характеристик матрицы является разрешение. Чем оно больше, тем крупнее получается термограмма, и на ней лучше различимы небольшие детали, например мостики холода. Однако разрешение матрицы напрямую влияет на цену прибора: чем оно больше, тем выше стоимость. Размер матриц приборов начального уровня — 80×60 точек, наиболее совершенных — 1024×768 точек. Приборы среднего уровня имеют матрицы от 120×160 до 240×180 точек.

Еще одной принципиальной характеристикой прибора является допустимый температурный диапазон применения. У бюджетных приборов он составляет от -20 до +250…300 °С. Профессиональные тепловизоры имеют более широкий температурный диапазон: от -40 до +1200 °С и более. Это позволяет использовать тепловизоры не только для работы на стройках, но и в промышленности.

Ключевым элементом любого тепловизора является аккумуляторная батарея (АКБ). Часть производителей устанавливает в приборы аккумуляторы формата АА, а часть — собственного, оригинального форм-фактоpa. К числу последних относится, например, компания Fluke. Достоинством АКБ формата АА является доступность и распространенность. Но аккумуляторы оригинального форм-фактора удобнее вписываются в конструкцию тепловизора, их емкость, как правило, рассчитана на более продолжительную работу прибора — в течение рабочей смены. Некоторые производители снабжают свои тепловизоры зарядным устройством, действующим от автомобильной сети 12 В. Полученное тепловизором изображение выводится на встроенный жидкокристаллический экран, который может быть жестко зафиксирован в корпусе или вращаться на шарнире, подобно встроенному экрану видеокамеры. Размер экрана (как правило, его диагональ составляет от 3 до 6 дюймов) никак не связан с размером матрицы, и судить по нему о размере и качестве матрицы не стоит.

Хранение термограмм осуществляется либо во встроенной памяти прибора, либо на карте памяти. Объем встроенной памяти большинства приборов ограничен и рассчитан на хранение небольшого количества термограмм, как правило, это несколько десятков снимков, а основная запись ведется на стандартную SD-карту. Разные производители комплектуют свои приборы картами памяти разного объема: от 10 до 128 Гб. SD-карта — решение не самое новое, ведь сегодня на рынке представлены карты памяти с меньшими размерами, но для использования на стройке подобная миниатюрность скорее вред, чем польза, так как потерять, к примеру, карту формата микро-SDHC очень просто. Некоторые модели тепловизоров имеют дополнительные USB-разъемы, посредством которых можно подсоединить к прибору стандартные флеш-накопители. Многие тепловизоры оснащены дополнительной встроенной фотокамерой со своим объективом и матрицей. Такое конструктивное решение позволяет с одной точки выполнить съемку двух типов — в видимом и инфракрасном спектре. Дальнейшее наложение этих снимков друг на друга облегчает расшифровку и интерпретацию термограммы.

ОТЛИЧИТЕЛЬНЫЕ ЧЕРТЫ

Наибольшее распространение тепловизоры получили в энергетике и при строительстве в районах со сложными климатическими условиями, например в Сибири и зонах вечной мерзлоты. В таких районах самые жесткие требования к качеству построек, и прежде всего к их теплозащитным свойствам, что обусловливает применение тепловизионного контроля на разных этапах возведения здания. Это позволяет определить возможные проблемные места и ликвидировать их с наименьшими потерями.

Однако сегодня и в средней полосе России тепловизионное обследование здания стало распространенной практикой как для крупных строительных организаций, так и для небольших фирм, дорожащих своей репутацией. В частности, оно широко практикуется в малоэтажном строительстве — при сооружении стен и перекрытий каркасных домов или утепленных скатных (мансардных) крыш. В этом случае теплоизоляцию, обычно в виде волокнистых плит или матов, укладывают в пространство между деревянными балками, и зачастую по небрежности строителей или в силу сложной геометрии утепляемой конструкции, требующей кропотливой подрезки плит или матов, могут оставаться промерзающие участки конструкции. Промерзание чревато снижением комфорта для обитателей дома и увеличением затрат на обогрев здания в холодное время года. Своевременное тепловизионное обследование таких конструкций на этапе строительства позволит предотвратить появление мостиков холода, а если речь идет об уже построенном доме, то оно поможет их устранить.

Сложность устройства современных строительных конструкций, большой объем выполняемых строителями работ, а также высокая цена их ошибки объясняют тот факт, что даже в условиях кризиса на рынке существует спрос на достаточно сложные и дорогие тепловизоры. Например, Fluke и FUR. Приборы этих компаний имеют матрицы (сенсоры) последнего поколения, невосприимчивы к засветке солнцем. Большой размер матриц и наличие автофокуса позволяют проводить дистанционную съемку с наименьшими трудозатратами.

