Что значат характеристики мембраны
Что такое мембрана?
МЕМБРАНА – это тонкослойное покрытие внутренней поверхности ткани. Мембрана обеспечивает благоприятный климат внутри одежды, а микроскопические поры позволяют выходить водяным парам, одновременно блокируя проникновение влаги снаружи.
Мембранная ткань состоит из двух слоев: ткань верха (может быть абсолютно любой, как тонкой, так и плотной) и, непосредственно, мембрана – тончайшая полимерная пленка с порами специальной формы, обеспечивающими одностороннюю водопроницаемость (влага, находящаяся с внутренней стороны, свободно мигрирует сквозь мембрану, в то время, как влага, находящаяся снаружи, задерживается мембраной).
Как работает?
Внешняя влага не проникает внутрь, избыточное тепло и водяной пар (наш пот) изнутри выходит сквозь ткань, что улучшает терморегуляцию тела.
Что значат цифры и характеристики?
Любая мембранная одежда имеет на ярлыке две характеристики, обычно через слэш, вроде 5000/10000 или 5000mm/10000g. Первый параметр, это вода. Второй параметр, это воздух.
1. Водостойкость ткани измеряется высотой водяного столба, который онf может удержать не промокая. Единица измерения мм.
2. Паропроницаемость (Воздухопроницаемость) характеризует, какое количество влаги в виде пара пропускает наружу один метр ткани за 24 часа. Единица измерения г/м2/24 часа. Чем выше значение этих параметров, тем лучше.
* Для сравнения: максимальная водостойкость хлопка составляет 500 мм, синтетики без специальной обработки – 1000 мм. При этом паропроницаемость, необходимая для активного занятия спортом, например, горными лыжами, составляет 10 000 г/м2/24ч, а для ходьбы пешком – 3000 г/м2/24ч.
BREATHABLE – мембранная ткань для неэкстремальных условий. Используется в изделиях Caimano. Водостойкость 2000 – 5000 мм. Воздухопроницаемость 2000-5000 г/м2/24 часа.
Типы характеристик, используемых в одежде Color Kids
Air-Flo 10000: водонепроницаемые, ветрозащитные и дышащие.
Максимальная защита в самых суровых погодных условиях.
Отделка: Ламинированная мембрана
Водотталкивание: + 10.000 mm
Ветронепродуваемость: да
Паропроницаемость: + 5000 г./м./24 ч.
Швы: полностью проклеенные (FTS)
Air-Flo 5000: Водонепроницаемость, ветрозащитные и дышащие
Превосходная защита при любых погодных условиях.
Материал: Покрытие AF 5000 PU / ламинированная мембрана
Водотталкивание: + 5.000 мм
Ветронепродуваемость: Да
Паропроницаемость: +5000 г./м./24 ч.
Проклейка швов: Полная проклейка швов (FTS)
Air-Flo 3000: Водонепроницаемость, ветрозащитные и дышащие
100% защита при любых погодных условиях
Материал: Покрытие AF 3000 PU
Водотталкивание: + 3.000 мм
Ветронепродуваемость: Да
Проклейка швов: Частичная проклейка швов (PTS)
Air-Flo 2000: непромокаемый, ветрозащитные и дышащие
Эффективная защита в любых погодных условиях.
Материал: Покрытие AF 2000 PU Водотталкивание: + 2.000 мм
Ветронепродуваемость: Да
Паропроницаемость: Да
Проклейка швов: Нет
pingvin96.ru
Общие характеристики мембран
В настоящий момент насчитывают свыше трех десятков различных видов мембран, которые по их состоянию в тканях разделяют на 2 основные группы: резорбирующиеся и нерезорбирующиеся.При сравнении эффективности резорбирующихся и нерезорбирующихся мембран не выявлено четкого превосходства одних над другими (Linde A. et al., 1993; Laurell L. et al., 1998; Pereira S. et al., 2000). Некоторое снижение положительных результатов при применении нерезорбирующихся мембран связывают, прежде всего, с необходимостью повторного вмешательства для снятия мембран и вследствие этого — повторной травмой тканей (Золоева З.Э. и др., 1997; Барер Г.М. и др., 1998; Harrel S. et al., 1999). Кроме того, нерезорбирующиеся мембраны чаще всего не способны интегрироваться с окружающими тканями, что вызывает развитие рецессии краев лоскутов по поверхности мембраны. Однако эти недостатки компенсируются нейтральным поведением нерезорбирующихся барьеров в тканях, а также гарантированным состоянием на всем протяжении установки в ране.
В отличие от нерезорбирующихся мембран, рассасывающиеся барьеры позволяют избежать проведения повторных операций с целью удаления мембран и тем самым исключить дополнительную хирургическую травму. Однако в условиях раны они не всегда сохраняют стабильные свойства, поскольку их резорбция определяется множеством факторов, таких как реакция окружающих тканей на состав мембраны, место расположения барьера в тканях, pH среды и т. д. Кроме того, биорезорбция материала всегда сопровождается воспалительным ответом. А эффективность резорбирующихся мембран во многом определяется именно тем, насколько этот ответ является минимальным и обратимым (Cordioli G. et al., 1999; Jovanovic S. et al., 1993).
Многие авторы сходятся в том, что эффект применения мембран определяется не столько их специфичностью, сколько способностью создать условия для успешного формирования, надежного сохранения и нормальной трансформации кровяного сгустка (Vergara J. et al., 1997; Parashis A. et al., 1998; Eickholz P. et al., 1998). Показательным является сравнение данных, полученных G. Leghissa и соавт. (1999) при использовании нерезорбирующихся мембран и D. Tatakis и соавт. (1999) — при использовании резорбирующихся барьеров. В схожих клинических условиях авторами получено 85 и 81% положительных результатов соответственно. В литературе встречаются исследования, где непосредственно сопоставляются различные виды мембран. F. Elharar и соавт. в 2001 г. (1998) при сравнении коллагеновых резорбирующихся мембран различной толщины и с разной внутренней структурой, а также синтетических нерезорбирующихся мембран из политетрафторэтилена (ПТФЭ) не выявили существенной разницы между ними. Вместе с тем авторы вышеприведенных работ, а также J. Mattson с соавт. (1999), J. Wiltfrang с соавт. (1998) и другие в своих работах особо подчеркивают то обстоятельство, что положительный исход операций стал возможен прежде всего благодаря надежной фиксации кровяного сгустка in situ. В частности, для достижения необходимой зрелости кровяному сгустку требуется около двух месяцев. Поскольку даже самые быстро резорбирующиеся барьеры сохраняются в ране не менее 6 нед., очевидно, что все виды мембран выполняют защитную роль для кровяного сгустка и подсадочного материала в самый критический послеоперационный период. Специфическое же изолирующее влияние мембран на рост медленнорегенерирующих тканей следует считать вторичным.
Сравнивая различные виды мембран, исследователи сходятся и в том, что эффект их применения в значительной мере зависит от правильного планирования и проведения операций, а также от местных условий. К примеру, P. Fugazzoto (1999), анализируя 723 проведенных операции с использованием различных мембран для НРТ, показал, что положительные результаты в 96,1% случаев стали возможны скорее благодаря грамотному планированию и проведению операций, чем специфичности мембран и виду использованных подсадочных материалов.
Продолжает дискутироваться вопрос о том, что недостаточная эффективность мембран связана с процессом их инфицирования в ране (Zucchelli G. et al., 1999). В ряде работ продемонстрирована негативная связь между количеством бактерий, контаминирующих мембрану, и снижением прироста костной ткани. N. Yoshinari с соавт. (1998) в 1996 г. провели исследование, целью которого явилось определение наличия бактерий и характерных для воспаления клеток крови под мембраной из ПТФЭ. Исследования показали, что в области установленных ПТФЭ-мембран имеется значительное количество клеток воспалительного ряда. Кроме того, во всех случаях определяли выраженную микробную контаминацию мембран. Схожие результаты были получены и нами в отделении пародонтологии ЦНИИС при изучении нерезорбирующихся мембран из силикона (Чупахин П.В., 2001) (рис. 1).
Рис. 1. Нерезорбирующаяся мембрана из силикона непосредственно после удаления. Наблюдается выраженная контаминация налетом внешней поверхности мембраны
После удаления мембран мы наблюдали загрязненность ее поверхности пищевым и микробным налетом. Однако такое инфицирование мы отмечали только с внешней поверхности мембраны, тогда как ее внутренняя поверхность оставалась стерильной. Это демонстрирует еще одну функцию мембран, которая заключается в изоляции подлежащего пространства от внешних микробных и механических повреждающих факторов. В свою очередь, это приводит к созданию под мембранами определенного микробного фона. Проведенные нами исследования состава микрофлоры в области покрытых мембранами дефектов показали, что так называемый коэффициент устойчивости микроорганизмов, характеризующий соотношение позитивной и негативной микрофлоры, оказался выше в области использования мембран. Данный факт свидетельствовал о том, что микрофлора под мембранами по своему составу являлась менее патогенной и агрессивной, чем та, которую мы обнаруживали в области проведения стандартных лоскутных операций. Это, в свою очередь, снижало угрозу возникновения рецидивов и создавало реальные условия для успешной регенерации тканей пародонта.
Многочисленными экспериментальными и клиническими исследованиями было доказано, что эффективность мембранной техники значительно повышается при совместном использовании мембран и подсадочных материалов (Becker W., 1999; Cordioli G. et al., 1999; Eickholz P. et al., 1998). Показательна работа T. Hockers и соавт. (1997), которые сопоставили эффективность резорбируемых мембран Bio-Gide в сочетании с различными видами подсадочных материалов. Процент положительных результатов в случае одновременного использования мембран и подсадок оказался вдвое выше, чем при использовании только мембран, и в полтора раза — при применении только подсадочных материалов. Схожие результаты получили A. Linde и соавт. (1993), используя резорбируемые мембраны и остеотропный материал Bio-Oss. Показан наибольший прирост костного субстрата в случаях совместного использования Bio-Oss и мембран. Таким образом, совместное использование подсадочных материалов и мембран позволяет значительно увеличить эффективность хирургических вмешательств на пародонте.
Накопленный опыт использования мембранной техники позволяет продемонстрировать определенную статистику прироста тканей пародонта в зависимости от тяжести первоначального поражения и формы дефектов. Зачастую такие данные значительно разнятся между собой. Приведем лишь некоторые из них. H. Falk и соавт. (1997), анализируя опыт применения методики НРТ в клинике, показали, что через один год гарантированные результаты НРТ-терапия дает при глубине кармана до 4 мм. В этом случае прирост уровня клинического прикрепления наблюдали в 78% случаев. W. Becker (1999), анализируя 10-летнюю практику применения НРТ, показал, что гарантировать эффективность методики можно лишь для 3-стеночных дефектов: в таких случаях средний прирост костной ткани составил до 3–3,5 мм. Вместе с тем результаты исследований последних лет демонстрируют значительный прогресс в области направленной регенерации тканей пародонта. Это связано прежде всего с совершенствованием технологий производства подсадочных материалов и собственно мембран. Так, при использовании последнего поколения подсадочных материалов, включающих специфические стимуляторы роста клеток, а также гипоаллергенных резорбирующихся мембран в условиях 2- и 3-стеночных дефектов удается получить прирост костной ткани до 5–6 мм. В ряде случаев исследователи наблюдали и рост периодонтальной связки.
Таким образом, опираясь на многочисленный опыт экспериментальных и клинических исследований, проведенных с использованием различных сочетаний мембран и остеопластических материалов, в ряде случаев у врачей-клиницистов уже появляется возможность более оптимистично гарантировать результаты хирургических вмешательств с использованием технологии НРТ.
Грудянов А.И., Чупахин П.В.
Методика направленной регенерации тканей. Подсадочные материалы
medbe.ru
Строительные мембраны: особенности, характеристики, виды
[contents]
Строительные мембраны необходимы для защиты здания от атмосферных осадков и ветра. При этом любая мембрана должна выпускать пар наружу, поэтому этот материал и является полупроницаемым. В общих чертах, мембрана разделяет между собой две среды, направленно перемещая вещества из внутренней в наружную.

Отличительной чертой строительных мембран являются микропоры и микроперфорации, благодаря которым пар перемещается в одном направлении. Большинство мембран оснащаются одним или несколькими подобными слоями защиты, благодаря чему достигается полная химическая и физическая стабильность. Некоторые из них (они именуются строительной пленкой) не пропускают влагу вовсе. В их состав входит неперфорированный шар (или шары) полиэтилена, преимущественно на сетчатой основе. Это еще называют паробарьером. В целом, основных параметров у строительных мембран всего две:
1. Устойчивость к влаге.
2. Паропроницаемость.
Характеристики строительных мембран

Строительные мембраны производятся из полипропилена либо полиэтилена в виде полотна, тканного или нетканого. Они могут иметь один или сразу несколько слоев (в зависимости от предназначения), а также алюминиевое покрытие или армирующую полиэтиленовую сетку. Мембраны достаточно тонкие, но при этом очень прочные и практически не растягиваются. Некоторое время они невосприимчивы к ультрафиолету, кроме того, они устойчивы к микроорганизмам и грибку.
Более современные строительные мембраны способны не только регулировать влажность, но и имеют некоторую степень сопротивления передаче тепла. Благодаря этому частично компенсируются теплопотери. Такой материал производится из полипропилена, его прошивают иглами, и имеет толщину от 1 до 1,5 сантиметра.Подробнее читайте тут http://www.resursltd.ru/catalog/membrany/izolteks/

Не менее важен вопрос огнеупорности пленок, который производителя решают сегодня одним из двух способов:
1. Делают полимерные мембраны, содержащие в себе антипирены.
2. Пропитывают готовое полотно специальными защитными составами.
Касаемо срока эксплуатации, то мембрана должна прослужить ровно столько же, сколько ограждающая конструкция, к которой ее прикрепили. По этой причине не стоит отдавать предпочтение материалам, эксплуатационный срок которых ограничивается 15 годами, или же тот, о сроке службы которого производители попросту умалчивают.
Важно! Когда мембраны стареют или на них воздействуют высокие температуры, то технические характеристики их снижаются. Поэтому изделия, ограниченные температурой в плюс 80 градусов, не всегда подходят. Особенно если речь идет о металлической кровле, где температура нередко превышает данную отметку.
Итак, строительная мембрана – это по сути своей пленка, которая пропускает (или нет) пар, не препятствует проникновению воздуха и влаги.
Разновидности строительных мембран

Если классифицировать мембраны по назначению, то все они делятся на две большие группы:
• пропускающие пар;
• НЕ пропускающие пар.
Помимо того, материал можно разделить еще на несколько категорий.
1. Негорючие мембраны. Как уже говорилось, они плохо поддаются горению ввиду добавления антипиренов или применения специальной пропитки.
2. Паронепроницаемые мембраны. Они защищают материал-утеплитель от проникновения пара. При этом кровельные конструкции не увлажняются, следовательно, не замерзают в зимнее время.
3. Влагоизолирующие мембраны состоят из нескольких слоев и препятствуют проникновению влаги в помещение. Как следствие – не появляется плесень и грибки.
Разновидности строительных мембран
4. Ветрозащитный материал, как можно судить из названия, защищает утеплитель от ветра, который, в свою очередь, может привести к образованию конденсата. Из-за чего утеплитель увлажняется и теряет свои свойства.
Наконец, в зависимости от используемого материала мембраны могут быть:
• полиэтиленовыми;
• полипропиленовыми.
На этом все. Рекомендуется использовать строительные мембраны, дабы утеплитель, коим зачастую выступает минеральная вата, был предельно эффективным.
stroy-dom.info
Что такое мембрана? Как она работает? – запись пользователя елена (wischenka) в дневнике
«Мембрана – это либо тончайшая плёнка, которая ламинирована (приварена или приклеена по особой технологии) к верхней ткани, либо специальная пропитка, жёстко нанесённая на ткань горячим способом при производстве. С внутренней стороны плёнка или пропитка может быть защищена ещё одним слоем ткани».
Отсюда можно сделать вывод о важном свойстве мембранной одежды – она очень легкая.
Категории мембран по строению
По строению мембраны ткани делятся по принципу, какая мембрана используется: беспоровая, поровая и комбинированная.