В качестве примера таких приборов можно привести Fluke Ti400. Он имеет сменный объектив, автофокус и матрицу 320×240 точек, что, по мнению специалистов, является минимальным набором характеристик для прибора, предназначенного для профессионального использования. Помимо фото- и тепловизионной съемки такой прибор позволяет выполнять видеосъемку в видимом и ИК-диапазоне спектра излучения, а также сохранять результаты термографии в файлах популярного формата AVI. Это упрощает анализ результатов.

К числу достоинств прибора относится наличие слота для карты памяти и USB-разъема для флеш-накопителей. При термографии нескольких объектов можно записывать информацию о каждом из них на свой накопитель и хранить его отдельно.

Надо сказать, что приборы Fluke традиционно отличаются надежностью и эргономичностью. Так, компания гарантирует сохранение работоспособности своей техники после падения с двухметровой высоты. Отдельного упоминания заслуживает пластиковое кольцо, предназначенное для защиты объектива, и оригинальная крышка объектива. Она откидывается на шарнире таким образом, что не мешает работе с прибором. Потерять такую крышку тоже невозможно. При постоянной работе с тепловизором рука человека напрягается, поэтому очень облегчает работу фирменный ремешок, позволяющий в процессе работы, не выпуская тепловизор из рук, расслабить пальцы. В комплекте поставки тепловизора имеется два аккумулятора, которых при полной зарядке хватает на полный рабочий день (8 часов).

Другой подход к конструированию тепловизоров можно увидеть в приборах testo, например, в модели 872. Прежде всего, обращает на себя внимание цена тепловизора — относительно невысокая при том же, что и у моделей конкурентов, разрешении матрицы (320×240 точек) и аналогичном оснащении. Особенностью приборов testo является технология testo SuperResolution, которая за счет создания серии последовательных снимков (сделанных естественным движением руки) и их математической обработки увеличивает размер изображения. В случае модели 872 разрешение термограмм увеличивается до 640×480. Встроенный в тепловизор модуль беспроводной связи Bluetooth/WLAN и бесплатное приложение testo Thermograhy Арр для мобильных устройств позволяют устанавливать связь с планшетом или смартфоном и дистанционно управлять тепловизором: создавать и пересылать компактные отчеты, а также сохранять их в Сети. Для повышения информативности термограмм имеется возможность работы в контакте с некоторыми другими приборами. Например, по Bluetooth в тепловизор автоматически могут передаваться данные измерений с токоизмерительных клещей и термогигрометра. Также testo 872 имеет дополнительные функции автоматического определения коэффициента излучения (функция testo — Assist) и сравнения термограмм (testo ScaleAssist). Последняя помогает избежать ошибки при интерпретации термограмм, вызванных неверной оценкой шкалы температур. Подобные приборы востребованы у предприятий ЖКХ, управляющих компаний и небольших строительных фирм.

Организации, осуществляющие электро-технические и электромонтажные работы, используют тепловизоры для контроля нагрева и состояния электропроводки и электрооборудования под нагрузкой. Поставленные задачи обычно не требуют матриц больших размеров и высокого разрешения, а вот стоимость приборов для таких организаций играет принципиальную роль. Поэтому предпочтение отдается, как правило, тепловизорам с небольшой матрицей. Часто тепловизоры применяют совместно с токоизмерительными клещами. Это позволяет не только обнаружить нагрев электропроводки, но и определить, при каких условиях он происходит. Впрочем, во многих случаях для электротехнических работ предпочтительнее более дорогие, но и более совершенные приборы. Так, выпускаются мультиметры с тепловизорами, например Fluke 279. Прибор имеет жидкокристаллический дисплей 3,5 дюйма и позволяет измерять напряжение переменного/постоянного тока, сопротивление, целостность цепи, емкость конденсатора, выполнять проверку диодов и проч. Встроенный тепловизор с матрицей 80×60 точек позволяет быстро и безопасно выявлять аномальный нагрев электроцепей или электрооборудования.

Альтернативой комбинированному прибору может стать более доступный мультиметр и тепловизор. Например, мультиметр testo 760-1 и тепловизор testo 865. Мультиметр позволяет решить все наиболее важные электротехнические измерительные задачи. К его особенностям относятся использование функциональных кнопок вместо стандартного поворотного переключателя и автоматическое распознавание подключенного щупа. Это обеспечивает удобство эксплуатации и исключает риск выбора некорректных настроек. Тепловизор имеет матрицу с раз- решением 160×120 пикселей, широкий температурный диапазон от -20 до +280 °С и возможность настройки коэффициента излучения материала.