Беспоровые мембраны работают по принципу осмоса (не космоса, а осмоса – вспоминайте уроки физики и химии в школе).
Система такая: испарения попадают на внутреннюю часть мембраны, осаживаются на ней и посредством активной диффузии быстро переходят на наружную сторону мембраны. (Опять же, только если есть движущая сила – разница в парциальных давлениях водяных паров).
В чем преимущество беспоровых мембран? Они мега долговечны, не требуют бережного ухода, исправно работают в широком диапазоне температур. Такие мембраны обычно используются в топовых (дорогих и самых функциональных) изделиях.
В чем недостатки? Поначалу может показаться, что изделия промокают, но это, как раз те самые испарения, которые скапливаются на внутренней части изделия. Т. е. они начинают дышать медленнее, но продвинутые беспоровые мембраны, «раскочегарясь», иногда по дышащим свойствам превосходят поровые.
Поровые мембраны – это, грубо говоря, мембраны, которые работают по следующему принципу: капли воды, которые попадают на мембранную ткань снаружи, пройти через поры мембраны внутрь не могут, так как эти поры слишком малы. Молекулы пара, образующиеся, когда Вы потеете, с внутренней части мембранной ткани свободно выводятся наружу через поры мембраны (так как молекула пара в тысячи раз меньше капли воды, то может свободно проникнуть через поры мембраны). В результате получаем водонепроницаемость мембранной ткани снаружи изделия и дышащие (пароотводящие) свойства изнутри изделия. Вместе с тем, капля воды в такое отверстие просочиться не сможет. Но, как (спросите вы), дырявая одежда будет противостоять ветру? Ведь молекулы ветра также существенно меньше капли воды! В этом случае мембрана работает по-другому. Ветер, попадая в длинные и узкие поры, начинает завихряться и не проходит насквозь.
В чем преимущество поровых мембран? Они «быстро» начинают дышать, т. е. выводят испарения, как только Вы начинаете потеть (при условии, что есть разница в парциальных давлениях водяного пара внутри и снаружи куртки. Т. е., когда есть движущая сила).
В чем недостатки? Эта мембрана достаточно быстро «умирает», т. е. теряет свои свойства. Поры мембраны забиваются, что сильно снижает дышащие свойства. При неправильной стирке куртка может начать протекать. Особенно сильно этот недостаток может проявиться, если Вы не особый любитель ухаживать за своими вещами (использовать специальные DWR спреи, моющие средства для мембранных тканей и т. д.).
Комбинирование мембраны – все очень круто. Система такая: ткань верха покрыта с внутренней стороны поровой мембраной, а поверх поровой мембраны имеется еще тонкое покрытие (т.е. беспоровая полиуретановая мембранная пленка). Эта волшебная ткань имеет все преимущества поровых и беспоровых мембран, избегая недостатков. Но за высокие технологии приходится дорого платить. Очень немногие фирмы используют данную мембрану в своих изделиях…
Как «работает» мембрана?Если вы стали обладателем мембранной одежды, то не стоит надевать ее на хлопчатобумажную футболку и пускаться на пробежку в двадцатиградусный мороз. Так мембрана не «работает». Смысл в том, чтобы сохранить тепло внутри, выводя влагу наружу и не давая ей впитываться в одежду.
Классическая схема защиты от влаги и холода состоит из трех элементов-слоев, и мембрана – лишь один из них, самый последний.Первый слой одежды – это термобелье (специальная тонкая одежда, которая сохраняет тепло, выделяемое телом). Хлопка следует избегать, так как он жадно впитывает влагу, а, следовательно, ни о каком тепле речи быть не может.
Второй слой – шерстяная одежда (с примесью синтетических тканей, отводящих влагу) или одежда из искусственных материалов типа флиса (Fleece) или полартека (Polartec). Немаловажно, чтобы второй слой был объемным и задерживал тепло.
И только третий, внешний слой – тонкая мембранная куртка.
Если мороз слабенький, то можно обойтись лишь первым и третьим слоями, что обеспечит вам мобильность и подвижность.И, наконец, важно понимать, за счет чего влага будет отводиться наружу. За счет разницы между давлениями воздуха под мембранной курткой и снаружи. Поэтому если вы вздумаете сидеть без движения в сугробе, надеясь на «волшебную» мембрану, есть реальный шанс основательно простудиться. Однако это вовсе не означает, что нужно носиться как угорелому в ожидании разницы давлений, чтобы мембрана «заработала». Достаточно просто более или менее активно двигаться (на всякий случай: ходьба – это тоже движение).
Характеристики мембранной тканиОхарактеризовать мембрану можно не только по структуре и принципу работы (с порами или без), но и по двум ее основным параметрам: водонепроницаемости и способности выпускать пар.
Водостойкость (или водонепроницаемость), waterproofness (миллиметры водного столба, мм вод. ст., mm h3О) - высота столба воды, который мембрана (ткань) выдерживает не промокая. Фактически этот параметр указывает давление воды, выдерживаемое без промокания. Чем выше водостойкость мембраны, том более интенсивные осадки она может выдержать, не пропустив через себя воду.
Паропроницаемость (г/м2, g/m2) - количество паров воды, которое способен пропустить квадратный метр мембраны (ткани). Применяются и другие термины: Moisture Vapour Transfer Rate(MVTR), moisture permeability. Чаще всего указывается усредненная, за длительный промежуток времени, величина g/(m2•24h) - количество паров воды, которое способен пропустить квадратный метр мембраны (ткани) за 24 часа. Чем она выше, тем комфортнее одежда.
Базовый уровень – это обычно 3.000мм/3000г/м2/24 часа.
О проклейке швов
Мембрана среднего уровня обычно имеют характеристики 8.000мм/5.000г/м2/24 часа или около того.
Водонепроницаемость тканей высокого класса обычно не менее 20.000мм водного столба, а дышащие свойства не менее 8.000г/м?/24 часа.Проклеенные швы позволяют избежать проникновения влаги через швы, и, как результат, чувствовать себя сухо и комфортно.
Надпись «all seams are sealed» означает, что все швы в данном изделии проклеены.Если на этикетке написано «critical seam sealing», это означает, что в изделии проклеены только основные швы, что может обернуться подтеканием в некоторых местах, а может и не обернуться. Стоит заметить, что в изделиях, позиционируемых брендом как полугородские, такой вариант очень даже приемлем (обычно это изделия с утеплителем). Тут уж, каждый покупатель волен выбирать то, что он хочет, и что подходит лично для него.
Водоотталкивающее покрытие – DWRПосмотрите – капельки на ткани не впитываются, а лежат на ткани, скатываясь в шарики! Это DWR (Durable Water Reppelence) покрытие, не позволяющее воде проходить даже через верхний слой ткани (то есть впитываться в нее). На ткани с DWR покрытием вода, скатывается в шарики и легко скатывается. DWR, кстати, штука не долговечная, и со временем исчезает (смывается), а на ткани появляются мокрые пятна (при контакте с водой). Это вовсе не значит, что изделие промокает, так как мембрана все равно воду не пропустит, но некоторый дискомфорт присутствовать может. Образовавшийся слой воды сверху не даст работать мембране, какой бы крутой она не была. Кроме этого, в поровых мембранах, в этом случае, возможно прохождение воды через мембрану. Избежать умирания DWR Вам поможет специально разработанные средства с этим самым DWR покрытием (NIKWAX, WOLY, salamander), продающиеся в магазинах, торгующих экстремальной одеждой.
Плюсы и минусы мембранной одеждыПлюсы:
- она легкая и удобная: ребенок может двигаться на улице и получать удовольствие от прогулки, а не сидет в коляске имея возможность шевелить только головой.
- вы не тратите кучу нервов, натягивая и застегивая очередной слой одежды «потеплее»
- ребенок не взопреет, пока вы одеваетесь и выходите на улицу.
- хорошо защищает от дождя и снега, прочная и легкая;
опять же, ваши нервы спокойны и не надо бежать домой после очередного падения в лужу. - она не продувается ветром и хорошо отводит испарения тела наружу;
она подходит как для не очень холодной ветреной погоды, так и для морозной; - под нее надо надевать меньше одежды, чем обычно.