ТЕПЛОВИЗИОННЫЕ ПРИСТАВКИ ДЛЯ СМАРТФОНОВ

Популярность современных тепловизоров привела к появлению нового класса приборов: тепловизионных приставок для смартфонов (или планшетов) на базе iOs и Android. Пока такие устройства представлены ограниченным числом моделей, выпускаемых компаниями FUR и Seek Thermal.

Подобная приставка представляет собой небольшой тепловизор массой около 40 г, который при помощи разъема USB OTG крепится на смартфоне. Собственного монитора и встроенной памяти прибор не имеет, изображение выводится на экран мобильного устройства. Разрешение матрицы небольшое и составляет 160×120 пикселей у приставки FLIR и 206×156 пикселей у Seek Thermal. Объектив имеет фиксированный фокус. Бесппатное программное обеспечение позволяет производить с помощью приставки фото- и видеосъемку в инфракрасном режиме. Достоинствами таких приставок являются небольшие размеры и сравнительно невысокая цена, сопоставимая со стоимостью смартфона. Однако, по мнению специалистов, такие приборы существенно уступают специализированным тепловизорам по точности измерений, функционалу, удобству работы. Приставки не внесены в Государственный реестр средств измерений РФ и в настоящее время не подходят для профессионального использования.

ВОПРОС ВЫБОРА

Как мы видим, тепловизоры — это большая группа приборов с разным техническим уровнем и с разными возможностями. Проблематично найти универсальный прибор который подойдет для всех случаев применения. При выборе прибора стоит определиться, какие именно задачи с его помощью придется решать. Если тепловизор предполагается использовать для обследования крупных объектов, то необходим прибор с большой матрицей (минимум 320×240 точек), выдерживающей засветку солнцем, и набором сменных объективов, а также АКБ большой емкости с возможностью замены в полевых условиях. Такой прибор позволит уменьшить перемещение по объекту и увеличить производительность труда.

Для применения в строительстве, когда количество термограмм не столь велико, можно использовать прибор попроще, с матрицей, имеющей сравнительно небольшое количество пикселей. Впрочем, матрицу с разрешением менее чем 160×120 точек не имеет смысла брать, поскольку ограниченные возможности прибора скажутся на термограмме: невозможно будет «увидеть» весь объект целиком и различить мостики холода. Приборы с минимальной матрицей востребованы электриками.

Важный элемент любого тепловизора — это объектив. Необходимо его подбирать таким образом, чтобы с доступных точек съемки охватить весь объект. Если обследование сооружений и сетей топливно-энергетического комплекса или работа в цеху не предполагаются, то можно ограничиться несменным объективом без автофокуса со стандартным полем зрения около 30°. Такой тепловизор позволит выполнить термограмму небольшого дома или коттеджа и получить «портрет» дома в ИК-спектре. Стоит обращать внимание на второстепенные по отношению к размеру матрицы и оптическим характеристикам объектива характеристики и свойства прибора. Например, тип и емкость аккумуляторных батарей. Привычные АКБ формата АА — простое и доступное решение, но оно не подходит для профессионального использования: не хватает емкости. Поэтому придется носить большое количество сменных аккумуляторов или покупать недешевые щелочные батареи.

Дополнительное программное обеспечение (ПО) даст возможность провести анализ или дополнительную обработку полученных данных. Например, выделить участки с температурой ниже точки росы. Как правило, ПО доступно для ноутбуков на Windows и MacOS и планшетов на iOS и Android. К числу полезных опций также относится встроенный фонарик для подсветки объекта съемки (или перемещения в неосвещенном помещении) и лазерный маркер (указка), с помощью которого можно точно направить тепловизор на исследуемый объект. Например, предполагаемое место с пониженной или, наоборот, повышенной температурой поверхности.

ПРАВИЛА ИСПОЛЬЗОВАНИЯ

При всей своей высокотехнологичности тепловизоры достаточно простые и интуитивно понятные в работе приборы. При их использовании необходимо лишь следовать достаточно простым правилам: не направлять тепловизор на солнце, а также следить за тем, чтобы разница температуры объекта измерения и температуры воздуха составляла не менее 5-6 °С. Предпочтительное время работы с тепловизором — после восхода солнца, с ранней осени до поздней весны. Летом, когда солнечные лучи прогревают и землю, и постройки, тепловизор на стройке не так эффективен.

Определенной подготовки требует расшифровка и анализ термограмм. Поэтому, если тепловизор предполагается использовать в коммерческих целях, например для энергетического аудита зданий и сооружений, необходимо пройти обучение в профильном учебном центре по программе «Инфракрасная термография» с аттестацией по действующим в России правилам аттестации персонала ПБ 03-440-02. Начальные уровни (1-й и 2-й) предполагают обучение в течение 1-2 недель.