- грязь очень легко удаляется, можно забыть о стирке через день и выбирать яркие расцветки.
Минусы:
- мембранная одежда достаточно дорогая
- требует особого ухода
- относительно недолговечна
- одежда под нее должна быть особым образом подобрана;
- не подходит для любителей всего натурального.
Лучшей считается микропоровая мембрана Gore-Tex, разработанная в 60-х годах 20 века для костюмов астронавтов. Для горнолыжной одежды используется, как правило, двухслойный Gore-Tex, который легче и мягче трехслойного, из которого делают, в основном, куртки для туризма и альпинизма.
Водонепроницаемость двухслойной мембраны 15000 мм, а влагоиспаряемость – 12000 г/м2/24 час.
Примерно на одном уровне с Gore-Tex держатся беспоровые мембраны Triple-Point и Sympatex, ULTREX, и другие ткани под общим названием hi-pora. Их показатели водонепроницаемости несколько ниже – примерно 12000 мм, но этого вполне достаточно для того, чтобы не промокнуть даже под сильным дождем или снегопадом. Дышат эти мембраны также очень хорошо. Sympatex, помимо того, что применяется в чистом виде, входит в состав технологии Omni-Tech, которая включает в себя мембрану, специальное водоотталкивающее покрытие и ветрозащитный слой.
Гораздо более дешевыми являются мембраны Ceplex и Fine-Tex, которые сейчас очень активно используются в производстве спортивной одежды. Основной недостаток Ceplex – его недолговечность.
Если одежда с Gore-Tex, Triple-Point или Sympatex при аккуратном обращении прослужит 4-5 лет, то Ceplex редко выдерживает больше одного-двух сезонов активного использования и начинает промокать. Fine-Tex же, напротив, не промокает, но дышит при этом немного лучше полиэтилена. Зато сами эти мембраны и одежда с ними стоят на порядок меньше аналогов из Gore-Tex, Triple-Point и Sympatex.
Мембрана Ceplex используется в производстве одежды марки Vaude.
Мембрана Fine-Tex, Sympatex – в марках Bolik, COOLAIR.
Мембраны hi-pora – в марках Commandor (Hi-Pora™/Evapora™), Lowe Alpine (Triple Point Ceramic), Columbia (Sympatex)
Мембранна, утеплитель, верхняя ткань и погодные условия, подведем итог на обывательском уровне создав обзор по торговым маркам, представленным на сегодняшний день в Украине.
Зимнюю мембранную одежду в среднем можно начинать носить с +5+7 оС (для нежарких детей). Мембранный комбинезон или комплект, одетый на малыша при осеннем дождике или во время весенней оттепели сохранит нервы маме (но не окружающим) и подарит ребёнку много радости от общения с водой. Если же активной возни в луже не предвидится – вполне хватит ткани с пропиткой DWR.
Очень неплохо, если швы в изделии будут проклеены. Под такие условия подойдут Reima tec (для нежарких детей, если же ребёнок активный и не мерзлячий – лучше обойтись демисезонной одеждой), Huppa (куртка без утеплителя на флисе или с колличеством утеплителя 80 г, брюки на флисе). Под комбинезон – минимум одежды, в идеале – термобельё. Ибо, как показывает практика, когда вокруг много луж, малышне сложно гулять неактивно.
Когда градусник показывает 0…-5 оС можно или добавлять 1 слой, или же менять верхнюю одежду. Как вариант – Reima tec (можно на термобельё добавить флисовую кофточку или смесовый гольфик), Huppa (куртка без утеплителя на флисе или с колличеством утеплителя 80, 130 г, брюки на флисе или полукомбинезон 100 г), Lenne (изделия с кол-вом утеплителя не более 150 г), Bambino, TCM, H&M.
На температуру -5…-15оС подойдут Reima tec (под комбинезон желательно пододеть термобельё или др. нательный слой и флисовый комбинезон), Huppa (куртки с колличеством утеплителя 130, 160, 200 г, полукомбинезон 100 г, комбинезон 200 г), Lenne (изделия с утеплителем 150 г, 330 г), при ниже -10 оС можно одеть пуховик (О`Hara, Chicco, Geox) или комбинезоны Кiko, Donilo, Gloria Jeans, Lemmi, Шалуны, Gusti, Bambino, TCM, H&M.
-15 оС и ниже – многие мамы при такой температуре отменяют прогулки. Если вы к таким не относитесь – позаботьтесь, чтобы ребёнок на улице не сидел на месте (тогда и шуба мало поможет), а, значит, не был одет в толстую одежду и мог свободно двигаться.
-15-20 оС не страшны будут, если малыш будет ездить с горки, лепить снежную бабу, играть в снежки (не верите – попробуйте сами!). Подойдут Reima tec (не всем, зависит от ребёнка), Huppa (куртки с колличеством утеплителя 130, 160, 200 г, полукомбинезон 100 г, комбинезон 200 г), Lenne (изделия с 150 и 330 г утеплителя), пуховик (О`Hara, Chicco, Geox), комбинезоны Кiko, Donilo, Gloria Jeans, Lemmi, Шалуны, Gustі, Bambino, TCM, H&M.
Эти рекомендации подходят для маленьких пешеходов. Если же малыш ходит, но ещё ездит в коляске – можно, одев его для пешей прогулки, в коляске усадить его в конверт. Тогда и в коляске не замёрзнет, и, бегая, не вспотеет.
Для малышей же первого года жизни хорошо подойдут слитные комбинезоны – Huppa (200 г), Lenne (малышковые модели или комбинезоны-трансформеры), пуховики (Chicco), комбинезоны Кiko, Donilo, Gloria Jeans, Lemmi, Шалуны, Gusti, овчинные комбинезоны. Также можно выбрать более лёгкие варианты, но в коляску класть меховой конверт, и гуляйте на здоровье
www.babyblog.ru
Мембраны характеристики – Справочник химика 21
Поверхностные явления играют ключевую роль в мембранных процессах и существенны для всех типов мембран, кроме газодиффузионных. Абсолютные значения коэффициента проницаемости и селективности мембран, температурная и барическая зависимость этих характеристик, во многом определяются закономерностями сорбционного процесса на поверхности и в матрице мембраны. Обычно допускается, что скорость сорбции намного превышает скорость переноса массы и распределение вещества между сорбированной и объемной фазами равновесно. Поэтому ограничимся анализом условий сорбционного равновесия и разделительных характеристик равновесного сорбционного процесса. [c.42]Мембрана Характеристика стоков [c.315]
Рассмотрим идеальный процесс разделения исходной смеси на фракции. На рис. 7.2 показана схема идеального устройства для разделения смеси на фракции, включающие соответственно А/ компонентов (А,-ей). В отличие от схемы полного разделения, полупроницаемые мембраны установлены на входе в приемные камеры и обеспечивают обратимое смешение компонентов фракции. Температура во всех элементах системы одинакова. Давления в камерах также одинаковы и равны давлению исходной смеси. Мембранные парциальные давления р, и Ра соответствуют условиям мембранного равновесия чистого вещества и смесей в соответствующих камерах, затраченная извне минимальная работа разделения п молей исходной смеси на фракции с числом молей п,- определится как сумма затраченных работ обратимого изотермического сжатия чистых газов от их мембранных парциальных давлений р,, соответствующих равновесию с исходной смесью, до аналогичных характеристик Ра, равновесных газовым фазам фракций. Для одного моля исходной смеси минимальная работа разделения на фракции определится суммой [c.233]
Относительные потери жидких поверхностно-активных мембран в результате проникновения через подложечную мембрану зависят от размера и формы молекул жидкой мембраны, характеристик пористости подложечной мембраны и от свойств окружающей среды. [c.314]
Исследовалась ультрафильтрация эмульсии веретенного масла в щелочном составе КМ-2 через полупроницаемые полиамидные и этилцеллюлозные мембраны, характеристики которых приведены в ТТ4 [c.114]
Мембраны второго типа характеризуются существенным влиянием поверхностных явлений, прежде всего адсорбции возможно появление конденсированной фазы и эффекта капиллярности химический потенциал компонента зависит не только от температуры, давления и состава газовой смеси, но также и от свойств матрицы за счет поверхностной энергии. Влияние скелета мембраны на процесс разделения не ограничено, как в газодиффузионных, чисто структурными характеристиками, а предполагает появление новых видов массопереноса. Однако транспорт компонентов в основном материале мембраны исключен. Примером такого рода систем являются микропористые структуры и газовые смеси под давлением, содержащие компоненты со значительной молекулярной массой. [c.13]
Таким образом, каждый тип мембраны характеризуется видом взаимодействия молекул газа и структурных элементов матрицы. Количественными характеристиками этого.взаимодействия являются энергия связи и потенциал, зависящие от параметров межмолекулярного взаимодействия, молекулярной природы и морфологии матрицы мембраны. Энергия связи определяется тепловым эффектом, сопровождающим образование системы мембрана — газ для сорбционно-диффузионных мембран— теплотой сорбции, в реакционно-диффузионных мембранах, кроме энтальпии растворения газов, заметный вклад вносит тепловой эффект химической реакции. В газодиффузионных мембранах энергия связи близка к нулю. [c.14]
Таким образом, если в пористой мембране удается организовать режим свободномолекулярного течения, проницаемость каждого компонента газовой смеси в изотермических условиях определяется структурными характеристиками мембраны, температурой и молекулярной массой газа и не зависит от давления. Разделительная способность является функцией только соотношения молекулярных масс и не зависит ни от свойств мембраны, ни от параметров процесса Г и Р. Из соотношения (2.52) следует, что для мембраны определенной структуры существует комплекс величин, сохраняющий постоянное значение при разделении любых смесей при любых значениях температуры и давления, если Кп>1 [c.57]
В частности, для пористого стекла Викор (П5 = 0,32, с п = = 5,8-10 м, =5,9) получим, полагая размерность Л моль/м с Па >4 = 0,58-10″ . Правая часть соотношения (2.54) включает только характеристики поровой структуры мембраны и коэффициент эффузионного сопротивления, также зависящей от [c.57]
Правая часть этого уравнения содержит константу Л , составленную из структурных характеристик пористой мембраны и комплекса величин, определяющих поверхностную миграцию частиц. [c.61]
Проницаемость мембраны, как интегральная кинетическая характеристика, будет в соответствии с уравнением (3.52) зависеть от средних значений ,> и с учетом структурных изменений матрицы при всестороннем сжатии. [c.97]
Кристаллические и, плотные аморфные материалы обычно непригодны для создания мембран. Это обусловлено малой долей свободного объема и большим временем релаксации для процессов перераспределения вакансий и других дефектов структуры, в результате чего резко снижается растворимость газов и скорость миграции растворенного вещества. Равновесные и кинетические свойства подобных систем во многом определяются высокими значениями потенциала межатомного (межмолекулярного) взаимодействия, обычно превышающего средние значения кинетической энергии КьГ этим объясняется малая подвижность структурных элементов. Однако легкие разы типа Нг, Не, Оа, N2 с наиболее низкими значениями параметров (е,/, о, ) парного потенциала молекулярного взаимодействия могут в некоторых плотных матрицах образовывать системы с повышенной растворимостью и удовлетво рительными диффузионными характеристиками. Наиболее перспективны металлические мембраны на основе палладия для извлечения водорода, а также стекла для выделения гелия [8, 10, 19—21]. [c.114]
Естественно, диффузионные характеристики мембраны при этих условиях различны. С ростом температуры область неупорядоченной фазы расширяется и при Г>Гкр, когда энергия 8 115 [c.115]
Скорость диффузии различна в упорядоченной и неупорядоченной фазах раствора экспериментальные данные свидетельствуют о заметном росте значений Dim в области высоких концентраций водорода [8]. Ранее отмечалось, что образование упорядоченной фазы раствора внедрения сопровождается сильным деформационным взаимодействием в матрице, приводящим к заметному увеличению параметров кристаллической решетки, что эквивалентно росту доли свободного объема при пластификации аморфной матрицы полимерной мембраны. Эти явления также приводят к увеличению скорости диффузии и растворимости. При температурах, меньших критических, процесс диффузии по существу происходит в гетерофазной системе, состоящей из зон упорядоченной и неупорядоченной фаз с различными диффузионными характеристиками. В этой области эффективный коэффициент диффузии будет зависеть от субструктуры кристаллической матрицы мембраны, по аналогии с гетерофазными полимерными матрицами [см. уравнения (3.44) и (3.45)]. [c.117]
Анализ соотношений для эксергетического к. п. д. и приведенных массообменных характеристик показывает, что эти величины оказываются функцией отношения (а не разности) давлений в напорном и дренажном каналах. Однако масштабный поток, согласно (7.59), непосредственно зависит именно от разности давлений (Р —Р”), коэффициента проницаемости и толщины диффузионного слоя мембраны. Следовательно, производительность мембранного модуля также окажется функцией этих характеристик мембраны и технологического режима. Повышение разности давлений при сохранении оптимального их отношения (е е ) позволит интенсифицировать мембранное разделение при сохранении максимума энергетической эффективности. Разумеется, этот путь интенсификации ограничен возрастающим негативным влиянием внешнедиффузионного сопротивления массообмену (см. гл. 4). Далее будет дана оценка потерь эксергии в результате этого влияния. [c.248]
Необходимо отметить, что выбор конструкции аппарата для осуществления конкретного процесса разделения определяется, в первую очередь, типом и характеристиками избранной для этих целей промышленно выпускаемой мембраны и, что не менее важно, технологическими параметрами процесса — давлением (и абсолютным перепадом давлений), температурой, составом газовой смеси, коррозионной активностью ее компонентов, нагрузкой по исходному газу и др. [c.195]
Следует отметить, что высокую степень разделения газовой смеси с помощью мембранной колонны можно получить, используя мембраны с относительно низкими значениями проницаемости и селективности. Предпочтительным представляется использование в аппаратах колонного типа мембран в виде полых волокон, сочетающих высокую плотность упаковки с достаточно хорошими технологическими характеристиками. [c.216]
Исследуем влияние газоразделительных характеристик мембраны и внешних параметров на энергетическое совершенство селективного проницания, используя локальное значение эксергетического к. п. д. [c.244]
Анализ энергетического совершенства основной стадии мембранного процесса — селективного проницания — выполнен в разд. 7.2.2, где исследовано влияние свойств мембраны и параметров газовой смеси на локальные характеристики процесса. [c.262]
Вместе с тем, наряду с очевидными достоинствами эти мембраны имеют ряд существенных недостатков, которые ограничивают область их применения в химической технологии нестойкость (табл. 11,5) в щелочных и кислотных средах необратимое ухудшение основных характеристик со временем малая механическая прочность необходимость хранения и транспортирования во влажном состоянии, поскольку высушивание мембран приводит к необратимой потере проницаемости. Много интересных разработок выполнено и по получению ультра- [c.59]
Если предохранительный клапан не может надежно работать, то в сосудах устанавливают специальные предохранительные мембраны, которые разрываются при давлении, на 25% превышающем рабочее. Предохранительные мембраны просты по конструкции и обладают высоким быстродействием. Мембраны изготовляют из различных материалов в зависимости от специфики производства Характеристика промышленных мембран представлена в табл. 23 Предохранительные мембраны изготавливаются на специализи рованных предприятиях. В отдельных случаях мембраны изготав ливаются на предприятиях для собственных нужд, но при без условном соблюдении всех установленных правил. Каждая партия проката, поступившего на предприятие для изготовления предохранительных мембран, имеет свой порядковый номер и проходит [c.325]
Таким образом, при известных характеристиках мембраны и заданном давлении и Рр можно подбором состава исходной смеси добиться оптимальных энергетических характеристик мембранного процесса в модуле. Такая возможность направленного изменения состава Xf- Xf ) появляется в схемах мембранных ступеней разделения с рециклом проникшего или сбросного потоков, при этом условие т]мд(л )->тах следует учесть при выборе коэффициента рециркуляции. [c.263]
Аналитический аппарат для определения кинетических и термодинамических характеристик процесса разделен 1я изложен в главах 4—7, при этом необходимо учесть изменение газоразделительных свойств мембраны под воз-действием меняющихся условий (см. гл. 2 и 3). Обычно редки случали, когда удается получить аналитические формы искомых функций. [c.270]
Материал мембраны Концентрация Рабочее Характеристика мембран [c.50]
На геометрические характеристики структуры мембран значитель- ное влияние оказывают следующие факторы тип заряженной частицы (рис. 11-6), присутствие примесей в полимере, концентрация раствора, вид и длительность дополнительного облучения, частичный отжиг перед выщелачиванием, продолжительность травления. Применение частичного отжига и низкоконцентрированного травильного раствора ведет к получению мембран с порами малого диаметра. В настоящее время существует возможность получать ядерные мембраны с порами диаметром от 4 нм (40 А) до нескольких десятков микрометров. Толщина этих мембран варьируется от единицы до нескольких микрометров (обычно около 10 мкм). [c.54]
Матрица мембраны, изготовленная из сплава, обычно представляет гетерофазнуго систему с довольно сложной субструктурой, зависящей также и от технологии получения. Сорбционные и диффузионные характеристики каждой из фаз различны, средние значения растворимости и коэффициента диффузии, определяющие проницаемость мембраны, зависят от формы и размеров кристаллических образований, их взаимного расположения, концентрации растворенного вещества и других характеристик морфологии гетерофазных твердых растворов. [c.118]
Соотношение между кристаллической и аморфной фазами оказывает большое влияние на механические свойства полимерных мембран, а также на такую важную рабочую характеристику мембраны, как проницаемость. Конечно, отдельные кристаллиты являются очень жест- [c.71]
На рис. П-14 представлена зависимость селективности капилляр-но-пористой стеклянной мембраны, полученной при /ф = 900°С, от времени ее испытания. Мембраны, полученные при /ф = 750°С, имели значительно худшие характеристики (рис. П-15). [c.75]
Все мономеры по поведению в плазме подразделяют на два типа тип А (гидрофильные мономеры) и тип В (гидрофобные мономеры). Лучшие обратноосмотические характеристики имеют мембраны, полученные на основе мономеров типа А, что видно из табл. 11,8 и данных, приведенных ниже [c.79]
В качестве подложек могут быть использованы бумага, пористые полимерные пленки (например, полиэтиленовая) с порами размером примерно 0,45 мкм и др. Лучшей оказалась подложка из фильтров Миллипор . При выборе подложки следует учитывать способность к сцеплению подложки и пленки из ОГ. При отсутствии такой способности происходит проникание ОГ частиц в поры подложки, что ведет к ухудшению характеристик полученной мембраны. [c.82]
Мембранный перенос массы является результатом сопряжения нескольких процессов, протекающих в мембране, прежде всего диффузии и сорбции компонентов газовой смеси существенно также влияние дополнительных связей, возникающих в мембранной системе при нарушении принципа аддитивности. Только в газодиффузионных пористых мембранах, где удается организовать свободномолекулярное течение, процессы проницания газов независимы. В общем случае процессы в мембранах вза-имно-обусловлены, а такие интегральные характеристики мембран, как проницаемость Л и селективность а, являются результатом сопряжения отдельных процессов. Сорбционно-диффу-зионная модель проницания чистых газов через гомогенные непористые мембраны служит примером сопряжения процессов поверхностной сорбции, растворения и диффузии. Предполагается, что характерные времена этих процессов существенно раз- [c.15]
В газодиффузионных мембранах влияние матрицы на перенос массы определяется только характеристиками поровой структуры и, прежде всего функцией распределения пор. Свойства исходного материала не сказываются на кинетике процесса, хотя могут ограничивать область использования, рели спектр размеров пор достаточно широк, то в мембарне при заданных параметрах газовой смеси может одновременно реализоваться несколько режимов течения для каждого компонента. Если же учесть, что фильтрационный перенос и концентрационная диффузия не способствуют разделению смеси, то очевидно, что более целесообразны мембраны с монокапиллярной структурой типа пористого стекла Викор , в которых можно создать свободномолекулярный режим течения. Обсудим закономерности массопереноса при этом режиме. [c.54]
Ниже приведены сравнительные характеристики мембранных аппаратов конструкции НПО Криогенмаш (мембрана — асимметричная ПВТМС) и Монсанто (полые композиционные волокна на основе полисульфона и полиорганосилоксана) применительно к реализованному в СССР и США процессу извлечения водорода из газов синтеза аммиака [29, 30] [c.194]
Обсудим проблему селективности процесса в полимерных мембранах. Столь большое число факторов, влияющих на проницаемость чистых газов, очевидно, скажется на селективности процесса. При разделении газовых смесей в общем случае необходимо учитывать взаимное влияние диффузионных потоков компонентов в мембране, при этом основные сорбционные и диффузионные характеристики процесса оказываются сложной функцией состава газовой смеси. Небольшая примесь сильно-сорбируемого компонента, который отличается специфическим взаимодействием с веществом матрицы мембраны или одним из прочих компонентов смеси, может радикально изменить проницаемость всех компонентов, поэтому принцип аддитивности при определении общего потока через мембрану и оценку селективности процесса на этой основе следует проводить с большой осторожностью. Тем не менее воспользуемся указанным принципом для выявления некторых закономерностей разделения. [c.104]
Способ организации и, следовательно, расчета одноступенчатой установки определяется технологическими целями процесса разделения. Например, если из газовой смеси требуется извлечь какой-либо компонент, обладающий наиболее высокой проницаемостью СО2 или Нг из природного газа и др.), наиболее оптимальным представляется осуществление процесса на одноступенчатой многостадийной (при больших концентрациях извлекаемого компонента) установке с параллельно-последовательным расположением стандартных мембранных модулей одного и того же типоразмера. Исходными данными для расчета в этом случае являются нагрузка по исходной смеси (17/) состав газовой смеси, подаваемой на разделение y f) , требуемая концентрация селективнЬпроникающего компонента в ретанте (у,г) давление разделяемой смеси (Р1) и пермеата (Рг) конструктивный тип стандартного газоразделительного модуля, используемая в нем мембрана, ее характеристики. [c.200]
В уравнениях (4.7) и (4.8) р/ и р” — парциальные давления компонентов газовой смеси у стенок напорного и дренажного каналов бт и Л, — эффективная толщина и интегральная кинетическая характеристика разделительной перегородки, включающей мембрану и пористую подложку. Если сопротивление массоперено1су в подложке незначительно, величины бт и Лг характеризуют толщину и проницаемость мембраны. Как показано в гл. 3, коэффициент проницаемости мембран определяется прежде всего локальными значениями термодинамических параметров и составом смеси у стенки напорного канала Лг = Л(Р, Г, со/,. . ., (о ). Несложно заметить, что отсос в напорных каналах, как и вдув в дренажных будет меняться вдоль канала — это определяется изменением как движущей силы, так и коэффициентов проницаемости. [c.123]
Результаты уточненных расчетов показывают, что при разделении 5,66 м /(м -ч) трехкомпонентной газовой смеси, характеристики которой приведены выше, ретант состоит из (об. %) 7,85 компонента А, 47,01 В, 45,13 С. При этом пермеат имеет следующий состав (об. %) 21,31 А, 65,75 В, 12,94 С поток пермеата через единицу площади мембраны равен 0,903 м (м -ч). [c.191]
Наиболее точный метод расчета многоступенчатых установок с рециркуляцией — поступенчатый (по аналогии с потарелочным при расчете абсорбционных, ректификационных и экстракционных аппаратов). Задачей вычислений является определение числа ступеней разделения (и числа аппаратов в каждой ступени) для достижения заданной степени разделения смеси (или необходимой степени выделения целевого продукта) при известных нагрузке по газовой смеси, концентрации целевого компонента, давлениях Ру и Ра, характеристиках мембраны Л , аРц- [c.206]
На рис. 7.6 и 7.7 показано изменение энергетической эффективности селективного проницания при а= 13 и 3,5, что соответствует разделению смесей СОг—N2 и 62—N2 на мембране из поливинилтриметилсилана. Четко фиксируется максимальное значение т)пр при определенных значениях состава исходной смеси лгщ и отношения давлений е, причем чем выше а, тем ближе эти значения к предельным, определяемым равновесием при а- оо. Область значений состава 0отношения давлений 0конечным значением фактора разделения (lросту энергетической эффективности мембранного разделения с увеличением доли легкопроникаюшего компонента и отношения давлений. Заметим, что в этой области происходит одновременное улучшение массообменных характеристик разделения. После достижения максимума т пр дальнейший рост и е приводит к противоположному характеру изменения энергетических и массо-обменных показателей мембранного разделения, как это наблюдалось при а оо во всем диапазоне. vi, и е. [c.247]
Эти выводы можно качественно использовать при анализе интегральных потерь эксергии в стадии проницания для всего модуля, если оценить усредненные значения параметров газовой фазы вблизи поверхности мембраны. В частности, для условий процесса, при которых проведен расчет эксергетических характеристик, общее давление вдоль напорного канала меняется крайне незначительно, поэтому основным переменным параметром является состав газовой фазы х вблизи поверхности мембраны. Очевидно, по мере истощения разделяемой смеси и вследствие внешнедиффузионного сопротивления концентрация легкопроникающего компонента падает, причем чем выше давление и чем больше доля проникшего потока 0, тем заметнее отличается усредненный состав газа Хи от исходного Х(. [c.262]
Мембраны. Для селективного выделения СО2 и НгЗ из смесей газов, содержащих в основном метан, в промышленном масштабе опользуют только полимерные (асимметричные или композиционные, плоские или в виде полых волокон) мембраны. В табл. 8.8 представлены характеристики мембран, полученных из наиболее перспективных полимерных материалов, применяемых для этих целей (в том ч И Сле и для получения гелиевого концентрата). Как видно из таблицы, лучшим. комплексом свойств для выделения СО2 и НгЗ обладают плоские асимметричные мембраны из ацетата целлюлозы, ультратонкие (с толщиной селективного слоя до 200 А) мембраны из сополимера поликарбоната с полидиметилоилоксаном (МЕМ-079), а также полые волокна на основе ацетата целлюлозы и полые волокна из полисульфона с полиорганосилоксаном типа КМ Монсанто . Перспективным представляется использование для очистки газов от СО2 и НгЗ высокоселективной мембраны на основе блок-сополимера Серагель [56]. [c.286]
Из табл. 8.17 видно, что наилучшими характеристиками — высокой производительностью и селективностью — обладают асимметричные и композиционные мембраны в виде плоских пленок из ПВТМС и полифениленокоида. Учитывая, что асимметричная мембрана из ПВТМС проще и дешевле в изготовлении, чем композиционные (с ультратонким селективным слоем) мембраны Дженерал электрик , применение ее в аппаратах разделения воздуха представляется более предпочтительным следует иметь в виду также большую механическую прочность пх селективного слоя. [c.308]
Хотя соотношение между гидрофильными и гидрофобными элементами и является ключевым фактором химической характеристики мембран, используемых для водных сред, последние не являются единственными в практике мембранного разделения. Разделение нефтяных фракций, например, может быть проведено с помощью полиэтиленовых мембран разной степени кристалличности. Такие мембраны уже были использованы для выделения испарением через мембрану л-ксилола из раствора, содержащего все три изомера. Аналогично в случае систем с полярностью, промежуточной между полярностью водных и углеводородных сред, разделение можно провести с помощью мембран, в которых установлено нужное соотношение между лиофобными и лиофиль-ными элементами по отношению именно к данному растворителю. Для такого в.одноподобного растворителя, как метанол, можно использовать мембраны те же или близкие к тем, которые используют для разделения водных растворов. Так и ацетатцеллюлозные, и мембраны из метилированного полиамида можно (с небольшими изменениями) использовать для разделения спиртовых растворов, в том числе и для низкомолекулярных спиртов. [c.70]
Обратноосмотические плазменные мембраны имеют специфические особенности стабильное увеличение селективности и проницаемости в течение длительного времени (первые 6—8 сут), отличные характеристики при сравнительно высокой концентрации исходного раствора. Например, проницаемость плазменной мембраны на основе винилкар-боната (подложка Миллипор-У5 ) непрерывно увеличивалась в течение 8 сут, а постоянство селективности установилось через 20 сут. Причем стабильность характеристик сохраняется длительное время (от 30 сут и долее). Эти факты не зависят от типа подложки, типа мономера, концентрации исходного раствора и давления. [c.81]
chem21.info
Общая характеристика, свойства и производители осмотических мембран
РЕФЕРАТ
Тема: “Общая характеристика, свойства и производители осмотических мембран”
Общие теоретические сведения о системах обратного осмоса и мембранах
Обратный осмос, известный также как гиперфильтрация, лучший из известных способов фильтрации воды. Обратный осмос позволяет удалять из водной массы мельчайшие частицы величиной с ионы. И для удаления из питьевой воды солей и других включений с тем, чтобы улучшить цвет, вкус или свойства жидкости.
Явление осмоса (выравнивание концентраций растворов, разделенных полупроницаемой мембраной) лежит в основе обмена веществ всех живых организмов. Например, подкладка скорлупы куриного яйца является естественной мембраной, через нее проходят молекулы кислорода, но задерживаются загрязнители. Стенки клеток растений, животных и человека представляют собой естественную мембрану, которая является частично проницаемой, поскольку она свободно пропускает молекулы воды, но не молекулы других веществ. Когда корни растений впитывают воду, стены их клеток формируют натуральную осмотическую мембрану, которая пропускает молекулы воды и отторгает большинство примесей. Травы и цветы стоят вертикально только за счет так называемого осмотического давления. Поэтому при недостатке воды они выглядят пожухлыми и вялыми. Фильтрующая способность природной мембраны уникальна, она отделяет вещества от воды на молекулярном уровне и именно это позволяет любому живому организму существовать.
Применение мембран для отделения одних компонентов раствора от других имеет очень давнюю историю, восходящую еще к Аристотелю, впервые обнаружившему, что морская вода опресняется, если ее пропустить через стенки воскового сосуда. Изучение этого явления и других мембранных процессов началось гораздо позже, в начале XVIII века, когда Реомюр использовал для научных целей полупроницаемые мембраны природного происхождения. Но до середины 20-х годов уходящего века все эти процессы имели сугубо теоретический интерес, не выходя за пределы лабораторий. В 1927 году немецкая фирма «Сарториус» получила первые образцы искусственных мембран. После Второй мировой войны американцы, используя немецкие наработки, наладили производство ацетат целлюлозных и нитроцеллюлозных мембран. Лишь в конце 50-х – начале 60-х годов с началом широкого производства синтетических полимерных материалов появились первые научные работы, которые легли с основу промышленного применения обратного осмоса. Первые промышленные обратно осмотические системы появились только в начале 70-х годов, поэтому это сравнительно молодая технология по сравнению с тем же ионным обменом или адсорбцией на активированных углях. Тем не менее, в Западных странах обратный осмос стал одним из самых экономичных, универсальных и надежных методов очистки воды, который позволяет снизить концентрацию находящихся в воде компонентов на 96-99% и практически на 100% избавиться от микроорганизмов и вирусов.
Явление осмоса наблюдается в тех средах, где подвижность растворителя (например, воды) больше подвижности растворённых в нем веществ (примесей воды). Важным частным случаем осмоса является осмос через полупроницаемую мембрану. Если такая мембрана разделяет раствор (например, воду с примесями) и чистый растворитель (воду), то концентрация воды в растворе оказывается менее высокой, поскольку там часть ее молекул замещена на молекулы растворенного вещества. Вследствие этого, переходы частиц воды из отдела, содержащего чистую воду, в воду с примесями, будет происходить чаще, чем в противоположном направлении (рис. 1-а). Соответственно, объём воды с растворенными примесями будет увеличиваться, тогда как объём чистой воды, будет уменьшаться. Давление, при котором между двумя жидкостями наступает равновесие, называют осмотическим (рис. 1-б)
Обратный осмос – это процесс, при котором молекулы растворителя (воды) под действием давления движутся из раствора (воды, содержащей примеси) в чистый растворитель (в воду). Если со стороны раствора приложить давление, превышающее осмотическое, то молекулы воды из раствора будут свободно проникать в чистую воду (рис. 1-в). Ввиду того, что полупроницаемая мембрана, разделяющая две жидкости, пропускает в основном только молекулы воды, с одной стороны может быть получена чистая вода без примесей, с другой стороны сконцентрированный раствор солей.
Этот процесс — обратный осмос, может быть использован для очистки таких жидкостей как этанол и гликоль, которые пройдут через обратноосмотическую мембрану, в то время как другие ионы и примеси она не пропустит. Обратный осмос используют в фильтрах для очистки воды, в том числе, для питья.
Помимо пищевых производств обратноосмотические системы применяются для получения воды для медицины, микроэлектроники, фармацевтики, парфюмерии, химической промышленности и теплоэнергетики. Вода для паровых котлов должна иметь очень низкое содержание растворенных веществ, особенно таких, как соли жесткости, окись кремния, железо. Обратный осмос позволяет снизить содержание этих компонентов до требуемых величин. Действительно, традиционно в этой области применяются деионизаторы с регенерацией ионообменных смол растворами кислот и щелочей. Эти устройства при сопоставимой с обратноосмотическими системами стоимости имеют ряд существенных недостатков. Это и необходимость содержания реагентного хозяйства, и большой объем агрессивных кислотно-щелочных стоков, что предъявляет особые требования к дренажной системе. Затраты на расходные материалы (кислоты, щелочи) составляют зачастую немалые суммы. Для обеспечения непрерывной подачи очищенной воды необходимо дублирование оборудования, поскольку не допускается перерыв в работе. Системы обратного осмоса практически лишены этих недостатков. Они способны работать 24 часа в сутки, более удобны в эксплуатации, требуют гораздо меньше расходных материалов (ингибиторы, моющие растворы), имеют неагрессивные сбросные воды.
Недостатком установок обратного осмоса и нанофильтрации можно назвать необходимость качественной предварительной подготовки воды перед мембранами. В исходной воде должны отсутствовать сильные окислители (например, содержание свободного хлора для обратноосмотических мембран не должно превышать 0,1 мг/л). Перед подачей в мембрану, воду тщательно очищают от механических примесей, железа. Такая предварительная подготовка воды позволяет увеличить срок службы мембран.
В обратноосмотической технологии используется полупроницаемая мембрана, которая пропускает только молекулы воды и задерживает молекулы загрязняющих веществ. Наиболее часто в технологии обратного осмоса используется процесс, известный как перекресное течение, что позволяет мембране самоочищаться. В то время, как часть жидкости проходит через мембрану, другая ее часть двигается в обратном направлении, вымывая из мембраны обратного осмоса задержанные частички. В процессе обратного осмоса требуется движущая сила, которая будет проталкивать жидкость через мембрану, наилучшим вариантом является давление, создаваемое помпой. Чем выше давление, тем больше движущая сила. Установки обратного осмоса способны задерживать бактерии, соли, сахара, протеины, частицы, красители и другие загрязняющие вещества, молекулярная масса которых больше 150-250 далтонов. Разделение ионов обратным осмосом происходит с участием заряженных частиц. Это значит, что расстворенные ионы, которые несут заряд, равный зараряду солей, более вероятно будут отброшены мембраной, чем те, которые не заряжены, например органика. Чем больше заряд частицы и ее размер, тем выше вероятность того, что она будет отброшена мембраной.
Применяемые в настоящее время композитные мембраны позволяют значительно снизить гидродинамическое сопротивление. В них тонкий селективный слой наносится химическим путем на пористую основу (подложку). Толщина селективного слоя составляет 0,1-1,0 мкм, а толщина пористой основы – 50-150 мкм. Подложка практически не создает сопротивления потоку благодаря широким порам, а сопротивление селективного слоя значительно снижается благодаря значительному сокращению его толщины. В целом композитная структура мембраны обеспечивает механическую прочность за счет толщины пористой подложки, а кроме того, позволяет снизить общее сопротивление мембраны за счет тонкости селективного слоя.
Селективный слой обратно осмотических мембран выполнен из полиамидного материала. Рабочее давление таких мембран при минерализации исходной воды до 5 г/л составляет 10-15 бар. Стандартная рабочая температура обратного осмоса не превышает 40ºС, хотя в настоящее время производятся полиамидные мембраны, работающие при повышенных температурах – до 90°С. Селективность полиамидных мембран составляет 90-99,6%.
Обратно осмотические мембраны производятся в виде рулонных мембранных элементов, которые позволяют разместить мембранное полотно с большой площадью в небольшом объеме. Это обеспечивает компактность обратно осмотических установок.

Отечественный и зарубежный опыт показал, что на продолжительность и надежность работы мембран большое влияние оказывает процесс осадкообразования. Образующийся слой осадка, который, как правило, является соленепроницаемым, забивает поверхностные поры мембраны, создает дополнительное сопротивление потоку и массопередаче в граничном слое, в результате чего увеличивается концентрационная поляризация на мембранах и снижается их солезадерживающая способность и производительность.
mirznanii.com
Характеристика – мембрана – Большая Энциклопедия Нефти и Газа, статья, страница 1
Характеристика – мембрана
Cтраница 1
Характеристики мембран из различных ароматических полиамидов ( а также полигидразидов) близки, но все же несколько зависят от их химического строения. Например, мембраны из ароматических полиамидов упорядоченного строения ( см. табл. IV.23) имеют более высокие производительность и степень извлечения NaCl, чем мембраны из поли-л-фениленизофталамида. [1]
Характеристика мембраны зависит от ее материала, размеров и профиля гофров. [2]
Характеристику мембраны можно улучшить, применив жесткие диски, обжимающие ее центральную часть. Они увеличивают перестановочную силу и уменьшают неравномерность регулирования. [4]
Характеристику мембраны можно улучшить, применив жесткие диски, обжимающие ее центральную часть. Они увеличивают перестановочную силу и уменьшают неравномерность регулирования. В этом случае активная поверхность мембраны равна сумме активной поверхности эластичной части мембраны и площади жесткого диска, коэффициент активности которого равен I. [6]
Определяющей характеристикой мембраны является эффективная площадь. [7]
Приведены характеристики катионитовых и аниони-товых мембран для опреснения воды электродиализом, дано описание технологических схем и конструкций электродиализных опреснительных установок. [8]
Стабильность характеристик мембран определяется постоянством величин эффективной площади и жесткости. Удовлетворить обоим условиям в одном элементе обычно бывает затруднительно, поэтому на практике часто применяют чувствительные элементы, имеющие некоторую эффективную площадь и нулевую жесткость. К ним относятся мягкие или, как их еще называют, вялые мембраны, изготавливаемые из ткани ( капрон, шелк), пропитанной бензо – и маслостойкой резиной. [9]
Стабильность характеристик мембран определяется постоянством величины эффективной площади и жесткости. Удовлетворение обоих этих условий в одном элементе часто бывает затруднительно, поэтому находят практическое применение чувствительные элементы, имеющие некоторую эффективную площадь и нулевую жесткость. К этим элементам относятся мягкие или, как их еще называют, вялые мембраны, изготавливаемые из ткани ( капрон, шелк), пропитанной бензо – и маслостойкой резиной. [10]
Некоторого улучшения характеристики мембраны можно добиться, применяя жесткие диски, обжимающие ее центральную часть. Они увеличивают перестановочную силу и уменьшают неравномерность регулирования. В этом случае активная поверхность мембраны равна сумме активной поверхности эластичной части мембраны и площади жесткого диска, коэффициент активности которого равен единице. Применением жесткого диска удается повысить коэффициент активности мембраны для среднего ее положения ( прогиб равен / 2) ДО 2 / з против Уз, который имеют мембраны без обжимных дисков. [11]
На линейность характеристики мембраны существенное влияние оказывает форма гофров. [12]
В первом случае характеристика мембраны искажается из-за ее неравномерного нагрева, а при втором случае требуется высокая точность изготовления затяжных колец. [13]
Построенная таким образом характеристика двухслойной мембраны показана на рис. 3.13 6 штриховой линией. На рис. 3.13, в приведен пример характеристики трехслойной мембраны. [14]
Наряду с улучшением характеристики мембраны, применение обжимных дисков значительно уменьшает свободный ход мембраны, что следует считать большим недостатком этого метода. [15]
Страницы: 1 2 3 4
www.ngpedia.ru